

633

Chapter 8

Application Development

In this chapter I want to discuss the issues that will arise when you come to de-
velop applications. A .NET application that lacks a user interface typically is
made up of components, and UI applications consist of forms that have compo-
nents and controls. Visual Studio.NET has been designed to make developing
applications simple and to aid rapid application development (RAD) by allowing
you to generate code simply by dragging and dropping components.

I will start by explaining what constitutes a component and what extra facility
you get with controls. I will then show you how to develop a control that will inte-
grate with the IDE’s

Toolbox

 and

Properties

 windows, and how you can make it
easier for the users of your controls to change their properties.

The world we live in moves day by day to a single global market, so it is ex-
tremely important that your application, components, and controls not be tied to
a single locale. Internationalization in .NET is carried out with locale-specific re-
sources. The VS.NET IDE has been designed to make the internationalizing pro-
cess as simple as possible, and I’ll show you how this works and how the
localized resources are deployed. .NET resources are handled differently from
Win32 resources, so I will show you how to create resources and how to include
Win32 resources in your assemblies when .NET resources are deficient.

8.1 Developing Components

I mentioned in Chapter 6 that components are items that implement

ICompo-

nent

. This interface derives from

IDisposable

, which means that compo-
nents allow explicit management of their resources, and will inform interested

5062_CH08 Page 633 Tuesday, January 15, 2002 12:17 PM

634

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

classes when they are disposed of. In addition, the

IComponent

 interface has a

Site

 property that is initialized to the site of a container:

// C#

public interface IComponent : IDisposable

{

 ISite Site { get; set; }

 event EventHandler Disposed;

 // IDisposable members

 void Dispose();

}

A container implements the

IContainer

 interface:

// C#

public interface IContainer : IDisposable

{

 ComponentCollection Components { get; }

 void Add(IComponent component);

 void Add(IComponent component, String string);

 void Remove(IComponent component);

 // IDisposable members

 void Dispose();

}

As the name suggests, the

ComponentCollection

 class is an enumera-
ble collection. The

Add()

 and

Remove()

 methods allow you to add compo-
nents to this collection and remove them. The fact that

IContainer

 derives
from

IDisposable

 is important because containers are used to hold re-
sources (the components), so when an object that uses components is disposed
of, the components should be disposed of, too, through the implementation of

IContainer.Dispose()

.
When you create a Windows Forms application you’ll find that a container is

created for you, as in this example:

// C#

public class MyForm : System.Windows.Forms.Form

{

 private System.ComponentModel.Container

 components = null;

 public MyForm() { InitializeComponent(); }

5062_CH08 Page 634 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT

635

 protected override void Dispose(bool disposing)

 {

 if (disposing)

 {

 if (components != null) components.Dispose();

 }

 base.Dispose(disposing);

 }

 private void InitializeComponent()

 {

 this.components =

 new System.ComponentModel.Container();

 this.Size = new System.Drawing.Size(300,300);

 this.Text = "My Form";

 }

}

The

container

 member is not required. Indeed, if you write forms code by
hand (e.g., in C++), you can dispense with the

container

 member as long as
you call

Dispose()

 on each component.
The VS.NET

Toolbox

 window contains a tab with standard components:
classes for the event log, MSMQ queues, performance counters, and of course
the timer component. These components lack a user interface, but you can still
drag and drop them onto a form in the Windows Forms designer, which will gen-
erate code to add the component to the form class and will display that you are
using the component by showing an icon at the bottom of the

Designer

 window.
You can access a component’s properties by selecting the component in the

Designer

 window and then switching to the

Properties

 window.
Creating components is relatively straightforward. Your component, of

course, must derive from

IComponent

, and the best way to do this is to derive
from

Component

. The component will most likely be used as an item in the

Toolbox

 window, so it will need a

Toolbox

 image (which I’ll explain later).
When you drag a component from the

Toolbox

 window and drop it on a form
in the

Designer

 window, you are actually creating an instance of the compo-
nent. It is important therefore that the component does not rely on constructor
parameters; instead, your component should be initialized through properties.
For example, look at how the

System.Timers.Timer

 component is used.

5062_CH08 Page 635 Tuesday, January 15, 2002 12:17 PM

636

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

When you drag and drop a timer onto a form, the generated code will create the
component using its default constructor, and the interval of the timer is initial-
ized through the

Interval

 property, even though the

Timer

 class has a con-
structor that takes an interval parameter.

Some components—for example,

EventLog

 and

MessageQueue—

allow
you to access resources. Such components are great examples of components
because they consist of code that GUI applications will use, but they themselves
do not have a UI. Your components are likely to give access to similar re-
sources.

8.2 Developing Controls

I find the process of developing a control rather odd. The whole point about a
control is that it has a visual element, but the Windows Forms designer does not
show the visual representation of a class derived from

Control

. Instead it gives
a schematic showing the components that the control uses that you’ve dragged
from the

Server Explorer

 or

Toolbox

 window. This makes developing the vi-
sual aspect of a control a bit of a nuisance: In effect you have to add a forms
project to your control solution with a form that contains the control so that as
you develop the control, you can see the effects as you make them. You do not
have this problem when developing a

UserControl

 class because the de-
signer shows the control as a captionless, borderless form onto which you can
drag and drop controls from the

Toolbox

 window.
In this section I will describe the process of developing a simple control and

point out some of the issues you will face.

UserControl

 is composed of other
controls, so developing a

UserControl

 object is similar to developing a

Con-

trol

 object, except that you have the additional steps of adding controls from
the

Toolbox

 window and adding event handlers generated by these constituent
controls.

8.2.1 Developing a Sample Control

The control that I’ll develop, called

DiskSpace

, is shown in Figure 8.1. This con-
trol has a property called

Disk

 that holds the logical name of a disk on your ma-
chine. The control will display in its area the name of the disk and either the size

5062_CH08 Page 636 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT

637

of the disk or the amount of free space available to the current user on the disk.
Which of these sizes will be displayed is determined by another property, called

Display

. These properties can be changed at design time in the

Properties

window.
The first step is to create a control library. I will use C# as the development

language so that I can use the designer tool for some of the work. The project
type to use is the Windows Control Library project, and I will call my
project

DiskData

. Once you have created the project, the first thing you’ll no-
tice is that the

Designer

 window will start up showing a gray, borderless box.
Don’t be fooled; you get this because the project wizard has generated control
code derived from

UserControl

. In this example the control should derive
from

Control

, and you can make this change in a moment.
While the control is visible in the

Designer

 window, you should select its
properties (through the context menu) and change its name (in the

Name

 field)
to

DiskSpace

. Now switch to code view by selecting

View Code

 from the con-
trol’s context menu, and edit the code so that the DiskSpace class derives
from Control. Because the designer is not much use for this code, and be-
cause the control will not use other components, it is safe to remove the code
that the wizard added for the designer. Finally, by selecting Rename in the con-
text menu of the Solution Explorer window, change the name of the code file
from UserControl1.cs to DiskSpace.cs.

After all these changes, the class should look like this:

// C#

namespace DiskData

{

 public class DiskSpace : Control

Figure 8.1 The DiskSpace control

5062_CH08 Page 637 Tuesday, January 15, 2002 12:17 PM

638 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

 {

 public DiskSpace()

 {

 }

 }

}

If you now switch back to the designer, you’ll see that the gray surface of the
control has been removed, and there will be a message telling you to add com-
ponents from the Server Explorer or the Toolbox window. The control has a UI
and hence needs to draw itself. To do this it has to implement the OnPaint()
method:

// C#

protected override void OnPaint(PaintEventArgs pe)

{

 Graphics g = pe.Graphics;

 g.FillRectangle(new SolidBrush(BackColor),

 0, 0, Size.Width, Size.Height);

 g.DrawRectangle(new Pen(ForeColor),

 0, 0,

 Size.Width - 1, Size.Height - 1);

}

This code accesses the inherited properties BackColor and ForeColor;
it fills the area of the control with the color specified by BackColor and draws a
rectangle within the inside edge with the color specified by ForeColor. The
area of the control is accessed through the Size property. Even though this
control clearly has a user interface, the Designer window still does not give a vi-
sual representation, so the only way you can see what you are creating is by
adding the control to a form.

