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C H A P T E R  3

 

Building a Parser

 

his chapter explains the steps in designing and coding a working parser. The core 
design of a parser is the same for all the parsers in this book: recognize a lan-

guage and build a result.

 

3.1 Design Overview

 

Usually the first step in designing a parser is to think of some sample strings that you 
want your parser to recognize. To parse this set of strings, you will create a new lan-
guage. A language is always a set of strings, and your language will become a set that 
includes your sample strings. 

You can begin to design your parser by writing the rules, or 

 

grammar

 

, of your lan-
guage. (Section 3.4, “Grammars: A Shorthand for Parsers,” explains how to write 
your grammar.) Your parser will recognize strings that follow the rules of your gram-
mar. Once you have a grammar, you can write the Java code for your parser as a 
direct translation of the grammar rules.

The other main aspect of a parser’s design is the design of your assemblers. Assem-
blers let you create a new object when your parser recognizes an input string. After 
you have designed your assemblers and your rules, you bring them together. You 
plug assemblers in to subparsers to assemble parts of a target object as your parser 
recognizes text.

It is a good idea to work incrementally and iteratively. When you work incremen-
tally, you get part of your language to work before the entire language works. Work-
ing iteratively means that you can expect to cycle through the steps of designing, 
coding, and testing many times on each increment you create. 

Build your language gradually, expanding your parser and adding new features as you 
go. You will see your language grow, and you will become skillful in expanding the 
features of your language.

 

T



 

34

 

Chapter 3

 

�

 

Building a Parser

 

3.2 Deciding to Tokenize

 

An early design decision is whether you want to treat your language as a pattern of 
characters or as a pattern of tokens. Most commonly, you will 

 

not

 

 want to use a 
tokenizer for languages that let a user specify patterns of characters to match against. 
Chapter 8, “Parsing Regular Expressions,” gives an example of parsing without using 
a tokenizer.

Tokens are composed of characters, so every language that is a pattern of tokens is also 
a pattern of characters. Theoretically, then, tokenizers are never necessary. However, 
it is usually practical to tokenize text and to specify a grammar for a language in terms 
of token terminals. Consider a robot control language that allows this command:

 

move robot 7.1 meters from base

 

If you do not plan to tokenize, your parser must recognize every character, including 
the whitespace between words. You also must ensure that you properly gather char-
acters into words, and you must build the number value yourself. All of this is work 
that a tokenizer will happily perform for you. Chapter 9, “Advanced Tokenizing,” 
discusses how to customize a tokenizer. When you are learning to design new lan-
guages, you may want to limit your languages to those that can benefit from the 
default behavior of class 

 

Tokenizer

 

 in package 

 

sjm.parse.tokens

 

.

 

3.3 Designing Assemblers

 

One way to get a grip on the design of your parser is to think about how you will 
build the result you want from the text you recognize. So one way to get started with 
the design of a new parser is to start designing your assemblers.

 

3.3.1 The Collaboration of Parsers, Assemblers, 
         and Assemblies

 

An assembly provides both a stack and a 

 

target

 

 object for the parser’s assemblers to 
work on. The target object is like a sculpture, taking form as the parser recognizes 
the input text. Figure 3.1 shows the 

 

Parser

 

, 

 

Assembler

 

, and 

 

Assembly

 

 classes, which 
collaborate to sculpt text into a result.

 

3.3.2 Using an Assembly’s Stack

 

Assembly objects contain two work areas: a stack and a target. By default, subclasses 
of 

 

Terminal

 

, such as 

 

Word

 

 and 

 

Num

 

, place on an assembly’s stack the object they 
recognize from the assembly object’s text. (You can prevent this by sending the 
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Terminal

 

 object a 

 

discard()

 

 message.) The following code shows a repetition of a 

 

Num

 

 parser that recognizes and stacks a series of numbers.

 

package sjm.examples.design;

import sjm.parse.*;
import sjm.parse.tokens.*;
 
/**
 * Show how to use an assembly's stack.
 */
public class ShowStack {

public static void main(String args[]) {

    Parser p = new Repetition(new Num());
    Assembly a = p.completeMatch(
        new TokenAssembly("2 4 6 8"));
    System.out.println(a);
}
}

 

Figure 3.1

 

The 

 

Parser

 

, 

 

Assembler

 

, and 

 

Assembly

 

 classes. Each parser in a parser com-
posite tries to match against the assembly, and each may use an assembler 
to work on the assembly after a successful match.

Parser

Assembler

*

0..1

+setAssembler(a:Assembler):Parser

Assembly

+clone():object

+pop():Object

+push(o:Object)

+stackIsEmpty():boolean

+setTarget(pc:PubliclyCloneable)

+getTarget():Object
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This code creates a 

 

TokenAssembly

 

 around the string 

 

"2 4 6 8"

 

 and passes it to the 
parser 

 

p

 

. The result of sending 

 

completeMatch()

 

 to 

 

p

 

 is a 

 

new

 

 

 

TokenAssembly

 

. The 

 

completeMatch()

 

 method returns the result as an abstract 

 

Assembly

 

 object, which we 
could cast to a 

 

TokenAssembly

 

 if we needed to.

Running this class prints

 

[2.0, 4.0, 6.0, 8.0]2.0/4.0/6.0/8.0^

 

When the assembly 

 

a

 

 prints itself, it first shows its stack, which is 

 

[2.0, 4.0, 6.0, 8.0]

 

. 
This demonstrates the nature of 

 

Num

 

, which treats every number as a 

 

double

 

 and 
places on the assembly’s stack the tokens it finds. The output assembly also shows its 
tokenized input text, separating the tokens with slashes. Finally, the output assembly 
shows the location of its index at the end of the tokens.

