
16

C h a p t e r

16.1

 XML and RSS Overview

The Extensible Markup Language, commonly called XML, is a markup lan-
guage for structured documents. A structured document is one that con-
tains various elements, such as images and text, as well as an indication of
what that element is. For example, a letter has elements such as address,
body, and footer that all have different roles in the document. When there is
some indicator on the letter as to what each part of each element does, then
there is a structured document. Most documents do have structure, and
XML can be used to define that structure in a usable, and standard, way.
HTML documents are structured documents because they have elements
and tags defining the role of that element.

HTML and XML are not the same, however. HTML has a known set of
tags. XML, on the other hand, does not. XML isn’t just a way to mark up
documents; it is really a meta-language giving developers a way to describe
markups. The developers of the XML documents and applications that use
them define the tags for the document as well as the relationship between
those tags. XML was created to allow developers to use their tags to create
structured documents for the Web. Through this chapter you will learn
some basics of an XML document and see how to use an XML variant,
RSS, for the Web.

RSS and XML

450 Writing CGI Applications with Perl

16.1.1

 Structure of an XML Document

The look of an XML document is very close to that of HTML and should be
easy to follow and understand. In Listing 16-1 you will see a simple XML
document.

Listing 16-1 Example XML document

<?xml version="1.0"">
<Zappa>
<quote>Good night Cleveland, wherever you are!</quote>
<quote>Shoot low, they’re riding Shetlands.</quote>

</Zappa>

Well, there is nothing too mystical looking in there. The first line de-
clares that this is an XML document as well as the version of XML being
used. This line is not obligatory, but it is a good practice to have it and it
helps make the document well formed. Next a container is created. The
name of the container is “Zappa”. Inside of this container, there are two el-
ements that are being tagged as “quote”. Finally, the “Zappa” container is
closed, containing two quote elements. The preceding example is a very
simple one, and XML goes much deeper than what you see there, but it
would take a book to show all the aspects (in fact, there are books that do).
However, the preceding example shows enough to help you understand the
coming examples and quickly get started using XML and its variants.

16.2

 News Portals with RSS

A few short years ago, Netscape created what could be called the first Web
portal. They developed the My News Network,

1

 or MNN, which gave a facil-
ity for its users to get much of the news and search capabilities from their
own starting page. Users can choose sites from which they would like to
see news summaries and have them displayed. Netscape dubbed these sum-
maries “channels,” and that is now the common name. For Netscape chan-
nels, the backend server would periodically fetch structured XML
documents from contributing sites and update the content of the channels.
In order to ensure that all contributors’ files were structured in the same
way, Netscape developed the RDF Site Summary (RSS) format. This format
uses XML and Resource Description Format (RDF)

2

 to define a markup
language for developers to use. The RSS format is not just for Netscape
channels anymore. Using the XML::RSS module a programmer can use the
same channel files to format data for the Web.

1. http://my.netscape.com

2. This is a format used to describe Web-based meta-data.

16.2 News Portals with RSS 451

Before we jump into using XML::RSS, let’s first cover the RSS format
markup language. There is a finite set of tags to use with RSS. The main
container for the document is the channel. Within this containter there are
a few elements that can be used to define the content. Three main elements
are title, link, and description. The channel container can also contain im-
age, textinput, and other containers. Let’s take a moment to break down an
RSS document.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
 "http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">

This section is doing three declarations. The first is declaring that this
is an XML document, as you saw in the previous section. The second decla-
ration is the DOCTYPE for the document. The third is declaring that this is
a RSS document, using version 0.91. Version 0.90 of RSS was introduced
by Netscape in 1999, so this is all still very new. Now that we have the type
of document we will be creating, the next step is to create it.

<channel>

This line opens the

channel

 container. Everything up until this con-
tainter is closed will be a part of this container. The main container in all
RSS documents is

channel

.

<title>My News</title>
<link>http://news.me.com</link>
<description>My news, for you!</description>
<language>en</language>
<copyright>Copyright 2000++, Me</copyright>
<pubDate>Sun May 21 15:43:45 2000</pubDate>
<lastBuildDate>Sun May 21 15:43:45 2000</lastBuildDate>
<managingEditor>me@me.com</managingEditor>

<webMaster>me@me.com</webMaster>

Here a list of elements is being defined. The three main ones, which are
also required, are title, which is the title of the channel; link, which is the
location of the Web site for this channel; and description, which is how to
describe the channel. The remaining elements listed are optional for inclu-
sion in the document but can provide useful information. We will not go
into individual descriptions of them, since the name of each element does a
good job of that on its own.

