% $ 5062_CHO08 Page 633 Tuesday, January 15, 2002 12:17 PM

Chapter 8

Application Development

In this chapter | want to discuss the issues that will arise when you come to de-
velop applications. A .NET application that lacks a user interface typically is
made up of components, and Ul applications consist of forms that have compo-
nents and controls. Visual Studio.NET has been designed to make developing
applications simple and to aid rapid application development (RAD) by allowing
you to generate code simply by dragging and dropping components.

| will start by explaining what constitutes a component and what extra facility
you get with controls. | will then show you how to develop a control that will inte-
grate with the IDE's Toolbox and Properties windows, and how you can make it
easier for the users of your controls to change their properties.

The world we live in moves day by day to a single global market, so it is ex-
tremely important that your application, components, and controls not be tied to
a single locale. Internationalization in .NET is carried out with locale-specific re-
sources. The VS.NET IDE has been designed to make the internationalizing pro-
cess as simple as possible, and I'll show you how this works and how the
localized resources are deployed. .NET resources are handled differently from
Win32 resources, so | will show you how to create resources and how to include
Win32 resources in your assemblies when .NET resources are deficient.

8.1 Developing Components
| mentioned in Chapter 6 that components are items that implement | Conpo-

nent . This interface derives from | Di sposabl e, which means that compo-
nents allow explicit management of their resources, and will inform interested

633



% $ 5062_CHO08 Page 634 Tuesday, January 15,2002 12:17 PM

classes when they are disposed of. In addition, the | Conponent interface has a
Si t e property that is initialized to the site of a container:

Il CH#
public interface | Conmponent : |Disposable

{
ISite Site { get; set; }
event Event Handl er Di sposed;
/1 | Di sposabl e nenbers
voi d Di spose();

}

A container implements the | Cont ai ner interface:

Il C#
public interface | Container : |Disposable

{
Conponent Col | ecti on Conponents { get; }

voi d Add( | Conponent conponent);

voi d Add( | Conponent conponent, String string);
voi d Renove( | Conponent comnponent);

/1 1 Disposabl e nenbers

voi d Di spose();

}

As the name suggests, the Conponent Col | ecti on class is an enumera-
ble collection. The Add() and Renove() methods allow you to add compo-
nents to this collection and remove them. The fact that | Cont ai ner derives
from | Di sposabl e is important because containers are used to hold re-
sources (the components), so when an object that uses components is disposed
of, the components should be disposed of, too, through the implementation of
| Cont ai ner. Di spose().

When you create a Windows Forms application you'll find that a container is

created for you, as in this example:

Il C#
public class MyForm: System W ndows. Forns. Form

{
private System Conponent Model . Cont ai ner

conponents = nul | ;
public MyForm() { InitializeConponent(); }

634 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

)& e [



% $ 5062_CHO08 Page 635 Tuesday, January 15, 2002 12:17 PM

protected override void Di spose(bool disposing)
{
i f (disposing)
{
if (components != null) conponents. D spose();
}
base. Di spose( di sposing );
}
private void InitializeConponent()
{
thi s. components =
new Syst em Conponent Model . Cont ai ner () ;
this.Size new System Dr awi ng. Si ze( 300, 300);
this. Text "My Fornt;

}

The cont ai ner member is not required. Indeed, if you write forms code by
hand (e.g., in C++), you can dispense with the cont ai ner member as long as
you call Di spose() on each component.

The VS.NET Toolbox window contains a tab with standard components:
classes for the event log, MSMQ queues, performance counters, and of course
the timer component. These components lack a user interface, but you can still
drag and drop them onto a form in the Windows Forms designer, which will gen-
erate code to add the component to the form class and will display that you are
using the component by showing an icon at the bottom of the Designer window.
You can access a component’s properties by selecting the component in the
Designer window and then switching to the Properties window.

Creating components is relatively straightforward. Your component, of
course, must derive from | Conponent , and the best way to do this is to derive
from Conponent . The component will most likely be used as an item in the
Toolbox window, so it will need a Toolbox image (which I'll explain later).

When you drag a component from the Toolbox window and drop it on a form
in the Designer window, you are actually creating an instance of the compo-
nent. It is important therefore that the component does not rely on constructor
parameters; instead, your component should be initialized through properties.
For example, look at how the System Ti ners. Ti mer component is used.

APPLICATION DEVELOPMENT

635



% $ 5062_CHO08 Page 636 Tuesday, January 15,2002 12:17 PM

636

When you drag and drop a timer onto a form, the generated code will create the
component using its default constructor, and the interval of the timer is initial-
ized through the I nt er val property, even though the Ti ner class has a con-
structor that takes an interval parameter.

Some components—for example, Event Log and MessageQueue—allow
you to access resources. Such components are great examples of components
because they consist of code that GUI applications will use, but they themselves
do not have a Ul. Your components are likely to give access to similar re-
sources.

8.2 Developing Controls
| ind the process of developing a control rather odd. The whole point about a

control is that it has a visual element, but the Windows Forms designer does not
show the visual representation of a class derived from Cont r ol . Instead it gives
a schematic showing the components that the control uses that you've dragged
from the Server Explorer or Toolbox window. This makes developing the vi-
sual aspect of a control a bit of a nuisance: In effect you have to add a forms
project to your control solution with a form that contains the control so that as
you develop the control, you can see the effects as you make them. You do not

have this problem when developing a User Control class because the de-

signer shows the control as a captionless, borderless form onto which you can
drag and drop controls from the Toolbox window.

In this section | will describe the process of developing a simple control and
point out some of the issues you will face. User Cont r ol is composed of other
controls, so developing a User Cont r ol object is similar to developing a Con-
t rol object, except that you have the additional steps of adding controls from
the Toolbox window and adding event handlers generated by these constituent
controls.

8.2.1 Developing a Sample Control
The control that I'll develop, called Di skSpace, is shown in Figure 8.1. This con-

trol has a property called Di sk that holds the logical name of a disk on your ma-
chine. The control will display in its area the name of the disk and either the size

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 637 Tuesday, January 15,2002 12:17 PM

=10 |
C:A2907Mb

Figure 8.1 The Di skSpace control

of the disk or the amount of free space available to the current user on the disk.
Which of these sizes will be displayed is determined by another property, called
Di spl ay. These properties can be changed at design time in the Properties
window.

The first step is to create a control library. | will use C# as the development
language so that | can use the designer tool for some of the work. The project
type to use is the Windows Control Library project, and | will call my
project Di skDat a. Once you have created the project, the first thing you'll no-
tice is that the Designer window will start up showing a gray, borderless box.
Don't be fooled; you get this because the project wizard has generated control
code derived from User Cont rol . In this example the control should derive
from Cont r ol , and you can make this change in a moment.

While the control is visible in the Designer window, you should select its
properties (through the context menu) and change its name (in the Name field)
to Di skSpace. Now switch to code view by selecting View Code from the con-
trol's context menu, and edit the code so that the Di skSpace class derives
from Cont r ol . Because the designer is not much use for this code, and be-
cause the control will not use other components, it is safe to remove the code

that the wizard added for the designer. Finally, by selecting Rename in the con-

text menu of the Solution Explorer window, change the name of the code file
from User Cont rol 1. cs to Di skSpace. cs.
After all these changes, the class should look like this:

/1 CH#
nanespace Di skDat a

{
public class Di skSpace : Control

APPLICATION DEVELOPMENT

637



% $ 5062_CHO08 Page 638 Tuesday, January 15, 2002 12:17 PM

638

public Di skSpace()

{
}

}

If you now switch back to the designer, you'll see that the gray surface of the
control has been removed, and there will be a message telling you to add com-
ponents from the Server Explorer or the Toolbox window. The control has a Ul
and hence needs to draw itself. To do this it has to implement the OnPai nt ()
method:

Il C#
protected override void OnPai nt (Pai nt Event Args pe)

{ G aphics g = pe. G aphi cs;
g. Fi | | Rect angl e(new Sol i dBrush(BackCol or),
0, 0, Size.Wdth, Size.Height);
g. Dr awRect angl e( new Pen( ForeCol or),
gl zgj Wdth - 1, Size.Height - 1);

}

This code accesses the inherited properties BackCol or and For eCol or ;
it fills the area of the control with the color specified by BackCol or and draws a
rectangle within the inside edge with the color specified by For eCol or. The
area of the control is accessed through the Si ze property. Even though this
control clearly has a user interface, the Designer window still does not give a vi-
sual representation, so the only way you can see what you are creating is by
adding the control to a form.

Before doing this, you should close the Designer window, compile the
project and then use Solution Explorer to add a new Windows Application
project to the solution (I call my project Ctrl Test ). When this project is cre-
ated, you'll see an empty form, and if you open the Toolbox window, you'll see
Components and Windows Forms tabs. Select one of these tabs (or even cre-
ate your own tab), and while the Toolbox window is open, switch to Windows Ex-
plorer, drag the Di skDat a. dl | file from the bi n\ Debug folder of the project

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e [



% é 5062_CHO08 Page 639 Tuesday, January 15, 2002 12:17 PM

folder, and drop it on the Toolbox window. You'll see that the control will be
added to the Toolbox window as shown in Figure 8.2. Notice that the image
next to the control name is a cog. This is a standard image used when compo-
nents don't specify a particular image; I'll explain how to change this later.