 

3.3.3 Assemblers Plug In to Parser Composites

 

When a parser recognizes text, it knows nothing about the big picture in which it 
executes. For example, consider the 

 

Num

 

 parser in 

 

sjm.parse.tokens

 

. A 

 

Num

 

 object 
might be recognizing one of a series of numbers in a string such as 

 

"1.2 2.3 3.4"

 

, or 
it might be recognizing the price of a pound of coffee. The 

 

Num

 

 parser simply puts its 
number on the assembly’s stack, leaving any further work to other assemblers. Typi-
cally, 

 

Num

 

 parsers and other terminals are not stand-alone parsers but rather are part 
of a composite. After a terminal places an object on an assembly’s stack, another 
parser higher in the composite can find this object and do other work on the assembly.

 

3.3.4 A Language to Plug In To: Minimath

 

To see how assemblers plug in to a parser composite, consider a minimal arithmetic 
parser that recognizes only the “

 

-

 

” operator. That is, you want to recognize a lan-
guage that contains numbers, all differences of two numbers, differences of three 
numbers, and so on. For example, the language contains the following:

 

{"0.0", 
 "1.1 – 2.2", 
 "1.1 – 2.2 – 3.3", 
 "1.1 – 2.2 – 3.3 – 4.4", ...}

 

Let’s call this language Minimath. You can describe the contents of Minimath with 
the following rules: 

 

expression = Num minusNum*;
minusNum   = '-' Num;
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These rules are shorthand for describing a language. They are also shorthand for 
describing the composition of a parser. Section 3.4 explains the rules for this short-
hand in detail. You can abbreviate these rules to

 

e = Num m*;
m = '-' Num;

 

The first rule means that 

 

e

 

 is a number followed by zero or more occurrences of 

 

m

 

. 
For example, 

 

"25 – 16 - 9"

 

 is the number 

 

"25"

 

 followed by 

 

"- 16"

 

 and 

 

"- 9"

 

. The 
first rule uses the capitalized word 

 

Num

 

 to mean a terminal. In fact, you will use the 
class 

 

Num

 

 in 

 

sjm.parse.tokens

 

 when you build the 

 

e

 

 parser. The 

 

e

 

 rule uses the non-
capitalized word 

 

m

 

 to refer to another rule, and it uses an asterisk (“

 

*

 

”) to indicate 
repetition of 

 

m

 

. The 

 

m rule indicates a pattern that has a minus sign (“-”) followed by 
a number.

These rules describe the patterns of strings that make up the Minimath language, 
and they give you a formula for composing a parser to match Minimath. For exam-
ple, the parser e recognizes a string such as "25 – 16 - 9" as an element of the 
Minimath language. If all you want is to recognize elements of Minimath and not 
compute their value, you can build the e parser as follows:

package sjm.examples.minimath;

import sjm.parse.*;
import sjm.parse.tokens.*; 
 
/**
 * Show how to build a parser to recognize elements
 * of the language "Minimath".
 */
public class MinimathRecognize {

public static void main(String args[]) {
    Sequence e = new Sequence();

    e.add(new Num());
    
    Sequence m = new Sequence();
    m.add(new Symbol('-'));
    m.add(new Num());
    
    e.add(new Repetition(m));

    System.out.println(
        e.completeMatch(
            new TokenAssembly("25 - 16 - 9")));
}
}
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This code prints the following:

[25.0, -, 16.0, -, 9.0]25.0/-/16.0/-/9.0^

This shows that the parser e recognizes the text "25 – 16 - 9". Of course, the point 
of having a Minimath parser is not only to recognize text but also to build the value 
that the text represents.

3.3.5 Calculating a Minimath Result
You want the parser e to calculate a difference and leave it as a Double object on an 
assembly’s stack. To accomplish this, you need two assemblers: one to handle num-
bers as the Num subparser finds them, and a second one to handle subtraction.

When a Num parser recognizes a number, it places an sjm.parse.tokens.Token object 
on the assembly’s stack. To calculate an arithmetic sum, your Num parser needs an 
assembler to replace this Token object with a Double value that corresponds to the 
token’s value. You can describe the design of the assembler you need as, “Pop the 
token at the top of the assembly’s stack and push a corresponding number.” In this 
example, you can reuse an assembler from sjm.examples.arithmetic. The code for 
NumAssembler is as follows:

package sjm.examples.arithmetic;

import sjm.parse.*;
import sjm.parse.tokens.*;
 
public class NumAssembler extends Assembler {
/**
 * Replace the top token in the stack with the token's
 * Double value.
 */
public void workOn(Assembly a) {
    Token t = (Token) a.pop();
    a.push(new Double(t.nval()));
}
}

This method assumes that the top of the input assembly’s stack is a Token object. In 
practice, this assumption is safe as long as the assembler plugs in to a parser that 
stacks a token. Assemblers are small, non-reusable classes that plug behavior in to a 
particular parser.

The other assembler that a Minimath parser needs is one to handle subtraction. You 
can design the assembler without addressing which subparser it belongs to. Let us 
assume that, at some point, a Minimath composite parser places two numbers on the 
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stack of the assembly it is matching. At that point, you can describe the design of the 
needed assembler as, “Pop the top two numbers and push their difference.” Again, 
you can reuse an assembler from sjm.examples.arithmetic. The code for 
MinusAssembler is as follows:

package sjm.examples.arithmetic;

import sjm.parse.*;
 
public class MinusAssembler extends Assembler {
/**
 * Pop two numbers from the stack and push the result of
 * subtracting the top number from the one below it. 
 */
public void workOn(Assembly a) {
    Double d1 = (Double) a.pop();
    Double d2 = (Double) a.pop();
    Double d3 = 
        new Double(d2.doubleValue() - d1.doubleValue());
    a.push(d3);
}
}

The only remaining design question is where this assembler belongs. Note from 
the rules that an expression e is a number followed by one or more occurrences of m. 
An effective strategy is to associate a NumAssembler with each Num parser, and a 
MinusAssembler with the m parser. The code looks like this: 

package sjm.examples.minimath;

import sjm.parse.*;
import sjm.parse.tokens.*;
import sjm.examples.arithmetic.*;
 
