
Chapter 2

Designing, Building, and Working
with COM-Based Components

2-1 Think in terms of interfaces.

2-2 Use custom interfaces.

2-3 Define custom interfaces separately, preferably using IDL.

2-4 Avoid the limitations of class-based events with custom callbacks.

2-5 Be deliberate about maintaining compatibility.

2-6 Choose the right COM activation technique.

2-7 Beware of Class_Terminate.

2-8 Model in terms of sessions instead of entities.

2-9 Avoid ActiveX EXEs except for simple, small-scale needs.

Microsoft’s Component Object Model is an important technology for sharing
class-based code. The beauty of COM is that it is language independent, allow-
ing developers to work in the language of their choice. It was VB, however, that
first opened the door to widespread COM development.

The design of COM centers around the concept of an interface: Classes
expose interfaces, and clients communicate with objects via these interfaces.
Although VB can hide most aspects of interface-based programming, it’s far
better to be informed and to decide for yourself how much VB hides—and how
much you explicitly embrace. If you are new to interfaces, rule 2-1 will get
you started. We then encourage you to embrace fully interface-based design
(rules 2-2 and 2-4), and to do so using tools outside VB (rule 2-3). Once

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 61

hummel02.qxd 4/30/01 1:17 PM Page 61

defined, an interface is considered immutable to maintain compatibility as
the component evolves. Compatibility is a subtle issue, and is the subject of
rule 2-5.

The remaining rules focus on other important but less traveled techniques
with respect to COM: proper COM activation and termination (rules 2-6 and
2-7), high-level class design (rule 2-8), and the move away from ActiveX EXE
servers (rule 2-9).

Note that you may come across some COM-related terms that aren’t defined
in great detail: in-process DLL, GUIDs, registering a server, COM activation,
and everyone’s favorite IUnknown. Some of the rules assume a basic COM
background, so readers new to COM may need to consult one of the many avail-
able COM texts. Or, you can review the free online tutorial designed for VB pro-
grammers at www.develop.com/tutorials/vbcom.

Rule 2-1: Think in Terms of Interfaces
An interface defines a communication protocol between a class and a client (a
user of that class). When a client references an object, the interface associated
with this reference dictates what the client can and cannot do. Conceptually, we
depict this relationship as shown in Figure 2.1. Note that an interface is repre-
sented by a small “lollipop” attached to the object. This symbolizes the fact that
an interface is separate from, but a conduit to, the underlying implementation.

But what exactly is an interface? Consider the following employee class
CEmployee:

‘** CEmployee: class
Private sName As String

Private cSalary As Currency

Public Property Get Name() As String

Name = sName

End Sub

Public Property Get Salary() As Currency

Salary = cSalary

End Salary

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS62

hummel02.qxd 4/30/01 1:17 PM Page 62

Public Sub ReadFromDB()

... ‘** read from a database into private members
End Sub

Public Sub IssuePaycheck()

... ‘** issue employee’s paycheck
End Sub

Clients have access only to the public members—in this case, Name,
Salary, ReadFromDB, and IssuePaycheck. These members constitute what
is called the default interface of CEmployee. In general, an interface is simply
a set of signatures denoting the public properties and methods. Because a
class must expose at least one public member to be useful, this implies that
every class in VB has at least one interface—its default.

The key point is that once an interface is published and in use by one or
more clients, you should never change it. Doing so will break compatibility with
your client base. For example, suppose our CEmployee class is compiled in a
stand-alone COM component. Now consider the following client code written
against CEmployee’s default interface:

Dim rEmp As CEmployee ‘** reference to default interface
Set rEmp = New CEmployee

rEmp.ReadFromDB

txtName.Text = rEmp.Name

txtSalary.Text = Format(rEmp.Salary, "currency")

If you were to change the name of CEmployee’s public methods or prop-
erties and rebuild the COM component, this client code would no longer com-
pile. If the client code was already compiled into an EXE, changing the type of

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 63

Client

rObject Object

Figure 2.1 Client accessing an object through an interface

hummel02.qxd 4/30/01 1:17 PM Page 63

Name or Salary and rebuilding the COM component would cause a run-time
failure when executing the client. In fact, any change to a public signature rep-
resents a change to an interface, and leads, ultimately, to some kind of error in
code using that interface.

As a class designer, what changes can you safely make to your components
over time? Because clients do not have access to private members, these can
be changed at will. Of course, implementation details can also be modified, as
long as the result is semantically equivalent. Lastly, note that although you can-
not delete public members from an interface, you can add properties and meth-
ods without breaking compatibility (see rule 2-5 for a complete discussion of
compatibility).

Thinking in terms of interfaces, and thus separating interface from imple-
mentation, helps you focus on a critical aspect of software development: main-
taining compatibility as a system evolves. The next rule encourages you to take
this one step further and actually design your classes in terms of explicit, cus-
tom interfaces. The result is that your systems become more open to change.

Rule 2-2: Use Custom Interfaces
COM is more than just a technology for building software—it is also a philoso-
phy for building systems that evolve more easily over time. The designers of
COM recognized that excessive coupling hinders evolution, and thus sought a
mechanism that minimized the coupling between components. For example, VB
clients typically reference a class directly:

Dim rEmp As CEmployee ‘** class-based reference = default interface

As we know from rule 2-1, this declaration implicitly couples the client
code to the default interface of class CEmployee. Because an interface repre-
sents a binding contract between client and class, this coupling prevents the
class from evolving. But what if you really need to make an interface change
(e.g., to extend a class’s functionality or to repair a design oversight)?

The COM solution is to embrace explicitly interfaces in both the clients and
the classes—an approach known as interface-based programming. Instead of
presenting a single default interface, classes now publicize one or more custom
interfaces. Clients then decide which custom interface they need, and couple to

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS64

hummel02.qxd 4/30/01 1:17 PM Page 64

this interface much like before. The key difference, however, is that classes are
free to introduce new custom interfaces over time. This allows the class to
evolve and to serve new clients, yet remain backward compatible with existing
clients. Interface-based programming is thus a design technique in which inter-
faces serve as the layer of abstraction between clients and classes. As shown
in Figure 2.2, this minimizes coupling on the class itself.

How do you define a custom interface? Like classes, custom interfaces are
created in VB using class modules. Unlike classes, they contain no implemen-
tation because a custom interface is simply a set of method signatures. For
example, here’s the default interface of CEmployee (from rule 2-1) rewritten as
a custom interface named IEmployee:

‘** class module IEmployee
Option Explicit

Public Property Get Name() As String

End Sub

Public Property Get Salary() As Currency

End Sub

Public Sub ReadFromDB()

End Sub

Public Sub IssuePaycheck()

End Sub

Note the absence of implementation details (i.e., private members and code).
A custom interface thus represents an abstract class, which is conveyed in VB
by setting the class’s Instancing property to PublicNotCreatable. This
also prevents clients from mistakenly trying to instantiate your interfaces at run-
time.

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 65

Client Interface Object ObjectClient

Figure 2.2 Two views of an interface

hummel02.qxd 4/30/01 1:17 PM Page 65

Once defined, custom interfaces must be implemented in one or more class
modules. For example, here is the class CConsultant that implements our
custom interface IEmployee:

‘** class module CConsultant
Option Explicit

Implements IEmployee

Private sName As String

Private cSalary As Currency

Private Property Get IEmployee_Name() As String

IEmployee_Name = sName

End Sub

Private Property Get IEmployee_Salary() As Currency

IEmployee_Salary = cSalary

End Sub

Private Sub IEmployee_ReadFromDB()

... ‘** read from a database into private members
End Sub

Private Sub IEmployee_IssuePaycheck()

... ‘** issue employee’s paycheck
End Sub

Observe that every member in the class is labeled private! Clients thus
cannot couple to CConsultant in any way, allowing it to evolve freely.
Compatibility is maintained by continuing to implement IEmployee.

In general, clients now have a choice when accessing a class: to use its
default interface or to use any one of the custom interfaces it implements. This
choice is expressed by declaring your reference variables of the appropriate
interface. For example, here we are accessing a CConsultant object through
the IEmployee interface:

Dim rEmp As IEmployee ‘** reference to custom interface
Set rEmp = New CConsultant ‘** class that implements this interface

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS66

hummel02.qxd 4/30/01 1:17 PM Page 66

rEmp.ReadFromDB

txtName.Text = rEmp.Name

txtSalary.Text = Format(rEmp.Salary, "currency")

This situation is depicted in Figure 2.3. Note that the CConsultant object
publicizes two interfaces: a default and IEmployee. VB classes always define
a default interface, enabling clients to use class-based references:

Dim rEmp2 As CConsultant ‘** class-based reference = default interface
Set rEmp2 = ...

This is true regardless of whether the interface is empty, which it is in the case
of CConsultant because the class contains no public members. The variable
rEmp2 is thus useless, because there are no properties or methods to access.

Now that we can define, implement, and use custom interfaces, you may
be wondering: How exactly does all this help me evolve my system more eas-
ily? Whenever you need to change a private implementation detail, merely
recompile and redeploy the component (be sure to read rule 2-5 before recom-
piling COM components in VB). And when you need to make an interface
change, simply introduce a new custom interface. In other words, suppose you
want to evolve the CConsultant class by applying some bug fixes as well as
by making a few interface changes. You would define a new interface,
IEmployee2, implement it within CConsultant, apply the other bug fixes,
recompile, and redeploy.

When existing clients come in contact with instances of the revised class,
the result is shown in Figure 2.4 (notice the third lollipop).

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 67

Client

rEmp
CConsultant

Def

IEmp

Figure 2.3 Referencing an object through a custom interface

hummel02.qxd 4/30/01 1:17 PM Page 67

By introducing new interfaces, classes evolve to support new clients while
remaining compatible with existing ones. Note that you have two choices when
defining a new interface: It is completely self-contained or it works in con-
junction with other interfaces. For example, suppose the motivation for
IEmployee2 is to add parameters to the method ReadFromDB, and also to
add a method for issuing a bonus. In the first approach, you redefine the entire
interface:

‘** class module IEmployee2 (self-contained)
Option Explicit

Public Property Get Name() As String ‘** unchanged
End Sub

Public Property Get Salary() As Currency ‘** unchanged
End Sub

Public Sub ReadFromDB(rsCurRecord As ADODB.Recordset)

End Sub

Public Sub IssuePaycheck() ‘** unchanged
End Sub

Public Sub IssueBonus(cAmount As Currency)

End Sub

And then your classes implement both. For example, here’s the start of the
revised CConsultant class:

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS68

Client

rEmp CConsultant
(version 2)

Def

IEmp

IEmp2

Figure 2.4 An existing client referencing a new version of class CConsultant

hummel02.qxd 4/30/01 1:17 PM Page 68

‘** class module CConsultant (version 2)
Option Explicit

Implements IEmployee

Implements IEmployee2

.

.

.