Now you can drag the Di skSpace control from the Toolbox window and
drop it on the form, and you should see a gray square bordered by a black edge.
As a quick test, grab one edge of the control and reduce the width or height;
you'll see that the control does not repaint the edge that you have moved. Fur-
thermore, if you increase the control’s size, you'll see that the edge is moved but
the interior is not repainted. The result is that lines appear on the control surface
as the control is resized, as Figure 8.3 shows.

Toolbo:x
[aka

Components

|
|
Windows Forms |
=eneral |

My iChrls | ﬂ
| h Painter
@ DiskSpace

Figure 8.2 A control added to the Toolbox window

Figure 8.3 Resizing the control

APPLICATION DEVELOPMENT

639



% $ 5062_CHO08 Page 640 Tuesday, January 15,2002 12:17 PM

The solution to this problem is to ensure that when the control is resized, it is
redrawn. To do this you need to add the following method:

Il CH
protected override void OnSi zeChanged( Event Args e)
{

Inval i date();
base. OnSi zeChanged(e) ;
}

When the control is resized, this method will be called. | handle the resize
event by indicating that the entire control should be redrawn. | could be more so-
phisticated and track the size of the control and then invalidate only the area that
has changed, but for this example my code is sufficient.

The control has two properties, so the following code needs to be added to
the class:

Il CH#
public enum Di spl ayOpti ons {Total Si ze, FreeSpace};
private string disk = "C\\";
private DisplayOptions
di splay = DisplayOptions. Total Si ze;
public string D sk

{
get { return disk; }
set
{
di sk = val ue;
I nval i date();
}
}
public DisplayOptions Display
{
get { return display; }
set
{
di spl ay = val ue;
I nval i date();
}
}

The Di spl ay property indicates whether the size of the disk or its free
space is shown, as identified by the enum. The Di sk property indicates the

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% % 5062_CHO08 Page 641 Tuesday, January 15,2002 12:17 PM

drive to be displayed. If you compile the project at this point and then select the
control on the test form, you'll see that the Properties window has been up-
dated with the new properties (Figure 8.4). Furthermore, the Properties window
reads the metadata of the control to see that the Di spl ay property can have
one of two named values, and it will insert these values in a drop-down list box.

By default the Properties window allows you to either type in a value (as in
the case with Di sk) or select a value from a list, and the Properties window will
do the appropriate coercion from the value you input to the type needed by the
property. You can change this behavior by applying the [ TypeConverter] at
tribute to the property and pass the type (or name) of a class derived from
TypeConvert er as the attribute parameter. In addition, you can provide values
for a drop-down list box, or even provide a dialog to edit the property, as ['ll
show later.

Figure 8.4 shows the properties in alphabetical order. The properties can
also be listed by category; to do this you need to use an attribute on the prop-
erty—for example:

/1 CH#

[ Cat egory(" Di skSpace")]

public string Disk{/* code */}

[ Cat egory(" Di skSpace")]

public DisplayOptions Display{/* code */}

Properties £
IdiskSpacEl DiskData,Diskspace j
S EIE2

ContexkMenu (none)

Cursor Drefaulk

Diisk.

C,
Totalsize
Miock

Display Freespace

Figure 8.4 Properties window showing the new properties

APPLICATION DEVELOPMENT



% é 5062_CHO08 Page 642 Tuesday, January 15,2002 12:17 PM

The category can be one of the predefined categories documented in the
MSDN entry for Syst em Conponent Model . Cat egor yAttri but e, or you can
create your own category, as | have done here. When you compile the assembly
and look at the control’'s categorized properties, you'll see a new category called
DiskSpace. Under this category are the two properties (see Figure 8.5).

The properties are shown in the Properties window because by default, all
properties are browsable. If you want to indicate that the property should not be
shown in the Properties window, you can use the [ Browsabl e(fal se)] at-
tribute. In a similar way, if you write code that uses an instance of the
Di skSpace control, IntelliSense will show the property names in a list box when
you type a period after the name of a variable of Di skSpace (for C#). You can
use the [ Edi t or Br owsabl e] attribute to alter this behavior: The parameter is
Edi t or Browsabl eSt at e, and if you use the value Never, the property will
not be shown in the IntelliSense list box; the default is Al ways. At the bottom of
the Properties window is a space for a description of the property, and be-
cause these properties do not have descriptions, just the property name is
given. To add a description to a property, you should use the [ Descri pti on]
attribute. Here are the changes:

Il CH

[/ initialized to default value
private string disk = "C\\";

[ Category("Di skSpace"),

Properkties |
I diskSpacel DiskData.DiskSpace j
nE| 2 |[E] £ |

Modifiers Privake -
B DiskSpace :

Diisk. C:h,

Display Totalsize Lo
Bl Focus i
|Di5k5pace

Figure 8.5 Categorized properties

642 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

)& e



% $ 5062_CHO08 Page 643 Tuesday, January 15, 2002 12:17 PM

Br owsabl e(true), EditorBrowsabl e,
Description("The name of the disk") ]

public string Disk { /* code */ }

[ Category("Di skSpace"),

Br owsabl e(true), EditorBrowsabl e,
Description("Wether the total size or free "
+ "space on the disk is shown") ]

public DisplayOptions Display { /* code */ }

The name of the property given in the Properties window will be the name
of the property in the class. You can use the [ Par ent hesi zePr oper t yNane]
attribute to indicate that the name should be shown in parentheses, which
means that the property will appear near the top of the Properties window
when properties are shown in alphabetical view, or near the top of the category
when they are shown in categorized view. You will notice that all of the screen
shots of the Properties window that you have seen here show the values of the
Di sk and Di spl ay properties in bold. The Properties window uses the con-
vention of showing in bold any properties that have been changed from their de-
fault values. This poses the question, How do you specify a default value?

There are two ways to do this. The first is to use the [ Def aul t Val ue] at-
tribute on the property, passing the value as the constructor parameter. This op-
tion is fine for primitive types (the attribute constructor is overloaded for all of the
base types). If the type is more complex, you can provide a string version of
the default value, as well as the type to which the value should be converted,
and the system will attempt to find a TypeConvert er class to do the conversion.
If there is no type converter, you can use the second way to specify a default
value: adding two methods to the class with the names Reset <pr operty>()
and Shoul dSeri al i ze<property>(), where <property> is the property
name. Reset <pr opert y>() should change the property to its default value, and
Shoul dSeri al i ze<property>() should return a bool value indicating
whether the property has a value other than its default. This last method gets its
name from the fact that if the property does not have its default value, the value
should be stored so that it can be used at runtime (for a form generated by the C#
or VB.NET designer, this means initializing the control's property with the value).

If the property has a default value, the value does not need to be serialized
because when the control is created, the property will have the default value.

APPLICATION DEVELOPMENT

643



% $ 5062_CHO08 Page 644 Tuesday, January 15, 2002 12:17 PM

Your implementation of the property must be initialized to the default value. Ex-

amples of the Reset <property>() and Shoul dSeri al i ze<property>()
methods are shown in the following code:

Il CH#
[/ initialized to default value
private string disk = "C\\";
[ Category("Di skSpace"),
Browsabl e(true), EditorBrowsabl e,
Description("The name of the disk"),
Def aul t Val ue("C:\\") ]
public string Disk { /* code */ }
/| default value
private DisplayOptions
di splay = DisplayOptions. Total Si ze;
[ Category("D skSpace"),
Br owsabl e(true), EditorBrowsabl e,
Description("Wether the total size or free "
+ "space on the disk is shown") ]
public DisplayOptions Display { /* code */ }
public void ResetDisplay()
{ display = DisplayOptions. Total Si ze; }
publi ¢ bool Shoul dSeri alizeD splay()
{ return display != DisplayOptions. Total Si ze; }

In both cases you'll find that the property value will be shown in normal text if it is
the default value.

Properties can be changed at runtime, and the change in a property value
can have effects on other code. A good example is the Si ze property of a con-
trol: If the size changes, in most cases the control will need to be redrawn; thus
you need to catch the event of the property changing. This is what | showed ear-
lier with the code that overrides the OnSi zeChanged() method. You should
also add events that are generated when your properties change, by adding an
event and an event generation method, as illustrated here:

Il C#

public event EventHandl er D skChanged;

public event EventHandl er Di spl ayChanged,;

protected virtual void OnD skChanged(Event Args e)

{ if (D skChanged != null) DiskChanged(this, e); }
protected virtual void OnD spl ayChanged( Event Args e)

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 645 Tuesday, January 15, 2002 12:17 PM

if (DisplayChanged != null)
Di spl ayChanged(this, e);
}

The event generation method should be named On<pr oper t y>Changed()
and should generate the event. The set methods for the properties should call
this method:

/] CH
public string Disk
{ get { return disk; }
set { disk = val ue;
OnDi skChanged(nul 1) ;
Invalidate(); }
}
public DisplayOptions Display
{ get { return display; }
set { display = val ue;
OnDi spl ayChanged(nul ) ;
Invalidate(); }
}

Sometimes several properties may depend on one property. If that is the case,
when that property changes the dependent properties will change too. In this case
the Properties window should refresh all the values. To indicate this requirement,
such a property should be marked with the [ Ref r eshPr oper ti es] attribute.