/**
 * ...
 * This class shows, in a minimal example, where assemblers
 * plug in to a parser composite.
 */
public class MinimathCompute {

public static void main(String args[]) {
    Sequence e = new Sequence();

    Num n = new Num();
    n.setAssembler(new NumAssembler());

    e.add(n);

    Sequence m = new Sequence();
    m.add(new Symbol('-').discard());
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    m.add(n);
    m.setAssembler(new MinusAssembler());

    e.add(new Repetition(m));

    TokenAssembly t = new TokenAssembly("25 - 16 - 9");
    Assembly out = e.completeMatch(t);
    System.out.println(out.pop());
}
}

The main() method creates a composite parser e for Minimath and plugs in assem-
blers to assemble a result for an arithmetic string. The code discards the minus signs 
because they serve their purpose in guiding the parser and need not appear on the 
stack. The method asks the parser for a complete match against a tokenized string 
and prints the top of the stack of the resulting assembly. Running this class prints the 
conventional answer:

0.0

3.3.6 The Minimath Parser as an Object
Figure 3.2 shows an object diagram for the parser e. The parser e is a sequence of 
two subparsers: a Num and a Repetition. Each time the Num parser in e recognizes a 
number token, it uses a NumAssembler object to replace the number token on the 
stack with a corresponding Double. Two of the subparsers—n and m—use assemblers 
to work on the assembly they match against. There is only one n subparser, although 
this object appears twice in the diagram.

3.3.7 Building a Target
In addition to being unusually small, Minimath is unusual in that you can build a 
parser for it that uses only the assembly’s stack while creating a useful result. Usually, 
you want a parser to build some kind of domain object. The Assembly class maintains 
a target attribute and provides methods for manipulating it, as Figure 3.1 shows. 
These methods let you build any kind of object from input text, with one restriction: 
The target of an Assembly object must be publicly cloneable (a topic addressed in the 
following section).

Consider designing a program that calculates the average length of words in a string. 
Let us take the approach of first creating a RunningAverage class that accepts word 
lengths and keeps track of the total number of words and their total length. With such 
a class available, you can create an Assembler class that works by updating a target 
RunningAverage object. Specifically, you can create an AverageAssembler class that 



3.3 Designing Assemblers 41

pops a word from the stack of an Assembly object and updates a target RunningAverage 
object with the length of the popped string. Here is RunningAverage.java:

package sjm.examples.design;

/**
 * Objects of this class maintain a running average. Each
 * number that is added with the <code>add</code> method
 * increases the count by 1, and the total by the amount
 * added.
 */
public class RunningAverage
    implements sjm.utensil.PubliclyCloneable {
        
    protected double count = 0;
    protected double total = 0;

/**
 * Add a value to the running average, increasing the count
 * by 1 and the total by the given value.
 */
public void add(double d) {
    count++;
    total += d;
}

Figure 3.2 Minimath. This object diagram shows the structure of a parser composite 
that matches Minimath expressions such as "3 - 2 - 1". 

e:Sequence

n:Num

:NumAssembler

:Symbol

:Repetition

m:Sequence

:MinusAssembler

symbol = '-'

n:Num
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/**
 * Return the average so far.
 */
public double average() {
    return total / count;
}

/**
 * Return a copy of this object.
 */
public Object clone() {
    try {
        return super.clone();
    } catch (CloneNotSupportedException e) {
        // this shouldn't happen, since we are Cloneable
        throw new InternalError();
    }
}
}

This class makes it easy to keep a running average. In your design, you can use a 
RunningAverage object as the target of an assembly. You can write an AverageAssembler 
class that expects this target. Here is the code for AverageAssembler.java:

package sjm.examples.design;

import sjm.parse.*;
import sjm.parse.tokens.*;
import sjm.engine.*;

public class AverageAssembler extends Assembler {

/**
 * Increases a running average, by the length of the string
 * on the stack.
 */
public void workOn(Assembly a) {
    Token t = (Token) a.pop();
    String s = t.sval();
    RunningAverage avg = (RunningAverage) a.getTarget();
    avg.add(s.length());
}
}

The AverageAssembler class updates a RunningAverage target object by the length of 
whatever string is on the input assembly’s stack. Now you have the pieces you need 
to create a program that calculates the average length of words in a string. You will 
use a RunningAverage object as the target object of an assembly. You will use a Word 
object to recognize words, and you will plug an AverageAssembler object in to it. 
Then you can use a Repetition of the Word object to match a string of words. Figure 
3.3 shows the objects you need.
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The parser p in Figure 3.3 matches an input assembly and creates an output assem-
bly. The output has an updated clone of the RunningAverage object that reflects the 
average length of words in an input string. Here is a program that shows the objects 
in action:

package sjm.examples.design;

import sjm.parse.*;
import sjm.parse.tokens.*;

/**
 * Show how to use an assembler. The example shows how to
 * calculate the average length of words in a string. 
 */
public class ShowAssembler {

public static void main(String args[]) {

    // As Polonius says, in "Hamlet"...
    String quote = "Brevity is the soul of wit";

    Assembly in = new TokenAssembly(quote);
    in.setTarget(new RunningAverage());
    Word w = new Word();
    w.setAssembler(new AverageAssembler());
    Parser p = new Repetition(w);

    Assembly out = p.completeMatch(in);

    RunningAverage avg = (RunningAverage) out.getTarget();
    System.out.println(
        "Average word length: " + avg.average());
}
}

Figure 3.3 Object diagram for calculating a running average. An input assembly and an 
output assembly both have RunningAverage objects as their targets. The 
parser p is a repetition of a Word object that uses an AverageAssembler 
object to update a running average.