Although the class contains some redundant entry points (Name, Salary,
and IssuePaycheck are identical in both interfaces), the advantage is
that clients need to reference only one interface—either IEmployee or
IEmployee2. The alternative approach is to factor your interfaces, such that
each new interface includes only the changes and the additions. In this case,
IEmployee2 would contain just two method signatures:

‘** class module IEmployee2 (factored)
Option Explicit

Public Sub ReadFromDB(rsCurRecord As ADODB.Recordset)

End Sub

Public Sub IssueBonus(cAmount As Currency)

End Sub

This eliminates redundancy in the class, but requires more sophisticated
programming in the client. For example, here’s the revised client code for read-
ing an employee from a database and displaying their name and salary:

Dim rEmp As IEmployee ‘** one reference var per interface
Dim rEmp2 As IEmployee2

Set rEmp = New CConsultant ‘** create object, access using IEmp
Set rEmp2 = rEmp ‘** access same object using IEmp2

rEmp2.ReadFromDB ... ‘** read from DB/RS using IEmp2
txtName.Text = rEmp.Name ‘** access properties using IEmp
txtSalary.Text = Format(rEmp.Salary, "currency")

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 69

hummel02.qxd 4/30/01 1:17 PM Page 69

This is depicted in Figure 2.5. Note that both variables reference the same
object, albeit through different interfaces.

As your system evolves, different versions of clients and classes may come
in contact with one another. For example, it’s very common for classes to gain
functionality over time, and thus for a single client to interact with numerous
iterations of a class. This implies the need for a mechanism by which a com-
piled client, already deployed in production, can determine what functionality
an object provides; i.e., what interfaces it currently implements. Such a mech-
anism, based on run-time type information (RTTI), is provided by every COM
object and is accessed using VB’s TypeOf function.

Suppose our system contains a number of different employee classes:
CConsultant, CTechnical, CAdministrative, and so forth. All such
classes implement IEmployee, but currently only a few have been revised to
implement IEmployee2. Now, suppose the task at hand is to send out a bonus
to every employee who is not a consultant. Assuming the employee objects are
stored in a collection, we can iterate through the collection and simply check
the interfaces published by each object:

Public Sub SendOutBonuses(colEmployees As Collection, _

cAmount As Currency)

Dim rEmp As IEmployee, rEmp2 As IEmployee2

For Each rEmp in colEmployees

If TypeOf rEmp Is CConsultant Then ‘** no bonus for you
‘** skip

Else ‘** issue this employee a bonus...
If TypeOf rEmp Is IEmployee2 Then ‘** use interface

Set rEmp2 = rEmp

rEmp2.IssueBonus cAmount

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS70

Client

rEmp CConsultant
(version 2)

Def

IEmp

IEmp2rEmp2

Figure 2.5 Each interface requires its own reference variable in the client

hummel02.qxd 4/30/01 1:17 PM Page 70

Else ‘** issue bonus the old-fashioned way
<human intervention is required>

End If

End If

Next rEmp

End Sub

Even though the default interface CConsultant is empty, we use it as a
marker interface to identify consultants uniquely. Of the remaining employees
(all of whom receive a bonus), we check for the IEmployee2 interface and
apply the IssusBonus method if appropriate. Failing that, human intervention
is required because the employee object does not provide an automatic mech-
anism. The beauty of TypeOf is that it is a run-time mechanism: The next time
you execute it, it will respond True if the class has been revised to implement
that interface. Thus, as more and more classes implement IEmployee2 over
time, SendOutBonuses will demand less and less human intervention.

The previous discussion reveals another advantage of custom interfaces—
polymorphism (see rule 1-7 for a more precise definition). If you think of cus-
tom interfaces as reusable designs, then it makes perfect sense for different
classes to implement the same interface. This leads to plug-compatible com-
ponents, and a powerful, polymorphic style of programming in the client in
which code is (1) reusable across different classes and (2) resilient to change
as classes come and go. For example, consider once again a system with
numerous employee classes that all implement IEmployee. As implied by
Figure 2.6, our client-side code is compatible with any of these employee
classes. Thus, if we need to pay everyone, this is easily done using the
IssuePaycheck method implemented by each class:

Public Sub PayEveryone(colEmployees As Collection)

Dim rEmp As IEmployee

For Each rEmp in colEmployees

rEmp.IssuePaycheck

Next rEmp

End Sub

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 71

hummel02.qxd 4/30/01 1:17 PM Page 71

In other words, IssuePaycheck is polymorphic and can be applied with-
out concern for the underlying object type. Furthermore, if new employee
classes are added to the system, as long as each class implements IEmployee,
then the previous code will continue to function correctly without recompilation
or modification. As you can imagine, given a large system with many employee
types and varying payment policies, polymorphism becomes a very attractive
design technique.

Lest we all run out and start redesigning our systems, note that custom
interfaces come at a price. They do require more effort, because each interface
is an additional entity that must be maintained. Custom interfaces also compli-
cate the compatibility issue, in the sense that default interfaces are easily
extended (as a result of built-in support from VB) whereas custom interfaces are
immutable (see rule 2-5 for a detailed discussion of maintaining compatibility
in VB). Finally, scripting clients such as Internet Explorer (IE), Active Server
Pages (ASP), and Windows Scripting Host (WSH) cannot access custom inter-
faces directly. They are currently limited to a class’s default interface. This last
issue is problematic given the importance of scripting clients in relation to the
Web. Thankfully, a number of workarounds exist (see rule 4-5) until compiled
environments (such as ASP.NET) become available.

Generally, however, the benefits of custom interfaces far outweigh the costs.
Custom interfaces force you to separate design from implementation, encour-

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS72

Client

rEmp CConsultant

Def

IEmp

IEmp2

CAdmin

Def

IEmp

IEmp2

CTechnical
Def

IEmp

Figure 2.6 Custom interfaces encourage polymorphism

hummel02.qxd 4/30/01 1:17 PM Page 72

aging you to think more carefully about your designs. They facilitate design
reuse as well as polymorphism. Of course, custom interfaces also serve to min-
imize coupling between clients and classes, allowing your classes to evolve
more freely while maintaining compatibility. As a result, you’ll be able to “field-
replace” components as business rules change or bug fixes are applied, insert
new components of like behavior without having to revisit client code, and
define new behavior without disturbing existing clients. You should thus con-
sider the use of custom interfaces in all your object-oriented systems, but espe-
cially large-scale ones in which design and coupling have a dramatic effect.

Custom interfaces are so important that COM is based entirely on inter-
faces. Clients cannot access COM objects any other way. Hence, COM pro-
grammers are interface-based programmers. In fact, there exists a language, the
Interface Description Language (IDL), solely for describing interfaces. Often
called “the true language of COM,” IDL is what allows a COM object developed
in programming environment X to be accessed from a client written in pro-
gramming environment Y. Although typically hidden from VB programmers,
there are definite advantages to using IDL explicitly to describe your custom
interfaces. Read on; we discuss this further in the next rule.

Rule 2-3: Define Custom Interfaces Separately,
Preferably Using IDL
Interface-based programming is a powerful mechanism for building systems
that evolve more easily over time. The importance of this programming style is
evident in the design of Java, which raised interfaces to the same level as
classes. Of course, COM is another compelling example of the significance of
interfaces.

A custom interface is nothing more than a set of method signatures defined
as a stand-alone entity. As discussed in the previous rule, however, this simple
concept enables a wide range of advantages—in design, reuse, and evolution.
The proposal here is to take this one step further and to define the interfaces
separately.

In VB interfaces are typically defined as PublicNotCreatable class
modules and are then implemented in MultiUse class modules within
the same project (see the previous rule if you have never worked with custom

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 73

hummel02.qxd 4/30/01 1:17 PM Page 73

interfaces). Although this is a perfectly adequate approach to implementation,
there is a significant drawback: When you hand out your interfaces as class
modules, you are essentially giving out the source code. This opens up the pos-
sibility that others may change your interfaces, thus altering your design and
breaking compatibility with your clients. Whether the changes are accidental or
intentional, this is a dangerous loophole.

As shown in Figure 2.7, the simplest precaution is to define your interfaces
in a separate ActiveX DLL project, compile and hand out the resulting DLL file.
Class implementers then create a separate VB project, set a project reference
to this DLL, and implement the custom interfaces as before. Likewise, the client
(typically denoted by a standard EXE project) must also set a reference to the
interface’s DLL. This scenario is depicted in Figure 2.8. Note that the client
project actually references both the interface’s DLL and the class’s DLL. The for-
mer is needed to declare variables referencing a custom interface, whereas the
latter is necessary to instantiate classes using New. For example,

Dim rEmp As IEmployee ‘** need interface information
Set rEmp = New CConsultant ‘** new class information

Keep in mind that a COM-based DLL must be registered on your machine
before it can be referenced from a VB project. This can be done using the
Windows utility RegSvr32, or through the Browse button available off the
Project >> References menu item in VB.

Although separating your interfaces into a separate VB project is an
improvement, it is somewhat confusing to use an executable DLL to represent

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS74

VB COM Interfaces
(.dll)

dummy (.cls)

Interface (.cls)

Interface (.cls)

Interface (.cls)

Figure 2.7 Defining custom interfaces separately in VB

hummel02.qxd 4/30/01 1:17 PM Page 74

entities that contain no implementation! Furthermore, because ActiveX DLL
projects must contain at least one public class, to make this work you must
define a dummy MultiUse class along with your PublicNotCreatable
interface classes (see Figure 2.7).1 However, the most significant disadvantage
to this approach is that VB allows you to extend your custom interfaces, with-
out warning, even though the result breaks compatibility with your clients. For
example, accidentally adding a method to an interface and recompiling the
interface’s DLL will break both the class implementer and the client application.
This is true regardless of VB’s compatibility mode setting when working with
your interfaces (see rule 2-5).