The next task that needs to be carried out for this control is to make it actu-
ally do something! The first thing is to implement the Di sk property so that it
checks that the value passed to the property is valid:

Il CH#
public string Disk
{
get { return disk; }
set { string str;
str = Char. ToUpper (val ue[0]) + ":\\";
string[] disks
= Environnent . Get Logi cal Drives();
if (Array. BinarySearch(di sks, str) < 0)
t hrow new | OExcepti on(val ue
+ " is not avalid drive");

APPLICATION DEVELOPMENT 645



% $ 5062_CHO08 Page 646 Tuesday, January 15,2002 12:17 PM

disk = str;
OnDi skChanged(nul 1) ;
I nval idate(); }

}
For this code to compile, you will need to add a usi ng statement for the

Syst em | O namespace at the top of the file. First | construct the disk name;
then | obtain the list of logical drives on the current machine and perform a bi-
nary search to see if the requested disk is within the array of logical drive
names. Now that | have a valid drive name, | need to obtain the size of the disk.
| do this through interop to call the Win32 Get Di skFr eeSpace() method:

/] C#
[ DIlInport("kernel 32", CharSet=Char Set. Auto,
SetLastError = true) ]
static extern bool GCetD skFreeSpace(
string strRoot, out uint sectersPerd uster,
out uint bytesPerSector, out uint nunfFreed usters,
out uint total Clusters);
protected override void OnPai nt (Pai nt Event Args pe)
{
G aphics g = pe. G aphics;
g. Fi Il Rectangl e(new Sol i dBr ush(BackCol or),
0, O,
Size. Wdth, Size.Height);
g. Dr awRect angl e( new Pen( ForeCol or),
0, O,
Size. Wdth-1, Size.Height-1);
uint spc, bps, fc, tc;
Get Di skFreeSpace(di sk, out spc, out bps,
out fc, out tc);
long free, total;
I ong bPerC uster = (spc*bps);
free = bPerC uster*fc/(1024*1024);
total = bPerC uster*tc/(1024*1024);
StringFormat sf = new StringFormat();
sf.Alignment = StringAlignment. Center;
sf.LineAlignnent = StringAlignment. Center;

string str;

if (display == D splayOptions. FreeSpace)
str =disk +" " + free + "M";

el se

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e [



% $ 5062_CHO08 Page 647 Tuesday, January 15,2002 12:17 PM

str = disk +" " + total + "M";
g.Drawstring(str, this.Font,
new Sol i dBrush( For eCol or),
new Rect angl eF(0, O,
Si ze. Wdth, Size.Height),
sf);

}

For this code to compile, you should add a usi ng statement for the Sys-
tem Runti ne. | nt er opSer vi ces namespace to the top of the file. The On-
Pai nt () method calls the imported Get Di skFreeSpace() function and
passes the Di sk property. Depending on the value of Di spl ay, the string
printed on the control is formatted as showing the total space on the disk or just
the free space. Notice again how the control's properties are used. In the Dr aw-
String() method at the end of OnPai nt (), | draw the string in the color
specified by For eCol or, using the default font for the control.

Once you have rebuilt the control, you should be able to view it on the test
form, and you should be able to change the Di sk and Di spl ay properties and
see the control on the form change its view at design time. Before | leave this sec-
tion, | ought to explain one property that you'll see in the Properties window: the
parenthesized Dynanmi cProperti es complex property, which will have a sub-
property with the parenthesized name Advanced. If you select this property, you
get a list of most of the properties that the control supports and a check box next
to each. If you check a property in this list, the designer will add a section for the
property in the application’s . conf i g file (an XML file that is installed in the same
folder as the application), and at runtime when the control is loaded, its values will
be set according to the values in this . confi g file. For example, if | use Dynam
i cProperti es to select the Di sk property, the . conf i g file will look like this:?

<configuration>
<appSettings>
<add key="di skSpacel. Di sk" value="D:\" />
</ appSetti ngs>
</ configuration>

1. You will need to build the project to get the values written to the . confi g file.

APPLICATION DEVELOPMENT

647



% $ 5062_CHO08 Page 648 Tuesday, January 15,2002 12:17 PM

Here | have specified that the Di sk property of the control di skSpacel
should have the value D: \ when the control is loaded. The code on the form can
still change this property; however, this is a useful facility because it allows you
to give your users some control over how the controls on your forms are
initialized.

8.2.2 Property Editor

When you type a value into the Properties window, what you are actually typing
is a text value. Some types—for example, Poi nt —are complex and are made up
of subtypes. The Properties window reads the type of the property, recognizes
that the property has subtypes, and displays these subtypes in the grid as nodes
in a tree view. The grid allows you to edit each subobject individually or, through
an editor class, the entire property as one.

When the values of the property have been edited, the values are converted
to the appropriate types through a converter class. The framework type con-
verter classes are shown in Table 8.1. If your type is not covered by one of
these converters, you can create your own converter by deriving from Type-
Converter and then pass the type of this class to the constructor of the
[ TypeConverter] attribute, which you should apply to the definition of the
type that is converted.

Table 8.1 Type converter classes

ArrayConverter Deci mal Converter SByt eConverter
BaseNunber Converter Doubl eConvert er Si ngl eConverter
Bool eanConverter EnumConvert er StringConverter
Byt eConverter Expandabl eObj ect Convert er Ti meSpanConvert er
Char Converter Gui dConverter TypeConverter
Col | ecti onConverter I nt 16Converter TypeLi st Converter
Component Converter I nt 32Converter Ul nt 16Converter
Cul turel nfoConverter | nt 64Converter Ul nt 32Converter
Dat eTi meConverter Ref erenceConvert er Ul nt 64Converter
648 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

)& e [



% $ 5062_CHO08 Page 649 Tuesday, January 15,2002 12:17 PM

Imagine that you have developed a control class that has an array property:

/1 CH#
int[] b =newint[4];
public byte[] Data

{
get { return b; }

set { b = value; }

}

When you view the property in the Properties window, you'll see it shown as
its constituent parts, and you can edit each item. If you select the property itself,
an ellipsis button will appear (see Figure 8.6); and when you click this button, an
appropriate Ul editor will be shown. In the case of an array of | nt 32 members,
the Int32 Collection Editor will be shown (Figure 8.7). This editor allows you to
edit the values in the array, and to add and remove items in the array.

You can also write your own editor. For example, imagine that you want to
create an editor for the Di sk property so that it gives you only the option of the
disks that are available on the current machine. The first action is to design an
appropriate editor dialog, by adding a form to the project called Di skEdi -
t or. cs through the Solution Explorer window. Next you edit the class to look
like this:

Il CH#
public class DiskEditor : Form
{
private ConmboBox cbDi sks;
private Button btnOK;
private Contai ner conponents = null;
private string str;
public string Value { get { return str; } }

= Int32[] Array __ | =
[a] a
[1] Q0 —
(2] o
[3] 1] -

Figure 8.6 Array property in the Properties window

APPLICATION DEVELOPMENT

649



% $ 5062_CHO08 Page 650 Tuesday, January 15,2002 12:17 PM

Int32 Collection Editor

Members:

1]
1
2
3

Lo Y o

[ Properties:

B Int32

Le [

o |

Canicel

Figure 8.7 The collection editor for an array of | nt 32 members

public DiskEditor(string currentVal)

{

str = currentVal ;
ClientSize = new Si ze(120, 70);
conponents = new Contai ner();

cbDi sks =

new ConboBox();

conponent s. Add(cbDi sks);
cbDi sks. DropDownSt yl e
= ConboBoxSt yl e. Dr opDownli st ;
cbDi sks. Locati on = new Poi nt (10, 10);

cbDi sks. Si

ze = new Si ze(100, 20);

string[] disks
= Environnent. Get Logi cal Drives();
cbDi sks. | t ens. AddRange( di sks);

cbDi sks. Text

= (string)chbDi sks
.ltens[cbDi sks. FindString(str)];

bt nOK = new Button();
conponent s. Add( bt nCXK) ;
bt nOK. Locati on = new Poi nt (30, 40);

bt nCK. Si ze

650

= new Si ze(60, 20);

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e



% $ 5062_CHO08 Page 651 Tuesday, January 15,2002 12:17 PM

bt nOK. Text = "OK";
bt nOK. d i ck += new Event Handl er (OnCXK) ;
Cont rol s. AddRange(
new Control [] {btnOK, cbhbDi sks});
For nBor der Styl e = For nBor der Styl e. Fi xedDi al og;

Text = "Disks";
}
protected override void Dispose( bool disposing)
{

i f (disposing)

if (components != null)
conponent s. Di spose();

base. Di spose( di sposing );
}
private void OnOK(obj ect sender, EventArgs e)
{ Gose(); }

protected override void OnC osi ng(Cancel Event Args e)
{ str = (string)chDi sks. Sel ectedltem; }

}

The Di skEdi t or constructor takes the current value of the property. The
dialog has two controls: a drop-down list box that is initialized to the logical disk
drives on the machine, and an OK button that, when clicked, will close the dia-
log. The form has a property called Val ue that is initialized to the disk that you
selected, and this property is updated when the dialog closes.

