
P A R T II

Building Solutions with CEP

Highlights in Part II:

• The fundamental elements:
– Event patterns and pattern languages
– Reactive event pattern rules and constraints
– Event causality and event hierarchies

• The building blocks of CEP applications:
– Event processing agents
– Architectures of agents

• Case studies of CEP applications
• Steps towards developing an infrastructure to support CEP applications

Chapter 8

The RAPIDE Pattern Language

• Designing event pattern languages
• The Rapide event pattern language (Rapide-EPL)
• Classes of events
• Pattern matching—the fundamental operation in CEP
• Single event patterns
• Complex event patterns
• Repetitive and recursive event patterns
• Event pattern macros
• Building libraries of patterns

So far we have explored the concepts of CEP using a simple event pattern
language, STRAW-EPL. We chose the tabular format because it lays out
all the elements of an event pattern in a way similar to a graphical user
interface. STRAW-EPL is fine for explaining easy examples. But when we
deal with how to build real applications of CEP, we need a more powerful
event pattern language.

In this chapter, we describe in some detail the features of a particular
event pattern language that formed the basis for early research into CEP.

145

146 Chapter 8—The RAPIDE Pattern Language

This is the Rapide-EPL for specifying patterns of events in causal event
executions (posets). The Rapide-EPL contains a core of features that are
needed to support CEP. We use it extensively in later chapters to illustrate
example applications of CEP because it is a more powerful and succinct
notation than the tabular format of STRAW-EPL. As the complexity of
CEP applications develops over time, we expect that EPLs will include many
more features.

8.1 Event Pattern Languages—Basic
Requirements

First, we discuss some general requirements that an event pattern language
should meet in order to adequately support CEP.

An event pattern language is a computer language in which we can
precisely describe patterns of events. It is similar to mathematical language
for logical expressions or a Web search language with more than the usual
options and some other bells and whistles. It lets us describe, without any
ambiguity, exactly the patterns in which we are interested.

A pattern matcher for an EPL is a program that processes one or more
event executions in real time and picks out all, and only, posets that match
a pattern.

An EPL must have the following properties.

• Power of expression: It must be powerful enough to specify the kinds
of complex patterns that are needed in order to apply CEP to the
problems described in Chapters 1 through 4. To do this, it must
provide relational operators corresponding to relationships between
events (for example, “and,” “or,” “causes,” and “is independent of”),
temporal operators (for example, “during,” “at,” “within”) that refer
to time bounds and time intervals, and ways to refer to data inside
events and to context.

• Notational simplicity: It must let us write patterns easily and
succinctly. The tabular format of our STRAW-EPL is too lengthy and
restrictive for “heavy-duty” use. Some powerful pattern language
constructs would be difficult to express in tabular format.

• Precise semantics: It must have a mathematically precise concept of
match so that when we specify a pattern, we know the posets of
events that can match it.

• Scalable pattern matching: It must have an efficient pattern matcher
that can scale to matching large numbers of patterns over high
volumes of events in real time. This issue will inevitably influence
language design.

8.2 Features of RAPIDE 147

When it comes to designing EPLs, we have a “tension” between our re-
quirements: simplicity, ease of use, and efficiency of pattern matching versus
power of expression.

There is a fact-of-life reason for this. If an EPL is simple and easy to
use, we won’t be able to specify some kinds of complex patterns in it. On
the other hand, if it is powerful and lets us specify complex patterns, it will
contain “advanced” features or options that take time to learn how to use.
And pattern matching for complex patterns is computationally demanding
and difficult to implement efficiently.

8.2 Features of RAPIDE

The Rapide event pattern language is a declarative computer language
for writing patterns of events. The patterns can specify sets of events to-
gether with their parameters, timestamps, and causal dependencies, and
which events are causally independent of each other.

Declarative means that Rapide-EPL consists of mathematical expres-
sions that “declare” (or describe) patterns. It does not include any algorith-
mic programming features like assignment or conditional branches. It is as
simple a language as can meet the basic requirements for CEP.

Here is a summary of its main features.

• Strong typing to avoid common errors in writing patterns.
• Basic data types for specifying the data parameters of events and

contexts.
• Event types for expressing the types of events in a pattern.
• Basic event patterns that allow us to express patterns that match

single events—for example, any order from any customer.
• Pattern operators for expressing relationships between events. Pattern

operators are used to specify complex patterns of many events in
precise relationships.

• Context that lets us restrict matches of patterns to specific contexts in
which events are observed.

• Temporal operators that allow us to specify the timing of events that
match a pattern, or when a pattern should or should not match.

• Pattern macros that let us express complex patterns succinctly and
build libraries of patterns.

• Mathematical semantics. Rapide-EPL has a simple one-page defini-
tion of matching that provides a specification for any pattern matcher.

The syntax is easy to understand and is similar to the syntax of object-
oriented languages such as Java or C#, with a few small variations. In fact,

148 Chapter 8—The RAPIDE Pattern Language

Rapide-EPL can be viewed as an “add-on” or extension of expressions in
these languages.

In the following sections, we describe Rapide-EPL and the semantics
of pattern matching. We want to tell you, the reader, as simply as possible
how to write event patterns in Rapide-EPL. This is done with informal,
intuitive descriptions of matching. We don’t give a mathematical definition
of matching here. There are precise formal definitions of matching in other
documents about Rapide.

8.3 Types
Rapide-EPL is strongly typed, much like most modern object-oriented lan-
guages. It may seem odd to impose strong typing on patterns, but it turns
out to help users avoid all kinds of silly errors in patterns, such as typos.
Such errors show up as type mismatches in the pattern. Types also play a
powerful role in restricting the context in which a pattern can match. This
makes pattern matching more efficient.

There are three kinds of types: data types, event types, and execution
types.

When we write a pattern, we must first declare the types of data in the
pattern and the types of events we expect to match the pattern against. A
set of type declarations is called a type context.

