Chapter 1

What Is a Quality Use Case’?

The hardest single part of building a software system is deciding pre-
cisely what to build.
—Frederick Brooks, “No Silver Bullet: Essence and Accidents
of Software Engineering”

1.1 Why Use Cases at All?

“I understand the requirements, but what does it actually do?” is a question often
asked by systems analysts, business analysts, product managers, and programmers
when confronted by two hundred pages of traditional IEEE-standard-style “The sys-
tem shall . . .” functional requirements. After reading these convoluted documents,
many of us have often gone back to the customers and pleaded, “What do you want
this system to do? Tell me a story about how you are going to use this system.”

People like stories, and from one point of view, use cases are simply stories about
how people (or other things) use a system to perform some task. In this sense, use
cases are nothing new; we have always had ways of telling stories about systems. We
have used everything from flowcharts to message traces, to storyboards, to just plain
prose. So what are the advantages of use cases?

0 First, use cases give us a semiformal framework for structuring the stories. Ivar
Jacobson gave us the concepts of actors and use cases and rules for how actors
and use cases communicate. It wasn’t enough just to tell a story. The story had to
have a purpose or, in Jacobson’s words, “yield a result of measurable value to an
individual actor of the system” (Jacobson 1995, p. 105).

2

Chapter 1 What Is a Quality Use Case?

Just as excessive structure and formality can make requirements unusable,
so can the complete lack of structure. If everyone is free to tell stories about the
system in any manner they choose, how can you determine if the requirements
are correct? How do you find redundant stories? How do you spot holes in the
stories? Some structure is necessary; otherwise, people’s creativity will work at
Cross-purposes.

It is this semiformal structuring that liberates the creativity of people. Rigid
formal requirement models can be stifling, and are unusable by most people be-
cause they have not been expertly trained in the appropriate modeling technique.
This semiformal structuring makes it relatively easy for the end user of a system
to read the document with very little training. End users may then actually read
the requirements document, and be better able to substantiate the system pro-
posal while it is still in the writing stage.

Second, use cases describe the system requirements for the error situations, in
every use case and at every level of description. Since much or most of the system
complexity lies in handling error situations, describing such requirements
means that the associated difficulties are detected and discussed early, rather
than late, in the development cycle.

Third, although use cases are essentially a functional decomposition technique,
they have become a popular element of object-oriented software development.
Several people, including Jacobson (1992) and Larman (2002) describe method-
ologies for realizing the objects necessary to implement the behavior described
by the use case. One can write a set of use cases describing the system’s func-
tional behavior and then use these techniques to design the objects necessary to
implement that behavior.

Finally, use cases provide good scaffolding on which to hang other project infor-
mation. The project manager can build estimates and release schedules around
them. Data and business rule specifiers can associate their requirements to the
use cases in which they are needed. User interface designers can design and link
their designs to the relevant use cases. Testers can construct test scenarios from
the success and failure conditions described in the use cases. Many modern soft-
ware development processes are built around use cases.

1.2 What’s So Hard about Telling Good Stories?

Writing use cases was supposed to be easy. One reason for their popularity is that a
well-written use case is relatively easy to read. People may suppose that easy-to-read
also means easy-to-write, but that is a mistake. It can be terribly hard to write easy-to-

1.2 What's So Hard about Telling Good Stories?

read stories. Use cases are stories, prose essays, and so bring along all the associated
difficulties of story writing in general. As Rusty Walters remarked in Writing Effective
Use Cases (Cockburn 2001, p. 205), “I did not understand this as the fundamental
problem for [the first] four years.”

The following example illustrates some very common mistakes encountered by
teachers of use case writing. This use case fragment describes the actions a student
performs when registering for her courses. It is not a horrible use case—we have all
written some like this—but it is a long way from being a good use case.

Use Case 1.1 Use Case Horror: Example of a Poorly Written Use Case

Register for Course (Main Scenario, Poorly Written Version)
1. Display a blank schedule.

2. Display a list of all classes in the following way: The left window lists all the

courses in the system in alphabetical order. The lower window displays the

times the highlighted course is available. The third window shows all the

courses currently in the schedule.

Do

Student clicks on a course.

Update the lower window to show the times the course is available.

Student clicks on a course time and then clicks on the “Add Course” button.

Check if the Student has the necessary prerequisites and that the course offer-

ing is open.

8. If the course is open and the Student has the necessary prerequisites, add the
Student to the course. Display the updated schedule showing the new course.
If no, put up a message, “You are missing the prerequisites. Choose another
course.”

9. Mark the course offering as “enrolled” in the schedule.

10. End do when the Student clicks on “Save Schedule.”

11. Save the schedule and return to the main selection screen.

Noukw

The problems with this fragment include:

0o Too much user interface detail. In many poorly written use cases, we often see
references to mouse clicks, list boxes, and window design. In the normal course
of events, the use case is written as a set of requirements that the system must
satisfy. The user interface design details are not usually requirements; they are
usually design choices. Those design choices are made later, after the use cases
have been written and reviewed. The initial design choices are often changed
during development, still satisfying the overall requirements. Use case experts

a4

Chapter 1 What Is a Quality Use Case?

universally warn against including the user interface design inside use cases.
Doing so is costly because it adds writing and reviewing time, and it makes the
requirements document longer—and more likely not to be read carefully. Fur-
thermore, it makes the requirements set “brittle,” in the sense that small design
decisions will invalidate or force an expensive revision of the requirements docu-
ment. This is the single most critical mistake to avoid. The Adornments (p. 133)
and TechnologyNeutral (p. 167) patterns describe how to steer clear of excessive
detail.

Too many use cases at low goal levels. Computer programmers, who often are
“stuck” with the job of writing the requirements document, have a tendency to
produce numerous low-level use cases on the level of “Authorize user”. These
writers are very interested in describing individual system functions and features,
largely because those are the functions they will have to implement. However, re-
quirements documents written at such a level are very long, and difficult for end
users to read. These documents do not show well what the system will contribute
to the lives of the end consumers of the system. The CompleteSingleGoal (p. 118)
pattern describes how properly to structure use cases to avoid this problem.

Using a use case for non-behavioral information. Sometimes writers are told,
“Use cases are great. Write everything in use cases.” But a use case is not good for
everything; it is really only good for describing behavior. Everything that the sys-
tem must do should really go into a use case, but everything else should really go
into some other format. Some writers will produce immensely detailed use cases
describing the completion of a user interface form, with each field in the form
getting one or two lines of description. A much better approach is to create an
Adornment by simply attaching the form to the back of the use case and writing
in the appropriate step: “User provides the information on form XYZ (see attach-
ment).” This shortens both the writing and the reading, without sacrificing de-
tail. Performance requirements, complex business rules, data structures, and
product line descriptions are all valuable, but better captured with other require-
ments tools such as tables, formulas, or state machines—or placed in another
section of the requirements document.

