
197

8
Object Factories

Object-oriented programs use inheritance and virtual functions to achieve powerful ab-

stractions and good modularity. By postponing until runtime the decision regarding what

exact function will be called, polymorphism promotes binary code reuse and extensibil-

ity. The runtime system dispatches virtual member functions to the appropriate derived

object automatically, allowing you to implement complex behavior in terms of polymor-

phic primitives.

You can find this kind of paragraph in any book teaching object-oriented techniques.

The reason it is repeated here is to contrast the nice state of affairs in “steady mode” with

the unpleasant “initialization mode” situation in which you must create objects in a poly-

morphic way.

In the steady state, you already hold pointers or references to polymorphic objects, and

you can invoke member functions against them. Their dynamic type is well known (al-

though the caller might not know it). However, there are cases when you need to have the

same flexibility in creating objects—subject to the paradox of “virtual constructors.” You

need virtual constructors when the information about the object to be created is inherently

dynamic and cannot be used directly with C�� constructs.

Most often, polymorphic objects are created on the free store by using the new operator:

class Base { ... };
class Derived : public Base { ... };
class AnotherDerived : public Base { ... };
...
// Create a Derived object and assign it to a pointer to Base
Base* pB = new Derived;

The issue here is the actual Derived type name appearing in the invocation of the new op-

erator. In a way, Derived here is much like the magic numeric constants we are advised not

to use. If you want to create an object of the type AnotherDerived, you have to go to the ac-

tual statement and replace Derived with AnotherDerived. You cannot make the new opera-

tor act more dynamically: You must pass it a type, and that type must be exactly known at

compile time.

08-A1568 01/23/2001 12:38 PM Page 197

198 Object Factories Chapter 8

This marks a fundamental difference between creating objects and invoking virtual

member functions in C��. Virtual member functions are fluid, dynamic—you can change

their behavior without changing the call site. In contrast, each object creation is a stumbling

block of statically bound, rigid code. One of the effects is that invoking virtual functions

binds the caller to the interface only (the base class). Object orientation tries to break de-

pendency on the actual concrete type. However, at least in C��, object creation binds the

caller to the most derived, concrete class.

Actually, it makes a lot of conceptual sense that things are this way: Even in everyday

life, creating something is very different from dealing with it. You are supposed, then, to

know exactly what you want to do when you embark on creating an object. However,

sometimes

• You want to leave this exact knowledge up to another entity. For instance, instead of in-

voking new directly, you might call a virtual function Create of some higher-level ob-

ject, thus allowing clients to change behavior through polymorphism.

• You do have the type knowledge, but not in a form that’s expressible in C��. For in-

stance, you might have a string containing "Derived", so you actually know you have

to create an object of type Derived, but you cannot pass a string containing a type name

to new instead of a type name.

These two issues are the fundamental problems addressed by object factories, which

we’ll discuss in detail in this chapter. The topics of this chapter include the following:

• Examples of situations in which object factories are needed

• Why virtual constructors are inherently hard to implement in C��
• How to create objects by substituting values for types

• An implementation of a generic object factory

By the end of this chapter, we’ll put together a generic object factory. You can customize

the generic factory to a large degree—by the type of product, the creation method, and the

product identification method. You can combine the factory thus created with other com-

ponents described in this book, such as Singleton (Chapter 6)—for creating an applica-

tion-wide object factory—and Functor (Chapter 5)—for tweaking factory behavior. We’ll

also introduce a clone factory, which is able to duplicate objects of any type.

8.1 The Need for Object Factories

There are two basic cases in which object factories are needed. The first occurs when a li-

brary needs not only to manipulate user-defined objects, but also to create them. For ex-

ample, imagine you develop a framework for multiwindow document editors. Because

you want the framework to be easily extensible, you provide an abstract class Document
from which users can derive classes such as TextDocument and HTMLDocument. Another

framework component may be a DocumentManager class that keeps the list of all open

documents.