:RunningAveragein:TokenAssembly

w:Wordp:Repetition

avg:RunningAverageout:TokenAssembly

a:AverageAssembler
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The main() method in this class constructs the objects in Figure 3.3. This method 
wraps an input string in a TokenAssembly and sets the assembly’s target to be a 
RunningAverage object. The method creates a parser that is a repetition of a Word 
object that uses an AverageAssembler to update the running average. The method 
creates an output assembly by matching the parser against the input assembly. 
Finally, the method shows the results of the parse. Running this class prints:

Average word length: 3.5

This example shows a typical collaboration of assemblies, assemblers, targets, and 
parsers:

� An input target plugs in to an input assembly. 

� A parser establishes an assembler to work on the target. (In a composite 
parser, each subparser can have its own assembler.)

� The parser matches the input assembly, creating an output assembly.

� The output assembly contains an updated target.

This approach relies on the ability to clone an assembly as the parser pursues a 
match. Because the target is a part of the assembly, targets must also be cloneable.

3.3.8 Making a Target Cloneable
Assembly objects know almost nothing about the targets that they hold, but one mes-
sage that an assembly sends to its target is clone(). This springs from the way that 
the parsers in sjm.parse model the nondeterminism inherent in recognizing most 
languages. These parsers use a backtracking mechanism, and this means that they 
must clone an assembly and its target each time they consume a token. 

When you design your parser to create a target object from input text, your target 
class must have a public clone() method. To enforce this, the package sjm.utensil 
includes the interface PubliclyCloneable, whose code is as follows:

package sjm.utensil;

/**
 * Defines a type of object that anybody can clone.
 */
public interface PubliclyCloneable extends Cloneable {

public Object clone();
}



3.3 Designing Assemblers 45

Providing a public clone method without implementing PubliclyCloneable is insuf-
ficient. The Assembly.setTarget() method must know that the object it receives is 
an instance of a class that implements a public clone(). It insists on this by receiving 
its input as datatype PubliclyCloneable. 

To clone an object means to make a copy of the object. To make a class cloneable 
by any object, write a clone() method and declare that the class implements 
PubliclyCloneable. A typical cloneable class method looks like this:

package sjm.examples.cloning;

import sjm.utensil.*;

/**
 * This class shows a typical clone() method. 
 */
public class Course implements PubliclyCloneable {
    protected Professor professor;
    protected Textbook textbook;

// gets and sets...

/**
 * Return a copy of this object.
 */
public Object clone() {
    try {
        Course copy = (Course) super.clone();
        copy.setProfessor((Professor) professor.clone());
        copy.setTextbook((Textbook) textbook.clone());
        return copy;
    } catch (CloneNotSupportedException e) {
        // this shouldn't happen, since we are Cloneable
        throw new InternalError();
    }
}
}

The sample method calls super.clone(), referring to the method clone() of class 
Object. This method creates a new object of the same class as the object that receives 
the clone() message; then it initializes each of the new object’s fields by assigning 
them the same values as the corresponding fields in the copied object. This is a 
shallow copy as opposed to a deep copy, which would also make copies of each of an 
object’s fields. You might think of Object.clone() as Object.newObjectSameFields(). 
In your clone() method, you must create a clone of each attribute in your class that 
is not a primitive type or a string. (Strings are immutable, so there is no need to clone 
them.)
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The Object.clone() method throws CloneNotSupportedException, which you must 
handle. Surround your call to super.clone() in a try/catch block that throws 
InternalError. The InternalError exception is arguably the wrong exception to 
throw, because this error indicates a problem in the virtual machine. However, Vec-
tor and other important classes in Java throw an InternalError in this situation, and 
this book follows that precedent.

With an understanding of assemblers, assemblies, and parsers, you can begin to create 
meaningful new languages. Before you begin to code, however, it will prove helpful 
to have a way to work with parsers at a design level.

3.4 Grammars: A Shorthand for Parsers

A grammar is a collection of related parser definitions in which the definitions follow 
a standard shorthand. A goal of the design phase in software construction is to illus-
trate in compact form the important features that will appear in Java code. Consider 
again the code that builds a parser to recognize a description of a good cup of coffee:

package sjm.examples.introduction;

import sjm.parse.*;
import sjm.parse.tokens.*;
 
/**
 * Show how to create a composite parser.
 */
public class ShowComposite {

public static void main(String[] args) {

    Alternation adjective = new Alternation();
    adjective.add(new Literal("steaming"));
    adjective.add(new Literal("hot"));
    
    Sequence good = new Sequence();
    good.add(new Repetition(adjective));
    good.add(new Literal("coffee"));
    
    String s = "hot hot steaming hot coffee";
    Assembly a = new TokenAssembly(s);
    System.out.println(good.bestMatch(a));
}
}

You can more simply describe the good parser with the following shorthand, or 
grammar:
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good      = adjective* "coffee";
adjective = "steaming" | "hot";

This shorthand relies on a few conventions, including showing literal values in 
quotes, showing alternation with a bar, and showing repetition with an asterisk. The 
point of using a grammar is that it is far more manageable than its corresponding 
Java code.

3.4.1 Standard Grammar Shorthand
This book observes the following conventions for writing a grammar, which is a 
compact definition of a parser.

1. Show the definition of a parser by giving its name, an equal sign, a subparser 
expression, and a semicolon. For example, the rule

adjective = "steaming" | "hot";

defines the makeup of an adjective. 

2. Reference other subparsers as words that begin with a lowercase letter. For 
example, the rule

good = adjective* "coffee";

defines a good parser by referring to the adjective subparser.

3. Show a specific string to match by writing it in quotes. For example, the rule

adjective = "steaming" | "hot";

uses quotes to show that "steaming" and "hot" are specific strings to match.

4. Show a specific single character to match by writing it in single quotes, such 
as '-' in the Minimath rule: 

m = '-' Num;

Note that a tokenizer will return many, but perhaps not all, arithmetic oper-
ators, Boolean operators, and punctuation marks as separate symbol tokens, 
rather than as parts of words. Section 9.6, “Tokenizer Lookup Tables,” 
describes which characters the Tokenizer class treats (by default) as individ-
ual symbols.