Next you need a class derived from Ul TypeEdi t or that will be called to de-
termine how the type should be edited. The Get Edi t St yl e() method is called
by the Properties window to determine how the value should be edited.
Ul TypeEdi t or Edi t St yl e has three values: None, which means that no Ul el
ement will be used to edit the value; Dr opDown, which means that a drop-down
list will be shown; and Modal , which means that a modal dialog will be shown. |
will first show an example of using a modal dialog. In this case the type editor
class in Di skEdi t or. cs should be edited to look like this:

Il CH#
public class Di skTypeEditor : U TypeEditor
{

public override object EditVal ue(
| TypeDescri pt or Cont ext context,
| Servi ceProvi der provider, object val ue)

APPLICATION DEVELOPMENT 651



% $ 5062_CHO08 Page 652 Tuesday, January 15,2002 12:17 PM

652

| W ndowsFor nsEdi t or Servi ce edSvc;
edSvc = (I W ndowsFor nsEdi t or Ser vi ce)
provi der. Get Servi ce(
t ypeof (I W ndowsFor nsEdi t or Service));
Di skEdi tor editorForm
edi tor Form = new Di skEdi tor ((string)val ue);
edSvc. Showhi al og(editorForm;
return editorForm Val ue;
}
public override
U TypeEditorEditStyl e Get EditStyl e(
| TypeDescri pt or Cont ext cont ext)
{ return U TypeEditorEditStyle. Mdal; }

}

For this code to compile you need to add a usi ng statement for both the Sys-
t em Drawi ng. Desi gn and Syst em W ndows. For ns. Desi gn namespaces to

the top of the file. After the Get Edi t St yl e() method is called, the Properties win-

dow will show either an ellipsis button (for the modal dialog) or a down-arrow button
(for a drop-down list). When this Ul button is clicked, the Edi t Val ue() method will be
called to create the dialog to fill the list. The code here shows how to create the form.
The first parameter of Edi t Val ue() provides information about the container, the
Properties window. The second parameter gives access to the services that
the Properties window provides, and in this case | request | W ndowsFor nsEdi -
t or Ser vi ce, which | use to call ShowDi al og() to show the modal form. The final
parameter of the method is the actual property that is being edited, so this parameter

is used to initialize the form. When the modal form is closed, ShowDi al og() will re-

turn; | access the value that the user selected through the Di skEdi t or . Val ue prop-
erty. The final step is to indicate that a property will be edited with this particular editor;
for this purpose the [ Edi t or] attribute is used as follows:

Il C#

[ Editor(typeof (D skTypeEditor),
typeof (Ul TypeEditor)) ]

public string Disk { /* code */ }

You will need to add a usi ng statement for the Syst em Dr awi ng. Desi gn
namespace to the top of the Di skSpace. cs file. Now when the ellipsis box of

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% % 5062_CHO08 Page 653 Tuesday, January 15, 2002 12:17 PM

the Di sk property is clicked, the dialog will be shown (Figure 8.8). When the dia-
log is dismissed, the selected value will be written to the property.

It may seem a little over the top to have a whole dialog to present this data;
the alternative is to use a drop-down list box, which the following class does, and
you should add to the Di skEdi t or. cs file:

/1 C#
public class Di skTypeEditor2 : U TypeEditor
{
private | WndowsFornmsEditor Service edSvc;
public override object EditVal ue(
| TypeDescri pt or Cont ext cont ext,
| Servi ceProvi der provider, object val ue)

edSvc = (I W ndowsFor nsEdi t or Servi ce)
provi der. Get Servi ce(
typeof (1 W ndowsFor nsEdi t or Service));
Li st Box cbbDi sks;
cbDi sks = new Li st Box();
string[] disks = Environnment. GetLogical Drives();
cbDi sks. I t ens. AddRange( di sks);
cbDi sks. Text = (string)cbDi sks
.Items[ cbDi sks. FindString((string)value)];
cbDi sks. Sel ect edVval ueChanged
+= new Event Handl er ( Text Changed) ;
edSvc. Dr opDownCont r ol (cbDi sks);
return chbDi sks. Text;
}
public override U TypeEditorEditStyle
CGet Edit Styl e(
| TypeDescri pt or Cont ext cont ext)
{ return U TypeEditorEditStyl e. DropDown; }

i
[T - |
(o] 4 |

Figure 8.8 The disk editor dialog

APPLICATION DEVELOPMENT

653



% $ 5062_CHO08 Page 654 Tuesday, January 15,2002 12:17 PM

654

private void Text Changed(
obj ect sender, EventArgs e)
{ if (edSvc !'= null) edSvc.d oseDropbDown(); }

}

The Get Edit Styl e() method of the Di skTypeEditor2 class returns
Ul TypeEdi tor Edi t St yl e. DropDown to indicate that the Properties win-
dow should show the down arrow button. The Edi t Val ue() method creates a
list box and initializes it with the names of the logical disks. This list box is shown
by a call to the blocking method | W ndowsFor nsEdi t or Ser vi ce. Dr op-
DownCont rol (), and it is removed by a call to C oseDr opDown() . The user
expects to have drop-down list box behavior; that is, when an item is selected,
the drop-down box should be removed. To get this behavior | add a handler to
the list box that calls C oseDr opDown(), which makes the blocked Dr op-
DownCont r ol () method return. At this point | can access from the list box con-
trol the item that was selected and return it from Edi t Val ue() .

8.2.3 Licensing
Controls can be licensed; therefore you can add code to check whether the con-
trol is being used in a context where it is permitted. The licensing model recog-
nizes two contexts: design time and runtime. Design time is the time when the
control is being used in a designer (such as the Windows Forms designer) and
as part of other code, such as a form. A developer must have a design-time li-
cense to be able to integrate your control into his application. Once the applica-
tion has been compiled, it will be distributed to users and run, creating a new
situation: The licensed control will perform a check for a runtime license when
the application is run; if the runtime license is valid, the control can be created.
Having two licenses like this means that you can have a licensing scheme
that is more secure for the design time than for the runtime. The licensing is
based on a class called a license provider that is called to generate a license
when an attempt is made to instantiate the object. Here is a license provider
class:

Il CH
public class LicProvider : LicenseProvider

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 655 Tuesday, January 15,2002 12:17 PM

{
public override License CetlLicense(
Li censeCont ext cont ext,
Type type, object instance,
bool al | owExcepti ons)
{
i f (context.UsageMde
== Li censeUsageMode. Desi gnti ne)
{
i f (!CheckForLicense())
{
if (!'all owExceptions)
return null
t hrow new Li censeException(Get Type());
}
return new MyLi c(type. Nane
+ " design tine");
}
el se
return new MyLi c(type. Nane
+ " runtinme tinme");
}
}

This provider is passed a Li censeCont ext object that indicates the con-
text in which the license is being requested—either LicenseUsage-
Mode. Desi gnt i me or Runt i me. Your license provider can then check whether
the license is available (as my method CheckFor Li cense() does)—for exam-
ple, by looking for the location of a valid license file or a registry value. If the
check succeeds, a new license can be created. If the license check fails, the li-
cense provider should throw a Li censeExcepti on exception if al | owEx-
ceptions is true or just return nul | if it is fal se. In this example | have
decided that the control should be freely available at runtime, so | don't perform
any runtime checks; | merely return the license.

The license object should derive from Li cense and provide implementa-
tions of the Li censeKey property and the Di spose() method. In my imple-
mentation | simply store a string:

Il CH#
public class M/Lic : License

APPLICATION DEVELOPMENT

655



% $ 5062_CHO08 Page 656 Tuesday, January 15, 2002 12:17 PM

656

{
string str;
public MyLic(string t){ str =1t; }
public override string LicenseKey
{ get { return str; } }
public override void Dispose(){}

}

The Li censeKey property is not intended to be a secure key. Instead it
should be treated as an opaque cookie—an encoded string perhaps—that gives
access to other data. This string could be stored as a resource in an assembly.

The license provider is associated with the control through the [Li -
censeProvi der] attribute, and the control should call the Li censeManager
object to check that the license is valid:

Il CH#
[ Li censeProvi der (typeof (Li cProvider))]
public class Di skSpace : Contro

{
public Di skSpace()
{
Li censeManager . Val i dat e(
t ypeof (Di skSpace), this);
}
/] code
}

If the control is not licensed, the call will throw an exception. If this happens
in the Windows Forms designer, you'll get a message like the one shown in Fig-
ure 8.9. If the call to Val i dat e() fails at runtime (a runtime license was not
available), a Li censeExcept i on exception will be thrown. In the code | show

A ermar occured while loading the document.  Fis the emar, and then ty loading the
document again. The eror meszzage follows:

An exception occured while fing o create an instance of DizkData DiskSpace. The
exception was "An ingtance of type 'DizkData MizkSpace’ waz being created, and a walid

license could not be granted for the type 'DiskData DiskSpace’. Pleaze contact the
manufacturer of the component for more information,",

Figure 8.9 Error message received if a form opened in the Windows Forms
designer has a control that is not licensed

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e [



% $ 5062_CHO08 Page 657 Tuesday, January 15, 2002 12:17 PM

here | do not catch this exception because | want to make sure that if val i -
dat e() fails, the control will not load.

The Framework Class Library comes with one implementation of Li cense
called Li cFi | eLi censeProvi der. Li cFil eLi censeProvi der will check
for the existence of a license file, in much the same way as many ActiveX con-
trols are licensed today.

