

Introduction

■

What Is Visual Modeling?

■

The Triangle for Success

■

The Role of Notation

■

History of the UML

■

The Role of Process

■

What Is Iterative and Incremental Development?

■

The Rational Unified Process

■

The Rational Rose Tool

■

Summary

Chapter 1

WHAT

IS

VISUAL

MODELING

?

 3

WHAT

IS

VISUAL

MODELING

?

VISUAL

MODELING

IS

 a way of thinking about problems using models
organized around real-world ideas. Models are useful for under-
standing problems, communicating with everyone involved with the
project (customers, domain experts, analysts, designers, etc.), model-
ing enterprises, preparing documentation, and designing programs
and databases. Modeling promotes better understanding of require-
ments, cleaner designs, and more maintainable systems.

Models are abstractions that portray the essentials of a com-
plex problem or structure by filtering out nonessential details, thus
making the problem easier to understand. Abstraction is a funda-
mental human capability that permits us to deal with complexity.
Engineers, artists, and craftsmen have built models for thousands
of years to try out designs before executing them. Development
of software systems should be no exception. To build complex sys-
tems, the developer must abstract different views of the system,
build models using precise notations, verify that the models satisfy
the requirements of the system, and gradually add detail to trans-
form the models into an implementation.

We build models of complex systems because we cannot
comprehend such systems in their entirety. There are limits to
the human capacity to understand complexity. This concept may
be seen in the world of architecture. If you want to build a shed
in your backyard, you can just start building; if you want to build
a new house, you probably need a blueprint; if you are building a
skyscraper, you definitely need a blueprint. The same is true in the
world of software. Staring at lines of source code or even analyzing
forms in Visual Basic does little to provide the programmer with a
global view of a development project. Constructing a model allows
the designer to focus on the big picture of how a project’s compo-
nents interact, without having to get bogged down in the specific
details of each component.

Increasing complexity, resulting from a highly competitive and
ever-changing business environment, offers unique challenges to
system developers. Models help us organize, visualize, understand,

4 Chapter 1 / Introduction

and create complex things. They are used to help us meet the chal-
lenges of developing software today and in the future.

THE

TRIANGLE

FOR

SUCCESS

I

HAVE

OFTEN

 used the triangle for success as shown in Figure 1-1 to
explain the components needed for a successful project. You need all
three facets—a notation, a process, and a tool. You can learn a nota-
tion, but if you don’t know how to use it (process), you will probably
fail. You may have a great process, but if you can’t communicate the
process (notation), you will probably fail. And lastly, if you cannot
document the artifacts of your work (tool), you will probably fail.

Figure 1-1 Triangle for Success

THE

ROLE

OF

NOTATION

NOTATION

PLAYS

AN

 important part in any model—it is the glue that
holds the process together. “Notation has three roles:

■

It serves as the language for communicating decisions
that are not obvious or cannot be inferred from the code
itself.

■

It provides semantics that are rich enough to capture all
important strategic and tactical decisions.

HISTORY

OF

THE

UML

 5

■

It offers a form concrete enough for humans to reason
and for tools to manipulate.”

1

The Unified Modeling Language (UML) provides a very robust
notation, which grows from analysis into design. Certain elements
of the notation (for example, classes, associations, aggregations,
inheritance) are introduced during analysis. Other elements of the
notation (for example, containment implementation indicators and
properties) are introduced during design.

HISTORY

OF

THE

UML

DURING

THE

1990

S

 many different methodologies, along with their
own set of notations, were introduced to the market. Three of the
most popular methods were OMT (Rumbaugh), Booch, and OOSE
(Jacobson). Each method had its own value and emphasis. OMT
was strong in analysis and weaker in the design area. Booch 1991
was strong in design and weaker in analysis. Jacobson was strong
in behavior analysis and weaker in the other areas.

As time moved on, Booch wrote his second book, which
adopted a lot of the good analysis techniques advocated by Rum-
baugh and Jacobson, among others. Rumbaugh published a series of
articles that have become known as OMT-2 that adopted a lot of the
good design techniques of Booch. The methods were beginning to
converge but they still had their own unique notations. The use of
different notations brought confusion to the market since one sym-
bol meant different things to different people. For example, a filled
circle was a multiplicity indicator in OMT and an aggregation sym-
bol in Booch. You will hear the term “method wars” being used to
describe this period of time—is a class a cloud or a rectangle? Which
one is better?