The alternative, and better approach, is to do what C++ and Java pro-
grammers have been doing for years: defining their interfaces separately using
IDL. IDL is a small C-like language solely for describing interfaces, and is often
called “the true language of COM” because it is what enables clients and COM

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 75

COM Interfaces
(.dll)

Class (.cls)

Class (.cls)

Class (.cls)

VB COM Classes
(.dll)

Form (.frm) VB Client App
(.exe)

Project >> References

Project >> References

Figure 2.8 Accessing the custom interface’s DLL in other VB projects

1 This is not true of ActiveX EXE projects, so you can avoid dummy classes if you want.

hummel02.qxd 4/30/01 1:17 PM Page 75

components to understand each other. Thus, the idea is to abandon VB, define
your interfaces as a text file using IDL, compile this file using Microsoft’s IDL
compiler (MIDL), and deploy the resulting binary form, known as a type library
(TLB).2 This is outlined in Figure 2.9. Once you have a TLB definition of your
interfaces, your clients simply set a project reference to the TLB file instead of
the interface’s DLL file (Figure 2.10). Note that TLBs are registered using the
RegTLib utility, or via the Browse button under VB’s Project >> References.3

The advantage to using IDL and MIDL is that you, and only you, can change
an interface or break compatibility. You have complete control over your design,
and exactly when and how it evolves. The drawback is that you have to learn
yet another language. The good news is that we’ll show you a way to generate
automatically 98 percent of the IDL you’ll need. But first, let’s take a peek at
what IDL looks like. As an example, consider the following VB interface
IEmployee:

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS76

IDL File
(.idl)

MIDL

Type Library
(.tlb)

Figure 2.9 Defining custom interfaces separately using IDL

2 MIDL is a command-line utility that ships as part of Visual Studio (newer versions are available
in the Win32 SDK). Another tool, MkTypLib, performs the same function but accepts a slightly dif-
ferent interface language. We recommend the use of MIDL.
3 Unless otherwise specified, all utilities mentioned here ship with Visual Studio. To provide easy
access in a command window, run VCVars32.BAT to set up you path.

hummel02.qxd 4/30/01 1:17 PM Page 76

Public Name As String

Public Sub ReadFromDB(rsCurRecord As ADODB.Recordset)

End Sub

Public Function IssuePaycheck() As Currency

End Function

To make things more clear, let’s first rewrite this as a custom interface (no
data members), with parameter passing explicitly defined:

Private Property Get Name() As String

End Property

Private Property Let Name(ByVal sRHS As String)

End Property

Public Sub ReadFromDB(ByRef rsCurRec As ADODB.Recordset)

End Sub

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 77

Type Library
(.tlb)

Class (.cls)

Class (.cls)

Class (.cls)

VB COM Classes
(.dll)

Form (.frm) VB
Client App

(.exe)

Project >> References

Project >> References

Figure 2.10 Accessing the custom interface’s TLB in other VB projects

hummel02.qxd 4/30/01 1:17 PM Page 77

Public Function IssuePaycheck() As Currency

End Function

Now, here is the equivalent COM-based interface in IDL:

[

uuid(E1689529-01FD-42EA-9C7D-96A137290BD8),

version(1.0),

helpstring("Interfaces type library (v1.0)")

]

library Interfaces

{

importlib("stdole2.tlb");

[

object,

uuid(E9F57454-9725-4C98-99D3-5F9324A73173),

oleautomation

]

interface IEmployee : IUnknown {

[propget] HRESULT Name([out, retval] BSTR* ps);

[propput] HRESULT Name([in] BSTR s);

HRESULT ReadFromDB([in, out] _Recordset** pprs);

HRESULT IssuePaycheck([out, retval] CURRENCY* pc);

};

};

This IDL description defines a TLB named Interfaces, which is tagged
with three attributes (values within square brackets). When registered, the
helpstring attribute makes the TLB visible to VB programmers as “Interfaces
type library (v1.0),” whereas internally it is represented by the globally unique
identifier (GUID) E1689529-01FD-42EA-9C7D-96A137290BD8 because of
the uuid attribute. The library contains one interface, IEmployee, uniquely
identified by the GUID E9F57454-9725=4C98-99D3-5F9324A73173. The
remaining attributes define the version of IDL we are using (object) and
enable automatic proxy/stub generation (oleautomation). IEmployee con-
sists of four method signatures, each of which is defined as a function return-
ing a 32-bit COM error code (HRESULT). Note that VB functions (such as

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS78

hummel02.qxd 4/30/01 1:17 PM Page 78

IssuePaycheck) are redefined to return their values invisibly via an additional
out parameter. Finally, for each method, the VB parameter type is translated to
the equivalent IDL data type, and the parameter-passing mechanism (ByVal
versus ByRef) is transformed to its semantic equivalent (in versus in/out).
The most common mappings from VB to IDL data types are shown in Table 2.1.

In general, a TLB may contain any number of interface definitions. When
writing IDL, the first step is to assign the TLB and each interface a GUID. GUIDs
can be generated using the GuidGen utility: Select Registry Format, press New
GUID, then Copy, and paste the resulting GUID into your IDL file. Next, assign
the TLB and interfaces the same set of attributes shown earlier. Finally, define
each interface. Once you have the IDL file, simply run MIDL to compile it (see
Figure 2.9). For example, here’s the compilation of Interfaces.idl:

midl Interfaces.idl

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 79

VB IDL

Byte unsigned char

Integer short

Long long

Single float

Double double

Array SAFEARRAY(<type>) *

Boolean VARIANT_BOOL

Currency CURRENCY

Date DATE

Object IDispatch *

String BSTR

Variant VARIANT

Table 2.1 VB-to-IDL data type mappings

hummel02.qxd 4/30/01 1:17 PM Page 79

This produces the TLB Interfaces.tlb. The interfaces are now ready for use
by your clients (see Figure 2.10).4 Note that your clients do not have to be writ-
ten in VB. For example, class implementers can use C++ if they prefer. In fact,
another advantage of using IDL is that MIDL can automatically generate the
additional support files needed by other languages.

Although writing IDL is not hard, it is yet another language that you must
learn. Furthermore, you must be careful to use only those IDL constructs and
types that are compatible with VB. This is because of the fact that IDL is
able to describe interfaces for many different object-oriented programming lan-
guages (C++, Java, and so on), but only a subset of these interfaces are usable
in VB. Thus, writing IDL from scratch is not a very appealing process for VB
programmers.

Luckily, Figure 2.11 presents an easy way to generate VB-compatible IDL
automatically. Given a VB ActiveX DLL (or EXE), the OLEView utility can be
used as a decompiler to reverse engineer the IDL from the DLL’s embedded TLB
(put there by VB). Obviously, if we start with a DLL built by VB, the resulting
IDL should be VB compatible! The first step is to define your interfaces using
VB, as discussed earlier (see Figure 2.7). Then, run OLEView (one of the Visual
Studio tools available via the Start menu) and open your DLL file via File >>
View TypeLib. You’ll be presented with the reverse-engineered IDL. Save this as
an IDL file. Edit the file, defining a new GUID for the TLB as well as for each
interface, Enum, and UDT. Now compile the IDL with MIDL, unregister the VB
DLL, and register the TLB. In a nutshell, that’s it.

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS80

4 Note that class implementers should continue to work in binary compatibility mode. See
rule 2-5.

COM Interfaces
(.dll)

OLEView IDL File
(.idl)

MIDL Type Library
(.tlb)

Figure 2.11 Reverse-engineering IDL using OLEView

hummel02.qxd 4/30/01 1:17 PM Page 80

Unfortunately, OLEView is not perfect: You will want to modify the result-
ing IDL file before compiling it with MIDL. If your interfaces use the VB data
type Single, the IDL will incorrectly use Single as well. Search the file and
change all occurrences of Single to float. Also, if your interfaces define a
UDT called X, the equivalent IDL definition will be incorrect. Manually change
struct tagX {…} to struct X {…}. Finally, you’ll want to delete some unnec-
essary text from the IDL file. In particular, it will contain one or more coclass
(or COM class) definitions, including the dummy class you may have defined for
VB to compile your interfaces classes. For example, suppose Interfaces.DLL
contains the IEmployee interface class we discussed earlier, as well as a
CDummy class. Decompiling the DLL with OLEView yields

// Generated .IDL file (by the OLE/COM Object Viewer)

//

// typelib filename: Interfaces.DLL

[

uuid(E1689529-01FD-42EA-9C7D-96A137290BD8),

version(1.0),

helpstring("Interfaces type library (v1.0)")

]

library Interfaces

{

// TLib : // TLib : Microsoft ADO : {...}

importlib("msado15.DLL");

// TLib : // TLib : OLE Automation : {...}

importlib("stdole2.tlb");

// Forward declare all types defined in this typelib

interface _IEmployee;

interface _CDummy;

[

odl,

uuid(E9F57454-9725-4C98-99D3-5F9324A73173),

version(1.0),

hidden,

dual,

nonextensible,

oleautomation

]

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 81

hummel02.qxd 4/30/01 1:17 PM Page 81

interface _IEmployee : IDispatch {

[id(0x40030000), propget]

HRESULT Name([out, retval] BSTR* Name);

[id(0x40030000), propput]

HRESULT Name([in] BSTR Name);

[id(0x60030000)]

HRESULT ReadFromDB([in, out] _Recordset**);

[id(0x60030001)]

HRESULT IssuePaycheck([out, retval] CURRENCY*);

};

[...]

coclass IEmployee {

[default] interface _IEmployee;

};

[...]

interface _CDummy : IDispatch {

[id(0x60030000)]

HRESULT foo();

};

[...]

coclass CDummy {

[default] interface _CDummy;

};

};

At the very least, your IDL file must contain the code shown in boldface and
italic. The rest can be safely deleted. Note that VB defines the name of an inter-
face by starting with the _ character (e.g., _IEmployee). Delete this character
as well. Next, you should change each interface odl attribute to object, and
IDispatch reference to IUnknown. Finally, consider adding helpstring
attributes not only to your interfaces, Enums, and UDTs, but to their individual
elements as well. This information is visible when others browse your TLB,
yielding a convenient form of documentation.

You are now ready to begin using IDL for defining your interfaces, and to
reap the advantages that C++ and Java programmers have been enjoying for
years: separating design from implementation, and retaining complete control

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS82

hummel02.qxd 4/30/01 1:17 PM Page 82

over when and how your interfaces change. No one else can alter your design,
and only you can break compatibility with clients. The many advantages of cus-
tom interfaces rely on your ability to maintain compatibility, and IDL is the best
way to go about doing this.

Rule 2-4: Avoid the Limitations of Class-Based Events
with Custom Callbacks
The notion of events and event handling has been a central feature of VB since
its inception. The most common case is graphical user interface (GUI) building,
which typically requires the programming of form Load and Unload events,
command button Click events, and text box Validate events. But you can
also define and raise your own custom, class-based events. For example, the
class CConsultant could raise a Changed event whenever one or more data
fields in the object are updated:

‘** class module CConsultant
Option Explicit

Implements IEmployee

Private sName As String

Public Event Changed() ‘** event definition: Changed

Private Property Get IEmployee_Name() As String

IEmployee_Name = sName

End Sub

Private Property Let IEmployee_Name(ByVal sRHS As String)

sName = sRHS

RaiseEvent Changed ‘** name was changed, so raise event!
End Sub

.

.

.

Any client that holds a reference to a CConsultant object now has the
option to handle this event, and thus be notified whenever that employee’s data
changes:

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 83

hummel02.qxd 4/30/01 1:17 PM Page 83

‘** form module denoting client
Option Explicit

Private WithEvents employee As CConsultant ‘** client reference

Private Sub employee_Changed() ‘** event handler
<update form to reflect change in employee object>

End Sub

In essence, events enable an object to call back to its clients, as shown in
Figure 2.12.

Unfortunately, VB’s class-based event mechanism has a number of limita-
tions. For the client, the WithEvents key word can be applied only to module-
level reference variables; arrays, collections, and local variables are not
compatible with events. For the class designer, events must be defined in the
class that raises them, preventing you from defining a single set of events for
reuse across multiple classes. In particular, this means you cannot incorporate
events in your custom interfaces, such as IEmployee:

‘** class module IEmployee
Option Explicit

Public Name As String

Public Event Changed() ‘** unfortunately, this doesn’t work...

Public Sub ReadFromDB(rsCurRecord As ADODB.Recordset)

End Sub

Public Function IssuePaycheck() As Currency

End Function

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS84

Client

rEmp CConsultant

events...

Figure 2.12 Events are really just a callback mechanism

hummel02.qxd 4/30/01 1:17 PM Page 84

Although VB accepts this event definition, you’ll be unable to raise this event
from any of your classes.

