

145

P

ART

 II

W

RITING

AND

 R

EVIEWING

U

SE

-C

ASE

 D

ESCRIPTIONS

Part I, Getting Started with Use-Case Modeling, introduced the basic con-
cepts of use-case modeling, including defining the basic concepts and
understanding how to use these concepts to define the vision, find actors
and use cases, and to define the basic concepts the system will use. If we
go no further, we have an overview of what the system will do, an under-
standing of the stakeholders of the system, and an understanding of the
ways the system provides value to those stakeholders. What we do not
have, if we stop at this point, is an understanding of exactly what the system
does. In short, we lack the details needed to actually develop and test the
system.

Some people, having only come this far, wonder what use-case model-
ing is all about and question its value. If one only comes this far with use-
case modeling, we are forced to agree; the real value of use-case modeling
comes from the descriptions of the interactions of the actors and the system,
and from the descriptions of what the system does in response to the actions
of the actors. Surprisingly, and disappointingly, many teams stop after
developing little more than simple outlines for their use cases and consider
themselves done. These same teams encounter problems because their use
cases are vague and lack detail, so they blame the use-case approach for
having let them down. The failing in these cases is not with the approach,
but with its application.

The following chapters describe how to write use-case descriptions, how
to manage detail, and how to structure the model to make it easier to under-
stand. We also discuss how to review use cases, including how to organize

Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM

146

P

ART

 II W

RITING

AND

 R

EVIEWING

 U

SE

-C

ASE

 D

ESCRIPTIONS

and staff the reviews. The intent of these chapters is to reveal how the use-
case descriptions unfold from the basic modeling effort and how the struc-
ture of the use-case model emerges from the contents of the use-case
descriptions.

The goal of Part II is to equip you with the knowledge needed to write
good use-case descriptions, managing detail appropriately and avoiding
the pitfalls of too much or too little structure. Part II also represents a transi-
tion from a “group” style of working to a more solitary style. While it is best
to identify actors and use cases as a group, it is impractical to write use-
case descriptions as a group; writing is almost always principally an activ-
ity performed by one person, with reviews of the material conducted as a
group. Finally, we conclude Part II with a discussion of how and when to
review use cases.

So let’s continue on our journey into the world of use cases.

Bittner/Spence_06.fm Page 146 Tuesday, July 30, 2002 12:04 PM

147

Chapter 6

The Life Cycle of a Use Case

So far, we have seen the basic concepts behind the use-case modeling ap-
proach to eliciting and capturing software requirements and looked at how to
get started in applying them. Before we look at the mechanics of authoring
full use-case descriptions, we need to have a better understanding of the life
cycle of a use case and how well-formed, good quality use cases can drive and
facilitate the other, downstream software development activities. We also
need to put what we have learned into a broader perspective with regard to
software development and team working.

Use cases have a complex life cycle—they undergo a series of transforma-
tions as they mature through a number of development stages, from discov-
ery to implementation and eventually to user acceptance. One way that this
life cycle manifests itself is in the style and form adopted for the use-case
descriptions. To speak of a single way of representing a use case is to miss the
point—there are different presentation approaches and styles that are useful
at different points in the use case’s evolution. There is no one single form that
is “better” in the absolute sense; they all play a role. This is why you will often
see use cases expressed in different formats by different authors in different
use-case texts.

Use cases also play a broader role, outside of the requirements space, in
driving the analysis, design, implementation, and testing of the system. This
is why you will also read about use cases being realized in design and tested
by testers. Sometimes the use cases are so embedded in the design process of
the system that the impression is given that the use cases are a development
artifact rather than a requirements one. This misconception often leads to

Bittner/Spence_06.fm Page 147 Tuesday, July 30, 2002 12:04 PM

148

C

HAPTER

 6 T

HE

 L

IFE

 C

YCLE

OF

A

 U

SE

 C

ASE

developers trying to manipulate the use-case model in a misguided attempt
to design the system using use cases.

To fully understand the role and purpose of use cases, and consequently
the most appropriate form to use, we need to look at the life cycle of a use case
from a number of different but complementary perspectives:

•

Software development:

 how the use case is reflected throughout the
full software development life cycle

•

Use-case authoring:

 how the use case and its description evolves
through the authoring process

•

Team working:

 the activities involved in creating a use case model and
how these impact on team and individual working practices

THE SOFTWARE DEVELOPMENT LIFE CYCLE

As well as facilitating the elicitation, organization, and documentation of
requirements, use cases can play a more central and significant role in
the software development life cycle. This is especially true for many of the
object-oriented and iterative development processes for which use cases are
recommended.

From a traditional object-oriented system model, it’s often difficult to tell
how a system does what it’s supposed to do. This difficulty stems from the
lack of a “red thread” through the system when it performs certain tasks.

1

 Use
cases can provide that thread because they define the behavior performed by
a system. Use cases are not part of traditional object orientation, but over time
their importance to object-oriented methods has become ever more apparent.
This is further emphasized by the fact that use cases are part of the Unified
Modeling Language.

In fact, many software development processes, including the Rational
Unified Process, describe themselves as “use-case driven.”

2

 When a process
employs a “use-case driven approach” it means that the use cases defined for
a system are the basis for the entire development process. In these cases the
life cycle of the use case continues beyond its authoring to cover activities
such as analysis, design, implementation, and testing. This life cycle is shown,

1

 Ivar Jacobson introduced the notion that use cases can tie together the activities in the software
development life cycle; see

Object-Oriented Software Engineering, A Use-Case Driven Approach

, 1992,
ACM Press.

2

 See, for example, Philippe Kruchten’s

 The Rational Unified Process: An Introduction

 or Jacobson et
al.,

The Unified Software Development Process

.