A good rule to introduce is that each document that exists in the application should be

known by the DocumentManager. Therefore, creating a new document is tightly coupled

08-A1568 01/23/2001 12:38 PM Page 198

Section 8.1 The Need for Object Factories 199

with adding it to DocumentManager’s list of documents. When two operations are so

coupled, it is best to put them in the same function and never perform them in separation:

class DocumentManager
{

...
public:

Document* NewDocument();
private:

virtual Document* CreateDocument() = 0;
std::list<Document*> listOfDocs_;

};

Document* DocumentManager::NewDocument()
{

Document* pDoc = CreateDocument();
listOfDocs_.push_back(pDoc);
...
return pDoc;

}

The CreateDocument member function replaces a call to new. NewDocument cannot use

the new operator because the concrete document to be created is not known by the time

DocumentManager is written. In order to use the framework, programmers will derive

from DocumentManager and override the virtual member function CreateDocument (which

is likely to be pure). The GoF book (Gamma et al. 1995) calls CreateDocument a factory
method.

Because the derived class knows exactly the type of document to be created, it can in-

voke the new operator directly. This way, you can remove the type knowledge from the

framework and have the framework operate on the base class Document only. The override

is very simple and consists essentially of a call to new; for example:

Document* GraphicDocumentManager::CreateDocument()
{

return new GraphicDocument;
}

Alternatively, an application built with this framework might support creation of mul-

tiple document types (for instance, bitmapped graphics and vectorized graphics). In that

case, the overridden CreateDocument function might display a dialog to the user asking for

the specific type of document to be created.

Thinking of opening a document previously saved on disk in the framework just out-

lined brings us to the second—and more complicated—case in which an object factory

may be needed. When you save an object to a file, you must save its actual type in the form

of a string, an integral value, an identifier of some sort. However, although the type infor-

mation exists, its form does not allow you to create C�� objects.

The general concept underlying this situation is creating objects whose type informa-

tion is genuinely postponed to runtime: entered by the end user, read from a persistent

storage or network connection, or the like. Here the binding of types to values is pushed

08-A1568 01/23/2001 12:38 PM Page 199

200 Object Factories Chapter 8

even further than in the case of polymorphism: When using polymorphism, the entity ma-

nipulating an object does not know its type exactly; however, the object itself is of a well-

determined type. When reading objects from some storage, the type comes “alone” at

runtime. You must transform type information into an object. Finally, you must read the

object from the storage, which is easy once an empty object is created, by invoking a vir-

tual function.

Creating objects from “pure” type information, and consequently adapting dynamic in-

formation to static C�� types, is an important issue in building object factories. Let’s focus

on it in the next section.

8.2 Object Factories in C��: Classes and Objects

In order to come up with a solution, we need a good grasp of the problem. This section tries

to answer the following questions: Why are C�� constructors so rigid? Why don’t we have

flexible means to create objects in the language itself?

Interestingly, seeking an answer to this question takes us directly to fundamental deci-

sions about C��’s type system. In order to find out why a statement like

Base* pB = new Derived;

is so rigid, we must answer two related questions: What is a class, and what is an object?

This is because the culprit in the given statement is Derived, which is a class name, and

we’d like it to be a value, that is, an object.

In C��, classes and objects are different beasts. Classes are what the programmer cre-

ates, and objects are what the program creates. You cannot create a new class at runtime,

and you cannot create an object at compile time. Classes don’t have first-class status: You

cannot copy a class, store it in a variable, or return it from a function.

In contrast, there are languages where classes are objects. In those languages, some ob-

jects with certain properties are simply considered classes by convention. Consequently, in

those languages, you can create new classes at runtime, copy a class, store it in a variable,

and so on. If C�� were such a language, you could have written code like the following:

// Warning—this is NOT C++
// Assumes Class is a class that's also an object
Class Read(const char* fileName);
Document* DocumentManager::OpenDocument(const char* fileName)
{

Class theClass = Read(fileName);
Document* pDoc = new theClass;
...

}

That is, we could pass a variable of type Class to the new operator. In such a paradigm,

passing a known class name to new is the same as using a hardcoded constant.

Such dynamic languages trade off some type safety and performance for the sake of

flexibility, because static typing is an important source of optimization. C�� took the op-

posite approach, sticking to a static type system, yet trying to provide as much flexibility

as possible in this framework.

08-A1568 01/23/2001 12:38 PM Page 200

Section 8.3 Implementing an Object Factory 201

1This “Hello, world” of design is a good basis for C�� interview questions. Although many candidates man-

age to conceive such a design, few of them know how to implement loading files, which is a rather important

operation.