The solution to these limitations is to design your own event mechanism
based on custom interfaces. Consider once again Figure 2.12. Notice that
events represent nothing more than an interface implemented by one or more
clients. For example, here is a custom interface IEmployeeEvents that
defines the Changed event:

‘** class module IEmployeeEvents
Option Explicit

Public Sub Changed(rEmp As IEmployee)

End Sub

The difference is that events are represented as ordinary subroutines; in this
case, with an explicit parameter providing a reference back to the object for
ease of access. To receive events, the client now implements the appropriate
interface, such as IEmployeeEvents:

‘** form module denoting client
Option Explicit

Implements IEmployeeEvents

Private Sub IEmployeeEvents_Changed(rEmp As IEmployee)

<update form to reflect change in rEmp.Name, etc.>

End Sub

However, we must mention one little detail: How does the object get that
reference back to the client, as shown in Figure 2.12? The object will raise the
event by making a call like this:5

rClient.Changed Me

But who sets this rClient reference variable?

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 85

5 If the object executing this code is configured for MTS, you must pass SafeRef(Me).

hummel02.qxd 4/30/01 1:17 PM Page 85

The client does, by calling the object to set up the callback mechanism.
Thus, before any events can occur, the client must first call the object and reg-
ister itself:6

rObject.Register Me ‘** register a reference back to ME, the client

This means the object must expose a Register method. Likewise, the
object should expose an Unregister method so that clients can stop receiv-
ing events:

rObject.Unregister Me ‘** unregister ME, the client

Because every object that wishes to raise events must provide a means of
client registration, the best approach is to define these methods in a custom
interface and to reuse this design across all your event-raising classes. The fol-
lowing interface IRegisterClient summarizes this approach:

‘** class module IRegisterClient
Option Explicit

Public Enum IRegisterClientErrors

eIntfNotImplemented = vbObjectError + 8193

eAlreadyRegistered

eNotRegistered

End Enum

Public Sub Register(rClient As Object)

End Sub

Public Sub Unregister(rClient As Object)

End Sub

Now, every class that wishes to raise events simply implements
IRegisterClient.

As shown in Figure 2.13, the end result is a pair of custom inter-
faces, IRegisterClient and IEmployeeEvents. The object implements

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS86

6 Likewise, if the client executing this code is configured for MTS, pass SafeRef(Me).

hummel02.qxd 4/30/01 1:17 PM Page 86

IRegister Client so that a client can register for events, whereas the client
implements IEmployeeEvents so the object can call back when the events
occur. For completeness, here’s the CConsultant class revised to take advan-
tage of our custom event mechanism:

‘** class module CConsultant
Option Explicit

Implements IRegisterClient

Implements IEmployee

Private sName As String

Private rMyClient As IEmployeeEvents ‘** ref back to client

Private Sub IRegisterClient_Register(rClient As Object)

If Not TypeOf rClient Is IEmployeeEvents Then

Err.Raise eIntfNotImplemented, ...

ElseIf Not rMyClient Is Nothing Then

Err.Raise eAlreadyRegistered, ...

Else

Set rMyClient = rClient

End If

End Sub

Private Sub IRegisterClient_Unregister(rClient As Object)

If Not rMyClient Is rClient Then

Err.Raise eNotRegistered

Else

Set rMyClient = Nothing

End If

End Sub

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 87

Client

rEmp CConsultant

rObj

IEmployeeEvents

IRegisterClient
rMyClient

Figure 2.13 An event mechanism based on custom interfaces

hummel02.qxd 4/30/01 1:17 PM Page 87

Private Property Get IEmployee_Name() As String

IEmployee_Name = sName

End Sub

Private Property Let IEmployee_Name(ByVal sRHS As String)

sName = sRHS

On Error Resume Next ‘** ignore unreachable/problematic clients
rMyClient.Changed Me ‘** name was changed, so raise event!

End Sub

.

.

.

The first step is to save the client’s reference in a private variable
(rMyClient) when he registers. Then, whenever we need to raise an event, we
simply call the client via this reference. Finally, when the client unregisters, we
reset the private variable back to Nothing. Note that the Register and
Unregister methods perform error checking to make sure that (1) the client
is capable of receiving events, (2) the client is not already registered, and
(3) the correct client is being unregistered. Furthermore, to handle multiple
clients, also note that the previous approach is easily generalized by replacing
rMyClient with a collection of client references.

To complete the example, let’s assume on the client side that we have a VB
form object that instantiates a number of employee objects (CConsultant,
CTechnical, CAdministrative, and so on) and displays them on the
screen. The client’s first responsibility is to implement the custom IEmployee-
Events interface so it can receive the Changed event:

‘** form module denoting client
Option Explicit

Private colEmployees As New Collection ‘** collection of object refs

Implements IEmployeeEvents

Private Sub IEmployeeEvents_Changed(rEmp As IEmployee)

<update form to reflect change in rEmp.Name, etc.>

End Sub

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS88

hummel02.qxd 4/30/01 1:17 PM Page 88

Here the Changed event is used to drive the updating of the form. Be-
fore the client can receive these events however, it must register with each
employee object that supports “eventing.” In this case we assume the employ-
ees are created during the form’s Load event based on records from a database:

Private Sub Form_Load()

<open DB and retrieve a RS of employee records>

Dim rEmp As IEmployee, rObj As IRegisterClient

Do While Not rsEmployees.EOF

Set rEmp =CreateObject(rsEmployees("ProgID").Value)

If TypeOf rEmp Is IRegisterClient Then ‘** event based
Set rObj = rEmp ‘** switch to register interface...
rObj.Register Me ‘** and register myself to receive events

End If

rEmp.ReadFromDB rsEmployees

colEmployees.Add rEmp

rsEmployees.MoveNext

Loop

<close DB and RS>

End Sub

Lastly, the client is also responsible for unregistering when it no longer
wishes to receive events. This task is performed during form Unload (i.e., when
the form is no longer visible):

Private Sub Form_Unload(Cancel As Integer)

Dim rEmp As IEmployee, rObj As IRegisterClient

Dim l As Long

For l = colEmployees.Count To 1 Step -1

Set rEmp = colEmployees.Item(l)

colEmployees.Remove l

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 89

hummel02.qxd 4/30/01 1:17 PM Page 89

If TypeOf rEmp Is IRegisterClient Then ‘** event based
Set rObj = rEmp ‘** switch to register interface...
rObj.Unregister Me ‘** and unregister myself

End If

Next l

End Sub

Note that unregistering is important to break the cyclic reference formed
between the client and the object.

Although custom callbacks require more effort to set up than VBs built-in
event mechanism, the benefits are many: reusable designs, better callback per-
formance, and more flexibility during implementation.7 For example, an object
with multiple clients can apply a priority-based event notification scheme if
desired. In the greater scheme of things, custom callbacks also illustrate the
power of using interfaces to design flexible solutions to everyday problems.

Rule 2-5: Be Deliberate About Maintaining Compatibility
In a COM-based system, clients communicate with objects via interfaces. These
interfaces must be well-defined, registered, and agreed on by all parties for your
system to run properly (Figure 2.14). The good news is that this is relatively
easy to ensure in your first release: Recompile the COM servers, then recompile
the clients and deploy.

However, at some point you will be faced with recompiling and redeploying
one of your COM servers—perhaps to apply bug fixes or to add new functional-
ity. In this case, what happens to the clients? You can either (1) redeploy all
new clients to match or (2) ensure that your COM server maintains compati-
bility with the existing clients. Although the latter is typically preferred (and cer-
tainly less work), it requires that you have a solid understanding of COM’s rules
for versioning, and how VB applies those rules. Otherwise, recompiling a COM
server can lead to all sorts of errors on the client side, from “Can’t create object”
and “Type mismatch” to the dreaded GPF.

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS90

7 Keep in mind that security may be an issue if raising events across processes/machines, because
the object needs permission to call the client.

hummel02.qxd 4/30/01 1:17 PM Page 90

Before we start, let’s review some important concepts in COM. A typical
COM server is a DLL/EXE that defines one or more classes, one or more inter-
faces, and a TLB that summarizes this information. Every class, interface, and
TLB is assigned a unique 128-bit integer called a GUID. These are referred
to as CLSIDs, IIDs, and LibIDs, respectively. GUIDs are compiled in the COM
server that defines them, make their way into the registry when the COM server
is registered, and usually get compiled in the clients as well. COM activation is
the process of creating an instance of a class from a COM server, triggered, for
example, when a client executes New. To activate, COM requires both a CLSID
and an IID, locates the COM server via the registry, asks the COM server to
create the instance, and then obtains the proper interface reference for return
to the client. As discussed in rule 2-3, you can use the OLEView utility to view
the contents of a server’s TLB and to see the GUIDs firsthand.

Lastly, it’s very important to understand the difference between a default
interface and a custom one. Review rules 2-1 and 2-2 if necessary.

To maintain compatibility with clients, the short answer is that when recom-
piling a COM server, you need to focus on three things: functionality, interfaces,
and GUIDs. Obviously, although implementation details may change, the
server’s overall functionality must be compatible from one version to the next.
Second, the interfaces exposed by each class should not change in any way.
Methods cannot be deleted, their names cannot differ, and their parameters

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 91

COM Server
(dll/exe)

Client

rObject Object

Registry

Figure 2.14 COM requires that servers (and their interfaces) be registered

hummel02.qxd 4/30/01 1:17 PM Page 91

cannot vary (not in number, type, or order). Finally, the identifying GUIDs
should not change (i.e., the CLSIDs, IIDs, and LibID). Let’s look at these com-
patibility issues in more detail.

Scripting Clients
The first step is to understand your clients. There are two types: scripting and
compiled. Scripting clients are typically written in VBScript or JavaScript and
are executed in environments such as ASP, IE, or WSH. The key characteristic
of a scripting client is its use of generic object references:

Dim rObj ‘** As Variant / Object

This typeless variable represents a late-bound (indirect, less efficient) con-
nection to an object’s default interface.8,9 In addition, scripting clients typically
create objects using VB’s CreateObject function, passing the appropriate
ProgID (a string denoting the TLB followed by a class name):

Set rObj = CreateObject(“Employees.CConsultant”)

CreateObject first converts the ProgID to a CLSID (via the registry), and then
performs a standard COM activation.10 Once activated, a scripting client may
call any method in the object’s default interface. For example,

rObj.IssuePaycheck

This assumes that IssuePaycheck is a public subroutine within class
CConsultant.

Thus, maintaining compatibility in your COM server amounts to preserving
the ProgIDs and the default interfaces. The ProgIDs are easy to deal with:
Simply do not change the name of your TLB or your classes. When building
COM servers in VB, note that your TLB’s name is derived from your VB project’s

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS92

8 Every method call typically requires two calls (lookup then invoke), with variants used to pass
parameters. This approach is based on COM’s IDispatch interface.
9 As discussed in rule 4-2, scripting clients cannot access custom interfaces.
10 Where does CreateObject get the IID? It uses the well-known IID for IDispatch, COM’s
predefined late-bound interface. This maps to the default interface of a VB class.

hummel02.qxd 4/30/01 1:17 PM Page 92

name (a project property). As for the default interfaces, for each class you can-
not delete any public subroutine or function, nor can you change its method sig-
nature. However, note that because clients are late-bound and parameters are
thus passed as variants, it is possible to change a parameter’s type in some
cases and still maintain compatibility. For example, suppose a class originally
contained the following method:

Public Sub SomeMethod(ByVal iValue As Integer)

This can evolve to

Public Sub SomeMethod(ByVal lValue As Long)

without breaking compatibility because Integer is upward compatible with
Long.