Bittner/Spence_06.fm Page 148 Tuesday, July 30, 2002 12:04 PM

The Software Development Life Cycle

149

in simplified form, in Figure 6-1. Figure 6-1 is arranged to emphasize the three
main applications for the use cases:

•

Requirements:

 the identification, authoring and agreement of the use
cases and their descriptions for use as a requirement specification. This
is the focus of this book.

•

Development:

 the analysis, design, and implementation of a system
based on the use cases. This topic is outside the scope of this book.

3

•

Testing:

 the use-case-based verification and acceptance of the system
produced. Again, the details of how to undertake use-case-based test-
ing is outside the scope of this book.

Figure 6-1

The software development life cycle

*

*

 This life cycle diagram is not intended to imply that analysis cannot be started until all the
use cases have been agreed on or even until any use cases have been agreed on. The diagram
is just saying that you cannot consider the analysis of a use case to be completed before the
use case authoring has been completed and the use case itself agreed on.

3

 For more information on using use cases to drive the analysis and design of software systems,
we would recommend Doug Rosenberg and Kendall Scott’s

Use Case Driven Object Modeling with
UML: Practical Approach

 and Craig Larman’s

Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process

.

Identified

Authored

Agreed

Verified

Accepted

Analyzed

Designed

Implemented

Requirements Development Testing

Bittner/Spence_06.fm Page 149 Tuesday, July 30, 2002 12:04 PM

150

C

HAPTER

 6 T

HE

 L

IFE

 C

YCLE

OF

A

 U

SE

 C

ASE

It is this ability of use cases to unify the development activities that makes
them such a powerful tool for the planning and tracking of software develop-
ment projects.

4

To fully understand the power of use cases, it is worth considering this
life cycle in a little more detail. Use cases can play a part in the majority of the
disciplines directly associated with software development.

•

Requirements:

 The use-case model is the result of the requirements
discipline. Requirements work matures the use cases through the first
three states, from Identified to Agreed. It also evolves the glossary, or
domain model, that defines the terminology used by the use cases and
the Supplementary Specification that contains the systemwide require-
ments not captured by the use-case model.

•

Analysis and Design:

 Use cases are realized in analysis and design
models. Use-case realizations are created that describe how the use
cases are performed in terms of interacting objects in the model. This
model describes, in terms of subsystems and objects, the different parts
of the implemented system and how the parts need to interact to per-
form the use cases. Analysis and design of the use cases matures them
through the states of Analyzed and Designed. These states do not
change the description of the use cases, but indicate that the use cases
have been realized in the analysis and design of the system.

•

Implementation

 (also known as code and unit test or code and build):
During implementation, the design model is the implementation speci-
fication. Because use cases are the basis for the design model, they are
implemented in terms of design classes. Once the code has been written
to enable a use case to be executed, it can be considered to be in the
Implemented state.

•

Testing:

 During testing, the use cases constitute the basis for identify-
ing test cases and test procedures; that is, the system is verified by per-
forming each use case. When the tests related to a use case have been
successfully passed by the system, the use case can be considered to be
in the Verified state. The Accepted state is reached when a version of
the system that implements the use case passes independent user-
acceptance testing. Note: If the system is being developed in an incre-
mental fashion, the use cases need to be verified for each release that
implements them.

4

 If a project manager’s perspective on use cases is desired, we recommend Walker Royce’s

Soft-
ware Project Management: A Unified Framework

.

Bittner/Spence_06.fm Page 150 Tuesday, July 30, 2002 12:04 PM

The Software Development Life Cycle

151

These relationships are directly reflected in the life cycle of the use case just
described and are illustrated in Figure 6-2.

Use cases can also help with the supporting disciplines, although these do
not impact upon the life cycle of the use cases themselves:

•

Project Management:

 In the project management discipline, use cases
are used as a basis for planning and tracking the progress of the devel-
opment project. This is particularly true for iterative development
where use cases are often the primary planning mechanism.

•

Deployment:

 In the deployment discipline, use cases are the founda-
tion for what is described in user’s manuals. Use cases can also be
used to define how to order units of the product. For example, a cus-
tomer could order a system configured with a particular mix of use
cases.

Although primarily a requirement-capture technique, use cases have a
significant role to play in the ongoing planning, control, development, and
testing of the system. It is this unification of the software development pro-
cess that makes use cases such a powerful technique. To get the full benefit of

Figure 6-2

The use-case model and its relationship to the other software development models

The Use-Case Model

The Glossary/
Domain Model

Analysis and
Design Models

Implementation
Model Test Model

Pass

Fail

Class…

Realized
by

Implemented
by

Expressed in
terms of

Verified
by

Bittner/Spence_06.fm Page 151 Tuesday, July 30, 2002 12:04 PM

152

C

HAPTER

 6 T

HE

 L

IFE

 C

YCLE

OF

A

 U

SE

 C

ASE

using use cases, they should be placed at the heart of all the software develop-
ment and project planning activities.

5

THE AUTHORING LIFE CYCLE

Of more direct relevance to the people involved in the writing of use cases is
having a clear understanding how the use case and its description evolves
through the authoring process. We have seen the following use-case formats
in use in various different projects and texts:

• Use cases that look like just brief descriptions—a short paragraph that
describes something that the system does

• Use cases that look like outlines—a numbered or bulleted list of events
and responses

• Use cases presented in the form of a table of actor actions and system
responses

• Use cases that present a purely “black box” view of the system, focus-
ing on the actions taken by the actor and the system’s response

• Use cases presented as structured English, using sequential paragraphs
of text and a more expansive, narrative form, like many of the examples
presented in this book

There are also many different popular styles of use case, such as

essential use
cases

6

 and

conversational style

7

 use cases

.