Example 1: Defining Warning events

If we want to write patterns that will match Warning events, either about
the loads on routes in a network or about the distance between aircraft, we
first define the types of these Warning events:

// type declarations preceding a pattern.
typedef Network Path . . . ; – – data type
typedef Aircraft . . . : – – data type
action Warning (Network Path P1, Real P2); – – event type
action Warning (Aircraft P1, Feet P2); – – event type

This type context declares two types of Warning events. It defines a
global type context for patterns that follow it. Following these type decla-
rations (that is, in the scope of the global type context), we can write a
pattern such as this:

// pattern that matches network Warning events.
(Network Path Route; Real Load) Warning(Route, Load);

8.3 Types 149

This a basic event pattern that can match single events. It consists of
declarations of the types of parameters in the pattern followed by an event
template. The type declarations of the parameters are a local type context
for the pattern that restricts the types of parameters only in this pattern.

As the example shows, a pattern consists of two parts: first a list in
parentheses of the variables in the pattern together with their types, and
then the pattern part—the part that describes the events to be matched.
Events have names called action names followed by a list of parameters.
The name of an event is in fact a parameter of the event that we give a
special syntactic emphasis by putting it first. It is similar to the subject
of a message. The name of an event must match the action name in the
event pattern in order for a match to be possible. So, for example, a
Warning(. . .) pattern cannot match a ConnectTime event.

Here, the pattern matches events with the action name, Warning, and
parameters Route (which is of type Network Path) and Load (which is a
Real number).

Patterns are checked for type consistency before they are compiled for
matching. This is where typos and other errors are caught.

Matching must be consistent with the types of the parameters in the
pattern, and this restricts the events that can match the pattern. Our Warn-
ing pattern will match events like Warning(London–NewYork, 0.75), which
is the kind of event we are looking for. London–NewYork is a Route and
0.75 is a Real number giving a measure of urgency.

If we omitted the typed parameter list from the pattern and just wrote
the pattern part, we might get matches of Warning events from a different
type of Warning event, like Warning(UA51, 5000), a warning of an air-
craft within 5,000 feet. Although this may be an interesting match, it isn’t
a network warning, which is the kind of event our pattern is intended to
match.

A pattern has both a global type context, where the types of events
it can match are declared, and a local type context, where its variables and
their types are declared. Because different types of events can have the same
action name, the local context is important in disambiguating action names
and specifying the types of events a pattern is intended to match. The data
types in the local context must be subtypes of data types in the global
context.

8.3.1 Predefined Types
Rapide-EPL has a set of predefined types. These are very common data
types that appear in the events generated by many systems.

150 Chapter 8—The RAPIDE Pattern Language

The predefined types include Boolean, Character, String, Integer,
Float, and so on. Each predefined type comes with a set of operations. For
example, Integers have the usual operations “+”, “−”, “=”, and so on.
Strings have a rich set of predefined operations—for example, comparison
operations, such as S< T; selection operations, such as S [2 . . 4], which re-
turns the substring consisting of the second, third, and fourth characters of
S; and concatenation, &, which lets us construct a new string, S&T, from
strings S and T.

8.3.2 Structured Types
Structured types are composed from other types. They let us define objects
that have other objects as components.

Common kinds of structured types that are in many languages are pre-
defined: record (record types), array (array types), enum (enumeration
types), and some special types that we will describe later. Each of these
structured types has predefined selection operations that let us select out
the components of structured objects. To construct a structured object, we
can assign objects as its components.

Structured types are defined by using type definitions. A type definition
lets us define a type and give it a name. We can then use that name in
declaring parameters of that type. The form of a type definition is

typedef type−expression name ;

Example 1: The record type definition

An example of a record type definition is

typedef record {Node N1; Connection C; Node N2} Network Path;

Here we have defined Network Path to be a record type with three
components: two nodes and a connection. We can select components of a
record object using the parameters of the type definition and the “.” selection
operation. So, if Route is an object of type Network Path, “Route . N1” is
the first Node of Route, and so on.

Example 2: The array type definition

An example of an array type definition is

typedef array [1, 2, 3] of String Triplet;

8.3 Types 151

The index type in “[,]” must be an enumeration type, such as Integer.
All the components of an array type must be of the same type—in this
example, String.

Selection of components is done by applying a value of the index type to
an object of the array type using “()” notation. For example, if ThreeSome
is of type Triplet, then ThreeSome(1) is its first string component.

8.3.3 Event Types
Events are objects that are tuples of data. An event contains the values of
predefined attributes (such as its action name and its timestamps) as well
as additional data parameters.

In Rapide-EPL there is a predefined event type, Event, which is the type
of all events. This is the type of all events with any name, any parameter
list (which can be empty), and the predefined attributes (which may have
undefined values).

It is useful—for example, for efficient pattern matching—to be able to
classify events into subtypes. Subtypes of events are declared by action dec-
larations.

An action declaration specifies a subtype of events. An action declaration
has the format

action identifier (list of parameter declarations) ;

where the identifier is the action name, and the list of parameters in paraen-
theses declares the tuple of data in the events. The parameter list is a list
of declarations that consist of the type of a parameter followed by the name
of the parameter. The predefined attributes are always implied members of
the list of parameters and are not explicitly declared. An action declaration
specifies the set of those events that have the action’s name as their action
name attribute and contain a tuple of data parameters that conform to the
types of the action’s parameter declarations.

Example 1: A Warning event

A type of Warning event is

action Warning(Network Path Route; Real Load);

152 Chapter 8—The RAPIDE Pattern Language

Examples of events in this action type are

Warning(London−NewYork, 0.75)
Warning(Paris−London, 0.92)

However, the following events are not members of this action type:

ConnectTime(London−NewYork, 02.56) −because the action name is not “Warning”
Warning(UA51, 5000) −because the data parameters are of the wrong types

Example 2: An Order event

A type of order event in a supply chain system is

action Order(Cust Id Customer, Parts Order Data, Accnt no Accnt, . . .);

Here we specify a subtype of events that contain the customer’s Id,
the order form in a required Parts Order format, the account number, and
other data. Order events will also contain the attributes they inherit from
the Rapide-EPL event type, such as timestamps.

Figure 8.1 shows three subtypes of events that can be defined by action
declarations. Each event subtype defines events from a particular system,
or problem domain. The DTP events are the kind of events created by a

Rapide
Event
Type

FAA
Air Traffic

Control Event
Types

SPARC V9
64-bit ISA

Event Types

X/Open
DTP

Event Types

Inherits
from

Inheritance of System Event Types

Figure 8.1: Subtypes of the RAPIDE event type

8.3 Types 153

distributed transaction system, the FAA events are the type of events created
in air traffic control, and SPARC V9 events are created by a simulation of a
CPU architecture. In each subtype, the events inherit the attributes of the
basic event type and contain additional data specific to a particular kind of
system.