Finally, it is worth noting that compiled environments also behave like a
scripting client when object references are generic. In VB, this occurs whenever
clients use the Variant or Object data type:

Dim rObj2 As Object ‘** this says I want to be late-bound
Dim rObj3 As Variant ‘** likewise...

Each reference denotes a late-bound connection to an object, regardless of how
that object is created:

Set rObj2 = New Employees.CConsultant

Set rObj3 = CreateObject("Employees.CConsultant")

In this case, the same compatibility rules apply, with the exception that the
client’s use of New requires that the COM server’s CLSIDs and default IIDs also
remain unchanged. This is discussed in the next section.

Compiled Clients
Compiled clients are characterized by object references of a specific interface
type, for example:

Dim rObj4 As Employees.IEmployee ‘** a custom interface
Dim rObj5 As Employees.CConsultant ‘** the default interface

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 93

hummel02.qxd 4/30/01 1:17 PM Page 93

These variables represent a vtable-bound (direct, efficient) connection to a spe-
cific interface of an object. These interface types must be defined by your COM
server—or more precisely, in its TLB—which the client must reference. Object
creation is typically done using New or CreateObject:

Set rObj4 = CreateObject("Employees.CConsultant")

Set rObj5 = New Employees.CConsultant

Regardless of how the objects are created, at this point the reference rObj4
can be used to call methods in the custom interface IEmployee, whereas
rObj5 can be used to call methods in CConsultant’s default interface.

From the perspective of compatibility, the key observation about compiled
clients is that they refer to interfaces and classes by name. As a result, when
the client code is compiled, the corresponding IIDs and CLSIDs are embedded
into the resulting EXE. Thus, maintaining compatibility with compiled clients
requires that you preserve not only the ProgIDs and the interfaces, but the
GUIDs as well.

Much like scripting clients, the ProgIDs and interfaces are under your con-
trol. However, VB is in charge of generating the necessary GUIDs whenever you
compile your COM server. So how can you prevent VB from changing these
values during recompilation? By manipulating your project’s version compati-
bility setting, as shown in Figure 2.15.

The first setting, No Compatibility, means precisely that. If you recompile,
all GUIDs will be changed, thereby breaking compatibility with compiled
clients. This setting lets you intentionally break compatibility (e.g., when you
need to begin a new development effort). The second setting, Project
Compatibility, is meant to preserve compatibility with other developers. In this
case the LibID and CLSIDs are preserved, but the IIDs change. This allows ref-
erences to your TLB to remain valid (i.e., references to your COM server from
other VB projects), as well as class references embedded in Web pages.
However, the IIDs continue to change, reflecting the fact that the server is still
under construction. The rationale for this setting is team development, and thus
the setting should be used when you are developing classes that you must share
with others before the design is complete. To help track versions, note that VB
changes the version number of your COM server’s TLB by a factor of one each

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS94

hummel02.qxd 4/30/01 1:17 PM Page 94

time you recompile. The third and final setting is Binary Compatibility, in which
all GUIDs are preserved from one compilation to the next. This is VB’s “deploy-
ment” setting, because it enables you to maintain compatibility with compiled
clients out in production. Thus, you should switch to binary compatibility mode
(and remain there) as soon as you release the first version of your COM server.
Note that binary compatibility is necessary even if your interfaces and IIDs are
defined separately, because of the fact that your clients may be dependent on
the default interfaces generated by VB.11

When working in binary compatibility, it’s important to understand that VB
needs a copy of your released DLL/EXE to maintain compatibility when you
recompile. Notice the reference in Figure 2.15 to “release1\Employees.DLL.”
VB simply copies the GUIDs from the referenced file and uses them to gener-
ate the new COM server. It’s considered good practice to build each release in

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 95

11 For example, see using IDL as discussed in rule 2-3.

Figure 2.15 VB’s version compatibility settings

hummel02.qxd 4/30/01 1:17 PM Page 95

a separate directory (release 1, release 2, and so on) so that you can always
recompile against an earlier version if necessary.12 In general, however, make
sure your binary compatibility setting always references the most recent pro-
duction release. To prevent accidental overwriting, it’s also a good idea to keep
your release DLLs/EXEs in a version control system for read-only checkout.

Besides retaining GUIDs, binary compatibility mode also protects your inter-
faces. In particular, VB prevents you from making any changes that might break
compatibility. For example, changing a method’s parameter type from Integer

Public Sub SomeMethod(ByVal iValue As Integer)

to Long

Public Sub SomeMethod(ByVal lValue As Long)

yields the warning dialog shown in Figure 2.16. At this point, unless you are
absolutely sure of what you are doing, you should cancel and then either restore
the method signature, switch compatibility mode, or define a new interface con-
taining your change.13 Note that variants can be used as parameter types to
give you some flexibility for future evolution without the need to change explic-
itly the type in the interface.

Version-Compatible Interfaces
The COM purist would argue that when you need to change an interface, you
do so by defining a completely new one. This makes versioning easier to track,
because each interface will have a distinct name (and IID). Although this may
lead to more work within your COM servers, it enables a client to differentiate
between versions, and thus remain backward compatible with your earlier COM
servers. For example, a client can test for version 2 of the IEmployee interface
before trying to use it:

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS96

12 For example, if you accidentally break compatibility, you can rereference the proper release ver-
sion in binary compatibility mode to restore compatibility.
13 The option to Break compatibility causes all the IIDs to change (much like project compatibil-
ity), whereas Preserve compatibility retains the IIDs. Either way, the physical interface is changed.
The latter could be selected, for example, if no one is calling SomeMethod.

hummel02.qxd 4/30/01 1:17 PM Page 96

If TypeOf rEmp Is IEmployee2 Then ‘** is v2 available in this object?
Dim rEmp2 As IEmployee2

Set rEmp2 = rEmp

<use rEmp2 to access v2 of IEmployee interface>

Set rEmp2 = Nothing

End If

As a result, new clients can be released before servers are upgraded, or can
continue to function properly if servers are downgraded for some reason.

However, although COM purists argue in favor of maintaining version-
identical interfaces, VB implements a more flexible (but dangerous) notion
known as version-compatible interfaces. In short, VB’s binary compatibility
mode actually allows one type of interface change: You may add methods to the
default interface. When you do so, VB is careful to add the new methods to
the end of the class’s underlying vtable, generating a single default interface
that is compatible with both old and new clients. Note that VB increases the

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 97

Figure 2.16 VB’s warning dialog that an interface has changed

hummel02.qxd 4/30/01 1:17 PM Page 97

version number of your COM server’s TLB by 0.1 to reflect the fact that the
interface changed.

Interestingly, VB isn’t breaking the rules of COM, because it generates a new
IID to identify the resulting interface. To maintain compatibility, VB must pro-
duce code within the COM server so that objects recognize both the new and
the old IIDs when queried at run-time. Likewise, the registry must be reconfig-
ured to support the fact that multiple IIDs map to the same physical interface.
In particular, the original interface forwards to the new interface, as shown in
Figure 2.17. Note that interface forwarding is direct. If you add a method from
release 1 to release 2, and then add another method in release 3, releases 1
and 2 both forward to release 3.

Why does VB offer this feature? To make it easier for your classes to evolve.
Why is this feature dangerous? First of all, there is only one version of an inter-
face from the perspective of the client—the most recent one. VB clients thus
cannot use TypeOf to determine which version of an interface is available. This
makes it harder for clients to achieve backward compatibility with earlier ver-
sions of your COM server. Second, VB only provides support for extending the
default interface. You cannot add methods to custom interfaces such as
IEmployee. In fact, adding methods to a custom interface yields no warning
from VB, yet breaks compatibility with your clients (even in binary compatibil-
ity mode!). Finally, some client-side setup programs fail to register properly the
necessary interface forwarding information, leading to COM activation errors at
run-time. This is a known problem (e.g., with MTS’s export command).14

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS98

Figure 2.17 Forwarding to a version-compatible interface

14 See Microsoft Knowledge Base (KB) article Q241637 in the MSDN library.

hummel02.qxd 4/30/01 1:17 PM Page 98

The safer alternative is that of the COM purist: Use custom interfaces, and
define a new interface whenever changes are needed from one release to
another. Note that avoiding these dangers is also one of the reasons we recom-
mend defining your custom interfaces outside VB. See rule 2-3 for more
details.15

COM is a somewhat fragile system, requiring that all participants agree—
servers, clients, and registries alike. Because most applications live beyond ver-
sion 1, maintaining compatibility in the presence of evolution and recompilation
becomes one of the most important aspects of COM programming. Although the
nuances may be complex, the overall solution is straightforward: Develop in
project compatibility, deploy in binary compatibility, and use custom interfaces
whenever possible.

Rule 2-6: Choose the Right COM Activation Technique
In VB, the traditional mechanism for creating an object is the New operator. For
example,

Set rEmp = New Employees.CConsultant

creates a new instance of the CConsultant class. However, this is not the only
alternative. If the class is registered as a COM component, you can also use
CreateObject and GetObject:

Set rEmp2 = CreateObject("Employees.CConsultant")

Set rEmp3 = GetObject("", "Employees.CConsultant")

On the other hand, if the class is configured to run under MTS, then you should
probably be using CreateInstance instead:

Set rEmp4 = GetObjectContext.CreateInstance(_

"Employees.CConsultant")

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 99

15 See also Microsoft KB articles Q190078, Q190967, and Q191214.

hummel02.qxd 4/30/01 1:17 PM Page 99

Finally, as if this wasn’t enough, when you are writing server-side ASP code you
will want to use Server.CreateObject:

Set rEmp5 = Server.CreateObject(_

"Employees.CConsultant")

Do you know when to use each technique? If not, then read on . . .
First off, let’s clear up a common misconception about how clients bind to

objects at run-time.16 Logically, the situation is depicted in Figure 2.18. Clients
hold references to interfaces and use these references to access objects.
Physically, however, the binding mechanism used between client and object can
vary, depending on how the reference variables are declared in the client.
There are two main approaches: vtable-binding and late-binding. The former
is more efficient, because the client is bound directly to an interface’s imple-
mentation. This is available only in compiled environments such as VB, VC++,
and soon ASP.Net. For example, the following two declarations dictate vtable-
binding (1) to the default interface of class CConsultant and (2) to the cus-
tom interface IEmployee:

Dim rEmp1 As Employees.CConsultant ‘** (1) default interface
Dim rEmp2 As Employees.IEmployee ‘** (2) custom interface

This is true regardless of how the objects are created. Regardless of
whether the client uses New or CreateObject or some other mechanism,

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS100

Client

rObject Object

Figure 2.18 A client holding a reference to an object

16 This discussion is a summary of the more detailed scripting client versus compiled client dis-
cussion held earlier in rule 2-5. Rule 2-5 should be read first if COM is new to you.

hummel02.qxd 4/30/01 1:17 PM Page 100

rEmp1 and rEmp2 are vtable-bound to the objects they reference. In contrast,
consider the following declarations:

Dim rEmp3 As Variant

Dim rEmp4 As Object

Dim rEmp5 ‘** implies Variant

These references all dictate late-binding, a less efficient mechanism based on
COM’s IDispatch interface (and one that always maps to the object’s default
interface). Again, this is true regardless of how the objects are created. For
example, any use of rEmp5 is late-bound, even if the object is created using
New:

Set rEmp5 = New Employees.CConsultant

rEmp5.SomeMethod ‘** this implies a lookup of SomeMethod, then invoke

Although late-binding is possible in compiled environments like VB (using
the previous declarations), it is the only binding technique available in scripting
environments such as IE, ASP, and WSH.