452 Writing CGI Applications with Perl



The preceding snippet shows the optional

image

 container. This con-
tainer will hold information about the image logo for the channel. Again, the
simplicity of the RSS format makes each element name self-explanatory
for what the element data is used for. The last line of the snippet closes the
container.

<item>
<title>Man eats cheese, MPEG at 11.</title>
<link>http://news.me.com/news/story2.html</link>

</item>

The

item

 container is extremely important, since it defines the content
of the channel. This container is required, and there can be multiple

item

containers per channel. For example, if there were five news stories, there
would be five

item

 containers. There are two elements in an

item

 container,
and both are required. These elements define the

title of the item as well as
the link to the full story.

<textinput>
<title>Search My News</title>
<description>Search the Archives</description>
<name>text</name>
<link>http://news.me.com/search.cgi</link>

</textinput>

The “textinput” containter will create a text box that people can use to
search your site. This container is optional, since some sites may not have
search capabilities. If the site does have search capabilities, then this is an
excellent way to allow users to search the site from wherever the channel is
displayed.

</channel>

</rss>

The document ends by closing the

channel

 container and closing the
RSS document. This is equivalent to closing an HTML document with

16.2 News Portals with RSS 453

</HTML>. That’s the entire RSS document. With this document, a
Netscape channel can be created

3

 and you can share it with others around
the world who want to customize their Web pages and applications with
your information. Now that you know the structure of an RSS document,
we will show you how to use that file and then create your own using Perl.

16.2.1

 A Home Page News Portal

Now that you have a general understanding what an RSS document is
and how one in structured, it is time to see how a developer can use these
files to create dynamic content and create a customized portal with them.
The easiest way to use RSS formatted files in Perl is with the XML::RSS
module, written by Jonathan Eisenzopf. This module allows a program-
mer to easily get the data that is inside an RSS formatted file in an object-
oriented fashion. In this section we will walk through an application that
fetches RSS files, displays the channels to a Web page, and allows a user
to add channels to fetch and choose what channels are displayed on the
Web page.

The first thing to know is where to get channel files to use! The xmlTree
Web site

4

 is attempting to categorize much of the XML content on the Web,
and much of this content is RSS files. Using this Web site, you can search
for the type of channel you wish you have and find the location of the RSS
files

5

 for those channels. Now that you know where to look for channel
files, let’s get on with the script.

We begin by creating a table that will hold information about the chan-
nels. We will be keeping information on three things: the URL of the RSS
file, the name of the channel, and whether the channel is to be viewed on
the Web page.

Listing 16-2 SQL to create the RDF table

CREATE TABLE rdf (
 URL varchar(250) NOT NULL,
 Name varchar(250) NOT NULL,
 Selected int(11)

);

To help you use this script as you read along, Listing 16-2 shows the in-
sert statements of four channels. This will also give you an idea of what the
data in the table looks like.

3. The RDF file needs to be registered with Netscape so they know where to fetch it.

4. www.xmltree.com

5. Many of these have an .rdf extension, although this is not required.

454 Writing CGI Applications with Perl

INSERT INTO rdf VALUES ('http://slashdot.org/slashdot.rdf',
 'Slashdot',0);
INSERT INTO rdf VALUES ('http://www.news.perl.org/perl-news-
 short.rdf','Perl News',1);
INSERT INTO rdf VALUES ('http://freshmeat.net/backend/fm.rdf',
 'Freshmeat',1);
INSERT INTO rdf VALUES ('http://www.securityfocus.com/topnews-

 rss.html','Security Focus',1);

The first thing that is needed is a way to get the RSS files locally so the
XML::RSS module can parse it. To accomplish this, we create the script fetch,
which can be run from the command line or via cron at regular intervals.

01: #!/usr/bin/perl -w
02: # fetch
03: use strict;
04: use File::Basename;
05: use DBI;

06: use LWP::Simple qw(mirror);

Lines 1–6

 define the path to Perl and

use()

 the needed modules. The

mir-
ror()

 method from LWP::Simple will be used to get the remote RSS files.
When the file will be saved locally, they will be saved with the same name of
the remote file. The

basename()

 method from File::Basename will be used
to easily get that information for us.