The subtype of XML events—that is, events having an XML format—is
another example of an event subtype.

The idea behind actions is very simple. We think of an activity in the
target system as leading to the creation of an event. We call such an activity
an action. We give it a name—its action name—and a list of parameter
declarations. The action declaration defines the subtype of the forms of
events1 that signify the system activity.

8.3.4 Execution Types
An execution is a poset of events. Its type is called an execution type. An
execution type is a set of action declarations specifying the types of events
that can happen in an execution. We can define execution types using the
keyword execution:

typedef execution {list of action declarations } Name;

As we shall see, execution types are useful in ensuring the correct use
of event processing agents, particularly connecting them to work together.

Example 1: The NetMngmt execution type

If a network monitoring system generates load warnings, connect times, and
messages on various topics, we can specify its execution type as consisting
of the following event types:

typedef execution {
action Warning(Network Path Route; Real Load);
action Alert(Node Type Node; Real CPU Load, Memory Allocation;

Int 1 .. 5 Severity; Time Type Time);
action ConnectTime(Network Path Route; Time Type Time);
action Send(Subject Type Subject; String Message, Id; Time Type Time);
action Acknowledge(String Id; Time Type Time)
} NetMngmt ;

1See Section 5.1 for a definition of “event.”

154 Chapter 8—The RAPIDE Pattern Language

Suppose NetMngmt is the type of execution a network monitor is ex-
pected to deal with. Its events are classified into five subtypes, with the
action names Warning, Alert, ConnectTime, Send, and Acknowledge. These
are the types of events it expects to deal with and should be programmed
to handle.

Example 2: The ATM-Use execution type

A similar example is a simple automated bank teller system (ATM). Its
execution type might be specified according to three actions that it allows
customers to perform at the ATMs:

typedef execution {
action Deposit(Dollars Amount; Account Type Accnt);
action Withdraw(Dollars Amount; Account Type Accnt);
action Transfer(Dollars Amount; Account Type From Accnt, To Accnt)
} ATM−Use ;

If an ATM’s execution type is ATM−Use, we know that its executions
can consist only of events with the action names Deposit, Withdraw, and
Transfer.

Example 3: The SupplyChainEvents execution type

An execution type for a supply chain

typedef execution {
action RFQ(RFQId Id; ProdSpec Spec; Dollars Price; Quantity Num; Schedule . . .);
action Bid(Vendor VId; BidId Id; ProdSpec Spec; Dollars Price; Quantity Num; . . .)
action Order(OrderId Id; CustId Customer; PartsOrder Data; AccntNo Accnt; . . .);
action Confirm(OrderId Id; PartsOrder Data; AccntNo Accnt; Schedule Dates; . . .);
. . .

} SupplyChainEvents;

The supply chain execution type defines the types of events that we
used in Chapter 2 to illustrate the global event cloud. In real life, of course,
it will have many more action types in it. Execution types will eventually
be the subject of standardization for particular industries, analogously to
the standards for sets of message types today—for example, the ISO 15022
standard for for messaging to execute transactions in financial markets.

8.4 Attributes of Events 155

8.3.5 Subtyping of Executions
Execution types have a simple subtyping rule:

type T 1 is a subtype of T 2 if T 2⊂T 1 −−T 1 contains T 2.

This rule means that T1 is a subtype of T2 if the set of actions in T1
contains all the actions in T2.

This is very similar to the object-oriented subtyping rule: type colored
point is a subtype of type point. A colored point contains the X and Y
coordinates of a point and the additional color component. The importance
in object-oriented programs is that any function that computes on points
also computes on colored points because colored points contain all the data
it needs—but not conversely. The O-O rule is that you can always evaluate
a function on an object of a subtype of a function’s input type.

Execution types turn out to be useful when we build networks of agents.
Event processing agents (EPAs) are typed with their input and output ex-
ecution types. This lets us analyze whether or not it is sensible to feed the
output of one agent into the input of another. Here’s how we do it. Com-
position of EPAs follows the same rule as function composition in typed
languages. Namely, if EPA1 outputs to EPA2, the execution type of the
output of EPA1 must be a subtype of the execution type of input expected
by EPA2. So, it’s just as if EPA1 is pumping out colored points and EPA2
is computing on points.

It is easy to see that we shouldn’t try, for example, to hook up a network
monitor agent and an ATM agent, because they process entirely different
types of events. Such a hookup would be a complete waste of time.

8.4 Attributes of Events
Rapide-EPL events have a set of predefined attributes that are common to
all events. Not all attributes need to have defined values in an event.

Attributes give basic information about events. This includes, for ex-
ample, their timestamps, their origin (the system component that gener-
ated them), their destinations (the components that received them), and
information about what events caused them. Attributes give us an ability
to write patterns that more precisely match the events we want to match,
and to trace through event hierarchies.

There are public and private attributes. Public attributes can be named
and used in patterns just like the declared parameters of actions (examples
come later). Private attributes cannot be named in patterns—at least, not
explicitly. They are used by tools such as the semantic checker to do type

156 Chapter 8—The RAPIDE Pattern Language

Table 8.1: Predefined Attributes

Attribute Name Meaning

name Action name of the event

origin Object in the target system whose execution created the event

thread Thread in the target system that created the event

countervalue Counter value of the thread that created the event

archstamp* Target architecture information related to the event, such as
destinations and connections to destinations traveled by the
event

timestamp Start and end times of the event according to clocks in the target
start, end system

causality References to immediate predecessors in the causal history of
the event

point-of-creation* Method call in the target system that created the event

declaration* Reference to the action declaration defining the subtype of
the event

trigger set* References to events that were aggregated to create this event

checking or the pattern matcher to compute causal history, or animation
tools to display event movements on architectural diagrams.

Table 8.1 shows a complete list of the predefined attributes. The ones
that are starred (*) are private and cannot be used to write patterns.

The meaning or interpretation of event attributes must be defined for
each target system. Interpretations of most attributes are defined in adapters,
whose job is to monitor the target system and translate the target system’s
events into Rapide-EPL events (we will discuss adapters in detail later).2
In some cases, an attribute may not be meaningful for a particular system.
Attributes all have default initial values. So, if an attribute isn’t defined for
some target system, its value in all the events will be its default value.