Before doing this, you should close the Designer window, compile the
project and then use Solution Explorer to add a new Windows Application
project to the solution (I call my project CtrlTest). When this project is cre-
ated, you’ll see an empty form, and if you open the Toolbox window, you’ll see
Components and Windows Forms tabs. Select one of these tabs (or even cre-
ate your own tab), and while the Toolbox window is open, switch to Windows Ex-
plorer, drag the DiskData.dll file from the bin\Debug folder of the project

5062_CH08 Page 638 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 639

folder, and drop it on the Toolbox window. You’ll see that the control will be
added to the Toolbox window as shown in Figure 8.2. Notice that the image
next to the control name is a cog. This is a standard image used when compo-
nents don’t specify a particular image; I’ll explain how to change this later.

Now you can drag the DiskSpace control from the Toolbox window and
drop it on the form, and you should see a gray square bordered by a black edge.
As a quick test, grab one edge of the control and reduce the width or height;
you’ll see that the control does not repaint the edge that you have moved. Fur-
thermore, if you increase the control’s size, you’ll see that the edge is moved but
the interior is not repainted. The result is that lines appear on the control surface
as the control is resized, as Figure 8.3 shows.

Figure 8.2 A control added to the Toolbox window

Figure 8.3 Resizing the control

5062_CH08 Page 639 Tuesday, January 15, 2002 12:17 PM

640 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

The solution to this problem is to ensure that when the control is resized, it is
redrawn. To do this you need to add the following method:

// C#

protected override void OnSizeChanged(EventArgs e)

{

 Invalidate();

 base.OnSizeChanged(e);

}

When the control is resized, this method will be called. I handle the resize
event by indicating that the entire control should be redrawn. I could be more so-
phisticated and track the size of the control and then invalidate only the area that
has changed, but for this example my code is sufficient.

The control has two properties, so the following code needs to be added to
the class:

// C#

public enum DisplayOptions {TotalSize, FreeSpace};

private string disk = "C:\\";

private DisplayOptions

 display = DisplayOptions.TotalSize;

public string Disk

{

 get { return disk; }

 set

 {

 disk = value;

 Invalidate();

 }

}

public DisplayOptions Display

{

 get { return display; }

 set

 {

 display = value;

 Invalidate();

 }

}

The Display property indicates whether the size of the disk or its free
space is shown, as identified by the enum. The Disk property indicates the

5062_CH08 Page 640 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 641

drive to be displayed. If you compile the project at this point and then select the
control on the test form, you’ll see that the Properties window has been up-
dated with the new properties (Figure 8.4). Furthermore, the Properties window
reads the metadata of the control to see that the Display property can have
one of two named values, and it will insert these values in a drop-down list box.

By default the Properties window allows you to either type in a value (as in
the case with Disk) or select a value from a list, and the Properties window will
do the appropriate coercion from the value you input to the type needed by the
property. You can change this behavior by applying the [TypeConverter] at-
tribute to the property and pass the type (or name) of a class derived from
TypeConverter as the attribute parameter. In addition, you can provide values
for a drop-down list box, or even provide a dialog to edit the property, as I’ll
show later.

Figure 8.4 shows the properties in alphabetical order. The properties can
also be listed by category; to do this you need to use an attribute on the prop-
erty—for example:

// C#

[Category("DiskSpace")]

public string Disk{/* code */}

[Category("DiskSpace")]

public DisplayOptions Display{/* code */}

Figure 8.4 Properties window showing the new properties

5062_CH08 Page 641 Tuesday, January 15, 2002 12:17 PM

642 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

The category can be one of the predefined categories documented in the
MSDN entry for System.ComponentModel.CategoryAttribute, or you can
create your own category, as I have done here. When you compile the assembly
and look at the control’s categorized properties, you’ll see a new category called
DiskSpace. Under this category are the two properties (see Figure 8.5).

The properties are shown in the Properties window because by default, all
properties are browsable. If you want to indicate that the property should not be
shown in the Properties window, you can use the [Browsable(false)] at-
tribute. In a similar way, if you write code that uses an instance of the
DiskSpace control, IntelliSense will show the property names in a list box when
you type a period after the name of a variable of DiskSpace (for C#). You can
use the [EditorBrowsable] attribute to alter this behavior: The parameter is
EditorBrowsableState, and if you use the value Never, the property will
not be shown in the IntelliSense list box; the default is Always. At the bottom of
the Properties window is a space for a description of the property, and be-
cause these properties do not have descriptions, just the property name is
given. To add a description to a property, you should use the [Description]
attribute. Here are the changes:

// C#

// initialized to default value

private string disk = "C:\\";

[Category("DiskSpace"),

Figure 8.5 Categorized properties

5062_CH08 Page 642 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 643

 Browsable(true), EditorBrowsable,

 Description("The name of the disk")]

public string Disk { /* code */ }

[Category("DiskSpace"),

 Browsable(true), EditorBrowsable,

 Description("Whether the total size or free "

 + "space on the disk is shown")]

public DisplayOptions Display { /* code */ }

The name of the property given in the Properties window will be the name
of the property in the class. You can use the [ParenthesizePropertyName]
attribute to indicate that the name should be shown in parentheses, which
means that the property will appear near the top of the Properties window
when properties are shown in alphabetical view, or near the top of the category
when they are shown in categorized view. You will notice that all of the screen
shots of the Properties window that you have seen here show the values of the
Disk and Display properties in bold. The Properties window uses the con-
vention of showing in bold any properties that have been changed from their de-
fault values. This poses the question, How do you specify a default value?

There are two ways to do this. The first is to use the [DefaultValue] at-
tribute on the property, passing the value as the constructor parameter. This op-
tion is fine for primitive types (the attribute constructor is overloaded for all of the
base types). If the type is more complex, you can provide a string version of
the default value, as well as the type to which the value should be converted,
and the system will attempt to find a TypeConverter class to do the conversion.
If there is no type converter, you can use the second way to specify a default
value: adding two methods to the class with the names Reset<property>()
and ShouldSerialize<property>(), where <property> is the property
name. Reset<property>() should change the property to its default value, and
ShouldSerialize<property>() should return a bool value indicating
whether the property has a value other than its default. This last method gets its
name from the fact that if the property does not have its default value, the value
should be stored so that it can be used at runtime (for a form generated by the C#
or VB.NET designer, this means initializing the control’s property with the value).

If the property has a default value, the value does not need to be serialized
because when the control is created, the property will have the default value.

5062_CH08 Page 643 Tuesday, January 15, 2002 12:17 PM

644 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

Your implementation of the property must be initialized to the default value. Ex-
amples of the Reset<property>() and ShouldSerialize<property>()
methods are shown in the following code:

// C#

// initialized to default value

private string disk = "C:\\";

[Category("DiskSpace"),

 Browsable(true), EditorBrowsable,

 Description("The name of the disk"),

 DefaultValue("C:\\")]

public string Disk { /* code */ }

// default value

private DisplayOptions

 display = DisplayOptions.TotalSize;

[Category("DiskSpace"),

 Browsable(true), EditorBrowsable,

 Description("Whether the total size or free "

 + "space on the disk is shown")]

public DisplayOptions Display { /* code */ }

public void ResetDisplay()

{ display = DisplayOptions.TotalSize; }

public bool ShouldSerializeDisplay()

{ return display != DisplayOptions.TotalSize; }

In both cases you’ll find that the property value will be shown in normal text if it is
the default value.

Properties can be changed at runtime, and the change in a property value
can have effects on other code. A good example is the Size property of a con-
trol: If the size changes, in most cases the control will need to be redrawn; thus
you need to catch the event of the property changing. This is what I showed ear-
lier with the code that overrides the OnSizeChanged() method. You should
also add events that are generated when your properties change, by adding an
event and an event generation method, as illustrated here:

// C#

public event EventHandler DiskChanged;

public event EventHandler DisplayChanged;

protected virtual void OnDiskChanged(EventArgs e)

{ if (DiskChanged != null) DiskChanged(this, e); }

protected virtual void OnDisplayChanged(EventArgs e)

5062_CH08 Page 644 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 645

{

 if (DisplayChanged != null)

 DisplayChanged(this, e);

}

The event generation method should be named On<property>Changed()
and should generate the event. The set methods for the properties should call
this method:

// C#

public string Disk

{ get { return disk; }

 set { disk = value;

 OnDiskChanged(null);

 Invalidate(); }

}

public DisplayOptions Display

{ get { return display; }

 set { display = value;

 OnDisplayChanged(null);

 Invalidate(); }

}

Sometimes several properties may depend on one property. If that is the case,
when that property changes the dependent properties will change too. In this case
the Properties window should refresh all the values. To indicate this requirement,
such a property should be marked with the [RefreshProperties] attribute.