5. Show repetition by using an asterisk (“*”). Consider the good grammar:

good      = adjective* "coffee";
adjective = "steaming" | "hot";

The rule for good uses an asterisk to describe a string that begins with 0 or 
more adjectives and ends with "coffee".
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6. Imply sequence by writing subparsers next to each other. For example, the 
good grammar implies that good is a sequence of a-repetition-of-adjectives 
followed by the word "coffee".

7. Show alternation by using a vertical bar. For example, the adjective rule 
declares that both "steaming" and "hot" are suitable adjectives.

8. Indicate precedence by using parentheses. For example, if you wanted to 
show the good grammar on one line, you could write

good = ("hot" | "steaming")* "coffee";

9. Show terminals as words that begin with a capital letter, such as Num, as in

phrase = '(' expression ')' | Num;

Section 2.5, “Terminal Parsers,” shows the terminals available in 
sjm.parse.tokens. Chapter 11, “Extending the Parser Toolkit,” describes 
how to add new types of terminals.

10. Parameterize subparsers if it makes your grammar a better design. (This is 
an optional element of grammar design. It works only if you will code your 
subparsers as methods of a class. See Section 3.6, “Translating a Grammar to 
Code.”) For example, consider a grammar for a small set of markup tags:

tag      = nameTag | roastTag | priceTag;
nameTag  = '<' "name" '>';
roastTag = '<' "roast" '>';
priceTag = '<' "price" '>';

To avoid repeating the pattern of writing angle braces around a literal value, 
you can use a parameterized rule:

tag       = braces("name") | braces("roast") |
            braces("price");
braces(p) = '<' p '>';

The parameter to braces is a parser, specifically a CaselessLiteral for 
"name", "roast", or "price".

3.4.2 Top-Down Grammar Design
When you design a parser for a language, you can use either a top-down or a bottom-
up approach to design. A bottom-up approach includes designing small parts of your 
parser that you know you will need. If you understand the goal of your parser, you 
may be able to design your assemblers, which can help guide the decomposition of 
the language you intend to recognize. When you reach the point of designing the 
grammar itself, you will most likely find that a top-down approach to grammar writ-
ing is natural and intuitive. 
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A top-down design approach begins by breaking the design problem into compo-
nents. When you are using a top-down approach to write a parser, you state the 
design problem as, “Can I decompose this design into parts?” You can also state the 
design challenge as, “Can I represent the parser I want as a composition?” As it hap-
pens, parsers are always either terminals or composites of other parsers. The fact that 
parsers are composites makes the top-down design approach natural. Here is an 
effective algorithm for designing a new parser:

1. Define the parser you want as a composite of subparsers.

2. Repeat step 1 until every subparser is defined or is a terminal.

This algorithm creates a grammar that will often be sufficient for direct translation 
to Java code. Otherwise, you must transform the grammar before implementing it, a 
topic described in Section 3.6, “Translating a Grammar to Code.” Before looking at 
grammar transformation, it is useful to walk through an example of applying the 
design algorithm to a small example.

3.5 Example: Designing a Grammar for a 
      Track Robot

Figure 3.4 shows a miniature factory for which we want to design a command lan-
guage. The heart of the factory is a track robot, a machine that can move forward and 
backward along a track. The robot can pick up material from conveyor belts and place 

Figure 3.4 A track robot. In this miniature automated factory, a simple robot runs along 
a track, picking and placing material on machines. 
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the material on other conveyors. The robot transports material in metal containers 
called “carriers.” The basic flow of the factory has the robot pick and place carriers so 
that they go through two processing machines and arrive at an output conveyor. Car-
riers have bar code labels that the robot is able to scan, letting the robot ascertain the 
identity of a carrier and arrive at a machine’s output.

Humans tend to see the factory in Figure 3.4 as consisting of a track robot, two input 
and output conveyors, and two processing machines. The robot does not see the 
machines—it sees only conveyors—so our command language for the robot will be 
conveyor-centric. Here are some example commands for the robot:

pick carrier from LINE_IN
place carrier at DB101_IN
pick carrier from DB101_OUT
place carrier at WB500_IN
pick carrier from WB500_OUT
place carrier at LINE_OUT
scan DB101_OUT

3.5.1 A Track Robot Grammar
You want a command parser that will recognize the language that will drive the 
robot. Initially, your grammar is

command

You need to define the command parser in terms of other parsers, and you know that 
you want to recognize three commands. So you can give the first rule of the 
grammar as

command = pickCommand | placeCommand | scanCommand;

You need to refine this grammar, expanding every parser on the right side of a defini-
tion until every subparser is defined or is a terminal. Consider the subparser 
pickCommand. You know that the robot is willing to pick up carriers; you only have to 
tell it the location. For a definition that matches your sample strings, you can aug-
ment the grammar:

command     = pickCommand | placeCommand | scanCommand;
pickCommand = "pick" "carrier" "from" location;

You could make the words "carrier" and "from" optional, but let’s keep the language 
simple for now. With simplicity in mind, let’s also assume that each word in quotes in 
the grammar will be a CaselessLiteral so that users can type "pick", "Pick", or "PICK". 
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Judging by the sample command strings, a location is always a single word: 

command     = pickCommand | placeCommand | scanCommand;
pickCommand = "pick" "carrier" "from" location;
location    = Word;

You can complete the grammar design by defining the remaining subparsers—
placeCommand and scanCommand:

command      = pickCommand | placeCommand | scanCommand;
pickCommand  = "pick" "carrier" "from" location;
placeCommand = "place" "carrier" "at" location;
scanCommand  = "scan" location;
location     = Word;

3.5.2 Checking for Left Recursion and Cycles
The grammar for the track robot language is complete, but only because it contains 
no left recursion and no cyclic dependencies. Left recursion exists if a parser’s defini-
tion begins with itself. Cyclic dependencies exist if a parser’s definition ultimately 
depends on itself. The grammar doesn’t have these features so you can skip some 
steps described in Chapter 6, “Transforming a Grammar.”