The interpretation of attributes such as origin and archstamp can vary
greatly in different target systems. For example, an origin could be a module
in one system, an application in another, and a thread in a third. The
timestamp attribute can give an interval consisting of the start and end times
of an event with respect to a clock. If there is more than one clock, there
may be multiple timestamps, one for each clock, giving a time interval from
the reading of one of the clocks together with a reference to the clock.

2Adapters are sometimes also called loggers. This is a historical aberration in CEP.

8.5 Basic Event Patterns 157

The causality attribute refers to the events that had to happen in the
system for this event to happen. It is often a vector of event Ids. The interpre-
tation of “had to happen” is system dependent and will be incorporated into
the adapter for events in that system. The trigger set is a set of references to
events that triggered an aggregation rule to create this event. A trigger set
encodes hierarchical aggregation (or vertical causality, Section 1.3.2) and is
available to tools that make drill-down tracking possible.

The interpretation of event attributes may depend upon the program-
ming language in which the target system is written, its components (such
as the networking middleware), and its architecture.

8.5 Basic Event Patterns
The simplest event patterns are called basic patterns. A basic pattern
matches single events. The syntax of a basic pattern is

(list of variable declarations) action name (list of parameter expressions)

The variables are declared in a list, followed by an action name and
a list of parameters, each of which can be either a declared variable or an
expression. The parameters must have types corresponding to the formal
parameter declarations of the action.

A basic event pattern can match events that have the same action name.
To match an event, the variables in the pattern must be replaced by data
values in the event to make an instance of the pattern that is identical to
the event.

Example 1: A basic pattern for money transfers

A basic pattern matching all money transfers from a given account is

(Dollars X, Account Type A) Transfer (X, Accnt#100, A)

The action name is Transfer, and the variables are X and A. The Trans-
fer action is shown in the ATM–Use example (see Section 8.3.4, Example 2).
Accnt#100 is a constant account number for the From Accnt parameter.
To make a match, we can replace X by any dollar amount and A by any
account number. This will give us an instance of the pattern that must be
identical with the event we are trying to match.

For example, the pattern matches Transfer(10, Accnt#100, Accnt#5)
if X is replaced by 10 and A is replaced by Accnt#5. Similarly, the pattern
matches Transfer(105, Accnt#100, Accnt#21505) if X is replaced by 105 and

158 Chapter 8—The RAPIDE Pattern Language

A is replaced by Accnt#21505. But the pattern cannot match Transfer(105,
Accnt#5, Accnt#21505) because Accnt#100 �= Accnt#5.

Example 2: A basic pattern for engine parts

A basic pattern matching all orders for engine parts is

(OrderId Id, CustId Customer, AccntNo Accnt) Order(Id, Customer, EngineParts, Accnt);

The Order action is shown in the SupplyChainEvents example (Sec-
tion 8.3.4, Example 3). All parameters in this pattern are variables except
the PartsOrder which is a constant called EngineParts. So this pattern has
an instance which matches any Order event for engine parts—replace each
variable by the corresponding data parameter in the event.

The simplest case of matching is when the pattern does not contain any
variables—called a constant pattern. In this case, a basic pattern matches
an event if it has the same action name as the event, and each expression in
its data parameters evaluates to the corresponding value in the event’s data
parameters.

Example 3: A constant pattern

A constant pattern is

Deposit(1000, Accnt#123)

This basic pattern matches any single event in which the name of the
action is Deposit, the Dollars amount is 1,000, and the account is Accnt#123.
So it matches events like the following:

Deposit(1000, Accnt#123), Deposit(500+500, Accnt#123), . . .

8.6 Placeholders and Pattern Matching
The variables in patterns are called placeholders because they occupy the
places in a pattern that are “open.” Matching is a game of trying to fill
the open places in a pattern with values (also called “objects”) so that the
instance of the pattern is identical to the event or poset that we are trying
to match.

8.6 Placeholders and Pattern Matching 159

8.6.1 Matching Basic Event Patterns
A basic event pattern matches an event if when its placeholders are re-
placed by objects, the resulting instance of the pattern is identical to the
event. Replacing placeholders with objects to make a match is subject to
two conditions.

• The type of object that replaces a placeholder must be the same as, or
a subtype of, the type of the placeholder.

• A placeholder must be replaced by the same object at all of its
positions in a pattern in any one match.

For a basic pattern to match an event, it must have the same action
name.

8.6.2 Placeholder Bindings
The result of a successful match of a pattern to an event (or more generally,
a poset) is an association of placeholders with objects that replaced them in
the instance that matched the event. This is called a binding of placeholders
to objects.

A binding is usually represented as a set of pairs consisting of a place-
holder and an object, <placeholder ← value>, meaning “replace the
placeholder by the value.”

Example 1: Matching bids in an RFQ process

// basic pattern
(Vendor VId, BidId Offer) Bid(VId, Offer, EngineSpec#10, $2,000, 5000)

// event
Bid(Vendor#5, RF#20, EngineSpec#10, $2,000, 5000)

// binding that results in a match
{<VId ← Vendor#5>, <Offer ← RF#20>}

The pattern has the action name Bid in our supply chain events (see the
declaration of Bid line in Section 8.3.4, Example 3). It has a placeholder,
VId, for the Vendor parameter and a placeholder, Offer, for the BidId pa-
rameter of the Bid action. The other parameters have constant values for the
ProdSpec, Price, and Quantity, so the pattern will match Bid events that
have those constant values. The example shows an event and the placeholder
binding that results in a match. If we replace VId by Vendor#5 and Bid by
RF#20, we get an instance of the pattern that is indentical to the event.

160 Chapter 8—The RAPIDE Pattern Language

Notice in this example that constants in patterns are very restrictive.
Often we want to match a range of values, say, for price or quantity, rather
than one value. We will see how to do this with context guards later.

Example 2: Using a predefined attribute in a pattern

// pattern
(ATM Machine M; Dollars D) Deposit(origin is M, D, Accnt#123)

// event
Deposit(origin is ATM3, 1000, Accnt#123)

// binding resulting in a match
{<M ← ATM3>, <D ← 1000>}

This pattern matches Deposit events from our ATM–Use actions (see
Section 8.3.4, Example 2). The pattern contains a placeholder, M, for the
prefedined attribute, origin. It uses a parameter-naming notation (is), which
we will discuss later.