The bottom line is, creating object factories is a complicated problem in C��. In C��
there is a fracture between types and values: A value has a type attribute, but a type can-

not exist on its own. If you want to create an object in a totally dynamic way, you need a

means to express and pass around a “pure” type and build a value from it on demand. Be-

cause you cannot do this, you somehow must represent types as objects—integers, strings,

and so on. Then, you must employ some trick to exchange the value for the right type, and

finally to use that type to create an object. This object-type-object trade is fundamental for

object factories in statically typed languages.

We will call the object that identifies a type a type identifier. (Don’t confuse it with

std::typeid.) The type identifier helps the factory in creating the appropriate type of ob-

ject. As will be shown, sometimes you make the type identifier–object exchange without

knowing exactly what you have or what you will get. It’s like in fairy tales: You don’t know

exactly how the token works (and it’s sometimes dangerous to try to figure it out), but you

pass it to the wizard, who gives you a valuable object in exchange. The details of how the

magic happens must be encapsulated in the wizard . . . the factory, that is.

We will explore a simple factory that solves a concrete problem, try various implemen-

tations of it, and then extract the generic part of it into a class template.

8.3 Implementing an Object Factory

Say you write a simple drawing application, allowing editing of simple vectorized draw-

ings consisting of lines, circles, polygons, and so on.1 In a classic object-oriented manner,

you define an abstract Shape class from which all your figures will derive:

class Shape
{
public:

virtual void Draw() const = 0;
virtual void Rotate(double angle) = 0;
virtual void Zoom(double zoomFactor) = 0;
...

};

You might then define a class Drawing that contains a complex drawing. A Drawing es-

sentially holds a collection of pointers to Shape—such as a list, a vector, or a hierarchical

structure—and provides operations to manipulate the drawing as a whole. Two typical op-

erations you might want to do are saving a drawing as a file and loading a drawing from a

previously saved file.

Saving shapes is easy: Just provide a pure virtual function like Shape::Save(std::-
ostream&). Then the Drawing::Save operation might look like this:

class Drawing
{
public:

08-A1568 01/23/2001 12:38 PM Page 201

202 Object Factories Chapter 8

void Save(std::ofstream& outFile);
void Load(std::ifstream& inFile);
...

};

void Drawing::Save(std::ofstream& outFile)
{

write drawing header
for (each element in the drawing)
{

(current element)->Save(outFile);
}

}

The Shape-Drawing example just described is often encountered in C�� books, includ-

ing Bjarne Stroustrup’s classic (Stroustrup 1997). However, most C�� introductory books

stop when it comes to loading graphics from a file, exactly because the nice model of hav-

ing separate drawing objects breaks. Explaining the gory details of reading objects makes

for a big parenthesis, which is often understandably avoided. On the other hand, this is ex-

actly what we want to implement, so we have to bite the bullet. A straightforward imple-

mentation is to require each Shape-derived object to save an integral identifier at the very

beginning. Each object should have its own unique ID. Then reading the file would look

like this:

// a unique ID for each drawing object type
namespace DrawingType
{
const int

LINE = 1,
POLYGON = 2,
CIRCLE = 3

};

void Drawing::Load(std::ifstream& inFile)
{

// error handling omitted for simplicity
while (inFile)
{

// read object type
int drawingType;
inFile >> drawingType;

// create a new empty object
Shape* pCurrentObject;
switch (drawingType)
{

using namespace DrawingType;
case LINE:

pCurrentObject = new Line;
break;

case POLYGON:
pCurrentObject = new Polygon;
break;

08-A1568 01/23/2001 12:38 PM Page 202

Section 8.3 Implementing an Object Factory 203

case CIRCLE:
pCurrentObject = new Circle;
break;

default:
handle error—unknown object type

}
// read the object's contents by invoking a virtual fn
pCurrentObject->Read(inFile);
add the object to the container

}
}

This is indeed an object factory. It reads a type identifier from the file, creates an object

of the appropriate type based on that identifier, and invokes a virtual function that loads

that object from the file. The only problem is that it breaks the most important rules of ob-

ject orientation:

• It performs a switch based on a type tag, with the associated drawbacks, which is

exactly what object-oriented programs try to eliminate.

• It collects in a single source file knowledge about all Shape-derived classes in the pro-

gram, which again you must strive to avoid. For one thing, the implementation file of

Drawing::Save must include all headers of all possible shapes, which makes it a bottle-

neck of compile dependencies and maintenance.