The end of the method wars as far as notation is concerned
comes with the adoption of the Unified Modeling Language (UML).
“UML is a language used to specify, visualize, and document the
artifacts of an object-oriented system under development. It repre-
sents the unification of the Booch, OMT, and Objectory notations,

1

 Booch, Grady.

Object Solutions.

 Redwood City, CA: Addison-Wesley, 1995.

6 Chapter 1 / Introduction

as well as the best ideas from a number of other methodologists as
shown in Figure 1-2. By unifying the notations used by these object-
oriented methods, the Unified Modeling Language provides the
basis for a

de facto

 standard in the domain of object-oriented analy-
sis and design founded on a wide base of user experience.”

2

The UML is an attempt to standardize the artifacts of analysis
and design: semantic models, syntactic notation, and diagrams.
The first public draft (version 0.8) was introduced in October 1995.
Feedback from the public and Ivar Jacobson’s input were included
in the next two versions (0.9 in July 1996 and 0.91 in October 1996).
Version 1.0 was presented to the Object Management Group (OMG)
for standardization in July 1997. Additional enhancements were
incorporated into the 1.1 version of UML, which was presented to
the OMG in September 1997. In November 1997, the UML was
adopted as the standard modeling language by the OMG. The cur-
rent version of the UML is UML 1.4 and work is progressing on
UML 2.0. You can find more information on the UML by visiting
the OMG web site at www.omg.org.

Figure 1-2 UML Inputs

2

The Unified Method,

 Draft Edition (0.8). Rational Software Corporation,
October, 1995.

WHAT

IS

ITERATIVE

AND

INCREMENTAL

DEVELOPMENT

?

 7

THE

ROLE

OF

PROCESS

A

SUCCESSFUL

DEVELOPMENT

 project satisfies or exceeds the cus-
tomer’s expectations, is developed in a timely and economical
fashion, and is resilient to change and adaptation. The development
life cycle must promote creativity and innovation. At the same time,
the development process must be controlled and measured to ensure
that the project is indeed completed. “Creativity is essential to the
crafting of all well-structured object-oriented architectures, but
developers allowed completely unrestrained creativity tend to never
reach closure. Similarly, discipline is required when organizing the
efforts of a team of developers, but too much discipline gives birth to
an ugly bureaucracy that kills all attempts at innovation.”

3

 A well-
managed iterative and incremental life cycle provides the necessary
control without affecting creativity.

WHAT

IS

ITERATIVE

AND

INCREMENTAL

DEVELOPMENT

?

IN

AN

 ITERATIVE and incremental life cycle (Figure 1-3), development
proceeds as a series of iterations that evolve into the final system.
Each iteration consists of one or more of the following process com-
ponents: business modeling, requirements, analysis, design, imple-
mentation, test, and deployment. The developers do not assume that
all requirements are known at the beginning of the life cycle; indeed
change is anticipated throughout all phases.

This type of life cycle is a risk-mitigating process. Technical
risks are assessed and prioritized early in the life cycle and are
revised during the development of each iteration. Risks are attached
to each iteration so that successful completion of the iteration allevi-
ates the risks attached to it. The releases are scheduled to ensure
that the highest risks are tackled first. Building the system in this
fashion exposes and mitigates the risks of the system early in the

3 Booch, Grady. Object Solutions. Redwood City, CA: Addison-Wesley, 1995.

8 Chapter 1 / Introduction

life cycle. The result of this life cycle approach is less risk coupled
with minimal investment.4

Figure 1-3 Iterative and Incremental Development

THE RATIONAL UNIFIED PROCESS

CONTROL FOR AN iterative and incremental life cycle is supported by
employing the Rational Unified Process—an extensive set of guide-
lines that address the technical and organizational aspects of soft-
ware development focusing on requirements analysis and design.

The Rational Unified Process is structured along two
dimensions:

■ Time—division of the life cycle into phases and itera-
tions

■ Process components—production of a specific set of arti-
facts with well-defined activities

Both dimensions must be taken into account for a project to
succeed.

4 More information on the application of an iterative and incremental
approach to software development may be found in the article “A Rational
Development Process” by Philippe Kruchten, CrossTalk, 9(7), July 1996,
pp. 11–16. This paper is also available on the Rational web site: http://
www.rational.com.