Too long. The above three common errors produce use cases that are long and hard
to read. A well-written use case is short, usually only three to nine steps long.
(Oddly, many people feel embarrassed with such a short start to their use case. They
should not fear, however, as there are usually more than enough extension condi-
tions to make the use case worth writing and reading.) The pattern LeveledSteps
(p. 153) describes how to write balanced, reasonably sized use cases.

o Not a complete goal accomplishment. While shorter is better, some use case

writers do not capture the complete behavior for goal accomplishment, but only

1.3 Why a Use Case Pattern Language?

describe a fragment of the necessary behavior. This causes trouble during imple-
mentation, since the use cases do not connect to each other, and the programmers
have to guess how to sew them together. A related mistake is not considering
all the possible failure conditions or alternative behaviors. Once again, the pro-
grammers will discover these in their programming, and will either have to
guess at what to program or bring the project to a halt while someone investi-
gates what the system should do. The patterns CompleteSingleGoal (p. 118) and
ExhaustiveAlternatives (p. 129) provide advice on associating goals with use
cases and including all necessary failure conditions.

Sentence fragments. A relatively minor, but still noticeable, mistake is writing in
sentence fragments, as done in the poorly written example of Use Case 1a. One
could argue that such minor writing errors don’t matter, but on all but the small-
est projects there are many use case writers and readers. Omitting the actors’
names in the action steps easily causes confusion over the course of the project, a
damage far greater than the cost of simply remembering to write full sentences at
the beginning. The pattern ActorintentAccomplished (p. 158) describes how to
write scenarios with clear, unambiguous steps.

1.3 Why a Use Case Pattern Language?

There are no absolute criteria we can use to differentiate between good and poor quality
use cases. Authors and teachers have always had a difficult time saying why the good
ones were good and what was wrong with the bad ones. To see the difference between
good and bad, and the difficulty in identifying what makes the difference, try your hand
at comparing this fragment against the poorly written example in Use Case 1.1.

Use Case 1.2 Main Scenario for a Well-Written Use Case

Register for Course
1.
2.

Student requests a new schedule.

The system prepares a blank schedule form and pulls in a list of open and avail-
able courses from the Course Catalog System.

Student selects primary and alternate courses from the available offerings.

For each course, the system verifies that the Student has the necessary prereg-
uisites and adds the Student to the course, marking the Student as “enrolled”
in that course in the schedule.

When the Student indicates the schedule is complete, the system saves the
schedule.

5

6

Chapter 1 What Is a Quality Use Case?

Notice that the well-written use case is much shorter, contains fewer details, and
is easier to read than the first one. Yet we cannot simply say, “Write concise, less
detailed use cases that are easy to read.” Some problems are long and incredibly com-
plex, involving many details, and as a result yield long, detailed, and somewhat diffi-
cult to read use cases, no matter how well written.

To make matters worse, each development organization has its own culture, its
own people, and its own way of doing things. What works for one organization may
not work for another. This disparity makes it impossible to define a “one-size-fits-all”
process for creating high-quality use cases.

We want to capture guidelines that can help us write good use cases and evaluate
existing ones. We must find some way to describe these terms so that they are mean-
ingful in different organizations and development cultures.

To counter the common problems in writing use cases and push the result toward
well-written use cases, we have constructed and cataloged in this handbook a small
set of patterns that gives us a vocabulary for describing the characteristics of a good-
quality use case. Put another way, these are characteristics that signify that quality is
present in the writing. Some of these patterns apply to a single sentence in the use
case, some apply to a single scenario, and some apply to the set of extensions or to the
use case itself. More patterns are needed to discuss multiple use cases and more still
to discuss the entire use case set, even the place of a use case in the requirements doc-
ument. We find that simply describing the use case itself is insufficient, and discus-
sions quickly move from the use cases themselves to the teams writing them and the
processes they use for constructing and reviewing the use cases.

The patterns in this language describe the signs of quality about the use cases and
the writing process. These signs of quality serve several purposes. They provide a
vocabulary for writing use cases, giving people the words they need to express what
they want to see, or change, in a set of use cases. While we do not expect these pat-
terns to help the starting writer produce excellent use cases, they can be invaluable
for the more experienced writer, offering time-tested advice for improving their use
cases. These patterns are best considered as a diagnostic tool, and should be of great
use in reviewing the use case drafts to improve their quality. The absence of any sign
indicates that something important is missing, because a good set of use cases exhib-
its all of these patterns.

1.4 What Are Patterns?

We based our pattern style on Christopher Alexander’s work (1977, 1979) on pattern
languages. His patterns capture just the information we need, and in a highly read-

1.4 What Are Patterns?

able form. Each pattern indicates what is present in a good example, what sorts of
thoughts or trade-offs push the writer toward and away from a good result, our rec-
ommendation for dealing with them, and examples of these ideas in action.

Alexander, a building architect, recognized common structures in cities, commu-
nities, and buildings that he considered to be “alive.” His research resulted in the cre-
ation of what he called a language, one he believed would enable people to design
almost any kind of building and community, a language based on the way that people
resolved those forces that show up over and over again, in building situations all over
the world. He called these recurring themes patterns.

Alexander wrote: “Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that problem
in such a way that you could use this solution a million times over without doing
it the same way twice” (Alexander 1977, p. x). Alexander intended that patterns answer
questions such as “Where should I place a terrace?” “How should I design the front
entrance?” or even “How should I organize my community?”

Alexander wrote a five-hundred-page book to describe what a pattern is. The one-
sentence version might be this: “A pattern is a three-part rule that expresses a certain
relationship between a certain context, a problem, and a solution” (Alexander 1979,
p. 247). Like a rule, a pattern has a problem, and then proposes a solution to the prob-
lem. The context helps us understand when the solution to the problem is appro-
priate.

Alexander’s patterns never really caught on in the architectural community, but
they became the rage in the software development community around 1995, with the
publication of the book Design Patterns: Elements of Reusable Object Oriented Soft-
ware (Gamma et al. 1995). This book used patterns to capture good solutions to com-
mon problems programmers experienced when designing software. Of course, like
any worthwhile idea in technology, shortly thereafter, pattern-hype grew out of con-
trol, propelling patterns as the next magic bullet for all software development.