8.2.4 Toolbox Items

The Toolbox can take any item derived from | Conponent . When you add a con-
trol to the Toolbox window, the control will be shown with the standard control bit-
map image, a cog. To change this image you have to apply the
[ Tool boxBi t map] attribute to the control class. The image should be a 16x16
bitmap embedded as part of your assembly, and it should have the same name as
your class; for example, if your class is called Di skSpace, the bitmap should be
called Di skSpace. bnp. To add the bitmap you use the C# Solution Explorer
window's Add New Item on the Add context menu. The bitmap should be an em-
bedded resource (which I'll explain later), so through the bitmap’s Properties win-
dow you should change its Build Action property to Embedded Resource.
Finally, the constructor parameter of the [ Tool boxBi t map] attribute should
take the type of the class to which it is applied:

Il CH#
[ Tool boxBi t map(typeof ( Di skSpace))]
public class Di skSpace : Contro

{
/1 code

}
For this new bitmap to be shown in the Toolbox window, you will need to re-

move the old control (from the context menu, select Delete) and then add it again
by dragging and dropping it from Windows Explorer to a tab in the Toolbox window.

8.3 Resources and Internationalization
.NET supports a different model of resources from that supported by Win32. In

Win32, resources are held in a section that is part of the PE (portable execut-
able) file format; the resources are embedded within this segment. .NET

APPLICATION DEVELOPMENT

657



% $ 5062_CHO08 Page 658 Tuesday, January 15,2002 12:17 PM

658

resources are part of an assembly, but they can be embedded within the assem-
bly or supplied as separate files. In this section I'll explain how resources are
generated with Visual Studio.NET and how your code can access them.

8.3.1 Resources and .NET

.NET has been designed with internationalization in mind. Imagine that you down-
load an application from a Web site that you trust and the Web site is in a locale
different from yours. You would expect the application’s developers to have cre-
ated the application in their own locale. However, if the language is different
from yours, you will hope that the application has been localized to your locale
and that the Web site gives you the option of downloading different localized ver-
sions. Win32 applications typically used this scheme. It is possible in Win32 to
create resource DLLs for locale-specific resources, but this means that the de-
veloper has to explicitly load the resource from the DLL.

NET allows you to create locale-specific resources, but it is far more sophis-
ticated than Win32 because the Framework Class Library provides a class (Re-
sour ceManager) that will automatically load the resources for the current
locale. These resources can be part of the current assembly, or they can be part
of a separate assembly called a satellite assembly.

8.3.2 Locales, Cultures, and Languages

NET uses the naming convention defined in RFC 1766. Cultures are named with
the following pattern: xx-yy, where the two letters xx represent a language
(e.g., en for English, de for German, or fr for French), and yy represents an

area where that language is used (e.g., GB for the United Kingdom, AU for Aus-

tralia, and US for the United States). Together, a language and an area represent
a particular culture, so en- US represents English spoken in the US and implies
hamburgers, Coke, and baseball. Whereas en- GB is the Queen’s English and im-
plies roast beef, tea in china cups, and cricket. (Well, you get the idea.) Without
the area (e.g., en), a resource is area neutral; without a language, a resource
is both language and area neutral. Most cultures can be represented by this four-
letter style, but if further delineation is required, you can add extra pairs of
letters.

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 659 Tuesday, January 15,2002 12:17 PM

The Framework Class Library provides the Cul t ur el nf o class to represent
a particular culture. You can initialize this class by passing to the constructor ei-
ther the RFC 1766 string or a locale ID (LCID). As | mentioned in Chapter 2, a
culture can be used to format items like dates:

Il CH#

Culturelnfo ci = Culturelnfo("en-GB");

Consol e. Wi teLine(Dat eTi me. Now. ToSt ri ng(

"F', ci.DateTimeFormat));

Here the date is printed at the command line in the UK format. Because dif-
ferent cultures that use the same language have different rules for formatting,
the Cul t ur el nf o class must be initialized with enough information, and a lan-
guage identifier is not enough. If you do not specifically use a culture in format
code, the current culture will be used. This culture is a per-thread value and is a
read/write property of the current thread:

/1 CH#

Culturelnfo ci = Culturelnfo("en-GB");

Syst em Thr eadi ng. Thr ead

.Current Thread. CurrentCul ture = ci;

Consol e. Wi teLine(DateTi me. Now. ToString());

.NET resources are not as strict as formatting code, so the Resour ceMan-
ager class (which is used to locate and load locale-specific resources) allows
you to provide resources that are totally neutral, area neutral, or culture specific.
Again, this information is set on a per-thread basis through the Thr ead. Cur -
rent Ul Cul t ur e property.

8.3.3 Creating Resources

Assemblies contain either compiled resources or uncompiled resources, and
these can be either embedded within the assembly or supplied as a separate file
and a link provided within the manifest of the assembly. Resources in an assem-
bly are named. For example, here is some IL:

Il 1L
.assenbly App
{

APPLICATION DEVELOPMENT 659



% $ 5062_CHO08 Page 660 Tuesday, January 15,2002 12:17 PM

660

. hash al gorithm 0x00008004
.ver 0:0:0:0

}

.nresource public MyRes.resources

{
}

. modul e App. exe

This code indicates that an assembly called App. exe has a resource called
MyRes. r esour ces, which can contain several items, but ILDASM does not de-
compile the resource format, so these resources are not shown in IL. If the re-
source is a compiled resource, it can be read with the classes in
Syst em Resour ces, as lll explain in a moment. Otherwise the resource
should be read as a single item, through the assembly object.

A resource can be embedded in an assembly with the C# compiler through
the / r es switch:

csc /res: MyRes. resources app. Cs

This command will compile a C# file called app. cs and embed an already
compiled resource called MyRes. r esour ces in the assembly. The resource in
the assembly will also be called MyRes. r esour ces. If this is not what you
want, you can append the switch with the name of the resource (separated by a
comma).

The C++ linker has an / assenbl yr esour ce switch that you can use to
embed a resource in an assembly. The resource will have the name of the re-
source file that you embed, and unlike the C# compiler, you cannot rename it
through the switch:

l'ink /out:app.exe
[ assenbl yresour ce: MyRes. resour ces app. obj

If the resource is not compiled, it can be read only by explicit access of the
resource through the assembly manifest:

/] C#
Assenbly assem

= Assenbly. Get Cal | i ngAssenbl y();
Stream stm

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 661 Tuesday, January 15,2002 12:17 PM

stm = assem Get Mani f est Resour ceSt r ean(
"MyRes. resources");

This code will return a stream that has all of the resource. It does not matter
whether this resource is compiled, uncompiled, linked, or embedded. The follow-
ing code will print out this stream to the command line:

Il CH#
whi | e(true)

{
int i = stm ReadByte();

if (i == -1) break;

if (i <32 1] i > 127)
Console. Wite(".");

el se
Consol e. Wite((char)i);

}

Consol e. Wi teLine();

An assembly can have a link to a resource. You can create this link with the
C# compiler using the / I i nkr es switch:

csc /linkres:data.txt, MyRes. resources app.cs

This command will compile the file app. cs, add a link to the file dat a. t xt
and call the resource MyRes. r esour ces. Clearly, if the resource is linked, it
must be available through the link at runtime. Here is the IL produced by the pre-
ceding code:

/Il 1L
.file nonetadata data.txt
.hash = (1E 7B 82 95 E5 DA 4B 04
7A 56 47 DE EE C2 E7 7TE
1D 19 26 90 )
.nresource public MyRes.resources

{
.file data.txt at 0x00000000

}

The resgen tool is used to compile or decompile resources. When re-
sources are being compiled, the input can be either a text file (with the extension
. txt) or an XML file (with the extension . r esx). The text file can be used only

APPLICATION DEVELOPMENT 661



% $ 5062_CHO08 Page 662 Tuesday, January 15,2002 12:17 PM

662

for string resources; it is structured as a series of name/value pairs with the two
separated by an equal sign. Here is an example:

; text resource file
ErrNoFi | e=Fil e {0} cannot be found
MsgSt art ed=Appl i cation has started

The code that uses the resources refers to the first string with the identifier
Err NoFi | e. If you want to use binary resources (e.g., images), you have to use
XML resources. The XML file equivalent to the name/value pairs just shown is as follows:

<?xm version="1.0" encodi ng="utf-8"?>
<l-- schem -->
<r oot >
<dat a name="MsgStarted">
<val ue>Application has started</val ue>
</ dat a>
<dat a nane="Err NoFi |l e">
<val ue>Fil e {0} cannot be found</val ue>
</ dat a>
<resheader nane="ResM meType">
<val ue>t ext/ m crosoft-resx</val ue>
</ resheader >
<resheader nane="Version">
<val ue>1. 0. 0. 0</ val ue>
</ resheader >
<resheader nane="Reader">
<val ue>
Syst em Resour ces. ResXResour ceReader
</val ue>
</ resheader >
<resheader nane="Witer">
<val ue>
Syst em Resour ces. ResXResourceWiter
</val ue>
</ resheader >
</ root >

The <resheader> nodes give information about the format of the re-
sources and the names of the classes used to read and write the resources. All
of these <r esheader > nodes except the Versi on node are required. For
space reasons, | have not shown the schema, but in any case it is not needed.
Although it is possible to write . r esx files by hand, it is much easier to use the

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e [



% % 5062_CHO08 Page 663 Tuesday, January 15, 2002 12:17 PM

VS.NET IDE, especially when you consider binary resources. Binary resources
still have to have <val ue> nodes in the XML file, and to do this they must be
converted to a readable format by something like base64 encoding. It is much

easier to allow the IDE to do this for you, as I'll show in the next section.

resgen can also be used to decompile resources. If the input file has the
extension . r esour ces, resgen knows that it has to decompile resources. It
determines the format that you require by the extension of the output file you

specify. The general process of compiling resources is shown in Figure 8.10.