07: my $RDF_DIR = './rdf';

Line 7

 initializes the $RDF_DIR variable. Its value will be used as the direc-
tory to store the retrieved RSS files.

08: my $dbh = DBI->connect("dbi:mysql:book", "user", "password");
09: my $sth = $dbh->prepare(qq{select URL from rdf});

10: $sth->execute or die $DBI::errstr;

Line 8

 connects to the database.

Line 9

 then prepares a query that selects
all the URLs for the RSS files from the table.

Line 10

 executes this state-
ment or dies with the error from DBI.pm.

11: while (my $url = $sth->fetchrow) {
12: my $name = basename($url);
13: mirror($url, "./$RDF_DIR/$name");

14: }

16.2 News Portals with RSS 455

Lines 11–14

 loop through the results set from the database. The value re-
turned and stored in $url will be a single URL. In

line 12

 $url is passed to
the

basename()

 method, which will return the filename from the end of the
URL. This value is stored in $name.

Line 13

 does the real work. The

mir-
ror()

 method takes the URL as its first argument and in turn fetches the re-
mote Web page. The second argument is the location of where the new file
is to be saved. When this loop is done, all the available RSS files will be
stored locally. This script would be most helpful if run in intervals to make
sure the latest RSS files are local.

15: $dbh->disconnect;

Line 15

 closes the database connect.

The next part of the application is to take the RSS files and make them
useful. The index.cgi script, to be explained next, will create channel boxes
on a Web page displaying the data from the RSS files.

01: #!/usr/bin/perl -wT
02: # index.cgi
03: use strict;
04: use CGI qw(:standard end_ul end_table);
05: use CGI::Carp qw(fatalsToBrowser);
06: use File::Basename;
07: use DBI;
08: use XML::RSS;
09: my $RDF_DIR = './rdf';
10: my $dbh = DBI->connect("dbi:mysql:book", 'user','password') or
 print $DBI::errstr;
11: my $sth = $dbh->prepare(qq{select URL from rdf where
 Selected = 1});

12: $sth->execute;

Lines 1–12

 only introduce one new thing: using XML::RSS. This is the
module that will be used to retrieve the wanted information from the RSS
files in $RDF_DIR. We are also selecting all the URLs from the database
where Selected is 1, which indicates that channel should be displayed on
the Web page.

13: print header,
14: start_html("My Home Page"),
15: h2("My Favorite Sites");
16: print start_table({cellpadding=>0, cellspacing=>0, border=> 0,
 width => '100%'}),

17: td;

456 Writing CGI Applications with Perl

Lines 13–17

 start off the HTML for the page. All the HTML is being printed
out using methods from the CGI.pm module.

18: my $count = 1;

19: my @html = ('</TD><TD>', '</TD><TR><TD>');

Line 18

and

19 initialize two variables that will be used together as a sort
of toggle. The channels will be displayed in two columns, and one way or
another we have to know if a <TR> is to be printed to start a new row. Since
every other column will have the <TR>, a simple little toggle can be used to
switch between the two HTMLs.

20: while (my $url = basename($sth->fetchrow)) {
21: my $rss = new XML::RSS;

Line 20 starts iterating through the results set, which will be URLs. As the
results row is fetched, it is also put through the basename() method to get
only the filename. For example, the URL http://slasdhot.org/slashdot.rdf will
be reduced to “slashdot.rdf.” That filename is then stored in $url. Line 21
then creates a new XML::RSS object. The resulting $rss variable will be an
object reference.

22: eval {$rss->parsefile("$RDF_DIR/$url")};
23: warn "$url will not parse $@" and next if $@;

Line 22 evaluates the parsefile() method. The parsefile() method takes the
location of the RSS file on disk, opens it, and parses it. This is being
wrapped in an eval() because if the RSS is broken, an exception may be
thrown. By using eval(), the exception can be caught, and the script will
continue. Line 23 will print a warning to STDERR and move on to the next
iteration of the loop if an exception is caught.

24: my $last_mod = scalar localtime((stat("$RDF_DIR/$url"))[9]);

Line 24 initializes $last_mod with the scalar value of the last modified time
of the RSS file.