We are assuming that in the ATM–Use system, the actual ATM can
be an origin recorded in the predefined origin attribute in the events it
creates. This pattern will match events from any ATM that deposit any
amount to a fixed account, Accnt#123. The event in the example is a deposit
orginating at ATM3 of $1,000 to Accnt#123. The binding shows that M
must be replaced by ATM3 and D by $1,000 to make the pattern match the
event.

The golden rule about matching is that in order to match a pattern,
a placeholder can be bound to only one object in all its occurrences in the
pattern. So, if a placeholder occurs more than once in a pattern, a matching
event or poset must have the same data at those positions.

Different matches of a pattern usually (but need not) result in different
placeholder bindings.

Here are some examples of basic patterns using placeholders.

Example 3: Placeholders in basic patterns

// 1. Any transfer of any amount from and to the same account
(Dollars D, Account Type A) Transfer(D, A, A);

// 2. Any event originating from ATM3
(event E) E(origin is ATM3);

8.6 Placeholders and Pattern Matching 161

The first pattern has the same placeholder, A, as both the From Accnt
and To Accnt parameters of a Transfer action in ATM–Use (see Sec-
tion 8.3.4, Example 2). So, it will match events in which some unspeci-
fied amount of money is transfered from any account to the same account.
It will match events such as the following:

Transfer(10, Accnt#123, Accnt#123),
if the binding is {<D ← $10>, <A ← Accnt#123>},

Transfer(25, Accnt#47, Accnt#47),
if the binding is {<D ← $25>, <A ← Accnt#47>},

The second pattern shows a powerful use of a placeholder of the pre-
defined event type. It matches any event generated by ATM3. E will be
bound to the event, whether it is a Deposit, Transfer, or Withdraw. This
is a succinct way to write a pattern to monitor a particular ATM. If the
event is

Transfer(origin is ATM3, 10, Accnt#47, Accnt#123),

the binding is

{<E ← Transfer(origin is ATM3, 10, Accnt#47, Accnt#123)>}

8.6.3 Notation to Aid in Writing Patterns
To emphasize the role of placeholders, Rapide-EPL allows a “?” as a prefix
to a placeholder. The use of “?” is optional. It helps distinguish the variable
parts of a pattern from the constant parts. Some of the previous examples
of basic patterns can be written as follows:

(Dollars ?D, Account Type ?A) Transfer(?D, ?A, ?A);
(Vendor ?VId, BidId ?Offer) Bid(?VId, ?Offer, EngineSpec#10, $2,000, 5000)

Naming Parameters
A common error in writing a basic pattern is misordering the placeholders
in the list of parameters of the action name. That is, the order of the place-
holder parameters in the pattern is not consistent with the order of the
parameters in the action declaration. To prevent this kind of error, each
parameter in a basic pattern can be explicitly associated with the name of
an action’s formal parameter. You just use the parameter from the action

162 Chapter 8—The RAPIDE Pattern Language

declaration to name the parameter in the pattern. The notation for doing
this is

action parameter name is pattern parameter

This is called naming the parameters in the pattern and is an optional
notation.

Example 1: A basic pattern written in named parameter form

(Dollars ?D, Account Type ?A, ?B) Transfer(To Accnt is ?A, Amount is ?D,
From Accnt is ?B);

Look at the Transfer action declaration in ATM–Use (see Section 8.3.4,
Example 2). The placeholder parameters in the pattern here are written in a
different order from the order in which the action’s parameters are declared.
But it doesn’t matter because we have associated each placeholder with the
action’s parameter that it corresponds to. So in this pattern, the To Accnt
is ?A, the Amount is ?D, and the From Accnt is ?B.

Omitting Parameters
A useful feature in writing patterns is to omit a parameter whose binding is
irrelevant to the matches you want. That means that you don’t care about
the omitted parameters, so any value will match them. But to do this without
ambiguity, you must name the parameters you do use in the pattern so that
it is obvious which of an action’s parameters you want to include.

Example 2: Omitting action parameters

Deposit(account is Accnt#123);
(Account Type ?A) Transfer(From Accnt is ?A, To Accnt is ?A);

Here the Deposit pattern matches any Deposit event to account
Accnt#123. We are not interested in the amount. The Transfer pattern
matches any transfer from and to the same account. We are not interested
in the amount of the transfer, but only the accounts where such a transfer
happens.

8.7 Relational Operators and Complex Patterns 163

Using an Event’s Public Attributes
The public attributes of events (see Section 8.4) can be used to write more
precise patterns. The attribute name is used in the named parameter form.
For example, there’s an attribute called the origin of an event. It denotes the
component in the target system that generated the event. That component
may be an object or a module or a thread, depending upon the system.
The origin attribute’s value can be either a name or a reference to that
component.

Example 3: Monitoring all withdrawals generated at a particular ATM

Withdraw(origin is ATM3)

Another useful public attribute is the timestamp of an event. Because
timestamps are used frequently in patterns, there are special notations such
as at and after, for referring to timestamps that are described later in
Section 8.8.3.

Example 4: Filtering out supply chain events according to their timing

(OrderId ?Order) Order(Id is ?Order, end is 12:00)
(RFQ ?R) RFQ(Id is ?R, Spec is EngineSpec) after 12:00

The Order pattern will match those order events that happen over a
time interval that ends at 12:00. The binding will contain the OrderId of
those events.

The RFQ pattern will match those RFQ events for engine specifications
that happen after 12:00 and will bind the Id of the RFQ.

8.7 Relational Operators and Complex Patterns
Relational operators let us write patterns that specify two or more events
and a relationship between them. Relational operators are needed to write
patterns that match complex behavior in a system.

In the simplest case, relational operators specify how two events are
related—for example, whether the events must happen independently or

164 Chapter 8—The RAPIDE Pattern Language

one must cause the other, whether they must happen one before the other
or at the same time, and so on. In general, we can use relational operators
to specify how two posets are related. So we can start with basic patterns
and build more and more complex patterns.

Relational operators are binary operators. A binary relational operator
expresses a relationship between two posets. Patterns written with rela-
tional operators are called complex patterns to distinguish them from basic
patterns, which specify single events.