3.6 Translating a Grammar to Code

You can write the code of a parser directly from its grammar. You apply each princi-
ple of grammar translation in turn until the grammar becomes a set of Java state-
ments that define a parser. The following principles apply:

� Treat quoted strings as CaselessLiteral objects.

� Create Sequence objects for sequences.

� Create Alternation objects for alternations.

� Translate Terminal references to objects.

� Create a subparser for each rule.

� Declare each subparser, or arrange subparsers as methods.

� Add a start() method.
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3.6.1 Translate Quoted Strings
Treat each quoted word, such as "pick", as a CaselessLiteral. For example, translate

pickCommand  = "pick" "carrier" "from" location;

to

pickCommand = new CaselessLiteral("pick")
              new CaselessLiteral("carrier")
              new CaselessLiteral("from")
              location;

This translation immediately begins to look like Java code, although it is not yet 
compilable. When all translations are complete, the result will be compilable code.

3.6.2 Translate Sequences
When you write a grammar, you imply sequences simply by showing two subparsers 
next to each other. For example,

placeCommand = "place" "carrier" "at" location;

implies

placeCommand  = new Sequence();
placeCommand.add(new CaselessLiteral("place"));
placeCommand.add(new CaselessLiteral("carrier"));
placeCommand.add(new CaselessLiteral("at"));
placeCommand.add(location);

Note that this is still not valid Java code, although you are approaching that goal. 
Specifically, you have not yet declared the type of placeCommand, nor have you estab-
lished a strategy for referring to other subparsers. These translations follow shortly.

3.6.3 Translate Alternations
A vertical bar in a subparser definition means that the subparsers on either side of the 
bar may produce a successful match. When a series of vertical bars appears, you can 
create a single Alternation object. For example, translate

command = pickCommand | placeCommand | scanCommand;

to
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command = new Alternation();
command.add(pickCommand);
command.add(placeCommand);
command.add(scanCommand);

This code looks almost like compilable Java, but you still have to translate references 
to subparsers.

3.6.4 Translate Terminals
Many of the terminals in the track robot language are literals, such as "place" and 
"carrier". The only other terminal is Word in the location definition. To translate 
the grammar to Java code, replace each such terminal with a new terminal object of 
the specified type:

location = new Word();

3.6.5 Create a Subparser for Each Rule
The translation steps given so far leave each subparser as a word that begins with a 
lowercase letter, such as pickCommand. There are two strategies for translating sub-
parser definitions into Java code. You can declare each subparser as an appropriate 
kind of parser, or you can arrange the subparsers as a class’s methods.

3.6.6 Option 1: Declare Each Subparser
For a small language, you can make each subparser a separate variable. The track 
robot command language is a little too large for this approach. To illustrate, here is 
RobotMonolithic.java:

package sjm.examples.robot;

import sjm.parse.*;
import sjm.parse.tokens.*;

/**
 * Show how to create a parser and use it in a single 
 * method. 
 */
public class RobotMonolithic {

public static void main(String[] args) {
    Alternation command = new Alternation();
    Sequence pickCommand = new Sequence();
    Sequence placeCommand = new Sequence();
    Sequence scanCommand = new Sequence();
    Word location = new Word();
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    command.add(pickCommand);
    command.add(placeCommand);
    command.add(scanCommand);

    pickCommand.add(new CaselessLiteral("pick"));
    pickCommand.add(new CaselessLiteral("carrier"));
    pickCommand.add(new CaselessLiteral("from"));
    pickCommand.add(location);

    placeCommand.add(new CaselessLiteral("place"));
    placeCommand.add(new CaselessLiteral("carrier"));
    placeCommand.add(new CaselessLiteral("at"));
    placeCommand.add(location);

    scanCommand.add(new CaselessLiteral("scan"));
    scanCommand.add(location);

    String s = "pick carrier from DB101_IN";

    System.out.println(
        command.bestMatch(new TokenAssembly(s)));
}
}

All the subparser declarations appear at the top of the code. The assignment state-
ments build the command object into a parser for the track robot command language. 
Running this class prints the following:

[pick, carrier, from, DB101_IN]
pick/carrier/from/DB101_IN^

The output shows that the command parser can completely parse at least one sample 
element of the language.

3.6.7 Option 2: Arrange Subparsers as Methods
For readability, you can create a method for each subparser of a grammar. For exam-
ple, you can lift out the preceding code that creates the command object and place it in 
a method called command(). You can reapply this strategy, creating a method for each 
subparser. Because all the subparsers except command are useful only in constructing 
the command subparser, it is a good idea to make them protected and not public. Sub-
parsers such as location are not intended for public use but might be overridden in a 
subclass.

Refactoring the RobotMonolithic class to apply the strategy of making subparsers 
methods results in the following:
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package sjm.examples.robot;

import sjm.parse.*;
import sjm.parse.tokens.*;

/**
 * Provide an example of a class that affords a parser for 
 * the "robot" command language. This class is a refactored 
 * version of the <code>RobotMonolithic</code> class, with
 * one method for each subparser in the robot language. 
 */
public class RobotRefactored {

public Parser command() {
    Alternation a = new Alternation();
    a.add(pickCommand());
    a.add(placeCommand());
    a.add(scanCommand());
    return a;
}

protected Parser pickCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("pick"));
    s.add(new CaselessLiteral("carrier"));
    s.add(new CaselessLiteral("from"));
    s.add(location());
    return s;
}

protected Parser placeCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("place"));
    s.add(new CaselessLiteral("carrier"));
    s.add(new CaselessLiteral("at"));
    s.add(location());
    return s;
}

protected Parser scanCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("scan"));
    s.add(location());
    return s;
}

protected Parser location() {
    return new Word();
}
}
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Here’s a class that uses the refactored parser class:

package sjm.examples.robot;

import sjm.parse.*;
import sjm.parse.tokens.*;