The next task that needs to be carried out for this control is to make it actu-
ally do something! The first thing is to implement the Disk property so that it
checks that the value passed to the property is valid:

// C#

public string Disk

{

 get { return disk; }

 set { string str;

 str = Char.ToUpper(value[0]) + ":\\";

 string[] disks

 = Environment.GetLogicalDrives();

 if (Array.BinarySearch(disks, str) < 0)

 throw new IOException(value

 + " is not a valid drive");

5062_CH08 Page 645 Tuesday, January 15, 2002 12:17 PM

646 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

 disk = str;

 OnDiskChanged(null);

 Invalidate(); }

}

For this code to compile, you will need to add a using statement for the
System.IO namespace at the top of the file. First I construct the disk name;
then I obtain the list of logical drives on the current machine and perform a bi-
nary search to see if the requested disk is within the array of logical drive
names. Now that I have a valid drive name, I need to obtain the size of the disk.
I do this through interop to call the Win32 GetDiskFreeSpace() method:

// C#

[DllImport("kernel32", CharSet=CharSet.Auto,

 SetLastError = true)]

static extern bool GetDiskFreeSpace(

 string strRoot, out uint sectersPerCluster,

 out uint bytesPerSector, out uint numFreeClusters,

 out uint totalClusters);

protected override void OnPaint(PaintEventArgs pe)

{

 Graphics g = pe.Graphics;

 g.FillRectangle(new SolidBrush(BackColor),

 0, 0,

 Size.Width, Size.Height);

 g.DrawRectangle(new Pen(ForeColor),

 0, 0,

 Size.Width-1, Size.Height-1);

 uint spc, bps, fc, tc;

 GetDiskFreeSpace(disk, out spc, out bps,

 out fc, out tc);

 long free, total;

 long bPerCluster = (spc*bps);

 free = bPerCluster*fc/(1024*1024);

 total = bPerCluster*tc/(1024*1024);

 StringFormat sf = new StringFormat();

 sf.Alignment = StringAlignment.Center;

 sf.LineAlignment = StringAlignment.Center;

 string str;

 if (display == DisplayOptions.FreeSpace)

 str = disk + " " + free + "Mb";

 else

5062_CH08 Page 646 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 647

 str = disk + " " + total + "Mb";

 g.DrawString(str, this.Font,

 new SolidBrush(ForeColor),

 new RectangleF(0, 0,

 Size.Width, Size.Height),

 sf);

}

For this code to compile, you should add a using statement for the Sys-
tem.Runtime.InteropServices namespace to the top of the file. The On-
Paint() method calls the imported GetDiskFreeSpace() function and
passes the Disk property. Depending on the value of Display, the string
printed on the control is formatted as showing the total space on the disk or just
the free space. Notice again how the control’s properties are used. In the Draw-
String() method at the end of OnPaint(), I draw the string in the color
specified by ForeColor, using the default font for the control.

Once you have rebuilt the control, you should be able to view it on the test
form, and you should be able to change the Disk and Display properties and
see the control on the form change its view at design time. Before I leave this sec-
tion, I ought to explain one property that you’ll see in the Properties window: the
parenthesized DynamicProperties complex property, which will have a sub-
property with the parenthesized name Advanced. If you select this property, you
get a list of most of the properties that the control supports and a check box next
to each. If you check a property in this list, the designer will add a section for the
property in the application’s .config file (an XML file that is installed in the same
folder as the application), and at runtime when the control is loaded, its values will
be set according to the values in this .config file. For example, if I use Dynam-
icProperties to select the Disk property, the .config file will look like this:1

<configuration>

 <appSettings>

 <add key="diskSpace1.Disk" value="D:\" />

 </appSettings>

</configuration>

1. You will need to build the project to get the values written to the .config file.

5062_CH08 Page 647 Tuesday, January 15, 2002 12:17 PM

648 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

Here I have specified that the Disk property of the control diskSpace1
should have the value D:\ when the control is loaded. The code on the form can
still change this property; however, this is a useful facility because it allows you
to give your users some control over how the controls on your forms are
initialized.

8.2.2 Property Editor
When you type a value into the Properties window, what you are actually typing
is a text value. Some types—for example, Point—are complex and are made up
of subtypes. The Properties window reads the type of the property, recognizes
that the property has subtypes, and displays these subtypes in the grid as nodes
in a tree view. The grid allows you to edit each subobject individually or, through
an editor class, the entire property as one.

When the values of the property have been edited, the values are converted
to the appropriate types through a converter class. The framework type con-
verter classes are shown in Table 8.1. If your type is not covered by one of
these converters, you can create your own converter by deriving from Type-
Converter and then pass the type of this class to the constructor of the
[TypeConverter] attribute, which you should apply to the definition of the
type that is converted.

Table 8.1 Type converter classes

ArrayConverter DecimalConverter SByteConverter

BaseNumberConverter DoubleConverter SingleConverter

BooleanConverter EnumConverter StringConverter

ByteConverter ExpandableObjectConverter TimeSpanConverter

CharConverter GuidConverter TypeConverter

CollectionConverter Int16Converter TypeListConverter

ComponentConverter Int32Converter UInt16Converter

CultureInfoConverter Int64Converter UInt32Converter

DateTimeConverter ReferenceConverter UInt64Converter

5062_CH08 Page 648 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 649

Imagine that you have developed a control class that has an array property:

// C#

int[] b = new int[4];

public byte[] Data

{

 get { return b; }

 set { b = value; }

}

When you view the property in the Properties window, you’ll see it shown as
its constituent parts, and you can edit each item. If you select the property itself,
an ellipsis button will appear (see Figure 8.6); and when you click this button, an
appropriate UI editor will be shown. In the case of an array of Int32 members,
the Int32 Collection Editor will be shown (Figure 8.7). This editor allows you to
edit the values in the array, and to add and remove items in the array.

You can also write your own editor. For example, imagine that you want to
create an editor for the Disk property so that it gives you only the option of the
disks that are available on the current machine. The first action is to design an
appropriate editor dialog, by adding a form to the project called DiskEdi-
tor.cs through the Solution Explorer window. Next you edit the class to look
like this:

// C#

public class DiskEditor : Form

{

 private ComboBox cbDisks;

 private Button btnOK;

 private Container components = null;

 private string str;

 public string Value { get { return str; } }

Figure 8.6 Array property in the Properties window

5062_CH08 Page 649 Tuesday, January 15, 2002 12:17 PM

650 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

 public DiskEditor(string currentVal)

 {

 str = currentVal;

 ClientSize = new Size(120, 70);

 components = new Container();

 cbDisks = new ComboBox();

 components.Add(cbDisks);

 cbDisks.DropDownStyle

 = ComboBoxStyle.DropDownList;

 cbDisks.Location = new Point(10, 10);

 cbDisks.Size = new Size(100, 20);

 string[] disks

 = Environment.GetLogicalDrives();

 cbDisks.Items.AddRange(disks);

 cbDisks.Text = (string)cbDisks

 .Items[cbDisks.FindString(str)];

 btnOK = new Button();

 components.Add(btnOK);

 btnOK.Location = new Point(30, 40);

 btnOK.Size = new Size(60, 20);

Figure 8.7 The collection editor for an array of Int32 members

5062_CH08 Page 650 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 651

 btnOK.Text = "OK";

 btnOK.Click += new EventHandler(OnOK);

 Controls.AddRange(

 new Control[] {btnOK, cbDisks});

 FormBorderStyle = FormBorderStyle.FixedDialog;

 Text = "Disks";

 }

 protected override void Dispose(bool disposing)

 {

 if (disposing)

 if (components != null)

 components.Dispose();

 base.Dispose(disposing);

 }

 private void OnOK(object sender, EventArgs e)

 { Close(); }

 protected override void OnClosing(CancelEventArgs e)

 { str = (string)cbDisks.SelectedItem ; }

}

The DiskEditor constructor takes the current value of the property. The
dialog has two controls: a drop-down list box that is initialized to the logical disk
drives on the machine, and an OK button that, when clicked, will close the dia-
log. The form has a property called Value that is initialized to the disk that you
selected, and this property is updated when the dialog closes.