It is time to get patterns back to their appropriate place: as signs of quality, and as
strategies. When used as a sign of quality, a pattern expresses what is present in a well-
formed example (of whatever is being discussed). For instance, when lighting a room,
Alexander’s Light on Two Sides of Every Room states that people are instinctively
drawn to rooms that have natural lighting on two or more walls (Alexander 1977). An
example in this book, for use cases, is VerbPhraseName (p. 122), where the name of a
use case is a verb phrase describing the intention of the primary actor. When used
to capture a strategy, a pattern names a way to deal with conflicting pressures. An
example in software design from Design Patterns is Visitor, which describes how to
traverse complex data structures without changing the class of the object being tra-
versed (Gamma 1995). An example from software project management is Cockburn’s

8

Chapter 1 What Is a Quality Use Case?

Gold Rush: When you don’t have time to capture requirements completely and then
design the program carefully, do them in parallel, carefully monitoring communica-
tion and rework issues (Cockburn 1998).

Patterns as signs of quality are aids for diagnosing, revising, and improving a
group’s work. Patterns as strategies help people thread their way through complex sit-
uations. These two contributions of the pattern form should not be lost amid the hype
over the term.

Although we like the form of Alexander’s pattern writing, it is our experience that
people can become confused by the word pattern. That word often brings to the lis-
tener’s mind repeating visual designs on ties, carpets, and wallpaper. Even today,
some people who are familiar with the concept of software patterns think of them as
plug-and-play solutions. They fail to realize that a pattern is often part of a larger,
more comprehensive language. In neither case do readers get a clear indication of
what they might encounter in the book, nor do they get the connection to quality that
we are after.

Despite these reservations about the word patferns, we chose to write our hand-
book using the pattern form rather than as simple heuristics or rules. A guideline or
rule says only “do this,” without exploring the alternatives and their ramifications,
while the pattern form supports that discussion. Equally important, a pattern intro-
duces phrases in a vocabulary, phrases that allow people to shorten long discussions.
Often, that phrase is all that is left of the pattern in a person’s mind—which is quite
fine. People who have read Design Patterns simply say “Visitor” and understand the
trade-offs and issues the pattern entails. We hope the readers of this book will be able
to simply say, “CompleteSingleGoal” (p. 118), “ExhaustiveAlternatives” (p. 129),
or “TwoTierReview” (p. 64) and similarly understand the corrections and discus-
sions involved.

There is one final relationship between the entries in this handbook and Christo-
pher Alexander’s original pattern language: the individual entries do not stand alone,
but lead to each other. We keep finding a remarkable similarity between Alexander’s
discussion of the relationship between cities, single buildings, and building compo-
nents and our own discussions of sets of use cases, single use cases, and the compo-
nents of use cases. We discovered, for example, that considering only the entries
below the level of a single use case, we were still missing critical signs of use case
quality. We needed to consider the larger level of discussion to find the missing entry
(for example, this is how we identified UserValuedTransactions [p. 95]). While this
similarity between our work and Alexander’s is not at all critical to the use of this
handbook, we trust that aficionados of Christopher Alexander’s pattern languages will
enjoy the similarities.

1.5 How Should | Use This Pattern Language? 9

1.5 How Should I Use This Pattern Language?

Patterns can be very beneficial to a project when used correctly. However, it’s not
always easy to use them in the right way, especially when you don’t understand them.
Here are some common misconceptions about patterns.

o Patterns offer a complete methodology in and of themselves. Patterns are sup-
plements that fill in the gaps of our knowledge with solutions to specific prob-
lems; they do not give us the complete picture. However, some people mistakenly
believe that patterns tell them everything they need to know about a subject. For
example, some instructors go so far as to base their object-oriented design
courses on the book Design Patterns, instead of a formally defined methodology.
However, these patterns offer solutions to real problems encountered in object-
oriented development, and as such are more diagnostic in nature—that is, try
this solution when you have that problem (Coplien 1998).

o Using patterns guarantees success. In his book Patterns of Software, Richard
Gabriel (1996) recounts how Christopher Alexander discovered that several ar-
chitectural projects using his pattern language failed to produce the better, “liv-
ing” buildings he envisioned. Instead, the resulting buildings were no different
nor better than other buildings, even though the architects believed that they
were radically different. Alexander was convinced “that they failed because the
geometry of the buildings was not as different from the standard modern geome-
try as it needed to be to generate the quality” (Gabriel 1996, p. 59). In other
words, in these cases, using his patterns made little if any visible difference. He
felt much of the blame lay in the process. The people controlling the process—
the lenders, the zoning commissioner, and others—were not using the pattern
language, yet they wielded a lot of control over the project. Gabriel goes on to
claim that these findings hold for software development: “The structure of the
system follows the structure of the organization that put it together, and to some
extent, its quality follows the nature of the process used to produce it” (Gabriel
1996, p. 59).

0 Patterns offer new solutions to old problems. As Linda Rising (1998, p. 10) says,
“Patterns are not theoretical constructs created in an ivory tower, they are arti-
facts that have been discovered in more than one existing system.” Patterns are
essentially a documentation mechanism that captures general, tried-and-true so-
lutions to common, recurring problems. Accordingly, patterns rarely present
new ideas or leading-edge research, but rather document solutions that have
proved to be effective in many different situations and environments. In fact, ex-
perienced people reading a pattern language for the first time should be struck by
the feeling that they have seen some of these solutions before.

10

Chapter 1 What Is a Quality Use Case?

o Patterns are applicable in all situations. A pattern is a solution to a problem
within a context (Coplien 1996). The key word here is context, the idea being that
a pattern applies only within a well-defined area. The patterns in this book
present solutions that carefully balance several competing forces within the
problem space. Sometimes, however, a particular force becomes more important
and takes on special meaning. For example, an organization writing use cases
using sensitive company information might want to hide some details, or even
actors, from their customers. Or a company describing a system that relies on
several well-defined and complicated business rules that everyone involved in the
project needs to understand might want to include these rules in their use cases.
In this case, it might be more important for the company to publish their busi-
ness rules in their use cases rather than make their use cases simple and easily
understood. In both instances, these organizations need to balance the forces in-
volved, to determine the advantages of following a specific guideline. In these sit-
uations, our recommendations are not necessarily the best, and you may need to
tailor them to better fit your needs or even ignore them altogether.

So don’t think of this pattern language as a complete methodology for writing use
cases. Instead, treat it as a set of guidelines to help you fill in the gaps in your knowl-
edge, evaluate the quality of your use cases, or augment your particular use case writ-
ing process. Take each of our guidelines with a grain of salt. Evaluate them, and
determine if they apply to your use cases and your situation. They will apply in most
instances, because they describe common techniques for everyday situations. But the
world won’t come to an end if you decide not to follow a particular guideline if you feel
you have a good reason for avoiding it. Disasters are more likely to occur if you avoid
using a guideline you should clearly follow, or try to force one to work when the situ-
ation clearly indicates otherwise.