/**
 * Show how to use a parser class that arranges its
 * subparsers as methods. 
 */
public class ShowRobotRefactored {

public static void main(String[] args) {
    Parser p = new RobotRefactored().command();
    String s = "place carrier at WB500_IN";
    System.out.println(p.bestMatch(new TokenAssembly(s)));
}
}

Running this class prints the following:

[place, carrier, at, WB500_IN]
place/carrier/at/WB500_IN^

The class RobotRefactored is a refactoring of RobotMonolithic, with the subparsers 
arranged as a coordinated set of methods. This approach can lead to an infinite loop 
if rules in your grammar refer to each other in a cycle. Fortunately, you can eliminate 
such loops by using lazy initialization; Section 6.5 explains how. Many grammars, 
including the track robot grammar, are small and acyclic, so we defer this topic for now.

In the refactoring, I changed the variable names. This is an esthetic choice. You can 
decide whether you think it is easier to read and understand this:

protected Parser scanCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("scan"));
    s.add(location());
    return s;
}

or this:

protected Parser scanCommand() {
    Sequence scanCommand = new Sequence();
    scanCommand.add(new CaselessLiteral("scan"));
    scanCommand.add(location());
    return scanCommand;
}
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3.6.8 Add a Start Method
A user of your class needs to be able to tell which subparser is the “primary” parser, 
the one that matches a useful language. To tell your prospective user which parser to 
use, introduce a start() method that returns the primary parser.  For example, you 
could add the following method to RobotRefactored to make it easy for a user of the 
class to find the primary parser:

/**
 * Returns a parser that will recognize a command for a
 * track robot, and build a corresponding command object.
 */
public static Parser start() {
    return new RobotParser().command();
}

Making this method static allows a user to simply call start() as a class method.

3.7 Completing a Parser

The class RobotRefactored is the result of a translation from the track robot command 
language grammar into code. It is complete in that it provides a parser that recog-
nizes the desired language. This parser is not complete, however, in the sense of 
doing anything useful. To go beyond recognition of a language to taking some useful 
action based on the recognition, a parser must control the pushing of terminals onto 
an assembly’s stack, and it must plug assemblers in to the appropriate subparsers.

3.7.1 Control Pushing
By default, all terminals push whatever they recognize onto an assembly’s stack. For 
most terminals, this is a useful and often necessary function. For example, when a 
parser recognizes a Word or a Num, the parser usually needs to do something with 
whatever Word or Num it recognizes. On the other hand, when a parser recognizes a 
Literal or CaselessLiteral, such as "carrier", the parser normally does not need 
to do any work with the literal it sees. For example, consider the subparser for 
pickCommand:

pickCommand = "pick" "carrier" "from" location;

In this subparser, the words "pick", "carrier", and "from" serve to identify a partic-
ular type of command. The pickCommand subparser successfully matches only text 
that begins with these three words. There is no reason to stack these words; you 
know what they are, and you know you must be recognizing a pickCommand if the 
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match succeeds. Typically, you will want to ask all the Literal parsers in your parser 
to discard the terminal they see. To ask a Literal not to push itself, send it a discard() 
message. Making this change in RobotRefactored.pickCommand() results in the 
following:

protected Parser pickCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("pick").discard());
    s.add(new CaselessLiteral("carrier").discard());
    s.add(new CaselessLiteral("from").discard());
    s.add(location());
    return s;
}

Keeping the literals from pushing means that after a pickCommand() matches an 
assembly’s text, the assembly’s stack will contain only the value of the location for 
the command. You will see shortly how to plug in assemblers to work on the assem-
bly’s stack and target.

3.7.2 Design the Target
Having developed the code to recognize a robot command language, the next step is 
to arrange for the parser to actually build a command object from input command 
text. In this example, the target of parsing text is an object from a hierarchy of com-
mands. Figure 3.5 shows the targets for the robot language, namely the three sub-
classes of RobotCommand. 

Figure 3.5 A command hierarchy. You can run a little factory with commands for pick-
ing, placing, and scanning carriers. 
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Here is the code for RobotCommand:

package sjm.examples.robot;

/**
 * A <code>RobotCommand</code> encapsulates the work that 
 * lies behind a high-level command such as "pick carrier from 
 * input1". In this package, the commands are just sample 
 * targets of a parser; their <code>execute()</code> methods 
 * are not implemented.
 */
public class RobotCommand
    implements sjm.utensil.PubliclyCloneable {

    protected String location;

/**
 * Return a copy of this object. If the location attribute 
 * becomes something more complicated than a String, then
 * this method will become insufficient if location is not
 * immutable.
 */
public Object clone() {
    try {
        return super.clone();
    } catch (CloneNotSupportedException e) {
        // this shouldn't happen, since we are Cloneable
        throw new InternalError();
    }
}

/**
 * If we were really driving a factory, this is where we
 * would turn high-level commands into the protocols that
 * various machines would understand. For example, a pick
 * command might send messages to both a conveyor and
 * a track robot.
 */
public void execute() {
}

/**
 * Return the location that this command is for. 
 */
public String getLocation() {
    return location;
}

/**
 * Set the location for this command. 
 */
public void setLocation(String location) {
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    this.location = location;
}
}

The purpose of a RobotCommand object is to operate real equipment when the com-
mand’s execute() method runs. In a real factory system you would have to write the 
code that makes this execution happen. Each subclass of RobotCommand would over-
ride execute() appropriately. In this example you are aiming only to translate text 
into the right kind of command object, so the subclasses are empty. For example, the 
code for PickCommand is

package sjm.examples.robot;

/**
 * Just for demonstration.
 */
public class PickCommand extends RobotCommand {

/**
 * Return a textual description of this object.
 */
public String toString() {
    return "pick " + location;
}
}