Next you need a class derived from UITypeEditor that will be called to de-
termine how the type should be edited. The GetEditStyle() method is called
by the Properties window to determine how the value should be edited.
UITypeEditorEditStyle has three values: None, which means that no UI el-
ement will be used to edit the value; DropDown, which means that a drop-down
list will be shown; and Modal, which means that a modal dialog will be shown. I
will first show an example of using a modal dialog. In this case the type editor
class in DiskEditor.cs should be edited to look like this:

// C#

public class DiskTypeEditor : UITypeEditor

{

 public override object EditValue(

 ITypeDescriptorContext context,

 IServiceProvider provider, object value)

5062_CH08 Page 651 Tuesday, January 15, 2002 12:17 PM

652 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

 {

 IWindowsFormsEditorService edSvc;

 edSvc = (IWindowsFormsEditorService)

 provider.GetService(

 typeof(IWindowsFormsEditorService));

 DiskEditor editorForm;

 editorForm = new DiskEditor((string)value);

 edSvc.ShowDialog(editorForm);

 return editorForm.Value;

 }

 public override

 UITypeEditorEditStyle GetEditStyle(

 ITypeDescriptorContext context)

 { return UITypeEditorEditStyle.Modal; }

}

For this code to compile you need to add a using statement for both the Sys-
tem.Drawing.Design and System.Windows.Forms.Design namespaces to
the top of the file. After the GetEditStyle() method is called, the Properties win-
dow will show either an ellipsis button (for the modal dialog) or a down-arrow button
(for a drop-down list). When this UI button is clicked, the EditValue() method will be
called to create the dialog to fill the list. The code here shows how to create the form.
The first parameter of EditValue() provides information about the container, the
Properties window. The second parameter gives access to the services that
the Properties window provides, and in this case I request IWindowsFormsEdi-
torService, which I use to call ShowDialog() to show the modal form. The final
parameter of the method is the actual property that is being edited, so this parameter
is used to initialize the form. When the modal form is closed, ShowDialog() will re-
turn; I access the value that the user selected through the DiskEditor.Value prop-
erty. The final step is to indicate that a property will be edited with this particular editor;
for this purpose the [Editor] attribute is used as follows:

// C#

[Editor(typeof(DiskTypeEditor),

 typeof(UITypeEditor))]

public string Disk { /* code */ }

You will need to add a using statement for the System.Drawing.Design
namespace to the top of the DiskSpace.cs file. Now when the ellipsis box of

5062_CH08 Page 652 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 653

the Disk property is clicked, the dialog will be shown (Figure 8.8). When the dia-
log is dismissed, the selected value will be written to the property.

It may seem a little over the top to have a whole dialog to present this data;
the alternative is to use a drop-down list box, which the following class does, and
you should add to the DiskEditor.cs file:

// C#

public class DiskTypeEditor2 : UITypeEditor

{

 private IWindowsFormsEditorService edSvc;

 public override object EditValue(

 ITypeDescriptorContext context,

 IServiceProvider provider, object value)

 {

 edSvc = (IWindowsFormsEditorService)

 provider.GetService(

 typeof(IWindowsFormsEditorService));

 ListBox cbDisks;

 cbDisks = new ListBox();

 string[] disks = Environment.GetLogicalDrives();

 cbDisks.Items.AddRange(disks);

 cbDisks.Text = (string)cbDisks

 .Items[cbDisks.FindString((string)value)];

 cbDisks.SelectedValueChanged

 += new EventHandler(TextChanged);

 edSvc.DropDownControl(cbDisks);

 return cbDisks.Text;

 }

 public override UITypeEditorEditStyle

 GetEditStyle(

 ITypeDescriptorContext context)

 { return UITypeEditorEditStyle.DropDown; }

Figure 8.8 The disk editor dialog

5062_CH08 Page 653 Tuesday, January 15, 2002 12:17 PM

654 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

 private void TextChanged(

 object sender, EventArgs e)

 { if (edSvc != null) edSvc.CloseDropDown(); }

}

The GetEditStyle() method of the DiskTypeEditor2 class returns
UITypeEditorEditStyle.DropDown to indicate that the Properties win-
dow should show the down arrow button. The EditValue() method creates a
list box and initializes it with the names of the logical disks. This list box is shown
by a call to the blocking method IWindowsFormsEditorService.Drop-
DownControl(), and it is removed by a call to CloseDropDown(). The user
expects to have drop-down list box behavior; that is, when an item is selected,
the drop-down box should be removed. To get this behavior I add a handler to
the list box that calls CloseDropDown(), which makes the blocked Drop-
DownControl() method return. At this point I can access from the list box con-
trol the item that was selected and return it from EditValue().

8.2.3 Licensing
Controls can be licensed; therefore you can add code to check whether the con-
trol is being used in a context where it is permitted. The licensing model recog-
nizes two contexts: design time and runtime. Design time is the time when the
control is being used in a designer (such as the Windows Forms designer) and
as part of other code, such as a form. A developer must have a design-time li-
cense to be able to integrate your control into his application. Once the applica-
tion has been compiled, it will be distributed to users and run, creating a new
situation: The licensed control will perform a check for a runtime license when
the application is run; if the runtime license is valid, the control can be created.

Having two licenses like this means that you can have a licensing scheme
that is more secure for the design time than for the runtime. The licensing is
based on a class called a license provider that is called to generate a license
when an attempt is made to instantiate the object. Here is a license provider
class:

// C#

public class LicProvider : LicenseProvider

5062_CH08 Page 654 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 655

{

 public override License GetLicense(

 LicenseContext context,

 Type type, object instance,

 bool allowExceptions)

 {

 if (context.UsageMode

 == LicenseUsageMode.Designtime)

 {

 if (!CheckForLicense())

 {

 if (!allowExceptions)

 return null;

 throw new LicenseException(GetType());

 }

 return new MyLic(type.Name

 + " design time");

 }

 else

 return new MyLic(type.Name

 + " runtime time");

 }

}

This provider is passed a LicenseContext object that indicates the con-
text in which the license is being requested—either LicenseUsage-

Mode.Designtime or Runtime. Your license provider can then check whether
the license is available (as my method CheckForLicense() does)—for exam-
ple, by looking for the location of a valid license file or a registry value. If the
check succeeds, a new license can be created. If the license check fails, the li-
cense provider should throw a LicenseException exception if allowEx-
ceptions is true or just return null if it is false. In this example I have
decided that the control should be freely available at runtime, so I don’t perform
any runtime checks; I merely return the license.

The license object should derive from License and provide implementa-
tions of the LicenseKey property and the Dispose() method. In my imple-
mentation I simply store a string:

// C#

public class MyLic : License

5062_CH08 Page 655 Tuesday, January 15, 2002 12:17 PM

656 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

{

 string str;

 public MyLic(string t){ str = t; }

 public override string LicenseKey

 { get { return str; } }

 public override void Dispose(){}

}

The LicenseKey property is not intended to be a secure key. Instead it
should be treated as an opaque cookie—an encoded string perhaps—that gives
access to other data. This string could be stored as a resource in an assembly.

The license provider is associated with the control through the [Li-
censeProvider] attribute, and the control should call the LicenseManager
object to check that the license is valid:

// C#

[LicenseProvider(typeof(LicProvider))]

public class DiskSpace : Control

{

 public DiskSpace()

 {

 LicenseManager.Validate(

 typeof(DiskSpace), this);

 }

 // code

}

If the control is not licensed, the call will throw an exception. If this happens
in the Windows Forms designer, you’ll get a message like the one shown in Fig-
ure 8.9. If the call to Validate()fails at runtime (a runtime license was not
available), a LicenseException exception will be thrown. In the code I show

Figure 8.9 Error message received if a form opened in the Windows Forms
designer has a control that is not licensed

5062_CH08 Page 656 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 657

here I do not catch this exception because I want to make sure that if Vali-
date() fails, the control will not load.

The Framework Class Library comes with one implementation of License
called LicFileLicenseProvider. LicFileLicenseProvider will check
for the existence of a license file, in much the same way as many ActiveX con-
trols are licensed today.

8.2.4 Toolbox Items
The Toolbox can take any item derived from IComponent. When you add a con-
trol to the Toolbox window, the control will be shown with the standard control bit-
map image, a cog. To change this image you have to apply the
[ToolboxBitmap] attribute to the control class. The image should be a 16×16
bitmap embedded as part of your assembly, and it should have the same name as
your class; for example, if your class is called DiskSpace, the bitmap should be
called DiskSpace.bmp. To add the bitmap you use the C# Solution Explorer
window’s Add New Item on the Add context menu. The bitmap should be an em-
bedded resource (which I’ll explain later), so through the bitmap’s Properties win-
dow you should change its Build Action property to Embedded Resource.
Finally, the constructor parameter of the [ToolboxBitmap] attribute should
take the type of the class to which it is applied:

// C#

[ToolboxBitmap(typeof(DiskSpace))]

public class DiskSpace : Control

{

 // code

}

For this new bitmap to be shown in the Toolbox window, you will need to re-
move the old control (from the context menu, select Delete) and then add it again
by dragging and dropping it from Windows Explorer to a tab in the Toolbox window.