Note that the object being created must support the type of binding
requested by the client; otherwise a run-time error occurs. Objects built with VB
automatically support both vtable-binding and late-binding.

COM Activation
COM activation is the process by which a client creates a COM object at run-
time. It is a somewhat complex process that involves the client, GUIDs, the
COM infrastructure, one or more registries, and the COM server. Although
the details are interesting, what’s important here are the goals of activation: (1)
create the object and (2) obtain the necessary interface references.17 Keep in
mind that objects can be activated across process and machine boundaries, a
daunting task that is automatically handled by the COM infrastructure.

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 101

17 The interested reader is encouraged to read one of the many good books on COm, e.g.,
Programming Distributed Applications with COM+ and VB6 by our own Ted Pattison, (MS Press,
2001).

hummel02.qxd 4/30/01 1:17 PM Page 101

The New Operator
The most important characteristic of New is that it does not always trigger COM
activation. In some cases, a call to New results in an optimized form of object
creation performed entirely by VB.18 How the New operator behaves depends
on whether the class is internal or external, from the perspective of the client
creating the object. For example, consider the following client code:

Dim rObj1 As IInterface

Set rObj1 = New CClass

The call to New results in VB’s optimized creation if the class is internal, (i.e.,
CClass is either (1) part of the same VB project/DLL/EXE as the client, or (2)
part of the same VB group as the client [and you are running that group inside
the VB IDE]). Otherwise, the class is considered external, and COM activation
is performed in an attempt to instantiate the object.

Being aware of New’s optimized behavior is important for two reasons. First,
it is much more efficient than COM activation, and thus is preferable for per-
formance reasons. But, second, it is incorrect in certain situations, for example,
when the class being instantiated is configured to run under MTS or COM+. In
this case, COM activation is required for the class to receive the necessary
MTS/COM+ services, but if the class is internal then New bypasses COM acti-
vation, creating an object that may not run properly. For this reason, the con-
servative programmer should avoid the use of New.

Note that the New operator can be applied in two different ways: traditional
and shortcut. With the traditional approach, you declare a reference and then
create the object separately as needed:

Dim rObj2 As IInterface

.

.

.

Set rObj2 = New CClass

rObj2.SomeMethod

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS102

18 This is analogous to calling New in other object-oriented programming languages like C++, ver-
sus calling CoCreateInstanceEx in Windows to perform COM activation.

hummel02.qxd 4/30/01 1:17 PM Page 102

This allows your references to be of any interface type, and makes object
creation visible in the code. The second alternative is the shortcut approach, in
which you embed the New operator in the variable declaration:

Dim rObj3 As New CClass

.

.

.

rObj3.SomeMethod

In this case, VB automatically creates an object on the first use of the reference
variable (rObj2). Although this requires less typing, this approach restricts you
to a class’s default interface, and can lead to interesting runtime behavior. For
example, consider the following code fragment:

Set rObj3 = Nothing

rObj3.SomeMethod ‘** traditionally, this would fail
.

.

.

Set rObj3 = Nothing

If rObj3 Is Nothing Then ‘** traditionally, this would be true
Msgbox "you'll never see this dialog"

End If

Each time you use a shortcut reference in a statement, VB first checks to see if
the reference is Nothing. If so, it creates an object before executing the state-
ment. Not only does this result in additional overhead, but it also prevents you
from checking whether an object has been destroyed (the act of testing re-
creates another object!). For these reasons, we generally recommend that you
avoid the shortcut approach.

CreateObject

Unlike New, the CreateObject function always creates objects using COM
activation. You supply a string-based ProgID, and CreateObject converts this

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 103

hummel02.qxd 4/30/01 1:17 PM Page 103

to a CLSID (via a registry lookup) before performing a standard COM activation.
Here’s a generic example:

Dim rObj1 As TLibName.IInterface

Set rObj1 = CreateObject("TLibName.CClass")

The advantage to this approach is flexibility. First, because CreateObject
is based on strings and not class names, the class to be instantiated can be
computed at run-time based on user input, configuration files, or records in a
database. Second, CreateObject has an optional parameter for specifying
where to create the object (i.e., on which remote server machine). This over-
rides the local registry settings, once again providing more flexibility at run-time.
For example, this feature can be used to implement simple schemes for fault
tolerance:

On Error Resume Next

Dim rObj2 As TLibName.IInterface

Set rObj2 = CreateObject("TLibName.CClass", "Server1")

If rObj2 Is Nothing Then ‘** server1 is down, try server2...
Set rObj2 = CreateObject("TLibName.CClass", "Server2")

End If

If rObj2 Is Nothing Then ‘** both servers are down, give up...
On Error Goto 0 ‘** disable local error handling
Err.Raise ... ‘** inform the client

End If

On Error Goto Handler ‘** success, reset error handler and begin...
.

.

.

Note that the machine names are also string based, and thus can be read from
configuration files or a database.

Because CreateObject only performs COM activation, it cannot instanti-
ate Private or PublicNotCreatable VB classes. The class must be a reg-
istered COM object. Furthermore, whether you are using vtable-binding or

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS104

hummel02.qxd 4/30/01 1:17 PM Page 104

late-binding, instantiation via CreateObject requires that the object support
late-binding.19 If the object does not, VB raises error 429. In these cases, the
only way to instantiate the object is via New.

GetObject

As the name implies, GetObject is designed to gain access to existing objects;
for example, an MS Word document object in a file:

Dim rDoc As Word.Document ‘**set a reference to MS Word Object Library
Set rDoc = GetObject("C:\DOCS\file.doc", "Word.Document")

rDoc.Activate

However, it can also be used to create new objects. For example,

Dim rObj1 As TLibName.IInterface

Set rObj1 = GetObject("", "TLibName.CClass")

In this sense, GetObject is equivalent to CreateObject, albeit without the
ability to specify a remote server name.

Interestingly, as we’ll see shortly, there’s a version of GetObject that is
more efficient than CreateObject, yet it is rarely used for this reason. Instead,
it is commonly used to access MS Office objects or Windows services such as
Active Directory, Windows Management Instrumentation (WMI), and the
Internet Information Server (IIS) metabase. It is also used in conjunction with
Windows 2000-based queued components (i.e., objects with method calls that
are translated into queued messages for asynchronous processing). For exam-
ple, suppose the class CQClass is configured as a queued component under
COM+ on Windows 2000. The following gains access to the appropriate queue
object for queuing of method calls (versus creating a traditional COM object that
executes the method calls):

Dim rQObj As TLibName.CQClass

Set rQObj = GetObject("Queue:/new:TLibName.CQClass")

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 105

19 In other words, the object must implement IDispatch; some ATL components do not.

hummel02.qxd 4/30/01 1:17 PM Page 105

rQObj.SomeMethod ‘** call to SomeMethod is queued
rQObj.SomeMethod2 "parameter" ‘** call to SomeMethod2 is queued

MsgBox "client is done"

In this case, the calls to SomeMethod and SomeMethod2 are queued for later
processing by some instance of CQClass. This implies that a MsgBox dialog
appears on the screen long before the actual method calls take place.

GetObjectContext.CreateInstance and Server.CreateObject
Suppose you have two classes configured to run under MTS, CRoot and
CHelper. If CRoot needs to create an instance of CHelper, then there is
exactly one way for CRoot to instantiate this class properly—via GetObject-
Context.CreateInstance:

‘** code for configured class CRoot
Dim rObj1 As TLibName.IInterface

Set rObj1 = GetObjectContext.CreateInstance(_

"TLibName.CHelper")

Likewise, if CRoot is an ASP page, then the proper way to instantiate
CHelper is using Server.CreateObject:

‘** code for ASP page
Dim rObj2

Set rObj2 = Server.CreateObject("TLibName.CHelper")

These methods are essentially wrappers around CreateObject, accepting
a ProgID and performing COM activation. However, they enable the surround-
ing environment (MTS and ASP respectively) to recognize and to participate
in the creation of the COM object. Direct calls to New and CreateObject
bypass the surrounding environment, leading to slower or incorrect execution.20

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS106

20 With COM+, it is safe to use CreateObject as well as CreateInstance. With ASP, use
CreateObject in cases in which Server.CreateObject is designed to fail. See Microsoft
knowledge base (KB) article Q193230 in the MSDN library.

hummel02.qxd 4/30/01 1:17 PM Page 106

For more details on the rationale and proper use of CreateInstance, see
rule 3-3.

Performance Considerations
Most discussions involving the performance of COM objects focus on two
things: (1) the type of binding (vtable versus late) and (2) the marshaling char-
acteristics of any parameters. Although these are very important, little attention
is paid to the cost of COM activation. Thus, assuming there is no compelling
design reason to choose between New, CreateObject, and GetObject, is
there a performance reason?

First, keep in mind that New is optimized for internal classes, so it is always
the most efficient mechanism when COM activation is not needed. However,
let’s assume our goal is COM activation. There are three types of activation: in-
process, local, and remote. In-process activation means the resulting object
resides in the same process as the client. Both local and remote activation rep-
resent out-of-process activation, in which the object resides in a process sepa-
rate from the client—either on the same machine (local) or a different one
(remote). Examples of in-process activation include classes packaged as an
ActiveX DLL and then registered as COM objects, and classes configured to run
under MTS as a library package. Examples of local and remote activation
include classes packaged in an ActiveX EXE, and classes configured to run
under MTS as a server package.

In the case of in-process activation, New is always the most efficient: It is
10 times faster than CreateObject and is 10 to 20 times faster than
GetObject. This is mainly the result of the fact that CreateObject and
GetObject require additional steps (e.g., the conversion of the ProgID to a
CLSID). Interestingly, in the out-of-process cases, the best performer varies:
New is more efficient (10 percent) when you plan to use vtable-binding against
the object’s default interface, whereas CreateObject and GetObject are
more efficient when you plan to use late-binding against the default interface
(two times) or vtable-binding against a custom interface (10 to 15 percent).
Let’s discuss why this is so.