25: print start_table({cellpadding=>0, cellspacing=>2,
 border=> 5, width=>'75%'}),
26: td({valign=>'CENTER', bgcolor => '#C0C0C0'});

Lines 25 and 26 begin the HTML table for the channel.

16.2 News Portals with RSS 457

27: $rss->{image}{url}
28: ? print img({src=>$rss->{image}{url}})
29: : print strong($rss->{channel}{title});

Lines 27, 28, and 29 are one line broken up for clarity. Line 27 wants to see if
there is a true value for $rss->{image}{url}. If there is, then the RSS file has an
image container. If it is true, line 28 then displays that image to the browser. If
there is no image container, the title for the channel is displayed instead.

30: print ul;

Line 30 prints the tag. The items in the RSS file will be displayed as
an unordered list.

31: for (@{$rss->{items}}) {
32: print li(a({href=>$_->{link}}, $_->{title}));
33: }

Lines 31–33 iterate over the items in the channel container. $rss->{items} is
a reference to an array and is being dereferences as such. Line 32 prints
out the item to the browser. The item is displayed as a hyperlink to the URL
for the story. The text for the hyperlink is the items title. These values come
from the link and title elements of the item container.

34: print end_ul;

Line 34 prints the tag.

35: if ($rss->{textinput}{link}) {
36: print $rss->{textinput}{description},
 start_form(-method => 'GET',
37: -action => $rss->{textinput}{link}),
38: textfield(-name => $rss->{textinput}{name}),
39: end_form;
40: }

Lines 35–40 handle an occurrence of a textinput container. If line 35 finds
that the link element of the textinput container has a true value, the rest of
the block prints the appropriate form.

41: print qq(Last Updated $last_mod
),
42: end_table;
43: $html[$count^=1];
44: }

458 Writing CGI Applications with Perl

Line 41 displays the last modified date that was retrieved in line 24. Line
42 closes the table for the channel, but line 43 does something fun. Re-
member lines 18 and 19 when we initialized @html and $count so they
would act as a toggle? Line 43 is that toggle. We want to have two columns
of channels being displayed, and by XORing the values of $count and 1, we
can print the desired HTML to either end the table row with a <TR> tag or
not. The higher the value to initialize $count with, the more columns you
will have. Finally, line 44 ends the while() loop.

45: print end_table,
46: end_html;

Lines 45 and 46 end the script by printing the closing tags for the main ta-
ble and the HTML. When this script is run, the Web page that is generated
is similar to that shown in Figure 16-1.

Figure 16-1 Channels on a Web page

16.2 News Portals with RSS 459

To this point, the application has a means to fetch updated RSS files
and display the channel data to a Web page. However, the application still
needs a way to add RSS files to the database, as well as choose which ones
to display and which ones not to. To accomplish this, we will show the
script admin.cgi.

01: #!/usr/bin/perl -wT
02: # admin.cgi
03: use strict;
04: use CGI qw(:standard);
05: use CGI::Carp qw(fatalsToBrowser);
06: use DBI;
07: my $dbh = DBI->connect("dbi:mysql:book", "user", "password");
08: param('Submit') ? add_new() : show_form();
09: $dbh->disconnect;

Lines 1–9 introduce nothing new. Line 8 is what is really important here.
Line 8 checks if there was a “Submit” parameter sent to the script. If there
was, this means that the form to make changes was submitted and to call
the add_new() subroutine. The add_new() subroutine will make the needed
changes to the database, then reshow the form with the show_form() sub-
routine. If there was no “Submit” parameter sent to the script, the
show_form() subroutine is immediately called. Line 9 disconnects from the
database.

10: sub show_form {
11: my $sth = $dbh->prepare(qq{select * from rdf});
12: $sth->execute;
13: print header,
14: start_html("My Home Page Options"),
15: h2("Choose My Favorite Sites");
16: print start_form(-method => 'POST', -action => 'admin.cgi');

Lines 9–16 begin the show_form() subroutine. This subroutine will do one
thing: display the Web form to the browser. The form will consist of a list of
all the channels in the database, each with a checkbox denoting whether it
has been selected to be viewable on the main Web page. The page also will
have a place to add a new channel by entering the channels’ name, URL to
the RSS file, and a checkbox to select if the channel should be shown on the
main Web page. Figure 16-2 shows what the final form will look like. Line
11 is the query that will select all the information from the database. This
data will be used starting in line 17 to display the channels. The other line
of note is line 16, which begins the Web form with itself as the script to
which the form will be submitted.