What are all these use cases, and how do they relate to one another?
It is our contention that these are all just states in the evolution of a use

case. Figure 6-3 provides a visual summary of the states of a use case during
its evolution from its initial discovery to the production of its fully detailed
and cross-referenced description. Each of these different forms is appropriate
at different points in the evolution of a use-case model. Different use cases
will evolve at different rates. It is not uncommon for an early version of the

5

 For more information on how use cases can shape and drive the entire software development
process, we would recommend the following texts:

•

Philippe Kruchten,

The Rational Unified Process: An Introduction

•

Jacobson, Booch, and Rumbaugh,

The Unified Software Development Process

•

Jacobson, Christerson, Jonsson, and Overgaard,

Object Oriented Software Engineering:
A Use Case Driven Approach

, the original books that popularized use cases.

6

 Larry Constantine is most often associated with this formulation of use cases; see L. Constantine,
“The Case for Essential Use Cases,”

Object Magazine,

 May 1997. SIGS Publications.

7

 Rebecca Wirfs-Brock has notably promoted this technique; see R. Wirfs-Brock, “Designing
Scenarios: Making the Case for a Use Case Framework,”

Smalltalk Report, Nov-Dec 1993.

Bittner/Spence_06.fm Page 152 Tuesday, July 30, 2002 12:04 PM

The Authoring Life Cycle 153

use-case model to contain a number of key use cases that are fully described
and other, less important use cases that are still in the briefly described state
or even awaiting discovery. It is worth taking a detailed look at each of these
states, how they are manifested in the use-case description, and the role that
they play in the evolution of the use case.

State 1: Discovered
A use case will begin as just a name (for example, Browse Products and

Place Orders), perhaps on a diagram with an associate actor (for example, Cus-
tomer), as in Figure 6-4. This name is a placeholder for what is to come, but if

Figure 6-3 The authoring life cycle*

* The states shown in the authoring life cycle can be considered to be substates of
Identified and Authored states in the software development life cycle shown in
Figure 6-1. Discovered and Briefly Described are substates of Identified; the others
are substates of Authored.

Figure 6-4 A newly discovered use case.

Discovered Briefly
Described

Bulleted
Outline

Essential
Outline

Detailed
Description

Fully
Described

Customer Browse Products and Place
Orders

Bittner/Spence_06.fm Page 153 Tuesday, July 30, 2002 12:04 PM

154 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

this is as far as the description goes, it is not very useful. The use-case dia-
grams produced at this stage really act as no more than a visual index, provid-
ing a context for the use-case descriptions that are to come.

State 2: Briefly Described
Almost immediately, usually while the name is being discussed, people will
start briefly describing the use case; typically, they can’t help it. Even as a
name is being proposed, people will start to elaborate on the name (for
example: This use case enables the customer to see the products we have to offer
and, we hope, to buy them. While browsing, they may use a number of techniques
to find products, including direct navigation and using a search facility.) These
discussions should be captured more formally as the brief description of the
use case.

This brief description is important, and it may be as far as the use case evolves,
especially if the required behavior is simple, easily understood, and can be
expressed in the form of a prototype more easily than in words. But if the
behavior is more complex, particularly if there is some defined sequence of
steps that must be followed, more work is needed.

State 3: Bulleted Outline
The next stage in the evolution of the use case is to prepare an outline of its
steps. The outline captures the simple steps of the use case in short sentences,
organized sequentially. Initially, the focus is on the basic flow of the use
case—generally this can be summarized in 5–10 simple statements. Then the
most significant alternatives and exceptions are identified to indicate the scale
and complexity of the use case. This process was discussed in detail in Chap-
ter 4, Finding Actors and Use Cases, as it is an integral part of establishing the
initial shape and scope of the use-case model.

Example

Brief description for the use case Browse Products and Place Orders in an on-line
ordering system

This use case describes how a Customer uses the system to view and purchase the
products on sale. Products can be found by various methods, including browsing by
product type, browsing by manufacturer, or keyword searches.

Bittner/Spence_06.fm Page 154 Tuesday, July 30, 2002 12:04 PM

The Authoring Life Cycle 155

Bulleted outlines of this form are good for getting an understanding of the
size and complexity of the use case, assessing the use case’s architectural sig-
nificance, verifying the scope of the use case, and validating that the use-case
model is well formed. They also provide a good basis for exploratory proto-
typing aimed at revealing requirement and technology-related risks.

If the use cases are to act as the specification of the system and provide a
basis for more formal analysis, design, and testing, then more detail is required.

State 4: Essential Outline
So-called essential use cases are at another point in the use case’s evolutionary
timeline. Essential use cases focus on only the most important behavior of the
system and leave much of the detail out (even omitting the mention of a PIN
when describing the ATM’s Withdraw Cash use case, for instance) in order to

Example

Outline for the use case Browse Products and Place Orders
Basic Flow

1. Browse Products

2. Select Products

3. Identify Payment Method

4. Identify Shipping Method

5. Confirm Purchase

Alternative Flows

A1 Keyword Search

A2 No Product Selected

A3 Product Out of Stock

A4 Payment Method Rejected

A5 Shipping Method Rejected

A6 Product Explicitly Identified

A7 Order Deferred

A8 Ship to Alternative Address

A9 Purchase Not Confirmed

A10 Confirmation Fails

etc….

Bittner/Spence_06.fm Page 155 Tuesday, July 30, 2002 12:04 PM

156 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

focus on getting right what the system must do. This is important early in the
use-case identification process, when it is easy to get mired in details that will
become important later but are not essential to defining the system as a whole.