8.3 Resources and Internationalization
.NET supports a different model of resources from that supported by Win32. In
Win32, resources are held in a section that is part of the PE (portable execut-
able) file format; the resources are embedded within this segment. .NET

5062_CH08 Page 657 Tuesday, January 15, 2002 12:17 PM

658 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

resources are part of an assembly, but they can be embedded within the assem-
bly or supplied as separate files. In this section I’ll explain how resources are
generated with Visual Studio.NET and how your code can access them.

8.3.1 Resources and .NET
.NET has been designed with internationalization in mind. Imagine that you down-
load an application from a Web site that you trust and the Web site is in a locale
different from yours. You would expect the application’s developers to have cre-
ated the application in their own locale. However, if the language is different
from yours, you will hope that the application has been localized to your locale
and that the Web site gives you the option of downloading different localized ver-
sions. Win32 applications typically used this scheme. It is possible in Win32 to
create resource DLLs for locale-specific resources, but this means that the de-
veloper has to explicitly load the resource from the DLL.

.NET allows you to create locale-specific resources, but it is far more sophis-
ticated than Win32 because the Framework Class Library provides a class (Re-
sourceManager) that will automatically load the resources for the current
locale. These resources can be part of the current assembly, or they can be part
of a separate assembly called a satellite assembly.

8.3.2 Locales, Cultures, and Languages
.NET uses the naming convention defined in RFC 1766. Cultures are named with
the following pattern: xx-yy, where the two letters xx represent a language
(e.g., en for English, de for German, or fr for French), and yy represents an
area where that language is used (e.g., GB for the United Kingdom, AU for Aus-
tralia, and US for the United States). Together, a language and an area represent
a particular culture, so en-US represents English spoken in the US and implies
hamburgers, Coke, and baseball. Whereas en-GB is the Queen’s English and im-
plies roast beef, tea in china cups, and cricket. (Well, you get the idea.) Without
the area (e.g., en), a resource is area neutral; without a language, a resource
is both language and area neutral. Most cultures can be represented by this four-
letter style, but if further delineation is required, you can add extra pairs of
letters.

5062_CH08 Page 658 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 659

The Framework Class Library provides the CultureInfo class to represent
a particular culture. You can initialize this class by passing to the constructor ei-
ther the RFC 1766 string or a locale ID (LCID). As I mentioned in Chapter 2, a
culture can be used to format items like dates:

// C#

CultureInfo ci = CultureInfo("en-GB");

Console.WriteLine(DateTime.Now.ToString(

 "F", ci.DateTimeFormat));

Here the date is printed at the command line in the UK format. Because dif-
ferent cultures that use the same language have different rules for formatting,
the CultureInfo class must be initialized with enough information, and a lan-
guage identifier is not enough. If you do not specifically use a culture in format
code, the current culture will be used. This culture is a per-thread value and is a
read/write property of the current thread:

// C#

CultureInfo ci = CultureInfo("en-GB");

System.Threading.Thread

 .CurrentThread.CurrentCulture = ci;

Console.WriteLine(DateTime.Now.ToString());

.NET resources are not as strict as formatting code, so the ResourceMan-
ager class (which is used to locate and load locale-specific resources) allows
you to provide resources that are totally neutral, area neutral, or culture specific.
Again, this information is set on a per-thread basis through the Thread.Cur-
rentUICulture property.

8.3.3 Creating Resources
Assemblies contain either compiled resources or uncompiled resources, and
these can be either embedded within the assembly or supplied as a separate file
and a link provided within the manifest of the assembly. Resources in an assem-
bly are named. For example, here is some IL:

// IL

.assembly App

{

5062_CH08 Page 659 Tuesday, January 15, 2002 12:17 PM

660 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

 .hash algorithm 0x00008004

 .ver 0:0:0:0

}

.mresource public MyRes.resources

{

}

.module App.exe

This code indicates that an assembly called App.exe has a resource called
MyRes.resources, which can contain several items, but ILDASM does not de-
compile the resource format, so these resources are not shown in IL. If the re-
source is a compiled resource, it can be read with the classes in
System.Resources, as I’ll explain in a moment. Otherwise the resource
should be read as a single item, through the assembly object.

A resource can be embedded in an assembly with the C# compiler through
the /res switch:

csc /res:MyRes.resources app.cs

This command will compile a C# file called app.cs and embed an already
compiled resource called MyRes.resources in the assembly. The resource in
the assembly will also be called MyRes.resources. If this is not what you
want, you can append the switch with the name of the resource (separated by a
comma).

The C++ linker has an /assemblyresource switch that you can use to
embed a resource in an assembly. The resource will have the name of the re-
source file that you embed, and unlike the C# compiler, you cannot rename it
through the switch:

link /out:app.exe

 /assemblyresource:MyRes.resources app.obj

If the resource is not compiled, it can be read only by explicit access of the
resource through the assembly manifest:

// C#

Assembly assem

 = Assembly.GetCallingAssembly();

Stream stm;

5062_CH08 Page 660 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 661

stm = assem.GetManifestResourceStream(

 "MyRes.resources");

This code will return a stream that has all of the resource. It does not matter
whether this resource is compiled, uncompiled, linked, or embedded. The follow-
ing code will print out this stream to the command line:

// C#

while(true)

{

 int i = stm.ReadByte();

 if (i == -1) break;

 if (i < 32 || i > 127)

 Console.Write(".");

 else

 Console.Write((char)i);

}

Console.WriteLine();

An assembly can have a link to a resource. You can create this link with the
C# compiler using the /linkres switch:

csc /linkres:data.txt,MyRes.resources app.cs

This command will compile the file app.cs, add a link to the file data.txt,
and call the resource MyRes.resources. Clearly, if the resource is linked, it
must be available through the link at runtime. Here is the IL produced by the pre-
ceding code:

// IL

.file nometadata data.txt

 .hash = (1E 7B 82 95 E5 DA 4B 04

 7A 56 47 DE EE C2 E7 7E

 1D 19 26 90)

.mresource public MyRes.resources

{

 .file data.txt at 0x00000000

}

The resgen tool is used to compile or decompile resources. When re-
sources are being compiled, the input can be either a text file (with the extension
.txt) or an XML file (with the extension .resx). The text file can be used only

5062_CH08 Page 661 Tuesday, January 15, 2002 12:17 PM

662 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

for string resources; it is structured as a series of name/value pairs with the two
separated by an equal sign. Here is an example:

; text resource file

ErrNoFile=File {0} cannot be found

MsgStarted=Application has started

The code that uses the resources refers to the first string with the identifier
ErrNoFile. If you want to use binary resources (e.g., images), you have to use
XML resources. The XML file equivalent to the name/value pairs just shown is as follows:

<?xml version="1.0" encoding="utf-8"?>

<!-- schema -->

<root>

 <data name="MsgStarted">

 <value>Application has started</value>

 </data>

 <data name="ErrNoFile">

 <value>File {0} cannot be found</value>

 </data>

 <resheader name="ResMimeType">

 <value>text/microsoft-resx</value>

 </resheader>

 <resheader name="Version">

 <value>1.0.0.0</value>

 </resheader>

 <resheader name="Reader">

 <value>

 System.Resources.ResXResourceReader

 </value>

 </resheader>

 <resheader name="Writer">

 <value>

 System.Resources.ResXResourceWriter

 </value>

 </resheader>

</root>

The <resheader> nodes give information about the format of the re-
sources and the names of the classes used to read and write the resources. All
of these <resheader> nodes except the Version node are required. For
space reasons, I have not shown the schema, but in any case it is not needed.
Although it is possible to write .resx files by hand, it is much easier to use the

5062_CH08 Page 662 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 663

VS.NET IDE, especially when you consider binary resources. Binary resources
still have to have <value> nodes in the XML file, and to do this they must be
converted to a readable format by something like base64 encoding. It is much
easier to allow the IDE to do this for you, as I’ll show in the next section.

resgen can also be used to decompile resources. If the input file has the
extension .resources, resgen knows that it has to decompile resources. It
determines the format that you require by the extension of the output file you
specify. The general process of compiling resources is shown in Figure 8.10.

resgen

.resources

al.exe

Assembly

csc.exe

.txt File .resx File

Figure 8.10 Resource compilation process

5062_CH08 Page 663 Tuesday, January 15, 2002 12:17 PM

664 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

8.3.4 Managed C++ and Resources
Managed C++ projects allow you to add resources through the Solution Ex-
plorer or Class View window, but these will be Win32 resources. If you want to
add your own .NET resources, you need to edit the project settings. Here are
the steps: First you need to add an XML file to your project. To do this you
should use the Add New Item dialog of Solution Explorer, and ensure that the
extension of the file is .resx (the resgen utility insists that XML resource files
have this extension). If you forget to give the file this extension, you will have to
remove the file from the project, rename it using Windows Explorer, and add the
renamed file to the project with Add Existing Item from the C++ Solution Ex-
plorer context menu. The reason is that the C++ Solution Explorer (unlike the
C# Solution Explorer) does not allow you to rename a file that has been added
to a project.