460 Writing CGI Applications with Perl

17: while (my $data = $sth->fetchrow_hashref) {
18: my $checked = $data->{Selected} ? "CHECKED" : "";
19: print checkbox(-name => 'Selected',
20: -checked => $checked,
21: -value => $data->{Name},
22: -label => $data->{Name},
23:),
24: p;
25: }

Lines 17–25 are a loop that iterates over the data set returned from the
SQL executed on line 12. The data returned is stored in the $data vari-
able, which is a hash reference containing the data for the specific row be-
ing returned from the fetchrow_hashref() method. Each channel in the
database has a Selected field, which denotes if the channel is to be dis-
played on the main Web page. This field will either contain a 0 or 1 to not
display or display the channel. Line 18 checks to see if the channel is se-
lected or not to determine if the CHECKED attribute of the HTML check-
box input tag should be shown. If $data->{Selected} is a true value, the
$checked variable is initialized as the string “CHECKED” and is an empty
string if there is a false value. Lines 19–23 display the checkbox for the
channel. Passing parameters to the checkbox() method from CGI.pm, we
can define the checkbox’s name, which will be “Selected,” whether or not
the checkbox is to be displayed selected, as well as the value and label for
the checkbox. The value and label parameters are both defined as the
name of the channel, referred to as $data->{Name}. This continues for
each of the channels in the database. Line 25 closes the while() block we
have been in.

26: print h2("Add new channel") , p,
27: "RDFs URL: ", textfield(-name => 'URL', -size => 50), p
28: "Name of channel: ", textfield(-name => 'Name',
 -size => 50), p
29: "Display on Home Page: ",
30: checkbox(-name => 'new-Selected', -label => ''), p,
31: submit(-name => 'Submit', -value => 'Make Changes'),
32: end_form, end_html;
33: }

Lines 26–32 are a long print() to display three form elements that will al-
low a user to enter a new channel into the database. The first form element,
aptly named “URL,” is a text box (created with the textfield() method) that
will be used to gather the URL of the RSS file. Line 28 creates the second

16.2 News Portals with RSS 461

text box, “Name,” which is where the user-defined name of the channel is
entered. Line 30 is a checkbox, named “new-Slected,” where the user can
select if the channel is to be displayed or not. You may have noticed that all
the form elements except this one is the name of a field in the database.
This is to make sure that when the form is submitted, this value doesn’t
want to get mixed in with the other checkboxes that were selected. The
other selected checkboxes will be seen as an array when they are retrieved
in the show_form() subroutine, and this value will be separate. Line 31
prints the submit button for the form. A value is defined for the button so
the value will have a true value when line 8 checks to see if this form is be-
ing submitted for an update or being called directly. Line 32 ends the
print() by ending the form and Web page.

34: sub add_new {
35: my $qry_select = qq(update rdf set Selected = 1
 where);
36: my $qry_deselect = qq(update rdf set Selected = 0
 where);

Line 34 begins the add_new() subroutine. Lines 35 and 36 define two vari-
ables that are the beginnings of SQL UPDATE statements. When the data is
parsed to see what channels were selected, there is no real way to know
which ones are not selected. This means that after knowing the selected
channels, two queries will be executed. One will update the Selected field of
those selected to 1, and those that are not selected will have it set to 0.
These queries will be built in lines 39 and 40.

37: my @selected = param('Selected');

Line 37 builds the @selected array by getting all the parameters submit-
ted with the name “Selected.” The elements of the @selected array will
be the names of the channels the user checked to be viewable from the
form.

38: $qry_select .= qq(Name = '$_' or) for @selected;
39: $qry_deselect .= qq(Name <> '$_' and) for @selected;

Lines 38 and 39 build the update statements. Both scalars are concate-
nated as for() iterates through @selected.

40: $qry_deselect =~ s! and $!!;
41: $qry_select =~ s! or $!!;

462 Writing CGI Applications with Perl

Lines 40 and 41 clean up the queries being made. At the end of each
string, there will be an extra “and” or “or” and they need to be removed be-
fore trying to execute them.