The defining characteristic of this format is that it presents a pure, exter-
nal, “black-box” view of the system, intentionally focusing on its usability.
The strength of this approach is that it places usability “front and center” and
in so doing ensures that the needs of the user are placed first. This format
helps describe user intent and actions, along with the observable response of
the system, but it does not elicit details about what is happening inside the
system. It also ignores the specifics of the user-interface (because this informa-
tion is better and more easily presented in prototypes and user interface
mock-ups). The description is often presented in a two-column format:

The mistake made with essential use cases is forgetting that they will con-
tinue to evolve, adding detail and increasing in both scope and number, as the
project progresses. Not every use case will pass through the Essential Outline
state. Many use cases will progress straight from the bulleted outline to the
more detailed formats, if they evolve beyond the bulleted outline form at all.
Typically, the essential use-case form is used to provide an early embryonic
description of the most important use cases in the system. The descriptions
will then continue to evolve. You do not develop a set of essential use cases,
then move on to a separate set of conversational use cases, and then move on
to a another, different set of more detailed use cases. They are the same things
at different points in their evolution.

Essential use cases are very effective for facilitating user-interface and user-
experience analysis and design, especially where a system’s visual metaphor
needs to be established, typically early in the project’s life cycle. Too much detail
in the use cases often limits and constrains the creativity of the user-interface
designers. The stripped-down essential outlines capture the essence of the
required dialog without forcing the designers into any particular technology
or mode of interaction. This allows them to start to explore the presentation

Example

The essential form of the use case Browse Products and Place Orders
User Action System Response

1. Browse product offerings Display product offerings

2. Select items for purchase Record selected items and quantities

3. Provide payment instructions Record payment instructions

4. Provide shipping instructions Record shipping instructions

5. Complete transaction Record transaction and provide receipt

Bittner/Spence_06.fm Page 156 Tuesday, July 30, 2002 12:04 PM

The Authoring Life Cycle 157

options for the system, which, once defined, may impact in turn on the style and
level of detail adopted in the final-form, fully detailed use-case descriptions.

Some people recommend that use-case authoring stop at the essential out-
line state, but if the use cases are to be used to drive the other aspects of sys-
tems design, act as the basis for formal integration and system testing, or be
used as the basis for contractual relationships, more detail is required.

State 5: Detailed Description
The next step in the authoring life cycle is to start adding to the outline the
detail required to complete the specification of the system. In this state, the
use case is evolving, as more and more detail is added to flesh out the outline.
If the use case expresses a strong sense of a dialog between an actor and the
system, then the description may be in the conversational form; otherwise, it
will be in the narrative form and simply list the steps in order.

The Conversational Form
The conversational form of use-case description is most useful when the sys-
tem and actor engage in a well-defined dialog in which the actor does some-
thing and the system does something in response.

Example

The conversational form of the use case Browse Products and Place Orders
User Action System Response
1. Browse product offerings Display product offerings, showing

categories selected by the user
2. Select items for purchase For each selected item in stock, record

selected items and quantities, reserving
them in inventory.

3. Provide payment instructions Record payment instructions, capturing
payment terms and credit card type,
number, and expiration date using a
secure protocol.

4. Provide shipping instructions Record shipping instructions, capturing
billing address, shipping address, shipper
preferences, and delivery options.

5. Complete transaction Record transaction and provide receipt
containing a list of the products ordered,
their quantity and prices, as well as the
billing and shipping addresses and the
payment terms. The credit card information
should be partially omitted, displaying only
the last 4 digits of the credit card number.

Bittner/Spence_06.fm Page 157 Tuesday, July 30, 2002 12:04 PM

158 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

This conversational format is excellent for a number of situations: where there
is only one actor and where the system and actor engage in an interactive dia-
log. It can be expanded to include a considerable amount of detail but will
often become a liability. It is difficult to use when there is more than one actor
(as often happens in real business systems) or when there is a simple actor
action (like pressing on the brake pedal) with a complex response (such as
controlling the antilock braking system).

The Narrative Form
The most common format for a detailed use-case description is the narrative
form. In this form, the outline is again expanded by adding detail but the tabu-
lar format is replaced by a more narrative description.

This format is more flexible, allowing the system to initiate actions and
supporting the interaction with multiple actors if required. This is the format
that we prefer, as it more readily supports the ongoing evolution of the
use case into its final form and the use of subflows to further structure
the text.

Example

The narrative form of the use case Browse Products and Place Orders

1. The use case starts when the Customer selects to browse the catalogue of
product offerings. The system displays the product offerings showing the
categories selected by the Customer.

2. The Customer selects the items to be purchased. For each selected item that
is in stock the system records the items and quantity required, reserving
them in inventory.

3. The system prompts the Customer to enter payment instructions. Once
entered, the system records payment instructions, capturing payment
terms and credit card type, number, and expiration date using a secure
protocol.

4. The system prompts the Customer to enter shipping instructions. Once
entered, the system records the shipping instructions, capturing billing
address, shipping address, shipper preferences, and delivery options.

5. The system prompts the Customer to confirm the transaction. Once confirmed,
the system records the transaction details and provides a receipt containing
a list of the products ordered, their quantity and prices, as well as the
billing address, shipping address, and payment terms. Credit card
information is partially omitted, displaying only the last 4 digits of the
credit card number.

Bittner/Spence_06.fm Page 158 Tuesday, July 30, 2002 12:04 PM

The Authoring Life Cycle 159

Using the Detailed Description
Regardless of the form chosen for the detailed description, it is a state that the
majority of use cases will pass through as they evolve toward the fully de-
tailed description. In fact, this is the state that most allegedly “completed” use
cases are left in as the use-case modeling efforts run out of steam. Unfortu-
nately, it is dangerous to evolve the use cases to this state only and not to com-
plete their evolution. The detailed description loses the benefits of brevity and
succinctness offered by the bulleted and essential outline formats and lacks
the detail required of a fully featured requirements specification. We do not
recommend stopping work on the use cases when they have reached this
state. If it is not necessary to evolve a use case to its full description, then stop
at the outline format and don’t waste time adding incomplete and ambiguous
detail just for the sake of it.