As noted earlier, COM activation has two goals: (1) create the object and
(2) acquire the necessary interface references. The New operator is essentially

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 107

hummel02.qxd 4/30/01 1:17 PM Page 107

optimized for vtable-binding against an object’s default interface. In one API
call, New creates the object and acquires four interface references: the default
interface, IUnknown, IPersistStreamInit, and IPersistPropertyBag.
On the other hand, CreateObject and GetObject are optimized for late-
binding, because they acquire a slightly different set of interface references:
IDispatch, IUnknown, IPersistStreamInit, and IPersistProperty-
Bag. Note that CreateObject and GetObject also take longer to create the
object and to acquire these references (two API calls and three method calls).

So why is New slower in some cases? Recall that out-of-process activation
yields proxy and stub objects to handle the communication between client and
object (Figure 2.19). A proxy/stub pair is created during activation for each
interface that is acquired, and thus forms part of the activation cost. Assuming
the object does not perform custom marshaling,21 the proxy-stub pair associ-
ated with its default interface is much more expensive to create than those
associated with predefined COM interfaces such as IDispatch. As a result, if
the client ends up using the default interface, then New is faster because it auto-
matically acquires a reference to the object’s default interface. However, if
the client needs IDispatch (late-binding) or a custom interface, then
CreateObject and GetObject are faster because time is not wasted build-
ing an expensive proxy/stub pair that will never be used. The results are sum-
marized in Table 2.2.

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS108

Server ProcessClient Process

Client

rObject

StubProxy

Object

Figure 2.19 COM out-of-process activation yields proxy and stub objects

21 In other words, the object uses COM’s standard marshaling infrastructure. By default, VB objects
rely on standard marshaling.

hummel02.qxd 4/30/01 1:17 PM Page 108

What’s fascinating is that activation is not the complete picture. The con-
ventional wisdom for best overall performance is to access the object using
vtable-binding because it requires fewer actual calls to the object and passes
parameters more efficiently. However, vtable-binding implies the direct use of
an object’s interface (default or custom), and hence the need for an expensive
proxy/stub pair in the out-of-process case. For example, assume the following
client-side code is activating an out-of-process COM object:

Dim rObj1 As TLibName.CClass ‘** implies default interface
Set rObj1 = CreateObject("TLibName.CClass")

Even though CreateObject avoids the expensive proxy/stub pair, the Set
statement will trigger their creation because the type of the variable being
assigned is one of the object’s interfaces. Therefore, to get the full benefit of
using CreateObject, it turns out that you must also use late-binding! In other
words,

Dim rObj2 As Object ‘** implies IDispatch to default interface
Set rObj2 = CreateObject("TLibName.CClass")

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 109

Best PerformanceInterface Client No. of Calls Client
Activation Type Will Use Will Make Activation Binding

In-process — — New vtable

Local

default < 10 CreateObject late

³ 10 New vtable

custom — CreateObject vtable

Remote

default < 3 CreateObject late

³ 3 New vtable

custom — CreateObject vtable

Table 2.2 Maximizing performance of COM objects

hummel02.qxd 4/30/01 1:17 PM Page 109

is roughly twice as fast as the previous code fragment. Of course, late-binding
is more expensive per call, and thus the advantage of this approach diminishes
as the number of calls increases. This explains the results in Table 2.2, in which
there exists some threshold at which point vtable-binding becomes more effi-
cient. Note that the exact threshold will vary in different situations (based on
network speeds and distances, interface designs, and so on).

Lastly, if you are running Windows 2000 and are truly concerned with per-
formance, you might consider using GetObject in place of CreateObject.
GetObject is slightly more efficient when used as follows:

Dim rObj As ...

Set rObj = GetObject("new:TLibName.CClass")

In this case, GetObject acquires only two interface references instead of
four; namely, IDispatch and IUnknown. Although this speeds up activation
by reducing the number of method calls (which may be traversing across the
network), it prevents the proper activation of “persistable” objects because
IPersistStreamInit and IPersistPropertyBag are no longer available.

Fortunately or unfortunately, VB offers a number of different techniques for cre-
ating objects. Some always perform COM activation (CreateObject and
GetObject); some do not (New). Some are more flexible (CreateObject and
GetObject), whereas others must be used in certain cases for correct execu-
tion (GetObjectContext.CreateInstance, Server.CreateObject, and
New). And some are more efficient than others, although one must take into
account the type of activation, the interface being used, and the number of calls
the client plans to make.

If you do not need COM activation, use New and vtable-binding. Otherwise,
consult Table 2.2 to maximize performance. Although it may be counter-
intuitive, if your design involves “one-shot” objects (i.e., create, call, and
destroy), then CreateObject with late-binding may be the most efficient
approach. However, keep in mind that you lose IntelliSense and type checking
with late-binding. For this reason, the conservative programmer should consider
sticking with vtable-binding.

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS110

hummel02.qxd 4/30/01 1:17 PM Page 110

Rule 2-7: Beware of Class_Terminate
Two of the most heavily used classes in VB are probably Connection and
Recordset, members of the ADO object model. Like most object-oriented
classes, these two classes have destructors similar to Class_Terminate. In
other words, they have methods that are automatically triggered when an
instance of the class is about to be destroyed. Destructor methods are typically
used to clean up before an object’s state is lost forever, which would seem like
the perfect place to handle things like saving changes to a database. So why is
it, then, that Connection and Recordset have explicit Close methods that
we have to call ourselves?

The answer is that some resources are too important to leave open until the
client (or the run-time environment) gets around to triggering the object’s
destructor.22 In other words, in VB, the destructor is triggered when an object
is no longer referenced by any client:

Dim rs As ADODB.Recordset

Set rs = New ADODB.Recordset

.

.

.

Set rs = Nothing ‘** destructor is triggered at this point, assuming
‘** we didn’t pass the reference to anyone else

This occurs when all references have been set to Nothing. For database
classes like Connection and Recordset, which may be allocating memory
and setting locks in the database, unnecessary delay in performing cleanup may
waste precious resources and may hurt performance. Hence the explicit Close
method:

Dim rs As ADODB.Recordset

Set rs = New ADODB.Recordset

rs.Open ...

.

.

.

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 111

22 The ideas in this rule will become even more important in .NET, which uses garbage collection
and thus unpredictably delays object destruction.

hummel02.qxd 4/30/01 1:17 PM Page 111

rs.Close ‘** cleanup performed here
Set rs = Nothing ‘** destructor triggered here

Even though the client is responsible for calling Close (and thus may forget),
its use can be documented as necessary for correct behavior. Regardless, it
provides a solution to the problem of timely cleanup for those able to use it
properly.

What does this mean to you? First of all, as a consumer of objects, you must
be careful to use other classes properly. Look for methods entitled Close or
Dispose, and be sure to call them as soon as you are done using that object.
In particular, be careful to call these in your error handlers as well. For exam-
ple, here’s the proper way to ensure that both a connection and a recordset are
closed, even in the presence of errors:

Public Sub SomeTask()

On Error Goto errHandler

Dim dbConn As ADODB.Connection

Dim rs As ADODB.Recordset

Set dbConn = New ADODB.Connection

Set rs = New ADODB.Recordset

.

.

.

rs.Close : dbConn.Close

Set rs = Nothing : Set dbConn = Nothing

Exit Sub

errHandler:

If rs Is Nothing Then

Else

If rs.State <> adStateClosed Then rs.Close

Set rs = Nothing

End If

If dbConn Is Nothing Then

Else

If dbConn.State <> adStateClosed Then dbConn.Close

Set dbConn = Nothing

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS112

hummel02.qxd 4/30/01 1:17 PM Page 112

End If

Err.Raise ...

End Sub

Second, as a producer of classes, you need to decide whether VB’s
Class_Terminate event is sufficient for your cleanup needs. If not, then you
need to incorporate an explicit Close or Dispose method in your class design.

The current convention is to provide a Close method if your design allows
an object to be reopened or reused after it has been closed. Otherwise, provide
a Dispose method, which implies to your clients that the object is no longer
usable once Dispose has been called. Implementing these methods is easy;
the hard part is deciding when your classes need them.

The obvious examples are classes that open and hold on to operating sys-
tem or other resources: files, shared memory, network connections, and ADO
Connection and Recordset objects. If you find yourself opening these types
of resources in your class’s Class_Initialize event (or in an explicit Open
method) and accessing them via private class variables, then you most likely
need a Close or Dispose method. For example, you may design a data access
class that automatically logs every access via a private ADO connection:

‘** class module: CDataAccess
Option Explicit

Private dbLog As ADODB.Connection ‘** for logging accesses

Public Sub Open()

Set dbLog = New ADODB.Connection

dbLog.Open "<proper connection string>"

End Sub

.

.

.

Public Sub Close()

dbLog.Close

Set dbLog = Nothing

End Sub

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 113

hummel02.qxd 4/30/01 1:17 PM Page 113

Private Sub Class_Terminate()

Close ‘** in case client forgets...
End Sub

Of course, keep in mind that although maintaining a dedicated logging con-
nection may be efficient, it is certainly wasteful of an important (and usually
limited) resource. In fact, we do not recommend the previous design for objects
that may live in the middle tier, and thus need to scale (e.g., see rule 5-3).
However, if such a design is appropriate in your case, then remember to think
twice before relying solely on Class_Terminate for cleanup.

Rule 2-8: Model in Terms of Sessions Instead of Entities
When it comes to designing the object model for your system, you should con-
sider whether to design your classes around sessions or entities. Entities rep-
resent a more traditional object-oriented approach, in which classes are based
on real-world entities in your system—customers, orders, products, and so
forth. In contrast, sessions represent the set of expected interactions between
clients and your objects. Although session-based class designs may deviate
from pure OODs, the motivation is performance over elegance. Session-based
systems strive to streamline client interactions, which is particularly important
when objects are out-of-process (e.g., in distributed applications).23

Obviously, the issue of design is no small matter. For example, consider a
multi-tier system with business and data layers. How should the data access
layer behave?24 Should it model each table as a class? If so, where do queries
over multiple tables fit in? Perhaps there should be just one class per database.
And what about the business layer? Are lots of smaller classes better than a few
larger ones? How should they be grouped to take advantage of polymorphism
in the client? Each of these questions may have different answers, based on sys-
tem goals.

At a high level, most business systems are the same: They gather informa-
tion from their users and submit this information for processing. The system is
thus divided into at least two parts, the front-end user interface and the back-

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS114

23 If you are new to out-of-process COM or why it is important, read rule 2-9 first.
24 The interested reader should also see rule 5-2.

hummel02.qxd 4/30/01 1:17 PM Page 114

end processor. Each communication from the front-end to the back-end repre-
sents a unit of work and constitutes a round-trip. Session-based designs model
user scenarios in an attempt to minimize round-trips. Traditional OODs often
don’t take into account the cost of a round-trip, yielding less than optimal
performance.

For example, consider the traditional entity-based design of a CCustomer
class. The class models the state and behavior of a customer in the system; in
particular, allowing easy access to customer information:

‘** class module: CCustomer (traditional OOD)
Option Explicit

Public Name As String

Public StreetAddr As String

Public City As String

Public State As String

Public Zip As String

Public Property Get CreditLimit() As Currency

‘** return customer’s credit limit for purchases
End Property

Public Sub PlaceOrder(ByVal lProductNum As Long, _

ByVal lQuantity As Long)

‘** code to place an order for this customer
End Sub

Although straightforward to understand, consider what the client must do
to change a customer’s address:

Dim rCust As CCustomer

Set rCust = ...