Once you have added the .resx file to the project, you should add the bare
minimum of resource file contents: the <root> node and the three <res-
header> nodes I mentioned earlier: ResMimeType, Reader, and Writer. Af-
ter that it makes sense to add at least one <data> node (essentially as a
template), and then you can edit the resource file using the XML designer.

The next task is to add the .resx file to the build. To do this you should se-
lect properties of this file from the Solution Explorer context menu by selecting
General Configuration Properties and making sure that the Tool property op-
tion selected is Custom Build Tool. You can then set the tools command line
through the Custom Build Step option (Table 8.2).

Choosing Custom Build Step will allow you to build the resource; however, you
also need to embed the resource in the assembly, and to do this you need to edit

Table 8.2 Custom Build Step properties for an .resx file

Property Value

Command Line resgen $(InputFileName)

$(OutDir)\$(InputName).resources

Description Building .NET resources

Outputs $(OutDir)\$(InputName).resources

5062_CH08 Page 664 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 665

the linker options. You select the properties of the project through the Solution Ex-
plorer window, and then in the Property Pages dialog you select the Linker node
and then the Input node. Within the grid you’ll see a property called Embed Man-
aged Resource File; you change the value of this property as follows:

$(OutDir)\$(InputName).resources

This parameter assumes that the name of the .resx file that was compiled had
the same name as the project. Once you have made these changes, you should
be able to add string resources to the project through the .resx file.

Image files are not so easy; the problem is that you have to encode image
files into a format that can be put in an XML file. A utility called resxgen will al-
low you to do this; it is supplied as an example in the .NET Framework Samples
folder. However, the problem with this tool is that it will generate an entire
.resx file from a single binary file. You cannot use it to add a binary resource to
an existing .resx file.

8.3.5 C# and Resources
In this section I will give just a basic overview of using resources in C# projects;
the sections that follow will go into more detail. To add a resource to a C#
project you use the Add Class dialog of Solution Explorer. The Resources
category shows that you can add bitmaps, icons, cursors, and string resource
files. The resource files that it mentions here are .resx files that you’ll typically
use to add strings to the assembly, similar to adding a string table in a Win32 re-
source file. .resx files are XML files and are used as an input to the resource
compiler, resgen, which I’ll cover later. These resource files can also contain bi-
nary data like icons, but the data is stored in the .resx file as base64 encoded.

When you add one of the image files to the project, you can use the item’s
properties to see how the resource will be added to the assembly. Build Action
gives the options of None, Compile, Content, and Embedded Resource.
Content does not add the resource to the assembly, but it does indicate that
the file should be deployed with the output of the project; Compile requires that
you specify the compile tool through the Custom Tool property, and Embed-
ded Resource will add the resource to the assembly without compiling.

5062_CH08 Page 665 Tuesday, January 15, 2002 12:17 PM

666 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

For example, if you add an icon to your project and change its Build Action
value to Embedded Resource, you will get the following IL when you build the
assembly:

// IL

.mresource public myAssem.myIcon.ico

{

}

Here the icon file is called myIcon.ico, and the assembly is called
myAssem. You can read this resource using Assembly.GetManifest-

ResourceStream() and pass the stream as a construction parameter to the
Icon class. For example, the following code loads an embedded resource as an
icon for the NotifyIcon class that is used to create a tray icon:

// C#

// NotifyIcon trayIcon is a private class member

// this code is in constructor and components

// is the Container created in InitializeComponents

trayIcon = new NotifyIcon(components);

Assembly assem = Assembly.GetExecutingAssembly();

// assembly is called Tray; icon file is called MyIcon.ico

trayIcon.Icon = new Icon(

 assem.GetManifestResourceStream(

 "Tray.MyIcon.ico"));

Other resources, such as bitmaps and cursors, can also be loaded in this
way. If you add a resource to a project as Content, it will be distributed with the
output of the project as a separate file. Note that this is not the same as being
part of a multifile assembly, as I mentioned in Chapter 1. When you add a link to
an external resource file (through the /linkres switch to csc), the compiler
will add a hash of the resource file to metadata in the assembly’s manifest. To
get the names of all such resources, you can use Assembly.GetMani-
festResourceNames(), and the names returned can be passed to the con-
structor of Icon, Cursor, or Bitmap to load the resource. When you specify
that the Build Action value of a resource is Content, there will be no informa-
tion about this in the assembly’s manifest, so your code needs to know the name
of the file.

5062_CH08 Page 666 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 667

As you’ll see in a moment, the icon for a form is shown as a property for that
form when viewed in the Designer window. However, the Cursor property shows
only standard cursors in the Properties window. If you want to use a custom cur-
sor, you can simply add a cursor as an embedded resource and use code similar
to that shown here to load the cursor and make it the cursor for the form.

When you add an icon to a project, the wizard will show a 32×32 icon with
16 colors. This size is fine for the large-icon view in Windows Explorer, but it is
too large for the form’s icon. Icon files can contain images of different sizes and
color depth, and it turns out that the icon created by the wizard also has a
16×16 icon image with 16 colors. To switch between the two sizes, you should
select Current Icon Image Types on the Image menu (or use the Im-
age.MoreIcons command, which will list all the icons). If you want to add an-
other icon type to the icon, there is a New Icon Type menu icon (for the
command Image.NewImageType).

Form icons are a different situation. When you add a form to a C# project, the
IDE will create a .resx file with the same name as the form specifically for the re-
sources that the form will use. One of these resources, of course, is the form’s
icon. Normally you will not see this .resx file in the Solution Explorer window
because it will be a hidden file. To view this file you need to click on the Show All
Files button, and you need to close the form in the Windows Forms designer.

To add an icon to a form, first you have to add an icon to the project as I
have shown here, but leave the icon’s Build Action value as Content. Next you
should select the form’s properties in the Windows Forms designer and click on
the form’s Icon property. This will bring up a dialog that will allow you to browse
for the icon you just created. When you have done this, the IDE will insert the
icon as a node in the .resx file. In a similar way, if you add a background image
(the BackgroundImage object) to the form, the image file will be added to the
.resx file. These are just special cases: They are resources required by the
form, so they have to be stored along with the form.

8.3.6 Forms and Localization
Every form has a property called Localizable. This is not a property inherited
from the Form base class; it is a pseudoproperty created by the Properties

5062_CH08 Page 667 Tuesday, January 15, 2002 12:17 PM

668 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

window for Form objects and UserControl objects (but not Control ob-
jects). When you change this property from the default of False to True, the
Properties window will copy all the form’s properties to the form’s .resx file.
The .resx file with the form’s name will have the default values for the form.

When you change the Language property (another pseudoproperty), the IDE will
create a .resx file for the selected language, named according to the language (so if
the form is called myForm, the UK English resource file will be called myForm.en-
GB.resx). This resource file will contain the difference between the default resource
and the localized resource. So if you have set the Icon property in the default re-
sources, this value will be used by all cultures unless you explicitly change it for a spe-
cific culture. Thus, localizing your forms is as simple as generating the default
resource for the form, then specifying the values for only those properties that you
want to localize by changing the Language property in the Properties window, and
finally changing the property to its localized value in the Properties window.

The effect of Localizable is recursive, so if you have controls on a form,
you can change the properties of those controls for a specific culture, and those
properties will be written to the appropriate .resx file. You are most likely to
use this option if the form has a menu. You add a menu to a form by adding a
MainMenu control, and the Windows Forms designer allows you to add sub-
menus, handles, and embellishments like check marks and radio buttons. When
you develop an application, you should start by building up the menu using the
default Language. And once you have created the menu layout and the han-
dlers, you can localize the menus by changing the form’s Language property to
a language other than the default and then changing the menu items’ text values.
The values that you change will be written to the resource file for the culture.