1.6 What Is the Use Case Pattern Form?

Pattern aficionados like to refer to the template they use to write patterns as a “form.”
Like all standards, everyone seems to have their own, and of course we’re no different.
Each one of our patterns is presented using a template or form that is based on Chris-
topher Alexander’s form presented in A Pattern Language (Alexander 1977). This
form is frequently referred to as the Alexandrian form.

Our form includes the following sections:

o The Pattern Name
o A Picture

1.6 What Is the Use Case Pattern Form? 1

o The Context

o The Problem Statement

o A Metaphoric Story

0 The Forces Affecting the Problem
o The Solution

o Examples

Stepping through a Sample Pattern

The best illustration is the real thing. Consider the pattern UserValuedTransactions

(p. 95) shown here as Figure 1.1.

UserValuedTransactions

Pattern Name

You have established a SharedClearVision (p. 80) of the project — Context

and have defined a ClearCastOfCharacters (p. 90) who need services
from the system.

A system is deficient if it cannot deliver services that are valuable — Problem

to its users and if it does not support the goals and objectives spec-
ified by the system vision.

A few years ago one of the authors bumped into a colleague who
was working for a start-up firm that was building a radio advertising
distribution network. The idea was simple: Advertisers were using
couriers to distribute tapes of their ads to radio stations, but even
with overnight delivery, it could be two to three days before a new

Statement

ad was actually playing over the radio. The colleague’s company had — - Metaphoric

built a continent-wide private network to distribute advertising
spots to radio stations nearly instantaneously. Furthermore, with the
company'’s proprietary protocols and compression hardware, they
could guarantee quality of service to their clients.

It seemed like a license to print money. Offer a service that is
cheaper, faster, and more reliable than what is currently available
and the world will beat a path to your door. This was a case right out
of Marketing 101. But the market never developed. Eventually the
company succumbed to the inevitable, and it was taken over.

A while later this story was mentioned to a radio DJ at a local sta-
tion. “Doesn't surprise me that they failed,” he said. “Radio is a local
media. Almost no one does national campaigns.”

(continued)

Story

12 Chapter 1 What Is a Quality Use Case?

Figure 1.1 A sample pattern (continued)

A well-written set of use cases clearly and accurately describes the —— Forces
essential actions that a system provides. This information allows cus-
tomers to preview a system before it is built and determine whether
it offers the kind of services that they find valuable.

A set of use cases should capture the fundamental value-added ser-
vices that users and stakeholders need from the system. An organi-
zation commissions the development of a system because that
system will return some benefit. Use cases allow the organization’s
project team to inspect a system before it is built, so that they can
verify that it is what they want, request changes, or decide that it
doesn’t meet their needs. Use cases should describe the kinds of things
that users find valuable, so they can present the system in its best
light. A system that does not deliver needed valuable services to its
actors is deficient, can lose money, and will sully the reputation of
the development organization.

It is relatively easy to identify low-level transactions, but it can be
difficult to identify useful services. It is usually easier to describe the
individual routine transactions that a system may provide than it is
to discover what the user really wants to do with the system. Doing
it the easy way often leads to “CRUD" (Create, Read, Update, and
Delete). It is not unusual to see use cases with names like Create Em-
ployee Record, Read Employee Record, or Delete Employee Record.
While such use cases may be technically correct, they do not capture
what is valuable to the user. Is creating an employee record impor-
tant, or does the user really want to Hire Employee?

Use cases need to be relatively stable because they form “anchor
points” for the rest of the product development process. Constant
changes to use cases can ripple through the rest of the development
process, creating havoc for the developers and significantly increas-
ing the cost. To keep this cost low, we want to write each case at a
level high enough to insulate it from inconsequential changes. Oth-
erwise, the writers will constantly be updating their use cases every
time someone changes some trivial detail. Worse, the readers will
have trouble understanding the use cases, because their meaning
will be constantly changing.

Readers want to see easily how the system will meet its goals (see
SharedClearVision). Just as a picture is worth a thousand words, a
use case is worth a thousand pages of system specifications. But even
pictures can be hard to understand when they are too complex or
abstract. Concise use cases that stick to the point are easier to read
than long, flowery ones.

(continued)

1.6 What Is the Use Case Pattern Form? 13

Figure 1.1 A sample pattern (continued)

People tend to work at a level that is either too high or too low.
People tend to use excessive detail when describing things they un-
derstand or find interesting. Conversely, they tend to gloss over de-
tails they don’t understand or find boring. Use cases should be
somewhere in the middle, containing enough information to de-
scribe system behavior adequately, without describing it in great de-
tail ("what" versus “how”). If we write them at too high a level, then
they will not be useful to the system developers, because they do not
describe the system in enough detail. However, if use cases contain
too much detail, then it is difficult for non-programmers to under-
stand the system from their very high level. In the words of lan Gra-
ham (1997), use cases should contain only necessary but essential
information.

Therefore:

Identify the valuable services that the system delivers to the ——— Solution
actors to satisfy their business purposes.

Ideally, a set of use cases should contain all of the information
necessary to depict a system but no more. Each use case should de-
scribe some unique, essential service that is valuable to at least one
user or stakeholder.

Use the ClearCastOfCharacters and SharedClearVision to identify
those services that the system should provide. Define as many valu-
able services as you can for each actor in your cast of characters. Each
service must help at least one actor reach a goal. Being unable to
identify any service for an actor may indicate that the actor might
not represent a valid system user; you may need to remove that ac-
tor from the cast. Conversely, if you identify a service that doesn’t
map to an actor in your cast, it may indicate that you have not iden-
tified all of the actors.

For each service that you identify, ask “What value does this ser-
vice provide to the users or stakeholders?” Get rid of those services
that fail to add value to the system. You don’t want to waste valu-
able time writing use cases or implementing code for a feature that
no one will use or cares about.

Users and stakeholders prefer to see the bottom line rather than
an itemized list of CRUD-style services, so examine each service and
determine whether each one stands by itself or is part of a larger,
more valuable service. Fold those services that cannot stand by them-
selves into more comprehensive ones that address one key objective,

(continued)

14 Chapter 1 What Is a Quality Use Case?

Figure 1.1 A sample pattern (continued)

and then eliminate duplicates. A client booking an airline reserva-
tion is interested in getting a good flight at a good price. The client
doesn’t care how many times the system updates its databases or
files as the travel agent books a seat.

Write use cases around these goals. While you want to minimize
the number of use cases in your collection, each use case should be a
cohesive unit that describes one and only one key concept between
an actor and the system, a CompleteSingleGoal (p. 118). Describe
this collection in sufficient detail to adequately convey its purpose,
yet make the use case at a high enough level so as to be insulated
from simple changes.