State 6: Fully Described
The final state in the evolution of a use case is Fully Described. This is the
state in which the use case has a complete flow of events, has all of its termi-
nology fully defined in the supporting glossary, and unambiguously defines
all of the inputs and outputs involved in the flow of events.

Fully described use cases are

• Testable: There is sufficient information in the use case to enable the
system to be tested.

• Understandable: The use case can be understood by all of the stake-
holders.

• Unambiguous: The use case and the requirements that it contains have
only one interpretation.

• Correct: All of the information contained within the use case is actually
requirements information.

• Complete: There is nothing missing from the use cases. All the termi-
nology used is defined. The flow of events and all of the other use-case
properties are defined.

• Attainable: The system described by the use case can actually be created.

Fully described use cases support many of the other software development
activities, including analysis, design, and testing. One of the best checks of
whether the use-case description is finished is to ask yourself if you could use
the use case to derive system tests. The best way to tell if the use cases fit the
purpose is to pass them along to the analysis and design team for analysis and
the test team for test design. If these teams are satisfied that they can use the
use cases to support their activities, then they contain sufficient levels of detail.

Bittner/Spence_06.fm Page 159 Tuesday, July 30, 2002 12:04 PM

160 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

Note that this fully described use case uses the narrative format. If the use
case has only one actor and the system and actor engage in an interactive dia-
log, then the conversational style could also be used.

As you can see, there is much more to be said about the formatting and
authoring of fully described use-case descriptions. This is the subject of Chap-
ter 7, The Structure and Contents of a Use Case; Chapter 8, Writing Use-Case
Descriptions: An Overview; and Chapter 9, Writing Use-Case Descriptions:
Revisited.

TEAM WORKING
Another interesting perspective on the life cycle of a use case is that related
to team working and the activities that are undertaken to produce the use-
case model. We have seen that use cases have an important role to play in the

Example

An extract from the fully described use case Browse Products and Place Orders
Basic Flow

1. The use case starts when the actor Customer selects to browse the catalogue of
product offerings.

{Display Product Catalogue}

2. The system displays the product offerings highlighting the product categories
associated with the Customer’s profile.

{Select Products}

3. The Customer selects a product to be purchased entering the number of items
required.

4. For each selected item that is in stock the system records the product identifier and
the number of items required, reserving them in inventory and adding them to the
Customer’s shopping cart.

{Out of Stock}

5. Steps 3 and 4 are repeated until the Customer selects to order the products.

{Process the Order}

6. The system prompts the Customer to enter payment instructions.

7. The Customer enters the payment instructions.

8. The system captures the payment instructions using a secure protocol.

9. Perform Subflow Validate Payment Instructions

. . .

Bittner/Spence_06.fm Page 160 Tuesday, July 30, 2002 12:04 PM

Team Working 161

software development life cycle and also have an authoring life cycle of their
own. In Chapters 3, 4, and 5, we also looked at how the use-case model starts
to emerge from the vision of the system via a series of workshops and other
group-focused activities. In this section, we will look at the use-case model-
ing process and how this impacts on individual and team working.

You may wonder why we have saved this more formal look at the use-
case modeling process for the second part of the book rather than presenting
it earlier. Well, basically, we wanted you to have a good understanding of the
concepts before we started to talk about all of the activities involved in creat-
ing a use-case model. So treat this section as part recap of what you have
already learned and part teaser for what you will learn in Part II.

The Use-Case Modeling Process
Figure 6-5 illustrates the activities involved in the development of a use-case
model. This is a simplified subset of a full requirements process8 and empha-
sizes the major activities involved in the evolution of the use-case model,
which is being used as the primary requirements artifact. It is interesting to
look at this workflow from the perspective of group and individual activities.
In Figure 6-5, the group activities are shown in gray and are focused on pre-
paring the groundwork for the evolution of the use-case model and its sup-
porting Supplementary Specification by establishing the vision, scoping the
system, addressing areas of uncertainty and instability in the requirements
definition, and consolidating and reviewing the use-case model as a whole.
The diagram can give the wrong impression that the majority of the effort in
use-case modeling is related to group activities and that the model can be
accomplished by simply holding a series of workshops and brainstorming
sessions with the user and stakeholder representatives.

In fact, more time is typically spent on the individual use case and Sup-
plementary Specification authoring activities than is spent on all of the group
activities put together. Figure 6-6 shows the relative amounts of effort
expended on group and individual activities across the life of a project, which
would typically iterate through the process many times. Note that the figure
shows the relative amounts of effort and is not intended to be indicative of the
total amount of effort required at any point in the project. The graph illus-
trates where healthy projects spend their time and should not be taken as a
definitive statement. The amount of time the group activities will take is
dependent on the ability of the group to focus and reach decisions. If all the

8 For a fully documented Requirements Life Cycle that is seamlessly integrated with all of the oth-
er software development disciplines, see the Rational Unified Process.

Bittner/Spence_06.fm Page 161 Tuesday, July 30, 2002 12:04 PM

162 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

Figure 6-5 The use-case modeling process*

* Note: The use-case modeling process is not as waterfall / linear as this figure may imply. If
applying the process iteratively, then you only need agreement that a single use case is in
scope and its purpose is stable before you start to author it; there is no need to have a full scope
definition in place. This process can in fact be applied in every iteration, with just enough en-
visioning and scoping of the system to select the use cases to be worked on in the iteration.