Of course, the Windows Forms designer generates code. When the form is
not localized, the designer will add code to assign the property value to the
property in the InitializeComponent() method. When you localize the
form, the designer changes the code to use a ResourceManager object. I will
go into more detail about this class in the next section, but as I have already
mentioned, this class will locate the appropriate resources section in the assem-
bly (or in satellite assemblies) and give access to the values. For example, here
is some code that is generated for you:

5062_CH08 Page 668 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 669

// C#

private void InitializeComponent()

{

 System.Resources.ResourceManager resources =

 new System.Resources.ResourceManager(

 typeof(myForm));

 // some properties omitted

 this.Icon = ((System.Drawing.Icon)

 (resources.GetObject("$this.Icon")));

 this.Text = resources.GetString("$this.Text");

 this.Visible = ((bool)

 (resources.GetObject("$this.Visible")));

}

As you can see, ResourceManager is initialized with the type of the form,
which gives the class one part of the information it needs to locate the resource
in the assembly. This class reads the UI culture of the current thread, and using
this and the name of the form, it can determine the name of the form’s re-
sources (i.e., it will search myForm.resources for the default resources, and
myForm.en-GB.resources for UK English resources). It then accesses the
string resources using GetString() (as shown here, with the Text property),
and all other resources are accessed through GetObject(). The designer
uses the convention of naming each resource $this.<propertyname>. Be-
cause ResourceManager determines the appropriate resources for the cur-
rent locale, you do not need to write this locale-specific code.

When you compile the form, the project will add the default resources to the
assembly that contains the form and will generate a satellite assembly for each
of the other resource files. These satellites will be named according to the satel-
lite convention: <formAssem>.resources.dll, where <formAssem> is the
name of the form’s assembly. Each satellite will be located in a folder named ac-
cording to the locale of the satellite, as I’ll describe later.

8.3.7 Resource Classes
The System.Resources namespace has the classes that are needed to read
and write compiled resources. ResourceReader enumerates resources and
gives access to them through an IDictionaryEnumerator interface. The
constructor parameter takes either the name of a file or an already opened

5062_CH08 Page 669 Tuesday, January 15, 2002 12:17 PM

670 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

stream, which, conveniently, is what Assembly.GetManifestResource-
Stream() will return:

// C#

System.Reflection.Assembly assem;

assem = Assembly.GetExecutingAssembly();

Stream stm;

stm = assem.GetManifestResourceStream(

 "myAssem.myResources.resources");

ResourceReader reader = new ResourceReader(stm);

foreach (DictionaryEntry de in reader)

 Console.WriteLine(de.Key +" = "+de.Value);

This code will look for a resource called myAssem.myResources.resources
and will print the name/value pairs contained in it.

The ResourceWriter class is used to write compiled .resource files. It
takes as a construction parameter either the name of the file or, if you have an
already open file, a writable stream. You can then use one of the overloaded
AddResource() methods to add a string or a binary value to the resource. If
you choose to write a binary value, you can pass either a byte[] array with the
object already serialized or a reference to the object. If you pass an object refer-
ence, it must be an instance of a serializable class. The actual resource is not
created until you call the Generate() method, which is also called by the
Close() method that closes the output stream. Thus you can write code like
this:

// C#

ResourceWriter rw

 = new ResourceWriter("myResources.resources");

rw.AddResource("TestString", "Some string data");

byte[] b = new byte[]{0, 1, 2, 3, 4};

rw.AddResource("TestData", b);

rw.Generate();

rw.Close();

This code will add the resources to a file called myResources.re-
sources. The ability to write resource files is useful when you consider the Re-
sourceManager class. This class is used to provide convenient access to
localized resources bound to an assembly or to satellite assemblies, or located

5062_CH08 Page 670 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 671

in separate files. As I have already mentioned, this class will read the UI culture
of the current thread, and using this and a base name for the resource, it will lo-
cate the resource in the local file or in a satellite assembly. Typically you will add
a resource for a form, so the base name of the resource will be derived from the
form’s type. This is why the type of the form was used as the constructor param-
eter in the code I showed earlier.

If you add a separate resource file to your project, you need to provide to
the ResourceManager constructor the name of the resource that will be de-
rived from the resource file’s name. For example, if you add a resource file
called myRes.resources to the project, the resource will be named
myRes.resources, and the base name will be myRes. Thus the following code
will initialize a ResourceManager object to load these resources:

// C#

ResourceManager rm

 = new ResourceManager("myRes", assem);

The assem reference is the Assembly object that contains the resource (or
an assembly that has satellites that contain localized resources). You can get a
reference through the type of an existing object (e.g., in a form you can call
this.GetType().Assembly) or through the static members of Assembly:
GetAssembly() to get the assembly for a particular type, GetCallingAs-
sembly() for the assembly that loaded the current assembly, or GetExecut-
ingAssembly() to get the current assembly.

If you have created resource files using a ResourceWriter object, you can
load these resources using the static CreateFileBasedResourceManager()
method of the ResourceManager class. In the previous example, then, you can
load the resources in myResources.resources with the following code:

// C#

ResourceManager rm.

ResourceManager.CreateFileBasedResourceManager(

 "myResources", ".", null);

Console.WriteLine(rm.GetString("TestString"));

The first parameter is the name of the resource; the second parameter is
the folder where the resources are located. You can use localized files, but note

5062_CH08 Page 671 Tuesday, January 15, 2002 12:17 PM

672 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

that the location of these files differs from how ResourceManager locates sat-
ellite files. If you localize the resources in myResources for, say, French spoken
in France, the resource file will be called myResources.fr-FR.resources.
Yet you load this resource using the same code I showed earlier (assuming that
the UI culture of the thread is fr-FR). Because the culture is part of a resource
file’s name, you do not need to place the file in a separate localized folder, as
you do with satellites.

The final parameter passed to CreateFileBasedResourceManager()
is the type of the resource set (identified in ResourceSet) that will be used. In
this case I have used null, which indicates that System.Resources.Re-
sourceSet should be used. ResourceManager uses the resource set to read
the resources from the resource file (the type of the resource set that this class
uses is accessed through its ResourceSetType property). A resource set has
a resource reader to do the actual reading; this reader is accessed through the
resource set’s Reader field. You create your own resource set class so that you
can use resources that are held in a format other then the compiled format pro-
duced by resgen.

Resource sets contain only the resources for a specific culture. You can cre-
ate a resource set through its constructor (by passing a resource stream or the
name of a resource file), or you can obtain it through ResourceManager by
calling GetResourceSet() and pass a CultureInfo object. Because re-
source sets are specific to a culture, there is no “fallback” to a neutral culture if
the specified culture does not exist. When you create a resource set, it will load
all the resources and cache them in a hash table.

In addition to classes for accessing resgen-compiled resources, the Sys-
tem.Resources namespace has classes for reading and writing .resx XML
files: ResXResourceReader and ResXResourceWriter, respectively. It also
has an implementation of ResourceSet called ResXResourceSet.

8.3.8 Satellite Assemblies
As the name suggests, a satellite assembly is separate from the assembly that
will use its resources. Do not confuse satellite assemblies with modules. Mod-
ules are constituent parts of an assembly and hence are subject to the version-

5062_CH08 Page 672 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 673

ing of the assembly to which they belong. A satellite assembly is an assembly in
its own right, but unlike normal assemblies, it does not have code and hence
does not have an entry point. To create a satellite assembly, you use the assem-
bly builder tool, al.exe. For example, imagine that you have resources local-
ized to German in a resource file called App.de.resources. This file is
embedded into a satellite assembly as a result of the following command line:

al /t:lib /embed:App.de.resources

 /culture:de /out:App.resources.dll

This command creates a library assembly called App.resources.dll lo-
calized to German. If you choose, you can create an empty code file with the
[AssemblyVersion] attribute to give the satellite assembly a version:

// C#, file: ver.cs

[assembly:System.Reflection

 .AssemblyVersion("1.0.0.1")]

The assembly is now compiled with the following:

csc /t:module ver.cs

al /t:lib /embed:App.de.resources

 /c:de /out:App.resources.dll ver.netmodule

The assembly is still resource-only because the module that is linked in has
only metadata. You could do the same thing with the [AssemblyCompany] and
[AssemblyDescription] attributes to add information about the company
that created the assembly and a description. The problem with this approach is
that there are now two files to deploy: App.resources.dll and ver.net-
module. To get around this problem, the assembly builder tool allows you to
pass some of this information through command-line switches, which are listed
in Table 8.3.

Using the /version switch, you can tell the assembly builder to specify the
version of the assembly. In the absence of other version switches (/filever-
sion, /productversion), the version you specify will be used to provide a
Win32 FILEVERSION resource in the library and will be the basis of the PRO-
DUCTVERSION and FILEVERSION fields.