42: my $sth = $dbh->prepare($qry_select);
43: $sth->execute or print $DBI::errstr;
44: $sth = $dbh->prepare($qry_deselect);
45: $sth->execute or print $DBI::errstr;

Lines 42–45 prepare() and execute() the queries. When this is done, the data-
base will match what the user wanted as far as what is Selected and what
is not.

46: if (param('URL') && param('Name')) {
47: my $url = param('URL');
48: my $name = param('Name');
49: my $display = param('new-Selected') ? 1 : 0;
50: $sth = $dbh->prepare(qq{insert into rdf (URL, NAME,
 SELECTED) values ('$url', '$name', $display)});
51: $sth->execute or print $DBI::errstr;
52: }
53: show_form;
54: }

Lines 46–54 complete the script. Line 46 is checking to see if a URL and
Name parameter have been passed to the script. Both are checked because
we do not want to add a channel with no Name or no URL. If those param-
eters are true, the block continues and adds a record into the database,
thereby creating a new channel. When this is all finished, the show_form()
subroutine is called, and the form, with the updated information, is dis-
played to the screen.

16.2 News Portals with RSS 463

Figure 16-2 Channel admin page

The three scripts explained in this section showed you how to create an
RSS file as well as how to parse, read, and display them. The tools taught in
this section can be used to provide, or receive other, information in Web ap-
plications. There are other features that can be added to this application,
which will be suggested reader exercises at the end of this chapter. Using
XML is growing in popularity and is an excellent tool for the programmer’s
toolbox. With the basic techniques taught in this chapter, you can already
use Perl and XML to enhance Web applications.

464 Writing CGI Applications with Perl

16.3 Creating an RSS File
Now that you have seen how to use RSS files and are familiar with their
structure, it is a good time to explain how a developer can create his or her
own channel file. To make an RSS file useful in an application, it is neces-
sary to have the essential element a channel needs—news to share with
others—that is on the Web. For example’s sake, we will assume that the in-
formation is kept in a text file. Of course, your information may be in a da-
tabase or are HTML files in a special directory or some other type of data
source.

The following example, make_rss, is not a CGI script. It is meant to be
used as a command line script, which could be run from a schedule to au-
tomatically create the RSS file. This code, of course, could be run as a CGI,
but unless your news changes by the minute, having it scheduled to run on
intervals should suffice.

01: #!/usr/bin/perl -wT
02: # make_rss
03: use strict;
04: use XML::RSS;

Lines 1–4 define the path to Perl as well as pull in the strict pragma and
XML::RSS module.

05: my $FILE = 'news.txt';
06: my $RDF_DIR = './rdf';

Lines 5 and 6 create two scalar variables we will be using later. Line 5 ini-
tializes $FILE with the location of the text file that has the news information
in it. This file, which we called news.txt, is a pipe delimited file with the URL
for the news story to the left of the pipe and the description of the story on
the right. On line 6 the $RDF_DIR variable is created. This variable holds the
location of the directory in which the RSS file is to be created.

07: my $rdf = new XML::RSS;

Line 7 creates a new XML::RSS object. The reference to that object is being
stored in $rdf.

08: $rdf->channel(title => 'My News',
09: link => 'http://news.me.com',
10: language => 'en',
11: description => 'My news, for you!',
12: copyright => 'Copyright 2000++, Me',

16.3 Creating an RSS File 465

13: pubDate => scalar localtime(time),
14: lastBuildDate => scalar localtime(time),
15: managingEditor => 'me@me.com',
16: webMaster => 'me@me.com'
17:);

Lines 8–17 use the channel() method to define some of the main informa-
tion about the channel itself and begin the “channel” container. Earlier in
this chapter you were shown a complete RSS file, and you can see how
each of these pairs is represented in the final document.

18: $rdf->image(title => 'My News',
19: url => 'http://news.me.com/my_news.gif',
20: link => 'http://news.me.com',
21: height => 30,
22: width => 119
23:);

Lines 18–23 create the “image” container. This is optional, but if there is an
icon available for the channel, this is how to add it.