THE RATIONAL UNIFIED PROCESS 9

Structuring a project along the time dimension involves the
adoption of the following time-based phases:

■ Inception—specifying the project vision

■ Elaboration—planning the necessary activities and
required resources; specifying the features and designing
the architecture

■ Construction—building the product as a series of incre-
mental iterations

■ Transition—supplying the product to the user community
(manufacturing, delivering, and training)

Structuring the project along the process component dimension
includes the following activities:

■ Business Modeling—the identification of desired system
capabilities and user needs

■ Requirements—a narration of the system vision along
with a set of functional and nonfunctional requirements

■ Analysis and Design—a description of how the system
will be realized in the implementation phase

■ Implementation—the production of the code that will
result in an executable system

■ Test—the verification of the entire system

■ Deployment—the delivery of the system and user train-
ing to the customer

Figure 1-4 shows how the process components are applied to
each time-based phase.

Each activity of the process component dimension typically
is applied to each phase of the time-based dimension. However, the
degree to which a particular process component is applied is depen-
dent upon the phase of development. For example, you may decide
to do a proof of concept prototype during the Inception Phase, and
thus, you will be doing more than just capturing requirements (you
will be doing the analysis, design, implementation, and test needed
to complete the prototype). The majority of the analysis process

10 Chapter 1 / Introduction

Figure 1-4 The Development Process

component occurs during the Elaboration Phase. However, it is also
advisable to complete the first few iterations of the system during
this phase. These first few iterations typically are used to validate
the analysis decisions made for the architecture of the system.
Hence, you are doing more than just analyzing the problem. During
the Construction Phase of development, the system is completed as
a series of iterations. As with any type of development structure,
things always crop up as the system is built; thus, you are still doing
some analysis.

The diagram is meant to be a guideline for the life cycle of your
project. The main point is if you are still trying to figure out what
you are supposed to be building as you are writing the code, you
are probably in trouble. You should also note that testing is applied
throughout the iteration process—you do not wait until all the code
is done to see if it all works together!

This book uses a simplified version of the Rational Unified Pro-
cess, which concentrates on the use of the UML to capture and doc-
ument the decisions made during the Inception and Elaboration
phases of development. The last few chapters lightly cover con-
struction of the system. Although testing is a very integral part of
system development, it is beyond the scope of this book.

SUMMARY 11

THE RATIONAL ROSE TOOL

ANY SOFTWARE DEVELOPMENT method is best supported by a tool.
When I first started OO modeling, my tool was paper and a pencil,
which left a lot to be desired. There are many tools on the market
today—everything from simple drawing tools to sophisticated object
modeling tools. This book makes use of the tool Rational Rose. At
every step, there is a description of how to use Rational Rose to com-
plete the step.

The Rational Rose product family is designed to provide the
software developer with a complete set of visual modeling tools for
development of robust, efficient solutions to real business needs in
the client/server, distributed enterprise, and real-time systems envi-
ronments. Rational Rose products share a common universal stan-
dard, making modeling accessible to nonprogrammers wanting
to model business processes as well as to programmers modeling
applications logic. An evaluation version of the Rational Rose tool
may be obtained at the Rational Software Corporation website at
www.rational.com.

SUMMARY

VISUAL MODELING IS a way of thinking about problems using models
organized around real-world ideas. Models are useful for under-
standing problems, communication, modeling enterprises, preparing
documentation, and designing programs and databases. Modeling
promotes better understanding of requirements, cleaner designs, and
more maintainable systems. Notation plays an important part in any
model—it is the glue that holds the process together. The Unified
Modeling Language (UML) provides a very robust notation, which
grows from analysis into design.

A successful development project satisfies or exceeds the cus-
tomer’s expectations, is developed in a timely and economical fash-
ion, and is resilient to change and adaptation. The development life
cycle must promote creativity and innovation. A well-managed iter-
ative and incremental life cycle provides the necessary control with-
out affecting creativity. In an iterative and incremental development
life cycle, development proceeds as a series of iterations that evolve

12 Chapter 1 / Introduction

into the final system. Each iteration consists of one or more of the
following process components: business modeling, requirements,
analysis, design, implementation, test, and deployment.

Control for an iterative and incremental life cycle is provided in
the Rational Unified Process—an extensive set of guidelines that
address the technical and organizational aspects of software devel-
opment, focusing on requirements analysis and design. This book
uses a simplified version of the Rational Unified Process.

The Rational Rose product family is designed to provide the
software developer with a complete set of visual modeling tools
for development of robust, efficient solutions to real business needs
in the client/server, distributed enterprise, and real-time systems
environments.