This singleness of purpose does not prevent a use case from ad-
dressing more than one goal, as long as the use case is cohesive and
achieves a unified purpose. For example, a high-level use case can
reference several subordinate use cases in an EverUnfoldingStory
(p. 102), but these use cases must work together to accomplish a
common purpose.

Figure 1.1 A sample pattern

As this example shows, a pattern contains several sections, including the ones
described next.

The Name

Each of our patterns begins with a name in bold text, usually a noun phrase that
emphasizes a common characteristic of the solution being proposed. A good name
sets the tone for the pattern and should evoke a picture of its solution in your mind.
The name becomes part of our vocabulary for discussing the signs of quality that good
use cases possess, or those that are missing from a poor use case. For example, a col-
league can criticize a use case model because the services offered are too low level and
therefore offer no UserValuedTransactions value to the users:

JAN: Look, Bob, this is not going to help me. Use cases called Display Form and
Read File don’t tell me anything about what this system actually does. These are
not UserValuedTransactions.

B0B: So what are some UserValuedTransactions for our users?

JAN: How about Apply for Mortgage, and File Supporting Documentation?

1.6 What Is the Use Case Pattern Form?

The name of our example, UserValuedTransactions, hopefully brings an image
to mind of a service that is valuable to someone, the kind of service for which someone
will say, “Yes, this helps me do my job,” or “This is something for which I would pay
real money.”

Patterns frequently refer to other patterns by name. UserValuedTransactions
makes several references to SharedClearVision (p. 80), ClearCastOfCharacters
(p. 90), CompleteSingleGoal (p. 118), and EverUnfoldingStory (p. 102) during the
course of its discussion.

A Picture

Each pattern contains a picture that is intended to provide a visual metaphor for
the pattern. While not shown in this example, the visual metaphor for UserValued-
Transactions is a line of people waiting to place a bet with a bookie. Their willingness
to stand in line to pay money illustrates that they believe this action to be worthwhile.
The fact that other people may feel otherwise about this service does not detract from
the image because any one person is likely to value only a portion of the services that
a system offers. Illustrations provide a nice touch to the pattern as well as underscore
the pattern’s intent. (We obtained most of our photos from the Library of Congress
American Memory Collection, because we feel that they provide a pleasant, unified
visual theme.)

The Context

A problem doesn’t occur in a vacuum. Certain conditions must hold for a problem to be
consequential. This section provides the context that makes the problem relevant. It
describes the boundaries that constrain the pattern and the arena in which its solution
is pertinent. It also describes how this pattern relates to other patterns in the language
(Alexander 1977) and specifies which, if any, patterns are prerequisites to this one.

The context for UserValuedTransactions is:

You have established a SharedClearVision (p. 80) of the project and have defined
a ClearCastOfCharacters (p. 90) who need services from the system.

This statement tells us that we need to know who the actors are before we can find
out what they need the system to do for them. It is pointless to start describing the
services that a system is supposed to provide if we don’t know who needs them. Before
you can identify any UserValuedTransactions, you must understand the project’s
SharedClearVision and know who will be using the system—that is, its ClearCast-
OfCharacters. If you do not know these, then you cannot possibly determine which
services are valuable.

15

16

Chapter 1 What Is a Quality Use Case?

The Problem Statement

Each of our patterns describes a problem that people often experience when writing
use cases. Our problem statements consist of one or two sentences in bold type that
describe what can happen when a use case fails to meet a certain standard. The state-
ment also reflects the risks associated with not following that standard.

The problem statement for UserValuedTransactions is expressed this way:

A system is deficient if it cannot deliver services that are valuable to its users and
it does not support the goals and objectives specified by the system vision.

This problem statement informs you that you need to write use cases that meet
the user’s real needs if you wish to sell them your system. While this assertion appears
to state the obvious, we shall soon see that several factors exist that cause people to
write use cases that fail to address the user’s need.

We could have written the problem statement as “How do you find the fundamen-
tal services a system offers?” except that expressing the problem as a question does
not really convey the problem’s consequences. It does not tell us why the pattern is
significant, nor does it describe the consequences of ignoring it. Therefore, we write
our problem statements to describe what would happen if your use case model did not
follow this guideline.

The Metaphoric Story

Some patterns describe simple problems, while others address complex, hard-to-
understand issues. Yet simple and complex are relative terms that depend on the
reader’s experience. We include either a metaphoric story or a lightweight case study
to make the pattern easier to understand and to provide you with an intuitive feel for
the problem and its solution. These stories usually have nothing to do with use cases,
or even software development, but serve to illustrate the pattern in a practical, easy-
to-understand manner. Although analogies are not normally part of the Alexandrian
form, we believe they provide a good synopsis of the pattern’s intent.

In the example in Figure 1.1, the metaphoric story describes a company that
developed a product that very few customers found valuable. It emphasizes the prob-
lem statement by demonstrating what can happen to a product when its intended
users don’t find it to be particularly useful.

The Forces Affecting the Problem

This section outlines the various factors that affect the problem, and the trade-offs
between them that complicate and constrain the solution. Pattern writers refer to

1.6 What Is the Use Case Pattern Form?

these trade-offs as “forces” because they will push or pull you in different and some-
times competing directions as you attempt to solve a problem. In our forces section,
we describe the important trade-offs that you as the use case writer must resolve for
the specific situation that you are facing. Each force is written in a specific format.
The first statement, written in italics, summarizes the force. The remainder of the
paragraph(s) describes the force and its trade-offs in more detail.

So what are the forces that we are trying to balance when finding UserValued-
Transactions (p. 95)? Briefly, they are:

0 A set of use cases should capture the fundamental value-added services the users
and stakeholders need from the system.

o It is relatively easy to identify low-level transactions, but it can be difficult to
identify useful services.

0 Use cases need to be relatively stable because they form “anchor points” for the
rest of the product development process.

0 Readers want to see easily how the system will meet its goals (see SharedClear-
Vision).

0 People tend to work at a level that is either too high or too low.

The first force in this example states the obvious fact that we want to know what
basic services the system offers to its users. Yet this information is important because
it helps us grapple with the next force, which if not countered, can lead to us writing
ridiculously small use cases. Without other guidance, people will always take the path
of least resistance, and it is usually very easy to describe low-level system services.

At first glance it might seem absurd that someone would intentionally write use
cases that describe how a system offers useless services to its users (perhaps the
antithesis of a use case is a useless case). But this is where the forces come into play.
These are the competing trade-offs that complicate the problem, which if taken too
far can lead to suboptimal solutions. The purpose of a pattern is to provide instruc-
tions to bring these forces into an optimal balance for your particular situation. The
forces are the things that if taken too far will make us do something absurd, like writ-
ing use cases that are useless to the users.