24: open(FILE, $FILE) || die "Can't open $FILE ($!)";
25: while (<FILE>) {
26: my ($url, $desc) = split /\|/;
27: $rdf->add_item(title => $desc,
28: link => $url
29:);
30: }

Lines 24–30 get the data from the text file and use it to create the “item” con-
tainers. Line 24 opens the file for reading or dies with an error. Lines 25–30
are a while() loop that iterates over each line of the file. Line 26 splits the in-
put by the pipe (|) character and stores the values in the $url and $desc vari-
ables. Lines 27 and 28 use the add_item() method to add an item into the
“channel” container. As you saw in the RSS file example, title and link are the
two elements in the “item” container. By simply creating named value pairs
as arguments to add_item(), we can create a new container. When this loop is
complete all of the items will be in the “channel” container.

31: $rdf->textinput(title => 'Search My News',
32: description => 'Search the Archives',
33: name => 'text',
34: link => 'http://news.me.com/search.cgi'
35:);

466 Writing CGI Applications with Perl

Lines 31–35 use the textinput() method to create a “textinput” container.
This is an optional container that will create a text box for people to use to
search your site. The URL of the search script is the value of the “link” ele-
ment, in which the name, title, and description of the link are the values of
their corresponding key. At this point, the channel is created in the
XML::RSS object.

36: $rdf->save("$RDF_DIR/my_news.rdf");

Line 36 ends the script by writing the file to disk using the save() method—
and that easily a RSS file is created! This is the type of script that can be
written and implemented in short time and needs little to no maintenance.

Now you are ready to take RSS full cycle from creating the data source,
creating the RSS format file, and using that file for the Web.

16.4 Reader Exercises
■ This application allows you to add and list channels. However, it

doesn’t have the functionality to delete them. Building on the ad-
min.cgi script, add in delete functionality.

■ Create your own channel. If your company has news items or you just
want to link to your favorite sites, use the XML::RSS module to create
your own RSS file. Then add that channel to your database and take a
look.

■ Use the application created in this chapter, along with other topics
from this book so far, and make this a multi-user system.

16.5 Listings
Listing 16-3 fetch script

01: #!/usr/bin/perl -w
02: # fetch
03: use strict;
04: use File::Basename;
05: use DBI;
06: use LWP::Simple qw(mirror);
07: my $RDF_DIR = './rdf';
08: my $dbh = DBI->connect("dbi:mysql:book", "user", "password");
09: my $sth = $dbh->prepare(qq{select URL from rdf});
10: $sth->execute or die $DBI::errstr;
11: while (my $url = $sth->fetchrow) {

(continued)

16.5 Listings 467

12: my $name = basename($url);
13: mirror($url, "$RDF_DIR/$name");
14: }
15: $dbh->disconnect;

Listing 16-4 index.cgi script

01: #!/usr/bin/perl -wT
02: # index.cgi
03: use strict;
04: use CGI qw(:standard end_ul end_table);
05: use CGI::Carp qw(fatalsToBrowser);
06: use File::Basename;
07: use DBI;
08: use XML::RSS;
09: my $RDF_DIR = './rdf';
10: my $dbh = DBI->connect("dbi:mysql:book", 'user','password')
 or print $DBI::errstr;
11: my $sth = $dbh->prepare(qq{select URL from rdf where
 Selected = 1});
12: $sth->execute;
13: print header,
14: start_html("My Home Page"),
15: h2("My Favorite Sites");
16: print start_table({cellpadding=>0, cellspacing=>0, border=> 0,
 width => '100%'}),
17: td;
18: my $count = 1;
19: my @html = ('</TD><TD>', '</TD><TR><TD>');
20: while (my $url = basename($sth->fetchrow)) {
21: my $rss = new XML::RSS;
22: eval {$rss->parsefile("$RDF_DIR/$url")};
23: warn "$url will not parse $@" and next if $@;
24: my $last_mod = scalar localtime((stat("$RDF_DIR/$url"))[9]);
25: print start_table({cellpadding=>0, cellspacing=>2,
 border=> 5, width=>'75%'}),
26: td({valign=>'CENTER', bgcolor => '#C0C0C0'});
27: $rss->{image}{url}
28: ? print img({src=>$rss->{image}{url}})
29: : print strong($rss->{channel}{title});
30: print ul;
31: for (@{$rss->{items}}) {
32: print li(a({href=>$_->{link}}, $_->{title}));

(continued)