Example 1: Complex patterns illustrating use of relational operators

1. (Dollars X) Withdraw(X, Accnt#123) −→ Deposit(X);

2. Withdraw ‖ Withdraw;

3. (Event E, E’) E(origin is “Bonnie”) ∼ E’(origin is “Clyde”);

The first pattern uses the causal operator, −→. It matches whenever
a Withdraw event from account Accnt#123 causes a Deposit of the same
Dollar amount (to any account). So the pattern matches posets consisting of
two causally related events, a Withdraw from Accnt#123 and a Deposit of
the same sum of money. Whenever the pattern matches, X is bound to the
Dollar amount. Figure 8.2 shows a poset that contains exactly one match of
this pattern.

The second pattern uses the parallel operator, ‖. It matches any two
independent Withdraw events. The parameter values in the events do not
matter; only their independence determines whether they match the pattern.
Figure 8.2 shows a poset that contains two matches of this pattern. If the
relational operator in pattern 2 was ∼ instead of ‖, there would be three
matches (see the third example).

The third pattern uses the “any” relationship operator, ∼, and place-
holders that have the most general type, the Event type. This pattern
matches any two events, provided “Bonnie” performs one of them (is its
origin) and “Clyde” performs the other. Since we don’t know what these des-
peradoes might do, looking for any action rather than specific actions is the
best strategy. The events may be in any relation to one another. This means
that the pattern can match events that are causally related or that are in-
dependent. Whenever the pattern matches, E and E’ will be bound to the
events. There are six matches in Figure 8.2. The poset shows “Bonnie” and
“Clyde” as separate threads of control that generate events and synchronize
at two points.

8.7 Relational Operators and Complex Patterns 165

DriveUp (Bonnie) WalkUp (Clyde …)

HoldUp (Clyde …)

TakeOff (Bonnie) RunOut (Clyde …)

Withdraw (10 …) Deposit (10)

Withdraw (…) Withdraw (…)

Withdraw (…)

First Pattern Matches Once

Second Pattern Matches Twice

Bonnie and Clyde Pattern Matches Six Times

Figure 8.2: Examples of matches of complex patterns

8.7.1 Relational Operators
There are three categories of relational operators: structural, logical, and
set operators. Table 8.2 shows a complete list of the relational operators
in Rapide-EPL and what they mean. P and Q are patterns, either basic
patterns that match single events or complex patterns that match posets.

Structural operators specify the causal structure and timing of matching
posets. For example, P−→Q tells us that the events matching P must all
be in the causal history of all the events in the match for Q. Note, by the
way, that the events matching P don’t have to immediately precede those
matching Q. For example, a grandfather is a causal ancestor of a grandchild.

The independence operator, P ‖Q, requires that all the events matching
P must be independent of all the events matching Q.

The timing operator, P<Q, specifies that all the events matching P
must have timestamps less than any timestamp of an event in the match
for Q. So it specifies a similar structure as −→ but for timing instead of

166 Chapter 8—The RAPIDE Pattern Language

Table 8.2: Relational Operators in RAPIDE-EPL

Operator Name Description

Structural operators
P−→Q causes A matching poset consists of two subposets, one

matching P and one matching Q so that all events

in the match of Q are caused by all the events in

the match of P.

P ‖Q independent A matching poset consists of two subposets, one

matching P and one matching Q so that each

event in the match of P is independent of every

event in the match of Q, and conversely.

P < Q before Timing: a matching poset consists of two subposets,

one matching P and one matching Q so that any

event in the match for P has an earlier timestamp

than all events in the match for Q. If there are

multiple clocks, a particular clock, C, can be

referenced as a parameter of <.

Logical operators
P and Q and The events in a matching poset must match both P

and Q.

P or Q or The events in a matching poset match P or Q.

P not Q not A matching poset must match P and not contain

any subposet that matches Q.

Set operators
P∪Q union A matching poset consists of two subposets, one

matching P and the other matching Q.

P∼Q disjoint union A matching poset consists of two disjoint subposets;

one matches P and one matches Q.

causality. If events have timestamps from more than one clock, the relevant
clock is an explicit parameter of the < operator, written as <C .

Logical operators require a poset to match a logical combination of two
patterns. It must match both patterns, either pattern, or one pattern and
not the other.

The set operators, union (∪) and disjoint union (∼), require a poset to
consist of subposets that each match one of two patterns but don’t require
any causal or timing relationship between the events in the subposets (that
is, no structure). For example, P and Q requires the poset to match both
patterns, whereas P∪Q requires the poset to consist of two subposets, each
matching one of the patterns.

8.8 Guarded Patterns 167

Rapide-EPL contains a rich set of relational operators because it was
developed for research into CEP. It is unclear which of the logical and set
operators are the most useful. Implementation of efficient pattern matching
for some of these operators is challenging and demands smart algorithms.

8.8 Guarded Patterns
We can rarely write a pattern without wanting to restrict the parameters of
the events. As we saw in STRAW-EPL context tests, in Chapter 6, we might
want to deliver messages according to the data they contain or whether the
sender passes a credit check. We can do this with a feature of Rapide-EPL
called guards.

A guarded pattern has this syntax:

pattern where Boolean test

The guard is a Boolean valued test following where. Its meaning is
that it restricts the matches of the pattern to those matches for which
the Boolean test is true. We often call the guard in a pattern the where
clause.

8.8.1 Content-Based Pattern Matching
Guards can refer to data in events (the content of the events). This is called
content-based matching.

Example 1: Testing the content of messages

(Dollars ?LatestPrice, ?LastQuote)
StockQuote(IBM, ?LatestPrice, ?LastQuote) where ?LatestPrice > ?LastQuote+$5;

This pattern will match stock quotes for IBM stock only if the latest
price is $5 more than the last quote. The guard uses the content of the
StockQuote event to make the test. Typically, these kinds of tests are used
in content-driven message delivery.

Example 2: Good banking behavior

(Dollars ?X , ?Y; Account ?A)
(Deposit(?X, ?A) −→ Withdraw(?Y, ?A)) where ?Y < ?X ;

168 Chapter 8—The RAPIDE Pattern Language

The pattern, Deposit(?X, ?A) −→ Withdraw(?Y, ?A), will match any
pair of causally related Deposit and Withdraw events on the same account.
The guard restricts the matches to those pairs for which the amount with-
drawn is less than the amount deposited.