Why do we go to these lengths to explain the problem in this manner? Because we
want you to grasp the richness of the problem and gain an in-depth understanding of
the trade-offs that push most people to the solution. Few problems have a one-size-
fits-all solution, and the better your understanding of the problem’s trade-offs, the
better you can adapt the solution to your specific situation, or determine that the
solution is not appropriate for your needs.

17

18

Chapter 1 What Is a Quality Use Case?

The Solution

This section of the pattern presents a common, well-tried solution that balances the
competing forces and reflects the characteristics of well-written use cases. The
essence of the solution is written in bold text and follows a “Therefore” in the pattern.
The bold text summarizes the solution that attempts to bring the forces into balance.
A discussion follows the solution, explaining it further and identifying other patterns
that complete this one.

The essential solution for our UserValuedTransactions pattern is this:

Therefore:

Identify the valuable services that the system delivers to the actors to satisfy their
business purposes.

This solution aims to solve the problem within the constraints imposed by the
forces. “Identify the valuable services . . .” limits the goal set to use cases that benefit
the users instead of smaller, implementation-oriented use cases that are not particu-
larly valuable to the user. . . . that the system delivers to the actors to satisfy their
business purposes” implies that we should focus on the actors and define transactions
that are meaningful to them, rather than system or implementation details.

The solution may often seem familiar, or even obvious, but that is what patterns
are all about. A pattern should not be some grand revelation but rather a piece of
advice that your grandmother could have told you (assuming Grandma wrote use
cases, but then, hey, Dilbert’s mom is apparently a telecommunications engineer).
Our patterns capture the tried and true experience of those who have had success
writing use cases. Our contribution is that we have given a name to that knowledge,
and packaged it with other like pieces of knowledge and experience.

The Examples

Each pattern has one or more examples demonstrating either the benefit of imple-
menting the solution recommended by the pattern or the consequences of what hap-
pens when you don’t. We based many of these examples on live projects, but we
sanitized and simplified many of them because real use cases are often long and can be
quite complicated, especially the ones demonstrating bad practices. Many of our
examples follow a group of developers from a national travel agency as they write
some use cases for their new product, the Wings Over the World travel reservation
system. We based these examples on our experiences and many of them are compos-
ites of real people, events, conversations, and use cases.

1.7 Organization of the Pattern Language 19

1.7 Organization of the Pattern Language

Our pattern language consists of thirty-one patterns, organized into two broad cate-
gories: development patterns and structural patterns. Development patterns describe
the characteristics of proven use case writing practices, and offer criteria for measur-
ing the quality of the writing process. Structural patterns describe the basic compo-
nents of use cases, explain how they should be organized, and offer criteria for judging
their use. These two broad categories are further broken down into sub-categories of
related patterns.
There are three subcategories of development patterns:

o Team organization—patterns for judging and improving the quality of how the
use case team is organized

o Process—patterns for judging and improving the quality of the methodology the
team follows to create use cases

o Editing—patterns for judging and improving the quality of the individual use
cases as the underlying requirements change and the writer’s knowledge grows

There are four subcategories of structural patterns:

o Use case sets—patterns for judging and improving the quality of a collection of
use cases

o Use cases—patterns for judging and improving the quality of an individual use
case

o Scenarios and steps—patterns for judging and improving the quality of use case
scenarios, and the steps within those scenarios

o Use case relationships—patterns for judging and improving the quality of the
structuring relationships between the use cases in a collection

Each chapter in the remainder of the book addresses one subcategory.

Development Patterns

Individuality and organizational cultures make it difficult to define a universal pro-
cess for writing use cases. Instead, you have to do what “feels right” for your organiza-
tion. But “feels right” is hard to quantify, as it depends on a host of variable factors.
Although it is not the purpose of this book to recommend a specific use case writing
process, we have identified several good characteristics of effective use case develop-
ment. The development patterns in our language offer guidelines in several areas to
help you improve your own process. These patterns cover three topics: (1) the compo-
sition of the teams writing use cases, (2) the techniques for creating a set of use cases,
and (3) techniques for editing existing use cases into better ones.

20

Chapter 1 What Is a Quality Use Case?

The Team

Group dynamics is an important but often overlooked aspect of use case development.
The personal interactions between the writers can affect the resulting use cases as
much as the techniques that are used to identify and write them. This section of our
book investigates the people issues associated with use case development, and out-
lines several techniques for optimizing writing teams, enabling them to produce bet-
ter use cases.

Writing PreciseAndReadable (p. 138) use cases requires both a BalancedTeam
(p. 39) (balanced skills and personalities) and a ParticipatingAudience (p. 35). The
sponsors, developers, usage experts, and domain experts all contribute to the work and
review it. However, too many writers soon spoil the plot, and so a SmallWritingTeam
(p. 31) should be used for any one writing task.

The Process

Following a good process is critical to writing quality use cases. This process doesn’t
have to be elegant or “high powered,” but it does need to cover all the bases. For devel-
oping use cases, good process means balancing discovery versus writing, and content
versus need. You don’t want to write use cases so quickly that you overwhelm the
writers as they struggle to learn the system, nor do you want to be constantly rewrit-
ing or discarding your previous work. At the same time, you need to progress at a rea-
sonably quick pace, so that your developers can begin building the system. You only
want enough content to describe your system adequately; you don’t want to waste
time writing any more than that. This section of the book investigates process issues
and offers some advice for improving yours.

Although we do not advocate any specific process for creating use cases, we find
that effective groups work BreadthBeforeDepth (p. 48), naming many use cases before
partially expanding some, and completing the main success scenario before investigat-
ing failure handling, achieving a SpiralDevelopment (p. 52) of the use case set.

The SmallWritingTeam (p. 31) integrates its work with a TwoTierReview
(p. 64), where an inner circle of colleagues representing different specialties first
reviews and adjusts the work before passing it to a large group with representatives
from all stakeholders, including customers.

The effective team understands when it is QuittingTime (p. 68). Rather than get-
ting bogged down in long arguments about cosmetic issues, team members allow a
certain amount of WritersLicense (p. 73), recognizing that trying to enforce identical
writing habits or petty standards soon stops adding economic value to the endeavor.

Not every project team needs the same volume of detail to accomplish its mission,
and so we see the need for MultipleForms (p. 58) of use cases. Indeed, these forms
may each find its appropriate moment on the same project!

1.7 Organization of the Pattern Language

Editing

Use cases can become prematurely outdated because the underlying requirements are
highly unstable and subject to change. Use cases are highly dynamic, and will undergo
metamorphosis as your understanding of the system evolves. Behavior that made
sense at the start of the writing process may no longer make sense as you discover
more about the system through research and talking to customers, resulting in a col-
lection of obsolete or fragmented use cases. This section describes several common
techniques for improving the quality of use cases.