With rCust

.StreetAddr = <new street address>

.City = <new city>

.State = <new state>

.Zip = <new zipcode>

End With

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 115

hummel02.qxd 4/30/01 1:17 PM Page 115

The cost is four round-trips, one per datum. Likewise, placing an order for N dif-
ferent products requires N + 1 trips, one to check the customer’s credit limit
and another N to order each product.

A better approach, at least from the perspective of performance, is to
redesign the CCustomer class based on the expected user scenarios: getting
the customer’s information, updating this information, and ordering products.
This leads to the following session-based result:

‘** class module: CCustomer (revised session-based design)
Option Explicit

Private Name As String ‘** no public access to data
Private StreetAddr As String

Private City As String

Private State As String

Private Zip As String

Public Sub GetInfo(Optional ByRef sName As String, _

Optional ByRef sStreetAddr As String, _

Optional ByRef sCity As String, _

Optional ByRef sState As String, _

Optional ByRef sZip As String)

sName = Name

sStreetAddr = StreetAddr

sCity = City

sState = State

sZip = Zip

End Sub

Public Sub Update(Optional ByVal sName As String = "?", _

Optional ByVal sStreetAddr As String = "?", _

Optional ByVal sCity As String = "?", _

Optional ByVal sState As String = "?", _

Optional ByVal sZip As String = "?")

If sName <> "?" Then Name = sName

If sStreetAddr <> "?" Then StreetAddr = sStreetAddr

If sCity <> "?" Then City = sCity

If sState <> "?" Then State = sState

If sZip <> "?" Then Zip = sZip

End Sub

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS116

hummel02.qxd 4/30/01 1:17 PM Page 116

Public Sub PlaceOrder(laProducts() As Long)

‘** confirm that client passed a 2D array (products times quantities)
Debug.Assert UBound(laProducts, 1) = _

UBound(laProducts, 2)

‘** code to check that credit limit is sufficient
‘** code to place entire order for this customer

End Sub

First of all, notice there is no public access to customer data. All reads and
writes must be done via methods. As a result, an address change now takes
only one round-trip call to Update. Likewise, PlaceOrder is redesigned to
accept an array of product numbers and quantities, allowing an entire order to
be placed via one round-trip call. In short, the class contains one entry for each
task that the user may need to perform. Although the class’s interface is
arguably more cumbersome for clients to use, the potential increase in perfor-
mance is significant, especially across a network.

Session-based designs are usable at every level of a system. For example,
in a standard multi-tier application, your business objects would model client
sessions, whereas your data access objects model business object sessions. For
the latter, your data access design may be as simple, and as efficient, as two
methods: one to read and one to write:

‘** class module: CDataAccess (minimal session-based design)
Option Explicit

Public Function ReadDB(sConnectionInfo As String, _

sSQL As String) As ADODB.Recordset

'** code to open DB, build recordset, disconnect, and return it...
End Function

Public Function UpdateDB(sConnectionInfo As String, _

sSQL As String)

'** code to open DB and update via SQL...
End Function

Obviously, good design is the proper balance of usability, maintainability, exten-
sibility, and performance.

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 117

hummel02.qxd 4/30/01 1:17 PM Page 117

Rule 2-9: Avoid ActiveX EXEs Except for Simple,
Small-Scale Needs
When you create a new project in VB, you are presented with a list of project
types from which to choose: Standard EXE, ActiveX EXE, ActiveX DLL, ActiveX
Control, Addin, IIS Application, and so forth. The ActiveX project types are used
when you want to create a COM server—a set of classes in a DLL or EXE that
can be activated using COM. If your goal is a user-interface component, select
ActiveX Control. However, if your goal is a traditional object-oriented, non-user
interface component, then you should select either ActiveX DLL or ActiveX EXE.
But which one?

The answer depends on two factors: the type of COM activation you desire,
and whether you plan to use MTS or COM+. Let’s review the three types of
COM activation: in-process, local, and remote. An in-process activation means
the COM object resides in the same process as the client that created the
object. In this case, you must create an ActiveX DLL project, and the resulting
DLL must be installed on the client’s machine. Both local and remote COM acti-
vation represent out-of-process activation, in which the object resides in a
process separate from the client—on either the same machine (local) or a dif-
ferent one (remote). With this scenario you have a choice. You can create an
ActiveX EXE project, and the resulting EXE serves as a stand-alone process for
hosting your objects, or you can create an ActiveX DLL and configure it to run
within MTS or COM+ as a server process.

In-process objects are much more efficient, because calls are typically 10
to 100 times faster than calls out of process. The trade-off is that out-of-process
objects offer

• Fault isolation (object can crash without crashing the client, and vice
versa)

• Separate security identity (object runs under an identity separate from
the client)

• Multi-threaded behavior (clients can concurrently activate objects/exe-
cute calls)

• The ability to run objects on a machine separate from the clients

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS118

hummel02.qxd 4/30/01 1:17 PM Page 118

The last is perhaps the most important, because it enables the construction
of distributed, multi-tier applications. Assuming you want out-of-process acti-
vation, the question is should you use ActiveX EXEs or should you turn to
MTS/COM+?

In short, VB’s ActiveX EXEs are designed to support small-scale needs. They
provide basic out-of-process activation, nothing more. On the other hand, MTS
and COM+ support large-scale designs, in addition to providing a host of other
services: security, resource sharing, distributed transactions, and configura-
tion/process management. When in doubt, the general consensus is to use MTS
or COM+, because you never know when you may need to handle additional
clients, share resources among your objects, or implement security. However, if
your needs are simple, then VB’s ActiveX EXEs are a viable option. Because
Chapter 3 focuses entirely on MTS and COM+, we discuss ActiveX EXEs here.

VB’s ActiveX EXEs enable you to build multi-threaded server applications
with relative ease. Like many features of VB, multi-threading is presented
through the IDE with the utmost consideration for productivity. In this case, your
ActiveX EXE’s threading strategy is determined by two option buttons and a text
box, not by coding. These Threading Model settings are found in your project’s
properties, under the General tab as shown in Figure 2.20.

An ActiveX EXE is compiled to follow one of three threading model
approaches. The default is Thread Pool of 1 (shown in Figure 2.20), which
gives you a single-threaded application. This means that a single-thread is
shared by all objects living in this server process, and thus only one client
request can be processed at a time. Although this type of server consumes very
few resources, it should be used only when you are supporting a single client.

The second approach is Thread per Object, which represents the other end
of the threading spectrum. Now, instead of one thread, every object has its own
thread.25 The result is maximum concurrency, because no client request blocks
that of another. However, even though the server process supports an unlimited
number of concurrent clients, does it maximize throughput? Not likely. At some

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 119

25 Assuming the object was activated by a client outside the server process. If the client lives inside
the EXE, then the new object lives on the same thread for better performance. Note that setting a
class’s instancing property to SingleUse has a similar effect—an entirely new EXE is started for
each instance of that class.

hummel02.qxd 4/30/01 1:17 PM Page 119

point, the rising number of threads begins to hurt performance, because the
operating system spends more time switching from one thread to another than
it does letting a thread run. Thus, if you want to maximize both concurrency and
throughput, you need to either scale up (add more hardware to the existing
machine) or scale out (add more machines and load balance). You’ll also need
to cap the size of the thread pool—the motivation for the third approach.

The third (and best) approach for multi-threading is a thread pool more than
1. The idea is to limit concurrency by restricting the number of threads, thereby
guaranteeing some base amount of throughput as the load on your server
process increases. For example, Figure 2.21 shows a VB ActiveX EXE compiled
with a thread pool of 3. The threads are depicted as circles with arrowheads,
and each thread is assigned to a single apartment within the process (hence
the term single-threaded apartment, or STA). When VB objects are created, they
are likewise assigned to an apartment, and remain in that apartment
until they are destroyed. Although the ActiveX EXE can support an unlimited

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS120

Figure 2.20 Project properties for an ActiveX EXE

hummel02.qxd 4/30/01 1:17 PM Page 120

number of objects (and hence an unlimited number of clients), in this example
only three client requests can be processed concurrently. In particular, note that
clients 1 and 2 have objects assigned to the same thread. Thus, if both submit
a request (i.e., make a method call) at the same time, one request is processed
and the other is blocked.

The idea of a fixed-size thread pool is not unique to VB. MTS and COM+
also take this approach: MTS 2.0 on WinNT has a thread pool of 100, whereas
COM+ (i.e., MTS 3.0) on Windows 2000 has a thread pool per processor
ranging in size from 7 to 10. Notice that the size of the pool was reduced sig-
nificantly in COM+, acknowledging the tension between concurrency and
throughput.

Even though their thread pooling strategies are the same, note that MTS
and COM+ provide a more sophisticated implementation, yielding better per-
formance than VB’s ActiveX EXEs. MTS and COM+ provide other distinct
advantages as well. For example, consider the problem of objects trying to share

DESIGNING, BUILDING, AND WORKING WITH COM-BASED COMPONENTS 121

Client 1

ActiveX EXE COM Server

STA

STA
Object

Object

Object

STA
Object

Client 2

Client 3

Client 4

Figure 2.21 ActiveX EXE server with four clients and a thread pool of 3

hummel02.qxd 4/30/01 1:17 PM Page 121

data such as configuration information or a set of database records. In VB, the
standard approach is to use global variables declared in a BAS module.
However, in an ActiveX EXE, global variables are not truly global: A BAS mod-
ule is replicated so that each apartment has its own copy. The result is that
“global” variables are global only within an apartment.26 This implies that you
must use an alternative mechanism to share state, such as a file or database,
or the memory-based Shared Property Manager within MTS and COM+.

With regard to security, VB’s ActiveX EXEs rely on COM’s security model.
Using the dcomcnfg utility, you can configure the identity under which an
ActiveX EXE runs, as well as who may start up, access, and configure the EXE.
This also applies to the authentication level (frequency of authentication and
network packet integrity/privacy).

In summary, ActiveX EXEs provide a quick-and-dirty mechanism for out-
of-process COM activation, and thus are a basis for application designs requir-
ing fault isolation, security, concurrency, or distributed processing. However,
keep in mind that Microsoft is moving away from ActiveX EXEs, and is encour-
aging developers to build ActiveX DLLs and to let MTS or COM+ serve as your
EXE. This allows Microsoft to provide services that are difficult to implement
yourself, and the ability to evolve these services without the need for you to
recompile your code. Applications based on MTS and COM+ will scale, offer
better concurrency and resource sharing, allow more flexible configuration of
the server, and yield faster time-to-market for multi-tier systems. In the end,
you’ll spend your time more productively, working on business logic rather than
infrastructure.

EFFECTIVE VISUAL BASIC: HOW TO IMPROVE YOUR VB/COM+ APPLICATIONS122

26 Why did the designers of VB do this? Consider the alternative: If global variables were shared
across apartments, then programmers would need to worry about synchronization—a slippery
slope that leads to subtle, error-prone code. Another side effect: If you start up via a Sub Main,
it is run each time a new apartment is created.

hummel02.qxd 4/30/01 1:17 PM Page 122