.t xt File

.resx File

N

resgen

Y

resources

Y

al . exe

CScC. exe

Y

Assembly

Figure 8.10 Resource compilation process

APPLICATION DEVELOPMENT

663



% $ 5062_CHO08 Page 664 Tuesday, January 15,2002 12:17 PM

8.3.4 Managed C++ and Resources

Managed C++ projects allow you to add resources through the Solution Ex-
plorer or Class View window, but these will be Win32 resources. If you want to
add your own .NET resources, you need to edit the project settings. Here are
the steps: First you need to add an XML file to your project. To do this you
should use the Add New Item dialog of Solution Explorer, and ensure that the
extension of the file is . r esx (the r esgen utility insists that XML resource files
have this extension). If you forget to give the file this extension, you will have to
remove the file from the project, rename it using Windows Explorer, and add the
renamed file to the project with Add Existing Item from the C++ Solution Ex-
plorer context menu. The reason is that the C++ Solution Explorer (unlike the
C# Solution Explorer) does not allow you to rename a file that has been added
to a project.

Once you have added the . r esx file to the project, you should add the bare
minimum of resource file contents: the <r oot > node and the three <res-
header > nodes | mentioned earlier: ResM meType, Reader, and Wi t er . Af-
ter that it makes sense to add at least one <dat a> node (essentially as a
template), and then you can edit the resource file using the XML designer.

The next task is to add the . r esx file to the build. To do this you should se-
lect properties of this file from the Solution Explorer context menu by selecting
General Configuration Properties and making sure that the Tool property op-
tion selected is Custom Build Tool. You can then set the tools command line
through the Custom Build Step option (Table 8.2).

Choosing Custom Build Step will allow you to build the resource; however, you
also need to embed the resource in the assembly, and to do this you need to edit

Table 8.2 Custom Build Step properties for an . r esx file

Property Value

Command Line resgen $( I nputFil eNane)
$(Qut Di r)\ $(1 nput Narre) . r esour ces

Description Bui | di ng . NET resources
Outputs $(Qut Di r)\ $( I nput Nane) . r esour ces
664 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

)& e [



% $ 5062_CHO08 Page 665 Tuesday, January 15,2002 12:17 PM

the linker options. You select the properties of the project through the Solution Ex-
plorer window, and then in the Property Pages dialog you select the Linker node
and then the Input node. Within the grid you'll see a property called Embed Man-
aged Resource File; you change the value of this property as follows:

$(QutDir)\ $( 1 nput Nanme) . resour ces

This parameter assumes that the name of the . r esx file that was compiled had
the same name as the project. Once you have made these changes, you should
be able to add string resources to the project through the . r esx file.

Image files are not so easy; the problem is that you have to encode image
files into a format that can be put in an XML file. A utility called r esxgen will al-
low you to do this; it is supplied as an example in the .NET Framework Sanpl es
folder. However, the problem with this tool is that it will generate an entire
. resx file from a single binary file. You cannot use it to add a binary resource to
an existing . r esx file.

8.3.5 C# and Resources
In this section | will give just a basic overview of using resources in C# projects;
the sections that follow will go into more detail. To add a resource to a C#
project you use the Add Class dialog of Solution Explorer. The Resources
category shows that you can add bitmaps, icons, cursors, and string resource
files. The resource files that it mentions here are . r esx files that you'll typically
use to add strings to the assembly, similar to adding a string table in a Win32 re-
source file. . resx files are XML files and are used as an input to the resource
compiler, r esgen, which I'll cover later. These resource files can also contain bi-
nary data like icons, but the data is stored in the . r esx file as base64 encoded.
When you add one of the image files to the project, you can use the item’s
properties to see how the resource will be added to the assembly. Build Action
gives the options of None, Compile, Content, and Embedded Resource.
Content does not add the resource to the assembly, but it does indicate that
the file should be deployed with the output of the project; Compile requires that
you specify the compile tool through the Custom Tool property, and Embed-
ded Resource will add the resource to the assembly without compiling.

APPLICATION DEVELOPMENT

665



% $ 5062_CHO08 Page 666 Tuesday, January 15,2002 12:17 PM

666

For example, if you add an icon to your project and change its Build Action
value to Embedded Resource, you will get the following IL when you build the
assembly:

/1 1L
.nresource public myAssem nylcon.ico

{

}

Here the icon file is called nylcon.ico, and the assembly is called
nyAssem You can read this resource using Assenbly. Get Mani f est -
Resour ceSt rean() and pass the stream as a construction parameter to the
I con class. For example, the following code loads an embedded resource as an
icon for the Not i fyI con class that is used to create a tray icon:

Il CH#

/1 Notifylcon traylcon is a private class nenber

/1 this code is in constructor and components

/1 is the Container created in InitializeConponents

traylcon = new Notifyl con(conponents);

Assenbly assem = Assenbl y. Get Executi ngAssenbl y();

/1 assenmbly is called Tray; icon file is called Mylcon.ico

traylcon.lcon = new | con(

assem Get Mani f est Resour ceSt r ean(
"Tray. Myl con.ico"));

Other resources, such as bitmaps and cursors, can also be loaded in this
way. If you add a resource to a project as Content, it will be distributed with the
output of the project as a separate file. Note that this is not the same as being
part of a multifile assembly, as | mentioned in Chapter 1. When you add a link to
an external resource file (through the /1i nkres switch to csc), the compiler
will add a hash of the resource file to metadata in the assembly’s manifest. To
get the names of all such resources, you can use Assenbly. Get Mani -
f est Resour ceNames( ), and the names returned can be passed to the con-
structor of 1 con, Cur sor, or Bi t map to load the resource. When you specify
that the Build Action value of a resource is Content, there will be no informa-
tion about this in the assembly’s manifest, so your code needs to know the name
of the file.

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 667 Tuesday, January 15,2002 12:17 PM

As you'll see in a moment, the icon for a form is shown as a property for that
form when viewed in the Designer window. However, the Cursor property shows
only standard cursors in the Properties window. If you want to use a custom cur-
sor, you can simply add a cursor as an embedded resource and use code similar
to that shown here to load the cursor and make it the cursor for the form.

When you add an icon to a project, the wizard will show a 32x32 icon with
16 colors. This size is fine for the large-icon view in Windows Explorer, but it is
too large for the form’s icon. Icon files can contain images of different sizes and
color depth, and it turns out that the icon created by the wizard also has a
16x16 icon image with 16 colors. To switch between the two sizes, you should
select Current Icon Image Types on the Image menu (or use the I m
age. Mor el cons command, which will list all the icons). If you want to add an-
other icon type to the icon, there is a New Icon Type menu icon (for the
command | mage. Newl mageType).

Form icons are a different situation. When you add a form to a C# project, the
IDE will create a . r esx file with the same name as the form specifically for the re-
sources that the form will use. One of these resources, of course, is the form’s
icon. Normally you will not see this . r esx file in the Solution Explorer window
because it will be a hidden file. To view this file you need to click on the Show All
Files button, and you need to close the form in the Windows Forms designer.

To add an icon to a form, first you have to add an icon to the project as |
have shown here, but leave the icon’s Build Action value as Content. Next you
should select the form’s properties in the Windows Forms designer and click on
the form’s lcon property. This will bring up a dialog that will allow you to browse
for the icon you just created. When you have done this, the IDE will insert the
icon as a node in the . r esx file. In a similar way, if you add a background image
(the Backgr oundl mage object) to the form, the image file will be added to the
.resx file. These are just special cases: They are resources required by the
form, so they have to be stored along with the form.

8.3.6 Forms and Localization

Every form has a property called Local i zabl e. This is not a property inherited
from the For mbase class; it is a pseudoproperty created by the Properties

APPLICATION DEVELOPMENT

667



% $ 5062_CHO08 Page 668 Tuesday, January 15, 2002 12:17 PM

668

window for For m objects and User Control objects (but not Control ob-
jects). When you change this property from the default of Fal se to Tr ue, the
Properties window will copy all the form’s properties to the form’s . r esx file.
The . r esx file with the form’s name will have the default values for the form.

When you change the Language property (another pseudoproperty), the IDE will
create a . r esx file for the selected language, named according to the language (so if
the form is called nyFor m the UK English resource file will be called nyFor m en-
GB. r esx). This resource file will contain the difference between the default resource
and the localized resource. So if you have set the | con property in the default re-
sources, this value will be used by all cultures unless you explicitly change it for a spe-
cific culture. Thus, localizing your forms is as simple as generating the default
resource for the form, then specifying the values for only those properties that you
want to localize by changing the Language property in the Properties window, and
finally changing the property to its localized value in the Properties window.

The effect of Local i zabl e is recursive, so if you have controls on a form,
you can change the properties of those controls for a specific culture, and those
properties will be written to the appropriate . r esx file. You are most likely to
use this option if the form has a menu. You add a menu to a form by adding a
Mai nMenu control, and the Windows Forms designer allows you to add sub-
menus, handles, and embellishments like check marks and radio buttons. When
you develop an application, you should start by building up the menu using the
default Language. And once you have created the menu layout and the han-
dlers, you can localize the menus by changing the form’'s Language property to
a language other than the default and then changing the menu items’ text values.
The values that you change will be written to the resource file for the culture.