During the writing process, team members will periodically find themselves with
either large, complex, and hard-to-read use cases or lots of small, insignificant ones.
They should RedistributeTheWealth (p. 204) of the large ones to smaller ones, and
MergeDroplets (p. 209), folding the too-small ones into others. They may eventually
discover that some are simply irrelevant; to deal with those, they can CleanHouse
(p. 213).

Structural Patterns

We have identified four basic levels of use case structure: (1) sets of use cases, (2) use
cases, (3) scenarios and steps, and (4) relationships. Use case sets describe the behav-
ior of a system and consist of individual use cases, each of which describes some use-
ful service an individual actor needs. Each use case is a collection of scenarios that,
when taken together, describe all the different ways an actor can either reach or fail to
reach a specific goal. Individual scenarios consist of steps, each describing an action
that an actor or the system must take to move the primary actor closer to his or her
(or its) goal.

Use cases often interact with other use cases in the same set. We have identified
patterns for structuring some of these relationships. These relationship patterns
describe techniques for handling repetitive or excessively complex behavior.

Use Case Sets

Use case sets are collections of use cases and related information, organized in a
usable manner as a use case model. A set contains system-level information about a
product, including its actors, its boundaries, and the relationships between its mem-
bers. This level is primarily organizational, as it describes key characteristics of the
collection rather than specific behavior. People working at this level often refer to
individual use cases by name and ignore their contents.

The most important thing about use cases as a set is that they should reflect
a SharedClearVision (p. 80) for a system with a clear and VisibleBoundary
(p. 86). The use cases are collectively structured with higher-level use cases referencing

21

22

Chapter 1 What Is a Quality Use Case?

lower-level use cases in an EverUnfoldingStory (p. 102) that shows a ClearCastOf-
Characters (p. 90) interacting with the system to achieve their goals. While the goals
that get described sit at various levels, the crucial and interesting ones describe
UserValuedTransactions (p. 95), in which the primary actor accomplishes a goal
that he views as a primary service of the system under discussion.

Use Cases

An individual use case illustrates how actors can use a system to meet a particular
goal, showing all of the appropriate paths that they might take to get there, as well as
those situations that could cause them to fail. This level is still organizational in
nature, providing order and structure so that the reader is able easily to identify and
follow the different paths through the use case as they trace the actor’s progress
toward his goal. It also serves as a focal point for related material.

Each use case contains a collection of successful and unsuccessful scenarios that
describe the various situations that an actor is likely to encounter when attempting to
achieve his goal. The failure cases are especially important, because they describe the
various error conditions that can happen and the actions necessary to resolve them.

A single use case describes the pursuit of a CompleteSingleGoal (p. 118), and
should have a descriptive VerbPhraseName (p. 122) that gives the reader an idea of
its purpose. Each use case structures the multiple ways it can achieve or abandon its
goal as a ScenarioPlusFragments (p. 125), with a collection of scenario fragments
describing what happens under differing conditions. A complete use case considers
ExhaustiveAlternatives (p. 129), so that the developers are not surprised with an
unexpected situation late in development.

In order to satisfy the sponsor, the users, the developers, and the writers strive to
make the use case PreciseAndReadable (p. 138), one of the arts of use case writing,
and an achievable goal. One aspect of this is to remove performance requirements,
data formats, and ideas for the user interface from the use case text, and document
them separately as Adornments (p. 133). This practice keeps the use case robust with
respect to shifting technologies and user interface designs, yet clean of unnecessary,
confusing clutter.

Scenarios and Steps

Scenarios describe a single and complete sequence of events within a use case that an
actor follows as she attempts to achieve a particular goal, and results in either success
or failure. While scenarios describe behavior, they are still somewhat organizational
in nature because they provide structure to a series of steps, which combine to form a
coherent and purposeful description. This provides the reader with a systematic view
of a particular action sequence.

1.8 Supplement: A Brief Tutorial on Writing Use Cases 23

Each scenario fragment after the main success scenario describes the behavior of
the actors under some DetectableConditions (p. 148) (detectable to the system
under discussion). Part of the readability of attractive use cases is LeveledSteps
(p. 151), keeping all the steps at about the same level of detail.

Steps describe single actions within a scenario and detail the interchange
between the system and actor as they act out a use case. Each step, depending on its
goal level, adds some amount of clarity to its scenario, and represents a singular
action that either the system or the actor takes as they interact.

Each step should make distinct ForwardProgress (p. 162) toward the goal. Since
the user interface details and other design decisions appear as Adornments (p. 133),
you can write each step in a TechnologyNeutral (p. 167) manner, to the greatest
extent possible. Last, each step should make the ActorintentAccomplished (p. 158),
so that the readers always can tell who is doing what.

Relationships

Use cases occasionally share some common behavior, and when they do, it is efficient
to reuse existing text rather than repeat the same sequence of events each time they
are needed. Ivar Jacobson defined the concepts of includes, generalizes, and extends
to handle these situations. Unfortunately, everyone seems to have his or her own ideas
as to what these terms mean. This section describes how people successfully use these
concepts to improve their use cases.

People have developed a variety of overly complex mechanisms for using the
includes, extends, and generalizes relationships. Some of these mechanisms work
well; others just make a confusing situation worse. Simplicity seems to be the best
course. The simplest and most natural relationship is to move the CommonSub-
Behavior (p. 176) to a sub—use case referenced by the others via the includes relation-
ship when a common set of actions recurs in several use cases. When a single event
can interrupt the flow of a use case multiple times, then the writers should document
those InterruptsAsExtensions (p. 182). If a given alternative begins to dominate the
use case, then you should consider a PromotedAlternative (p. 190), promoting that
alternative to an extension use case. While we have not seen enough examples of gen-
eralization to create a pattern, our colleague Dan Rawsthorne has contributed the
pattern CapturedAbstraction (p. 198) which suggests when to use generalization.

1.8 Supplement: A Brief Tutorial on Writing Use Cases

Anything that has behavior is an acfor. This convention allows us to refer equally eas-
ily to people, computer programs, and companies, without worrying about which cat-
egory of actor is playing the role at that moment. A use case, then, describes the way

24

Chapter 1 What Is a Quality Use Case?

in which a particular system under discussion (SuD), an actor in its own right, inter-
acts with other actors.

To describe the many complicated interactions that a system will have over its
lifetime, we link any one use case with the goal of an actor who wants something from
the SuD at that moment, and describe all the ways that the system may come to
deliver or abandon the goal of that “primary actor.”

Then we structure the writing in an interesting way: First of all, we describe how
the actors behave in a simple situation in which the goal gets achieved. After that, we
name all the conditions under which the behavior is different, and describe the differ-
ent behavior that ensues, always bearing in mind that sometimes the goal will suc-
ceed and sometimes it will fail. These are called extensions or alternate courses of
behavior within the use case.