Establish
Vision

Agree System
Scope

Package the
Use-Case Model

Produce an Overview
of the System

Consolidate and Review
the Use Case-Model

[More Requirements
to Be Specified]

[Unable to
Agree System

Definition]

Author Stable Use Cases and
Supplementary Specifications

Address Areas of
Instability

Bittner/Spence_06.fm Page 162 Tuesday, July 30, 2002 12:04 PM

Team Working 163

stakeholder representatives disagree with each other and spend all of their
time fighting and arguing, the project may never achieve enough stability for
it to be worth undertaking the authoring of the use cases. These issues were
addressed in Part I: Getting Started with Use-Case Modeling. The amount of
time that the individual authoring activities will take is dependent on the
complexity of the solution and the capabilities of the individuals involved.
These issues are addressed in more detail in Chapter 8, Writing Use-Case
Descriptions: An Overview.

It is worth taking a detailed look at each of the activities shown in Figure
6-5 and the roles that use cases and the use-case model play in undertaking
them.

Establish the Vision
Establishing the vision is a group activity aimed at getting all of the stakehold-
ers to agree about the purpose and objectives for both the project and the sys-
tem to be built. The best way to achieve this is to use traditional requirements-
management techniques to produce a high-level system definition and to
ensure that there is agreement on the problem to be solved. Typically, this is
done via a series of workshops involving the project’s major stakeholder rep-
resentatives. This topic was covered in detail in Chapter 3, Establishing the
Vision.

The use-case model can help in establishing the vision by defining the sys-
tem boundary and providing a brief overview of the system’s behavior, but it
is really no substitute for a vision document. If this stage is skipped, then no
real attempt is made to analyze the problem before starting on the definition
of the solution. This is really only applicable for small-scale, informal, low-
accountability projects with a very small set of stakeholders and where the
developers and the users work very closely together. Without undertaking
any problem analysis, it can be difficult to know when the use-case model
itself describes a suitable solution.

Figure 6-6 Ratio of group and individual activities for a typical project

Individual Activities

Group
Activities

Project EndProject Start

0%

100%

Req’ts
Effort

time

Bittner/Spence_06.fm Page 163 Tuesday, July 30, 2002 12:04 PM

164 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

Produce an Overview of the System
The initial use-case model, containing the key actors and use cases with brief
descriptions and outlines, provides a very good overview of the functionality
of a system. This should be complemented with an initial draft of the key Sup-
plementary Specifications and an outline glossary or domain model. At this
stage, there is no need to fully detail any of the use cases, although it is a good
idea to have identified the majority of the significant alternative flows for each
of them. We are just looking for enough information to allow the scoping of
the system with regard to the current project. This activity is best done as a
group activity in a series of use-case modeling workshops, as described in
Chapter 5, Getting Started with a Use-Case Modeling Workshop, and using
the techniques described in Chapter 4, Finding Actors and Use Cases.

Reach Agreement on System Scope
The next activity is to reach agreement on the scope of the system. To do this,
the proposed use-case model needs to be examined in light of the vision and
any other high-level requirements documentation produced as part of the
project.

Use cases are a very powerful aid when attempting to manage the scope
or the system. Use cases lend themselves to prioritization. This prioritization
should be undertaken from three perspectives:

1. Customer Priority: What is the value placed on each of the use cases
from a stakeholder perspective? This will identify any use cases that
are not required by the stakeholders and allow the others to be ranked
in order of customer priority.

2. Architectural Significance: Which of the use cases are going to stress
and drive the definition of the architecture? The architect should exam-
ine the use cases and identify those use cases that are of architectural
significance.

3. Initial Operational Capability: What set of use cases would provide
enough functionality to enable the system to be used? Are all of the use
cases needed to provide a useful system?

By considering these three perspectives it should be possible to arrive at a def-
inition of system scope, and order of work, that satisfies all parties involved in
the project.

If these three perspectives do not align (that is, the use cases the customer
most wants are not those of architectural significance and do not form a sig-
nificant part of a minimally functional system), then the project is probably
out of balance and likely to hit political and budgetary problems. A lot of

Bittner/Spence_06.fm Page 164 Tuesday, July 30, 2002 12:04 PM

Team Working 165

expectation management would be required to bring these three perspectives
into alignment and place the project on a healthy footing where the customer
and the architectural goals are complementary rather than contradictory.

Beyond the use cases themselves, we can also use the flow-of-events
structure for scope management. In most cases, the basic functionality of the
majority of the use cases will be needed to provide a working system. The
same cannot be said of all of the alternative flows. In the ATM system, is it
really necessary to support the withdrawal of nonstandard amounts or the
use of the secondary accounts associated with the card? In many use cases,
the majority of the alternative flows will be “bells and whistles” that are nei-
ther desired by the customer nor necessary to produce a useable system. This
will be discussed in more detail in Chapter 7, The Structure and Contents of a
Use Case, when we discuss the additive nature of use-case flows.

Once the scope for the project has been agreed on, the use cases that have
been selected for initial implementation can be driven through the rest of their
life cycle to completion and implementation. If iterative and incremental
development is being undertaken, then the use cases can be assigned to par-
ticular phases and iterations.

Package the Use-Case Model
As the scope of the system and the structure of the use-case model start to
become apparent, it is often a good idea to package up the use cases and
actors into a logical, more manageable structure to support team working and
scope management. Using the UML, packages can be used to structure the
use-case model.

The UML defines the package as

A general-purpose mechanism for organizing elements into groups.