Of course, the Windows Forms designer generates code. When the form is
not localized, the designer will add code to assign the property value to the
property in the I nitializeConponent () method. When you localize the
form, the designer changes the code to use a Resour ceManager object. | will
go into more detail about this class in the next section, but as | have already
mentioned, this class will locate the appropriate resources section in the assem-
bly (or in satellite assemblies) and give access to the values. For example, here
is some code that is generated for you:

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 669 Tuesday, January 15,2002 12:17 PM

/1 CH#
private void InitializeConponent()

{

Syst em Resour ces. Resour ceManager resources =
new Syst em Resour ces. Resour ceManager (

typeof (nyForm ) ;
/1 some properties omtted
this.lcon = ((System Drawi ng. | con)
(resources. Get Object("$this.lcon")));
this. Text = resources. GetString("$this. Text");
this.Visible = ((bool)
(resources. Get Cbject ("$this.Visible")));

}

As you can see, Resour ceManager is initialized with the type of the form,
which gives the class one part of the information it needs to locate the resource
in the assembly. This class reads the Ul culture of the current thread, and using
this and the name of the form, it can determine the name of the form's re-
sources (i.e., it will search myFor m r esour ces for the default resources, and
myFor m en- GB. r esour ces for UK English resources). It then accesses the
string resources using Get St ri ng() (as shown here, with the Text property),
and all other resources are accessed through Get Qbj ect (). The designer
uses the convention of naming each resource $t hi s. <pr opert ynanme>. Be-
cause Resour ceManager determines the appropriate resources for the cur-
rent locale, you do not need to write this locale-specific code.

When you compile the form, the project will add the default resources to the
assembly that contains the form and will generate a satellite assembly for each
of the other resource files. These satellites will be named according to the satel-
lite convention: <f or mAssen®. r esour ces. dl | , where <f or mAssen® is the
name of the form’s assembly. Each satellite will be located in a folder named ac-
cording to the locale of the satellite, as I'll describe later.

8.3.7 Resource Classes

The Syst em Resour ces namespace has the classes that are needed to read
and write compiled resources. Resour ceReader enumerates resources and
gives access to them through an | Di cti onar yEnuner at or interface. The
constructor parameter takes either the name of a file or an already opened

APPLICATION DEVELOPMENT

669



% $ 5062_CHO08 Page 670 Tuesday, January 15,2002 12:17 PM

670

stream, which, conveniently, is what Assenbl y. Get Mani f est Resour ce-
St rean() will return:

/] C#
System Ref | ecti on. Assenbly assem
assem = Assenbl y. Get Executi ngAssenbl y();
Stream stm
stm = assem Cet Mani f est Resour ceSt r eam(
"nyAssem nyResour ces. resources");
Resour ceReader reader = new ResourceReader (stnj;
foreach (DictionaryEntry de in reader)
Consol e. Wi teLine(de. Key +" = "+de. Val ue);

This code will look for a resource called nyAssem nmyResour ces. r esour ces
and will print the name/value pairs contained in it.

The ResourceWi t er class is used to write compiled . r esour ce files. It
takes as a construction parameter either the name of the file or, if you have an
already open file, a writable stream. You can then use one of the overloaded
AddResour ce() methods to add a string or a binary value to the resource. If
you choose to write a binary value, you can pass either a byt e[ ] array with the
object already serialized or a reference to the object. If you pass an object refer-
ence, it must be an instance of a serializable class. The actual resource is not
created until you call the Gener at e() method, which is also called by the

d ose() method that closes the output stream. Thus you can write code like
this:

Il CH
ResourceWiter rw
= new ResourceWiter("nmyResources. resources");
rw. AddResour ce(" Test String", "Some string data");
byte[] b = new byte[]{0, 1, 2, 3, 4};
rw. AddResour ce(" Test Data", b);
rw. Generate();
rw. G ose();

This code will add the resources to a file called myResources.re-
sour ces. The ability to write resource files is useful when you consider the Re-
sour ceManager class. This class is used to provide convenient access to
localized resources bound to an assembly or to satellite assemblies, or located

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 671 Tuesday, January 15,2002 12:17 PM

in separate files. As | have already mentioned, this class will read the Ul culture
of the current thread, and using this and a base name for the resource, it will lo-
cate the resource in the local file or in a satellite assembly. Typically you will add
a resource for a form, so the base name of the resource will be derived from the
form’s type. This is why the type of the form was used as the constructor param-
eter in the code | showed earlier.

If you add a separate resource file to your project, you need to provide to
the Resour ceManager constructor the name of the resource that will be de-
rived from the resource file's name. For example, if you add a resource file
called nmyRes.resources to the project, the resource will be named
myRes. r esour ces, and the base name will be nyRes. Thus the following code
will initialize a Resour ceManager object to load these resources:

Il C#
Resour ceManager rm
= new Resour ceManager (" nmyRes", assen;

The assemreference is the Assenbl y object that contains the resource (or
an assembly that has satellites that contain localized resources). You can get a
reference through the type of an existing object (e.g., in a form you can call
this. Get Type(). Assenbl y) or through the static members of Assenbl y:
Get Assenbl y() to get the assembly for a particular type, Get Cal | i ngAs-
senbl y() for the assembly that loaded the current assembly, or Get Execut -
i ngAssenbl y() to get the current assembly.

If you have created resource files using a Resour ceW i t er object, you can
load these resources using the static Cr eat eFi | eBasedResour ceManager ()
method of the Resour ceManager class. In the previous example, then, you can
load the resources in nyResour ces. r esour ces with the following code:

Il CH

Resour ceManager rm

Resour ceManager . Cr eat eFi | eBasedResour ceManager (
"myResources", ".", null);

Consol e. WiteLine(rmGetString("TestString"));

The first parameter is the name of the resource; the second parameter is
the folder where the resources are located. You can use localized files, but note

APPLICATION DEVELOPMENT

671



% $ 5062_CHO08 Page 672 Tuesday, January 15, 2002 12:17 PM

672

that the location of these files differs from how Resour ceManager locates sat-
ellite files. If you localize the resources in myResour ces for, say, French spoken
in France, the resource file will be called nyResources. fr-FR resources.
Yet you load this resource using the same code | showed earlier (assuming that
the Ul culture of the thread is f r - FR). Because the culture is part of a resource
file's name, you do not need to place the file in a separate localized folder, as
you do with satellites.

The final parameter passed to Cr eat eFi | eBasedResour ceManager ()
is the type of the resource set (identified in Resour ceSet ) that will be used. In
this case | have used nul I, which indicates that Syst em Resour ces. Re-
sour ceSet should be used. Resour ceManager uses the resource set to read
the resources from the resource file (the type of the resource set that this class
uses is accessed through its Resour ceSet Type property). A resource set has
a resource reader to do the actual reading; this reader is accessed through the
resource set's Reader field. You create your own resource set class so that you
can use resources that are held in a format other then the compiled format pro-
duced by r esgen.

Resource sets contain only the resources for a specific culture. You can cre-
ate a resource set through its constructor (by passing a resource stream or the
name of a resource file), or you can obtain it through Resour ceManager by
calling Get ResourceSet () and pass a Cul turel nfo object. Because re-
source sets are specific to a culture, there is no “fallback” to a neutral culture if
the specified culture does not exist. When you create a resource set, it will load
all the resources and cache them in a hash table.

In addition to classes for accessing r esgen-compiled resources, the Sys-
t em Resour ces namespace has classes for reading and writing . r esx XML
files: ResXResour ceReader and ResXResour ceW i t er, respectively. It also
has an implementation of Resour ceSet called ResXResour ceSet .

8.3.8 Satellite Assemblies
As the name suggests, a satellite assembly is separate from the assembly that

will use its resources. Do not confuse satellite assemblies with modules. Mod-
ules are constituent parts of an assembly and hence are subject to the version-

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 673 Tuesday, January 15, 2002 12:17 PM

ing of the assembly to which they belong. A satellite assembly is an assembly in
its own right, but unlike normal assemblies, it does not have code and hence
does not have an entry point. To create a satellite assembly, you use the assem-
bly builder tool, al . exe. For example, imagine that you have resources local-
ized to German in a resource file called App. de. resources. This file is
embedded into a satellite assembly as a result of the following command line:

al /t:lib /enbed: App. de. resources
/cul ture:de /out: App.resources.dl

This command creates a library assembly called App. resources. dl | lo-
calized to German. If you choose, you can create an empty code file with the
[ Assenbl yVer si on] attribute to give the satellite assembly a version:

/1 C#, file: ver.cs
[ assenbly: System Refl ection
. Assenbl yVersion("1.0.0.1") ]

The assembly is now compiled with the following:

csc /t:nmodul e ver.cs
al /t:lib /enbed: App. de. resources
/c:de /out: App.resources.dl |l ver.netnodul e

The assembly is still resource-only because the module that is linked in has
only metadata. You could do the same thing with the [ Assenbl yConpany] and
[ Assenbl yDescri ption] attributes to add information about the company
that created the assembly and a description. The problem with this approach is
that there are now two files to deploy: App. resources. dl | and ver. net -
modul e. To get around this problem, the assembly builder tool allows you to
pass some of this information through command-line switches, which are listed
in Table 8.3.

Using the / ver si on switch, you can tell the assembly builder to specify the
version of the assembly. In the absence of other version switches (/ fi | ever -
si on, / product ver si on), the version you specify will be used to provide a
Win32 FI LEVERSI ON resource in the library and will be the basis of the PRO-
DUCTVERSI ON and FI LEVERSI ON fields.