468 Writing CGI Applications with Perl

33: }
34: print end_ul;
35: if ($rss->{textinput}{link}) {
36: print $rss->{textinput}{description},
 start_form(-method => 'GET',
37: -action => $rss->{textinput}{link}),
38: textfield(-name => $rss->{textinput}{name}),
39: end_form;
40: }
41: print qq(Last Updated $last_mod
),
42: end_table;
43: print $html[$count^=1];
44: }
45: print end_table,
46: end_html;

Listing 16-5 admin.cgi script

01: #!/usr/bin/perl -w
02: # admin.cgi
03: use strict;
04: use CGI qw(:standard);
05: use CGI::Carp qw(fatalsToBrowser);
06: use DBI;
07: my $dbh = DBI->connect("dbi:mysql:book", "user", "password");
08: param('Submit') ? add_new() : show_form();
09: $dbh->disconnect;
10: sub show_form {
11: my $sth = $dbh->prepare(qq{select * from rdf});
12: $sth->execute;
13: print header,
14: start_html("My Home Page Options"),
15: h2("Choose My Favorite Sites");
16: print start_form(-method => 'POST', -action => 'admin.cgi');
17: while (my $data = $sth->fetchrow_hashref) {
18: my $checked = $data->{Selected} ? "CHECKED" : "";
19: print checkbox(-name => 'Selected',
20: -checked => $checked,
21: -value => $data->{Name},
22: -label => $data->{Name},
23:),
24: p;
25: }

(continued)

16.5 Listings 469

26: print h2("Add new channel") , p,
27: "RDFs URL: ", textfield(-name => 'URL', -size =>
 50), p
28: "Name of channel: ", textfield(-name => 'Name', -
 size => 50), p
29: "Display on Home Page: ",
30: checkbox(-name => 'new-Selected', -label => ''), p,
31: submit(-name => 'Submit', -value => 'Make
 Changes'),
32: end_form, end_html;
33: }
34: sub add_new {
35: my $qry_select = qq(update rdf set Selected = 1 where);
36: my $qry_deselect = qq(update rdf set Selected = 0 where);
37: my @selected = param('Selected');
38: $qry_select .= qq(Name = '$_' or) for @selected;
39: $qry_deselect .= qq(Name <> '$_' and) for @selected;
40: $qry_deselect =~ s! and $!!;
41: $qry_select =~ s! or $!!;
42: my $sth = $dbh->prepare($qry_select);
43: $sth->execute or print $DBI::errstr;
44: $sth = $dbh->prepare($qry_deselect);
45: $sth->execute or print $DBI::errstr;
46: if (param('URL') && param('Name')) {
47: my $url = param('URL');
48: my $name = param('Name');
49: my $display = param('new-Selected') ? 1 : 0;
50: $sth = $dbh->prepare(qq{insert into rdf (URL, NAME,
 SELECTED) values ('$url', '$name', $display)});
51: $sth->execute or print $DBI::errstr;
52: }
53: show_form;
54: }

Listing 16-6 make_rss script

01: #!/usr/bin/perl -wT
02: # make_rss
03: use strict;
04: use XML::RSS;
05: my $FILE = 'news.txt';
06: my $RDF_DIR = './rdf';
07: my $rdf = new XML::RSS;

(continued)

470 Writing CGI Applications with Perl

08: $rdf->channel(title => 'My News',
09: link => 'http://news.me.com',
10: language => 'en',
11: description => 'My news, for you!',
12: copyright => 'Copyright 2000++, Me',
13: pubDate => scalar localtime(time),
14: lastBuildDate => scalar localtime(time),
15: managingEditor => 'me@me.com',
16: webMaster => 'me@me.com'
17:);
18: $rdf->image(title => 'My News',
19: url => 'http://news.me.com/my_news.gif',
20: link => 'http://news.me.com',
21: height => 30,
22: width => 119
23:);
24: open(FILE, $FILE) || die "Can't open $FILE ($!)";
25: while (<FILE>) {
26: my ($url, $desc) = split /\|/;
27: $rdf->add_item(title => $desc,
28: link => $url
29:);
30: }
31: $rdf->textinput(title => 'Search My News',
32: description => 'Search the Archives',
33: name => 'text',
34: link => 'http://news.me.com/search.cgi'
35:);
36: $rdf->save("$RDF_DIR/my_news.rdf");