5062_CH08 Page 673 Tuesday, January 15, 2002 12:17 PM

674 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

Now imagine that you have resources for the same application localized to
French in App.fr.resources. This data is embedded into a satellite assembly
by the following command line:

Table 8.3 Assembly builder switches used to change the assembly’s metadata

Switch Attribute Equivalent Description

/company [AssemblyCompany] The company that
created the assembly

/configuration [AssemblyConfiguration] Typically Retail or
Debug

/copyright [AssemblyCopyright] Your copyright notice

/culture [AssemblyCulture] The culture of the
assembly

/delaysign [AssemblyDelaySign] Specification of
whether the assembly
can be signed later by
sn.exe

/description [AssemblyDescription] A description of the
assembly

/fileversion [AssemblyFileVersion] The Win32 version of
the library

/keyfile [AssemblyKeyFile] The name of the file
with the key

/keyname [AssemblyKeyName] The name of the key
in a cryptographic
container

/product [AssemblyProduct] The product’s name

/productversion [AssemblyInformationalVersion] The version of the
product

/title [AssemblyTitle] The friendly name of
the assembly

/trademark [AssemblyTrademark] Your trademark

/version [AssemblyVersion] The assembly version

5062_CH08 Page 674 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 675

al /t:lib /embed:App.fr.resources

 /culture:fr /out:App.resources.dll

This command also creates a library assembly called App.resources.dll.
The code in ResourceManager does not use the name of the assembly to deter-
mine its culture; instead it uses the [AssemblyCulture] attribute (the .lo-
cale metadata) to locate the correct satellite assembly. Because the satellites
have the same name, they should be installed in subfolders of the folder contain-
ing the assembly that uses the satellite. These folders should have the name of
the locale of the satellite; for example, the German resources should be in a folder
called de, and the French resources should be in a folder called fr.

If your satellite files are to be shared by several applications, you should in-
stall the satellites in the GAC (global assembly cache). If you do this, the satel-
lites should have a strong name. Remember that the full name of an assembly
includes its culture, version, and public key, so there are no problems with in-
stalling several satellite files in the GAC because although the short name of the
assembly will be the same, the full names will differ by the culture element.

When a ResourceManager object is created and tries to locate localized
resources, the runtime first looks in the GAC for the satellite assembly with the
correct culture and checks whether it has the resource. If this check fails, the
current folder is checked for the culture-specific assembly in a named folder. If
this search fails, the runtime starts the search again, but this time for an assem-
bly that has the appropriate “fallback” culture—first in the GAC, and then in the
current directory. Each culture will have a fallback culture that will be searched in
this way, until finally the runtime will attempt to locate the resource in the default
resources for the assembly, which will be in the main assembly. If this search
fails, the resource cannot be found and an exception will be thrown.

Because satellite assemblies can have a different version from the version of
the main assembly, satellite versions can get out of sync with the main assem-
bly. To get around this problem, the main assembly can specify a base version
of the satellite assemblies that it uses; it does this with an assembly-level at-
tribute:

[assembly: SatelliteContractVersion("1.0.0.0")]

5062_CH08 Page 675 Tuesday, January 15, 2002 12:17 PM

676 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

Unlike versions applied through [AssemblyVersion], the string version
must have all four parts. The satellite assembly can be versioned independently
from the main version, and the changes can be reflected in the application’s con-
figuration file or, if it is installed in the GAC, through a publisher policy file.

The name that I have used for the satellite assembly is <assem>.re-
sources.dll. This is a standard naming convention and is vital to how the Re-
sourceManager class works. The <assem> part is the name of the assembly
that will use these resources. This is the only mechanism that exists to tie a sat-
ellite to the assembly with which it is used.2

If you use satellite assemblies, I urge you to make sure that you also provide
locale-neutral resources. A locale-neutral resource is named without a locale and
is bound to the assembly that uses the resource. In the preceding example, the
main assembly will be compiled with a command line that looks like this:

csc /res:App.resources /out:App.exe app.cs

The assembly is called App.exe. When it is run, ResourceManager will
check for an appropriate resource for the current culture within the satellite as-
semblies, and if that resource is not present, it will load the locale-neutral re-
source from the main assembly. Locating satellite assemblies is not part of
Fusion’s work, so if ResourceManager cannot find a satellite assembly, there
will be no binding-error message in the Fusion log (viewable with Fus-
LogVW.exe), and if your main assembly has a locale-neutral resource, you’ll
have no indication that there has been a problem. (If you do not have locale-
neutral resources, ResourceManager will throw a MissingManifest-

ResourceException exception.)

8.3.9 The Event Log, Again
So I am back to the event log again. As I mentioned earlier in this book, .NET has
a poor implementation of the classes to write messages to the event log. The prin-
cipal reason I say this is that these classes put the onus on the user of the

2. If you are careful to name the satellite assemblies and folders correctly, then loading locale-
specific resources is straightforward. However, because the location of the correct assembly is so
dependent on these names, I regard it as quite a fragile mechanism.

5062_CH08 Page 676 Tuesday, January 15, 2002 12:17 PM

APPLICATION DEVELOPMENT 677

EventLog class to localize the messages that are written to the event log rather
than taking the correct approach, which is to put the onus on the reader of the
event log. If the writer is responsible for localizing messages, the messages can
be read in only one locale, which is fine if your distributed application runs in only
one locale. In these days of globalization, however, your application could conceiv-
ably have components running in different locales, and if a message is localized
when it is generated, it ties that message to that locale. Unfortunately, there is lit-
tle one can do with the current framework classes, and one can only hope that this
horrible throwback to the broken event log classes that were present in VB6 will be
fixed in a later version of the Framework Class Library.

To localize event log messages, your code merely creates localized format
strings in a resource file and then at runtime uses a resource manager to load
the appropriate string:

// C#

ResourceManager rm

 = new ResourceManager(typeof(myForm));

string errMsg = String.Format(

 rm.GetString("errNoFile"), strFileName);

EventLog el = new EventLog("Application");

el.WriteEntry(errMsg);

8.3.10 Win32 Resources
Assemblies are PE files, so they can have Win32 resources. For a C++ devel-
oper this is not a problem because managed C++ projects use the standard
linker, which will link a compiled Win32 (.res) file into a PE file. Indeed, as I men-
tioned earlier, when you add a resource to a managed C++ project, that re-
source will be a Win32 resource and not a .NET resource. C# developers can
also include Win32 resources using either the C# compiler (csc.exe) or the as-
sembly builder tool (al.exe). Both of these tools have a /win32res and a /
win32icon switch, the first of which allows you to add an already compiled re-
source to an assembly. It is probably best to do this within a C++ project, where
you can edit an .rc file and use the Resource View window to add and edit the
resources. The unmanaged resource compiler, rc.exe, is used to compile a
.rc file into a .res file.

5062_CH08 Page 677 Tuesday, January 15, 2002 12:17 PM

678 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

One type of resource that can be described in an .rc file is the icon. The
first icon in a file’s resources will be used by Windows Explorer when displaying
the file, and if the file is an executable, this icon will be the application icon.

The /win32icon switch is the only way that you can set the icon for an as-
sembly. This switch takes the name of the icon (.ico) file; you do not compile it.
It is prudent to add both a 32×32 bit image and a 16×16 bit image so that you
can determine the icon that will be shown in Windows Explorer, no matter what
view the user chooses.

.NET code does not understand Win32 resources, so if you need to read
Win32 resources, you have to resort to interop through Platform Invoke. The
code is straightforward, and there is even a sample in the Framework SDK sam-
ples (called TlbGen) that shows how to add a Win32 resource to an assembly
programmatically, using the Win32 resource APIs.

8.4 Summary
Visual Studio.NET allows you to create applications, as well as controls and com-
ponents that can be used as part of applications. Components are objects that
can have a site and can be disposed of. The Toolbox window contains compo-
nents. Controls are components that are derived from the Control class and
have a user interface. Some controls are composites of other controls; these are
derived from UserControl. The VS.NET IDE allows you to develop UserCon-
trol objects and Form objects with the designer, which lets you construct a user
interface by dragging and dropping components and controls from the Toolbox
window and then using the Properties window to provide property values and
events. The designer also allows you to develop components and controls, but it
does not allow you to develop the user interface of a Control class.

Applications and UserControl classes can be localized so that they can
be used in different locales. Localization involves creating resources for each lo-
cale, and these resources can be stored in satellite assemblies. The IDE makes
localization straightforward through the Properties window; you simply have to
set the Language property, and then all the properties that you set will be
stored in an .resx file for the locale. The IDE will build the satellite assemblies
for each locale’s .resx file in your project.

5062_CH08 Page 678 Tuesday, January 15, 2002 12:17 PM