APPLICATION DEVELOPMENT

673



% $ 5062_CHO08 Page 674 Tuesday, January 15,2002 12:17 PM

Table 8.3 Assembly builder switches used to change the assembly’s metadata

Switch

Attribute Equivalent

Description

/ conpany

/configuration

/ copyri ght

/culture

/ del aysi gn

/ descri ption

/fileversion

/keyfile

/ keyname

/ pr oduct

/ product versi on

Ititle

/trademark

/version

[ Assembl yConpany]

[ Assenbl yConfi gurati on]

[ Assenbl yCopyri ght ]

[ Assenbl yCul t ure]

[ Assenbl yDel aySi gn]

[ Assenbl yDescri ption]

[ Assenbl yFi | eVer si on]

[ Assenbl yKeyFi | e]

[ Assenbl yKeyNane]

[ Assenbl yProduct ]

[ Assenbl yI nf or mat i onal Ver si on]

[Assenmbl yTitl e]

[ Assenbl yTr ademnar k]

[ Assenbl yVer si on]

The company that
created the assembly

Typically Retail or
Debug

Your copyright notice

The culture of the
assembly

Specification of
whether the assembly
can be signed later by
sSn. exe

A description of the
assembly

The Win32 version of
the library

The name of the file
with the key

The name of the key
in a cryptographic
container

The product’s name

The version of the
product

The friendly name of
the assembly

Your trademark

The assembly version

Now imagine that you have resources for the same application localized to
Frenchin App. fr. resour ces. This data is embedded into a satellite assembly

by the following command line:

674 DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e



% $ 5062_CHO08 Page 675 Tuesday, January 15, 2002 12:17 PM

al /t:lib /enbed: App. fr.resources
/culture:fr /out: App.resources.dl

This command also creates a library assembly called App. resources. dl | .
The code in Resour ceManager does not use the name of the assembly to deter-
mine its culture; instead it uses the [ Assenbl yCul ture] attribute (the . | o-
cal e metadata) to locate the correct satellite assembly. Because the satellites
have the same name, they should be installed in subfolders of the folder contain-
ing the assembly that uses the satellite. These folders should have the name of
the locale of the satellite; for example, the German resources should be in a folder
called de, and the French resources should be in a folder called fr .

If your satellite files are to be shared by several applications, you should in-
stall the satellites in the GAC (global assembly cache). If you do this, the satel-
lites should have a strong name. Remember that the full name of an assembly
includes its culture, version, and public key, so there are no problems with in-
stalling several satellite files in the GAC because although the short name of the
assembly will be the same, the full names will differ by the culture element.

When a Resour ceManager object is created and tries to locate localized
resources, the runtime first looks in the GAC for the satellite assembly with the
correct culture and checks whether it has the resource. If this check fails, the
current folder is checked for the culture-specific assembly in a named folder. If
this search fails, the runtime starts the search again, but this time for an assem-
bly that has the appropriate “fallback” culture—first in the GAC, and then in the
current directory. Each culture will have a fallback culture that will be searched in
this way, until finally the runtime will attempt to locate the resource in the default
resources for the assembly, which will be in the main assembly. If this search
fails, the resource cannot be found and an exception will be thrown.

Because satellite assemblies can have a different version from the version of
the main assembly, satellite versions can get out of sync with the main assem-
bly. To get around this problem, the main assembly can specify a base version
of the satellite assemblies that it uses; it does this with an assembly-level at-
tribute:

[assenbly: SatelliteContractVersion("1.0.0.0")]

APPLICATION DEVELOPMENT

675



% $ 5062_CHO08 Page 676 Tuesday, January 15,2002 12:17 PM

676

Unlike versions applied through [ Assenbl yVer si on], the string version
must have all four parts. The satellite assembly can be versioned independently
from the main version, and the changes can be reflected in the application’s con-
figuration file or, if it is installed in the GAC, through a publisher policy file.

The name that | have used for the satellite assembly is <assen®.re-
sour ces. dl | . This is a standard naming convention and is vital to how the Re-
sour ceManager class works. The <assen® part is the name of the assembly
that will use these resources. This is the only mechanism that exists to tie a sat-
ellite to the assembly with which it is used.?

If you use satellite assemblies, | urge you to make sure that you also provide
locale-neutral resources. A locale-neutral resource is named without a locale and
is bound to the assembly that uses the resource. In the preceding example, the
main assembly will be compiled with a command line that looks like this:

csc /res: App.resources /out: App. exe app.cs

The assembly is called App. exe. When it is run, Resour ceManager will
check for an appropriate resource for the current culture within the satellite as-
semblies, and if that resource is not present, it will load the locale-neutral re-
source from the main assembly. Locating satellite assemblies is not part of
Fusion’s work, so if Resour ceManager cannot find a satellite assembly, there
will be no binding-error message in the Fusion log (viewable with Fus-
LogVW exe), and if your main assembly has a locale-neutral resource, you'll
have no indication that there has been a problem. (If you do not have locale-
neutral resources, Resour ceManager will throw a M ssi nghani f est -
Resour ceExcept i on exception.)

8.3.9 The Event Log, Again

So | am back to the event log again. As | mentioned earlier in this book, .NET has
a poor implementation of the classes to write messages to the event log. The prin-
cipal reason | say this is that these classes put the onus on the user of the

2. If you are careful to name the satellite assemblies and folders correctly, then loading locale-
specific resources is straightforward. However, because the location of the correct assembly is so
dependent on these names, | regard it as quite a fragile mechanism.

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




% $ 5062_CHO08 Page 677 Tuesday, January 15, 2002 12:17 PM

Event Log class to localize the messages that are written to the event log rather
than taking the correct approach, which is to put the onus on the reader of the
event log. If the writer is responsible for localizing messages, the messages can
be read in only one locale, which is fine if your distributed application runs in only
one locale. In these days of globalization, however, your application could conceiv-
ably have components running in different locales, and if a message is localized
when it is generated, it ties that message to that locale. Unfortunately, there is lit-
tle one can do with the current framework classes, and one can only hope that this
horrible throwback to the broken event log classes that were present in VB6 will be
fixed in a later version of the Framework Class Library.

To localize event log messages, your code merely creates localized format
strings in a resource file and then at runtime uses a resource manager to load
the appropriate string:

/1 CH#
Resour ceManager rm
= new Resour ceManager (typeof (myForm);
string errMsg = String. Format (
rmGetString("errNoFile"), strFileNane);
Event Log el = new Event Log("Application");
el .WiteEntry(errMsg);

8.3.10 Win32 Resources

Assemblies are PE files, so they can have Win32 resources. For a C++ devel
oper this is not a problem because managed C++ projects use the standard
linker, which will link a compiled Win32 (. r es) file into a PE file. Indeed, as | men-
tioned earlier, when you add a resource to a managed C++ project, that re-
source will be a Win32 resource and not a .NET resource. C# developers can
also include Win32 resources using either the C# compiler (csc. exe) or the as-
sembly builder tool (al . exe). Both of these tools have a / wi n32res and a /
wi n32i con switch, the first of which allows you to add an already compiled re-
source to an assembly. It is probably best to do this within a C++ project, where
you can edit an . r ¢ file and use the Resource View window to add and edit the
resources. The unmanaged resource compiler, rc. exe, is used to compile a
.rcfileintoa.res file.

APPLICATION DEVELOPMENT

677



% $ 5062_CHO08 Page 678 Tuesday, January 15, 2002 12:17 PM

678

One type of resource that can be described in an . rc file is the icon. The
first icon in a file’s resources will be used by Windows Explorer when displaying
the file, and if the file is an executable, this icon will be the application icon.

The / wi n32i con switch is the only way that you can set the icon for an as-
sembly. This switch takes the name of the icon (. i co) file; you do not compile it.
It is prudent to add both a 32x32 bit image and a 16x16 bit image so that you
can determine the icon that will be shown in Windows Explorer, no matter what
view the user chooses.

.NET code does not understand Win32 resources, so if you need to read
Win32 resources, you have to resort to interop through Platform Invoke. The
code is straightforward, and there is even a sample in the Framework SDK sam-
ples (called TI bGen) that shows how to add a Win32 resource to an assembly
programmatically, using the Win32 resource APIs.

8.4 Summary

Visual Studio.NET allows you to create applications, as well as controls and com-
ponents that can be used as part of applications. Components are objects that
can have a site and can be disposed of. The Toolbox window contains compo-
nents. Controls are components that are derived from the Cont rol class and
have a user interface. Some controls are composites of other controls; these are
derived from User Cont r ol . The VS.NET IDE allows you to develop User Con-
trol objects and For mobjects with the designer, which lets you construct a user
interface by dragging and dropping components and controls from the Toolbox
window and then using the Properties window to provide property values and
events. The designer also allows you to develop components and controls, but it
does not allow you to develop the user interface of a Cont r ol class.

Applications and User Cont r ol classes can be localized so that they can
be used in different locales. Localization involves creating resources for each lo-
cale, and these resources can be stored in satellite assemblies. The IDE makes
localization straightforward through the Properties window; you simply have to
set the Language property, and then all the properties that you set will be
stored in an . r esx file for the locale. The IDE will build the satellite assemblies
for each locale’s . r esx file in your project.

DEVELOPING APPLICATIONS WITH VISUAL STUDIO.NET

e