Graphically, the package is represented using a folder icon, as shown in Fig-
ure 6-7. In a use-case model a package will contain a number of actors, use
cases, their relationships, use-case diagrams, and other packages; thus, you
can have multiple levels of use-case packages (packages within packages),
allowing the use of hierarchical structures where appropriate. Often, the use-
case model itself will be represented as a package that contains all of the ele-
ments that make up the model.

There are many reasons for using use-case packages to partition the use-
case model:

• To manage complexity. It is not unusual for a system to have many
actors and use cases. This can become very confusing and inaccessible
to the stakeholder representatives and developers working with the

Bittner/Spence_06.fm Page 165 Tuesday, July 30, 2002 12:04 PM

166 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

model. A model structured into smaller units is easier to understand
than a flat model structure (without packages) if the use-case model is
relatively large. It is also easier to show relationships among the
model’s main parts if you can express them in terms of packages.

• To reflect functional areas. Often, there are families of use cases all
related to the same concepts and areas of functionality (for example,
customer service, operations, security, or reporting). Use-case packages
can be used to explicitly group these use cases into named groups. This
can make the model more accessible and easier to manage and discuss.
It also helps to reduce the need for enormous “super” use cases that
include massive sets of only loosely-related requirements.

• To reflect user types. Many change requests originate from users. Pack-
aging the use-case model in this way can ensure that changes from a
particular user type will affect only the parts of the system that corre-
spond to that user type.

• To support team working. Allocation of resources and the competence
of different development teams may require that the project be divided
among different groups at different sites. Use-case packages offer a
good opportunity to distribute work and responsibilities among sev-
eral teams or developers according to their area of competence. This is
particularly important when you are building a large system. Each
package must have distinct responsibilities if development is to be per-
formed in parallel. Use-case packages should be units having high
cohesion so that changing the contents of one package will not affect
the others.

• To illustrate scope. Use-case packages can be used to reflect configura-
tion or delivery units in the finished system.

• To ensure confidentiality. In some applications, certain information
should be accessible to only a few people. Use-case packages let you
preserve secrecy in areas where it is needed.

The introduction of use-case packages does have a downside. Maintain-
ing the use-case packages means more work for the use-case modeling team,
and the use of packaging means that there is yet another notational concept

Figure 6-7 The graphical representation of a package

A Package

Bittner/Spence_06.fm Page 166 Tuesday, July 30, 2002 12:04 PM

Team Working 167

for the developers to learn. As the need for packaging is directly related to the
size and complexity of the use-case model, this is an optional activity and
may be skipped for smaller models.

If you use this technique, you have to decide how many levels of pack-
ages to use. A rule of thumb is that each use-case package should contain
approximately 3 to 10 smaller units (use cases, actors, or other packages). The
following list gives some suggestions as to how many packages you should
use given the number of use cases and actors. The quantities overlap because
it is impossible to give exact guidelines.

• 0–15: No use-case packages needed.
• 10–50: Use one level of use-case packages.
• > 25: Use two levels of use-case packages.

Packages are named in the passive, as opposed to the active names used
for the use cases themselves, typically representing some area of the system’s
functionality or some organizational element of the business that is going to
use or support the system. For example, the ATM functionality could be split
into two packages, Customer Services and Operations, both of which are sup-
ported by the back-end banking systems, as shown in Figure 6-8. The dashed
arrows are UML dependency relationships, which, in this case, indicate that
model elements in the Customer Services and Operations packages access
model elements in the Back End Systems package. This allows us to see how
independent the packages are from one another, which is essential if the pack-
aging is to support team working and model management. Packages are a

Figure 6-8 A possible package structure for the ATM use-case model

Customer
Services

Back-End
Systems

Operations

Bittner/Spence_06.fm Page 167 Tuesday, July 30, 2002 12:04 PM

168 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

standard UML model element and are not any different for use-case models
than they are for any other UML model.9

Once the packaging has been put in place, it is usually difficult to change
without causing great disruption to the people working with the model. For
this reason, it is not advisable to attempt the packaging too early in the evolu-
tion of the use-case model. Packaging the model is again primarily a group
activity that is undertaken, with the help of the stakeholder representatives,
as part of the final use-case modeling workshop or review.

Address Areas of Instability and Author Stable Use Cases and
Supplementary Specifications
Once the scope of the system has been established and the use-case model
structured to facilitate the further development of the use cases, we are faced
with two parallel activities:

1. The detailed authoring of the requirements for those areas of the model
where there is stability. This is an individual activity and is the subject
of Chapter 8, Writing Use-Case Descriptions: An Overview, and Chap-
ter 9, Writing Use-Case Descriptions: Revisited. It is in the authoring of
the detail that most of the effort related to use cases is expended.

2. Continuing to run additional workshops to address those areas where
there is still instability in the use-case model. This entails running use-
case modeling workshops (as described in Chapter 5, Getting Started
with a Use-Case Modeling Workshop) with more detailed objectives
and a more specialized selection of stakeholder representatives.

Typically, when the use-case model is being constructed initially, there
will be some areas of the model with which everybody agrees and others
where consensus is harder to reach during the early project brainstorming
and use-case modeling workshops. There is no need to wait for agreement on
every area of the use-case model before proceeding to the authoring of
detailed use-case descriptions. Once agreement has been reached that a use
case is required, it can be driven through the authoring process to produce the
fully detailed description and through the software development process to
facilitate the design and implementation of the software. It is counterproduc-
tive to start doing detail work for use cases whose scope, purpose, and inten-
tion are still under debate. To evolve these beyond the essential outline stage

9 For more information on packages and package relationships, we would recommend the Unified
Modeling Language User Guide by Booch, Rumbaugh, and Jacobson.