3.7.3 Plug In Assemblers
The assemblers for your parser set an assembly’s target and inform the target of its 
associated location. Each subclass of the command needs a corresponding assembler 
to set the appropriate target. For example, you will need a PickAssembler class:

package sjm.examples.robot;

import sjm.parse.*;
import sjm.parse.tokens.Token;
 
/**
 * Sets an assembly's target to be a <code>PickCommand
 * </code> object and notes its location.
 */
public class PickAssembler extends Assembler {

public void workOn(Assembly a) {
    PickCommand pc = new PickCommand();
    Token t = (Token) a.pop();
    pc.setLocation(t.sval());
    a.setTarget(pc);    
}
}



3.7 Completing a Parser 61

The approach taken here assumes the parser will parse a single command and con-
struct a corresponding RobotCommand object. Which subclass of RobotCommand to 
instantiate and to set as the target of the parse depends on the input text. The 
PickAssembler object plugs in to the pickCommand subparser, which will successfully 
match a  "pick" command. The assembler’s workOn() method executes after an 
(entire) pickCommand subparser matches. At this time, a pick location will be on the 
stack. When the workOn() method executes, it creates a PickCommand object and sets 
this object as the target of the parse. The assembler pops the location object and uses 
it to establish the location of the PickCommand object. 

You can now convert the code for RobotRefactored into RobotParser, plugging in 
the assemblers and adding some comments. The result is as follows:

package sjm.examples.robot;

import sjm.parse.*;
import sjm.parse.tokens.*;

/**
 * This class's start() method provides a parser that
 * will recognize a command for a track robot and build a
 * corresponding command object.
 * <p>
 * The grammar for the language that this class recognizes
 * is:
 * 
 * <blockquote><pre>
 *     command      = pickCommand | placeCommand | 
 *                    scanCommand;
 *     pickCommand  = "pick" "carrier" "from" location;
 *     placeCommand = "place" "carrier" "at" location;
 *     scanCommand  = "scan" location;
 *     location     = Word; 
 * </pre></blockquote>
 */
public class RobotParser {

/**
 * Returns a parser that will recognize a command for a 
 * track robot and build a corresponding command 
 */
public static Parser start() {
    return new RobotParser().command();
}

/**
 * Returns a parser that will recognize a command for a 
 * track robot and build a corresponding command object.
 *
 * (This method returns the same value as 
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 * <code>start()</code>).
 */
public Parser command() {
    Alternation a = new Alternation();
    a.add(pickCommand());
    a.add(placeCommand());
    a.add(scanCommand());
    return a;
}

/*
 * Returns a parser that will recognize the grammar:
 *
 *     pickCommand = "pick" "carrier" "from" location;
 */
 protected Parser pickCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("pick"));
    s.add(new CaselessLiteral("carrier"));
    s.add(new CaselessLiteral("from"));
    s.add(location());
    s.setAssembler(new PickAssembler());
    return s;
}

/*
 * Returns a parser that will recognize the grammar:
 *
 *     placeCommand = "place" "carrier" "at" location;
 */
 protected Parser placeCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("place"));
    s.add(new CaselessLiteral("carrier"));
    s.add(new CaselessLiteral("at"));
    s.add(location());
    s.setAssembler(new PlaceAssembler());
    return s;
}

/*
 * Returns a parser that will recognize the grammar:
 *
 *     scanCommand = "scan" location;
 */
protected Parser scanCommand() {
    Sequence s = new Sequence();
    s.add(new CaselessLiteral("scan"));
    s.add(location());
    s.setAssembler(new ScanAssembler());
    return s;
}
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/*
 * Returns a parser that will recognize the grammar:
 *
 *     location = Word;
 */
protected Parser location() {
    return new Word();
}
}

You can use the RobotParser.start() parser as follows:

package sjm.examples.robot;

import sjm.parse.*;
import sjm.parse.tokens.*;

/**
 * Show how to use the <code>RobotParser</code> class. 
 */
public class ShowRobotParser {

public static void main(String[] args) {
    Parser p = RobotParser.start();
    
    String[] tests = new String[]{
        "pick carrier from LINE_IN",
        "place carrier at DB101_IN",
        "pick carrier from DB101_OUT",
        "place carrier at WB500_IN",
        "pick carrier from WB500_OUT",
        "place carrier at LINE_OUT",
        "scan DB101_OUT"};

    for (int i = 0; i < tests.length; i++) {
        TokenAssembly ta = new TokenAssembly(tests[i]);
        Assembly out = p.bestMatch(ta);
        System.out.println(out.getTarget());
    }
}
}

Running this class prints the results of parsing a few sample commands:

pick LINE_IN
place DB101_IN
pick DB101_OUT
place WB500_IN
pick WB500_OUT
place LINE_OUT
scan DB101_OUT



64 Chapter 3 � Building a Parser

These are the results of the toString() methods of the commands built by the 
RobotParser.start() parser. If the command target objects were wired into a factory 
with functional execute() methods, you could use these commands to control the 
factory. 

3.8 Summary

Building a new parser starts with envisioning the language you want to recognize. 
Write a few sample sentences of the language that you want, and write a grammar 
that comprehends these examples. A grammar shows the pattern of strings in your 
language and serves as a design document. Next, translate your grammar to code and 
verify that your parser recognizes the sample strings of your language. Once you get 
a parser working that recognizes your examples, you can add more grammar rules. 
You can work iteratively to build the complete language you want to recognize. At 
some point, you must start creating the auxiliary classes that let your parser do more 
than just recognize an input string. These supporting classes are assemblers and 
potentially a target. After a subparser recognizes text, the subparser’s assembler can 
work on the assembly that contains the text. This work may be limited to the assem-
bly’s stack, or it may include changes to the assembly’s target. You have complete 
control over how you define a target class except that your class must implement 
PubliclyCloneable. 

Work iteratively, creating your parser as a composition of subparsers and plugging in 
assemblers that build a target. In a short time you can learn to create powerful new 
languages from these few steps.