When the pattern matches, the placeholders ?X, ?Y are bound to the
data values for the amounts of the deposit and the withdrawal. Those values
are then used to evaluate the guard. If its value is true, the guarded pattern
matches.

8.8.2 Context-Based Pattern Matching
Guards can also refer to information outside the events, such as database
queries or values returned by method calls (that is, the context in which the
pattern matching happens).

Example 1: Context-based message filtering

(OrderId ?Id, CustId ?C, AccntNo ?A)
Order(?Id, ?C, ?A) where CreditCheck(?C)= Pass and Active(?A);

This pattern matches Orders from customers if they pass a credit check
and their accounts are active. Both of these tests in the guard refer to the
context in which the Order is received—the status of the customer’s credit
and the status of their account at that time.

The Boolean test in the guard may refer to the values of placeholders in
the pattern and objects from the context in which the pattern is matched.
Matching a guarded pattern proceeds in two steps. The first step is to match
the unguarded pattern; if there is a match, all the placeholders in the guard
must be bound to values by the match. Then the guarded pattern matches if
the guard is true when those values are substituted for the placeholders. The
guard is evaluated after the unguarded pattern matches. An error results if
there is an unmatched placeholder in a guard when it is evaluated—except
in some special circumstances, which we mention later.

Context-based pattern matching is more difficult to implement effi-
ciently to allow high throughput of events than content-based matching.
Context references in guards make it more difficult to organize large num-
bers of patterns for sublinear searches for matches. Details are beyond the
scope of our discussion here.

8.9 Repetitive Patterns 169

8.8.3 Temporal Operators
Rapide-EPL provides some operators that simplify writing guards that re-
fer to the timestamps and start and end times of events. They are called
temporal operators.

• at: Applies only to basic event patterns. For example, if P is a basic
event pattern, P at 3:00pm matches an event E if E matches P and its
timestamp is 3:00pm.

An unbound variable can be a parameter of the at operator. If T is
a variable of type Time, P at T matches an event E that matches P,
and a result of the match is to bind T to the timestamp value of E.

• after: Applies to complex patterns. For example, P after T matches
posets that match P and contain events all of whose start times or
timestamps are greater than T.

• during: Applies to complex patterns. For example, P during(T1, T2)
matches posets that match P and contain events all of whose start
times or timestamps are greater than T1, and all of whose end times
or timestamps are less than T2.

Each of these operators is equivalent to writing guards that refer to the
timestamps or start and end times of the basic events in the pattern. Normal
use of these operators assumes a single global clock in the system. If there
are multiple clocks, a particular clock whose readings are to be used can be
named as an argument of any of these operators.

8.9 Repetitive Patterns
Many systems repeat the same behavior over and over. A typical example is
found in communication protocols that repeat behaviors such as “if no ac-
knowledgement, time out and resend”—lack of success requires the protocol
to keep on attempting to send a message. So event patterns must be able to
express repetitive behavior.

In Rapide-EPL we first express the pattern of the behavior that is
repeated. Say this is a pattern, P. Each repetition is another poset that
matches P. Next, we need to express how P repeats—that is, the causal or
timing relationship between one poset that matches P and the next poset
that matches P. It can be any of the structural relational operators. We do
this by writing a prefix to P that specifies the number of repetitions and the
relationship between each repetition and the next one—called the repetition
profile.

170 Chapter 8—The RAPIDE Pattern Language

So, to express a pattern consisting of repetitions of P, the syntax is:

[number of repetitions rel relational operator] P;

The part inside the square brackets is the repetition profile. It ex-
presses the number of repetitions and the structural relationship between
each match of P. P is the body that is being repeated.

The repetition profile can have a counter variable that counts the num-
ber of repetitions, and that counter can be used as a parameter of the pattern
body—just like a for loop.3

A repetitive pattern matches a poset if the poset consists of the specified
number of subposets, each matching the body, and each of the matches is
related by the relational operator in the prefix. The number of repetitions
can be specified in various ways: a specific number or any number. We use
“*” for any number.

Example 1: Some repetitive patterns

1. [∗ rel −→] Deposit

2. [1..10 rel −→] Deposit

3. [I in 1 .. 10 rel ∼] Deposit(I)

4. [∗ rel ∼] (Msg ?M)(Send(?M)−→ (Ack(?M.header) or Time Out))

5. (Msg ?M)([∗ rel ∼](Send(?M)−→ (Ack(?M.header) or Time Out)))

Each of these examples illustrates a different feature of repetitive patterns.
The body of the first pattern matches any Deposit event. The repetition

profile specifies any number (*) of matches related to one another by −→.
So this repetitive pattern expresses “any number of Deposit events, where
each event is causally related to the previous one.” A matching poset must
be a causally ordered chain of Deposit events.

The (*) repetition pattern has what we call maximal match semantics.
This means that it will match only the chain of Deposit events that consists
of the maximal number of events, not a subchain consisting of some of those
events.

3For this reason, Rapide-EPL specifies the repetition in a prefix profile rather than in postfix
notation like regular expressions.

8.9 Repetitive Patterns 171

The second pattern differs from the first one only in specifying exactly
ten Deposit events. It uses a common range notation, 1 .. 10, to specify a
finite number of matches.

The third pattern uses a repetition counter variable, I, as a parameter of
the body. So, the pattern body Deposit(I) changes for each repetition. The
repetitive pattern matches a poset consisting of Deposit(1), Deposit(2), . . .
up to ten, with any relationship between the events. Some could be depen-
dent and some independent.

The fourth pattern is one that is repeated an arbitrary number of times.
But it illustrates some “fine points.” The pattern body is

(Msg ?M)(Send(?M)−→ (Ack(?M.header) or Time Out))

which matches a poset consisting of two events, a Send(O) event with a mes-
sage object, O, that binds to ?M, which causes either an Ack event with the
header of O as its parameter or a Time Out event. The body can be matched
repeatedly. Because ?M is declared in the body, it can be bound to a different
message O on each of the matches. So the pattern matches a poset consist-
ing of any number of pairs of events, either Send(O)−→Ack(O.header), or
Send(O)−→Time Out; each pair can be dependent or independent of other
pairs (the ∼ relation) and can have a different message O.