We can see now that the use cases discussed so far were just fragments, since they
described only the simple case of goal success (what some people call the “happy day”
scenario). The complete use case is too long to put in here, but looks essentially like
Use Case 1.3.

Use Case 1.3 Register for Courses: Use Case with Extensions

Register for Courses (Use Case with Extensions)
Primary actor: Student

System under Discussion: Course Enrollment System
Level: User Goal

1. Student requests to construct a schedule.

2. The system prepares a blank schedule form.

3. The system pullsin a list of open and available courses from the Course Catalog
System.

4. Student selects up to 4 primary course offerings and 2 alternate course offer-
ings from the available offerings.

5. For each course, the system verifies that the Student has the necessary prereq-
uisites and adds the Student to the course, marking the Student as “enrolled”
in that course in the schedule.

6. When the Student indicates the schedule is complete, the system saves the
schedule.

Extensions:
1a. Student already has a schedule:

System brings up the current version of the Student’s schedule for editing in-
stead of creating a new one.

1b. Current semester is closed and next semester is not yet open:

System lets Student look at existing schedules, but not create new ones.

1.8 Supplement: A Brief Tutorial on Writing Use Cases

3a. Course Catalog System does not respond:
The system notifies the Student and terminates the use case.
4a. Course full or Student has not fulfilled all prerequisites:
System disables selection of that course and notifies the Student.

People sometimes find that a briefer way of writing is desirable (for example, for
very small projects, and projects in which the use cases are merely being used to esti-
mate work effort, not specify the system). In other situations, a more exact way of
writing is needed (such as military contract outsourcing, large distributed projects,
and life-critical systems). It is important to recognize that there is no one, best format
for use cases, but that the amount of detail to put into a use case depends on the
project and the team at hand, and the purpose of use case writing.

While it is all very well to say that a use case describes the behavior involved in
trying to achieve a goal, the difficulty is that goals exist at many levels. Any one goal is
achieved by achieving subgoals. For example, I might have a goal to send my children
to school in a rich section of the city. To achieve that goal, I have to earn enough
money to buy a house in that school district. To do that, I need to close some big busi-
ness deals, so my next subgoal is to win some particular contract. To do that, I may
decide my next subgoal is to win over a particular decision maker, and so I take him to
lunch for a discussion.

Each of these goals can be described using a use case, although I have not yet
specified a particular SuD for them. Continuing the subgoals, I find I need cash to
take him to Iunch, and so I go to a local cash-dispensing machine, where my goal is to
get some cash. My first subgoal, now directly related to the cash machine as an SuD, is
to identify myself, to which end I have subgoals to insert my card into the machine,
type in my identification number, and hit the Enter key. (People who know Alistair
have already learned that he can make almost any goal involve going to an ATM to
get cash!)

All in all, T could write any of the following use cases within the framework of the
information given so far: Find Enter Key, Authorize User, Insert ATM Card, Get Cash,
Win Contract, Buy a Too-Expensive House, Get Kids into Good School.

This capacity of use cases to describe goals at all levels is wonderful but confusing
to use case writers. Different writers describe different levels of goals, some staying
high (Get Cash), and some staying at terribly low levels (Authorize User, Insert ATM
Card). For most systems, it is critical to identify the goal level in which the system
contributes direct, take-home value to the primary actor (see the entry UserValued-
Transactions (p. 95). This level we refer to as user goal. Then we write additional
use cases for goals at higher and lower levels as needed. These we refer to as summary
and subfunction, respectively. Figure 1.2, adapted from Writing Effective Use Cases

25

26 Chapter 1 What Is a Quality Use Case?

Make Another
Deal

Summary
Goals—
Level:

Use Cases

Make a Deal

Buy Bob Present User Goals—
Lunch Contract Level:
Use Cases

Choose
Restaurant
Subfunctions-
Get Reserve Order
Documents Room Refreshments

Level:
Figure 1.2 Goal levels for sending your kids to a better school

Use Cases

(Cockburn 2001), illustrates goal levels by describing some of the deals necessary to
get the kids into a better school.

Use cases are read and used by two very different groups of people: (1) end users or
business experts, who often are not versed in the technical and implementation diffi-
culties; and (2) programmers, who need very precise answers to their questions in
order to make the computer program work properly. It is not obvious that any form of
writing can satisfy both groups of people, but use cases have shown themselves as fit-
ting this narrow range. The art of use case writing is to get the precision in writing
without overwhelming the non-programmer business reader.

To create use cases that are correct and precise but still readable, the writing team
must include:

o At least one person with a background in programming, to get the required accu-
racy and precision of description

1.8 Supplement: A Brief Tutorial on Writing Use Cases

0 At least one person with deep knowledge of the business rules that the system
must enforce

0 At least one person with intimate knowledge of how the system will actually be
used

In other words, producing a set of use cases is not a job for one person, or even
one group of people with the same job description. It is a team effort, requiring people
with different backgrounds and even different personalities. When this team does its
job well, the result is readable and precise.

This book is not an introduction to use cases. Rather, it is a handbook about how
to write meaningful, high-quality use cases. Therefore, we have provided only a brief
summary of use cases in this chapter. If you want to learn more about use cases in
general, we recommend Alistair Cockburn’s Writing Effective Use Cases (2001). More
discussion of use cases is available at the Web site www.usecases.org. You may refer to
these sources for introductory, template, and tools-descriptive material, and continue
reading this book to improve your ability to detect and discuss the signs of quality in
your use case writing.

27

	Chapter 1� What Is a Quality Use Case?
	1.1� Why Use Cases at All?
	1.2� What’s So Hard about Telling Good Stories?
	Use Case 1.1�Use Case Horror: Example of a Poorly Written Use Case

	1.3� Why a Use Case Pattern Language?
	Use Case 1.2�Main Scenario for a Well-Written Use Case

	1.4� What Are Patterns?
	1.5� How Should I Use This Pattern Language?
	1.6� What Is the Use Case Pattern Form?
	Stepping through a Sample Pattern
	The Name
	A Picture
	The Context
	The Problem Statement
	The Metaphoric Story
	The Forces Affecting the Problem
	The Solution
	The Examples

	1.7� Organization of the Pattern Language
	Development Patterns
	The Team
	The Process
	Editing

	Structural Patterns
	Use Case Sets
	Use Cases
	Scenarios and Steps
	Relationships

	1.8� Supplement: A Brief Tutorial on Writing Use Cases
	Use Case 1.3�Register for Courses: Use Case with Extensions
	Figure 1.2 Goal levels for sending your kids to a better school
	Figure 1.1 A sample pattern