Bittner/Spence_06.fm Page 168 Tuesday, July 30, 2002 12:04 PM

Summary 169

is likely to cause large amounts of scrap and rework. The level of detail pro-
vided by the outlines should be sufficient to allow scoping and other deci-
sions to be made.

The first use cases to stabilize and then proceed through the authoring
process should be those of architectural significance, those that explicitly help
to attack project risk, and those essential to the initial release. Once the
authoring of any of these use cases is complete, they should be passed over to
the designers so that they can progress through the rest of the software devel-
opment life cycle. In the same way that there is no need for all the use cases to
have been identified and outlined before detailed authoring starts, there is no
need for all the use cases to have been authored before analysis, design, and
the other downstream activities start. It is our recommendation that use cases
be passed on to the other project teams as soon as they become available. This
allows the downstream activities to start as soon as possible and will provide
the use-case authors with the immediate feedback on their work that they can
use to improve the quality of the use-case model as a whole.

Consolidate and Review the Use-Case Model
As the use cases, the Supplementary Specifications, and the use-case model
evolve, it is worth taking some time to consolidate and review the team’s
work as a whole. This should be a group activity and should focus on achiev-
ing consistency and completeness across the whole of the requirements space.
This is also the time when you may want to do some more detailed structur-
ing of the use cases themselves. These topics are covered in more detail in
Chapter 10, Here There Be Dragons, and Chapter 11, Reviewing Use Cases. It
is also worthwhile to check the detailed requirements work against the vision
for the system to make sure that they have not diverged as the use-case model
has evolved.

These suggestions are not intended to imply that all of the use cases are to
be reviewed in one go at the end of the process. Walkthroughs and reviews
are an essential part of the authoring process, as we shall see in Chapter 11,
Reviewing Use Cases. Here we are talking about looking at the model as a
whole rather than at the individual use cases.

SUMMARY
There is a common misconception that use cases have one form or can be
stated in only one way. Practitioners are therefore confused when they see use
cases stated in different ways. Many of the differences between use cases stem

Bittner/Spence_06.fm Page 169 Tuesday, July 30, 2002 12:04 PM

170 CHAPTER 6 THE LIFE CYCLE OF A USE CASE

from the fact that a use case has a life cycle, and it will take different forms at
different points in that life cycle.

The life cycle of a use case can be considered from many perspectives. It is
important that people working with use cases understand the life cycle from
the broader team working and software development perspectives as well as
the use-case authoring perspective.

For the purposes of this book, the most important life cycle is use-case
authoring. Initially, use cases begin as drawings that show the use cases and
the actors who interact with the system during the use case. The use cases are
little more than “ovals” and very terse names. This is sufficient for identifica-
tion, but not much more. Very quickly, however, they evolve into brief
descriptions, short paragraphs that summarize the things that the use case
accomplishes. This brief description is sufficient for clarification, but more is
still needed. The brief descriptions quickly give rise to outlines of the flows of
events. Initially, these are just bulleted lists illustrating the basic flow and
identifying the significant alternative flows. These bulleted outlines give an
indication of the size and complexity of the use cases and are very useful for
initial prototyping aimed at revealing requirements and technology-related
risks.

For user-interface-intensive systems, the flows are often elaborated to
cover the important things the user sees and does when interacting with the
system. These “essential” use-case outlines are the primary drivers of the user
interface’s design. This level of description, while more than sufficient for
users and interface designers, is greatly lacking for software developers and
testers.

Additional evolution adds more information about the internal interac-
tions, about testable conditions, and about what the system does, providing a
more complete picture of the behavior of the system. These complete descrip-
tions drive the development and testing of the system.

It’s important to keep in mind that these are not “different” use cases, but
the same use case from different perspectives and at different points in time.
This “unified” view makes understanding and employing use cases easier.

The key to deciding how detailed to make your use cases is to consider
two factors:

1. How unknown the area of functionality covered by the use case is. The
more unknown, misunderstood, and risky the functionality described
by the use case, the more detail is required.

2. What use is to be made of the description. It is very difficult to know
when the use-case descriptions are complete if the downstream activi-
ties that the use cases are going to support are not also understood.

Bittner/Spence_06.fm Page 170 Tuesday, July 30, 2002 12:04 PM

Summary 171

The following table summarizes the purpose, risks addressed, and down-
stream activities for each of the use-case authoring states:

Authoring
State

Primary
Purpose

Risks
Addressed

Downstream
Activities

Discovered Identify the use case • Not knowing the
boundary of the
system

• Scope
management

Briefly Described Summarize the pur-
pose of the use case

• Ambiguity in the
model definition

• Scope
management

Bulleted Outline Summarize the
shape and extent of
the use case

• Not knowing the
extent, scale or
complexity of the
system

• Not knowing
which use cases
are required

• Scope
management

• Low-fidelity
estimation.

• Prototyping
aimed at address-
ing requirements
and technologi-
cal risks.

Essential Outline Summarize the es-
sence of the use case

• Ease of use • User interface
design

• Prototyping
aimed at address-
ing requirements
and technologi-
cal risks

Detailed Descrip-
tion

To allow the detail
to be added incre-
mentally

• None—it is not
recommended
that use cases in
this state be used
outside of the au-
thoring team

• None—this is
purely an inter-
mediate step.

Fully Described Provide a full re-
quirements specifi-
cation for the
behavior encapsu-
lated by the use case

• Not knowing ex-
actly what the
system is sup-
posed to do

• Not having a
shared require-
ments
specification

• Analysis and
design

• Implementation
• Integration

testing
• System testing
• User

documentation
• High-fidelity

estimation

Bittner/Spence_06.fm Page 171 Tuesday, July 30, 2002 12:04 PM

Bittner/Spence_06.fm Page 172 Tuesday, July 30, 2002 12:04 PM