The fifth pattern matches similar posets to the fourth one, except that
the placeholder ?M is declared before the repetition profile. Therefore, it
must be common to all the repetitions of the body. So a single binding for
M must be common to all the repeated matches.

Example 2: A pattern that matches a supply chain bidding process

(RFQId ?Id, Time ?T1)(RFQ(?Id) at ?T1 −→
[∗ rel ∼] (Time ?T2) Bid(RFQId is ?Id) at ?T2 where ?T2 < ?T1+Bnd);

This example uses the RFQ and Bid actions in the supply chain exam-
ple in Section 8.3.4 (Example 3). It matches the kind of electronic bidding
process that might be expected in B2B activites of the electronic enterprise
(see Chapter 2).

Let’s look at the pattern in detail. It matches an RFQ event with an
?Id that happens at time ?T1 and a poset of Bid events that are caused by
the RFQ event. There can be any number (*) of Bid events, in any relation
(∼) to one another, provided they all occur within a time bound, Bnd, of the
RFQ event. The Bid events must all contain the ?Id of the RFQ event.

So this pattern “picks out” from the global event cloud all the Bid events
in response to an RFQ that happen within a time limit.

172 Chapter 8—The RAPIDE Pattern Language

8.10 Pattern Macros
Writing patterns is made much easier by an abstraction feature. An abstrac-
tion feature is useful in various ways.

1. First, it lets us abstract commonly used patterns and name them. This
lets us shorten the notation for patterns and write readable patterns.

2. Second, we need to build up libraries of patterns for each application
domain, say, network protocols, control systems, distributed transac-
tion systems, supply chains for various industries, and so on—each
domain has its own common patterns.

3. Third, when we specify hierarchical systems, we need to organize our
patterns hierarchically too.

Pattern macros are a simple abstraction feature that helps with all these
practical problems.

If we want to define a pattern macro called PM, we write:

pattern PM (parameter list) {pattern};

PM is the name of the macro. It names the part in braces, ‘{‘ . . . ’}’,
which must be a pattern. This is called the body of the macro.

The way we use pattern macros is to call them in patterns. So, in some
pattern, we can write a call like this:

. . . PM(actual parameter list) . . .

During pattern matching, a point is reached at which a macro call such
as PM(. . .) must be matched. At this point in the matching, the parameters of
the call have certain values, either objects or placeholders that haven’t been
bound yet. The macro call is replaced by an instance of the macro’s body.
To do this, the parameters in the body are replaced by the corresponding
values. The resulting instance of the macro’s body replaces the macro call in
the pattern. This is called macro expansion because the call is “expanded”
into an instance of the body, which is usually a lot bigger.

We could do many macro expansions with a text editor except when
the macro is recursive—that is, the macro contains a call to itself. So
macro expansion takes place at runtime—during pattern matching.
And macro expansion is lazy—expansion takes place only if a match of
the macro call is needed to match the pattern containing the macro call.

Example 1: A pattern macro to shorten notation

pattern Reply(Msg X) {Ack(X.header) or Time Out };

[∗ rel ∼] (Msg M)(Send(M)−→Reply(M))

8.10 Pattern Macros 173

We want to shorten the “send causes an acknowledge or time out” pat-
tern in an example in the previous section. So we define the “acknowledge
or time out” piece of the pattern to be a macro called Reply. Now we can
specify the pattern more succinctly with a macro call to Reply. It is shorter
and more readable. The rewritten pattern specifies that each send causes a
reply, which happens to be “. . . ” (an instance of the Reply body).

Example 2: Another pattern macro to shorten notation

pattern Transaction() { (Msg M)(Send(M)−→ (Ack(M.header) or Time Out)) };

[∗ rel ∼] Transaction();

This second pattern macro shows that if we think of the “send causes
an acknowledge or time out” pattern (the part that is being repeated) as a
transaction, rather than a send and a reply, we can write the example even
more succinctly.

As we said before, we have to be just a little careful about how we define
macro expansion of macro calls, because pattern macros can be recursive.
If we just dive in and do naive macro expansion, a recursive macro call will
keep on being expanded, and we will never stop. This happens in all macro
facilities that can be recursive. So, macro expansion is lazy. A macro call is
expanded during matching of the pattern containing the call, “as needed”
to do the match.

Example 3: A recursive pattern macro

pattern Saving() is Deposit−→ Saving() or Empty() ;

Saving()
– – matches the same finite posets as:
[+ rel −→] Deposit

Saving is recursive. It says, “Match a Deposit that causes either an-
other match of the pattern Saving or the empty poset—that is, it causes no
events.” It matches posets consisting of one or more Deposit events, all in a
causal chain.

Empty is a predefined pattern macro that matches the empty poset.
Empty is useful for defining other patterns, as here, where it defines the
termination case in a recursive macro.

174 Chapter 8—The RAPIDE Pattern Language

Macros can be used to define other relational operators. Here is an
example of a macro defining a new structural operator, � (immediate cause).
This expresses a relationship between events P and Q, whereby P is an
immediate cause of Q—for example, father and son, but not grandfather
and grandson. That is, P causes Q and there is no event, E, such that P
causes E and E causes Q.

Example 4: Immediate cause operator

pattern P � Q is (P−→Q) not (P−→Any−→Q);

A new relational operator, �(P, Q), is defined using the operators −→
and not. It matches a poset if P−→Q matches the poset, and there is no
nonempty subposet of the matching poset that matches Any and is causally
between the matches for P and Q. So, the match for P must be an immediate
cause of the match for Q.

8.11 Summary
One of the earliest examples of pattern languages for specifying computer
programs is Path Expressions [22], which is conceptually similar to Regu-
lar Expressions.4 Historically, Rapide-EPL evolved experimentally from an
event pattern language for specifying and monitoring multitasking programs,
called Task Sequencing Language [7], which was also rooted in Regular
Expressions.

Rapide-EPL could be viewed as being designed by taking Regular
Expressions of basic event patterns as a basic event pattern language and
then adding new features, including the causal (−→) and independence (||)
event pattern operators, predicate guards over complex event patterns, tim-
ing operators similar to the ones usually found in simulation languages,
strong typing with inheritance, and pattern macros. Today, several pattern
languages could be added to in similar ways to be suitable for CEP.

4Web search on “regular expressions.”