• It is hard to extend. Imagine adding a new shape, such as Ellipse, to the system. In ad-

dition to creating the class itself, you must add a distinct integral constant to the name-

space DrawingType, you must write that constant when saving an Ellipse object, and

you must add a label to the switch statement in Drawing::Save. This is an awful lot

more than what the architecture promised—total insulation between classes—and all

for the sake of a single function!

We’d like to create an object factory that does the job without having these disadvan-

tages. One practical goal worth pursuing is to break the switch statement apart, so we

can put the Line creation statement in file implementation for Line, and do the same for

Polygon and Circle.

A common way to keep together and manipulate pieces of code is to work with pointers

to functions, as discussed at length in Chapter 5. The unit of customizable code here (each

of the entries in the switch statement) can be abstracted in a function with the signature

Shape* CreateConcreteShape();

The factory keeps a collection of pointers to functions with this signature. In addition, there

has to be a correspondence between the IDs and the pointer to the function that creates the

appropriate object. Thus, what we need is an associative collection— a map. A map offers ac-

cess to the appropriate function given the type identifier, which is precisely what the

switch statement offers. In addition, the map offers the scalability that the switch state-

ment, with its compile-time fixed structure, cannot provide. The map can grow at run-

time—you can add entries (tuples of IDs and pointers to functions) dynamically, which is

08-A1568 01/23/2001 12:38 PM Page 203

204 Object Factories Chapter 8

2This brings us to the link between object factories and singletons. Indeed, more often than not, factories

are singletons. Later in this chapter is a discussion of how to use factories with the singletons implemented in

Chapter 6.

exactly what we need. We can start with an empty map and have each Shape-derived ob-

ject add an entry to it.

Why not use a vector? IDs are integral numbers, so we can keep a vector and have the

ID be the index in the vector. This would be simpler and faster, but a map is better here.

The map doesn’t require its indices to be adjacent, plus it’s more general—vectors work

only with integral indices, whereas maps accept any ordered type as an index. This point

will become important when we generalize our example.

We can start designing a ShapeFactory class, which has the responsibility of managing

the creation of all Shape-derived objects. In implementing ShapeFactory, we will use the

map implementation found in the standard library, std::map:

class ShapeFactory
{
public:

typedef Shape* (*CreateShapeCallback)();
private:

typedef std::map<int, CreateShapeCallback> CallbackMap;
public:

// Returns 'true' if registration was successful
bool RegisterShape(int ShapeId,

CreateShapeCallback CreateFn);
// Returns 'true' if the ShapeId was registered before
bool UnregisterShape(int ShapeId);
Shape* CreateShape(int ShapeId);

private:
CallbackMap callbacks_;

};

This is a basic design of a scalable factory. The factory is scalable because you don’t

have to modify its code each time you add a new Shape-derived class to the system. Shape-
Factory divides responsibility: Each new shape has to register itself with the factory by

calling RegisterShape and passing it its integral identifier and a pointer to a function that

creates an object. Typically, the function has a single line and looks like this:

Shape* CreateLine()
{

return new Line;
}

The implementation of Line also must register this function with the ShapeFactory that

the application uses, which is typically a globally accessible object.2 The registration is usu-

ally performed with startup code. The whole connection of Line with the Shape Factory is

as follows:

// Implementation module for class Line
// Create an anonymous namespace
// to make the function invisible from other modules
namespace

08-A1568 01/23/2001 12:38 PM Page 204

Section 8.3 Implementing an Object Factory 205

{
Shape* CreateLine()
{

return new Line;
}
// The ID of class Line
const int LINE = 1;
// Assume TheShapeFactory is a singleton factory
// (see Chapter 6)
const bool registered =

TheShapeFactory::Instance().RegisterShape(
LINE, CreateLine);

}

Implementing the ShapeFactory is easy, given the amenities std::map has to offer.

Basically, ShapeFactory member functions forward only to the callbacks_ member:

bool ShapeFactory::RegisterShape(int shapeId,
CreateShapeCallback createFn)

{
return callbacks_.insert(

CallbackMap::value_type(shapeId, createFn)).second;
}

bool ShapeFactory::UnregisterShape(int shapeId)
{

return callbacks_.erase(shapeId) == 1;
}

If you’re not very familiar with the std::map class template, the previous code might

need a bit of explanation:

• std::map holds pairs of keys and data. In our case, keys are integral shape IDs, and the

data consists of a pointer to function. The type of our pair is std::pair<const int,
CreateShapeCallback>. You must pass an object of this type when you call insert.

Because that’s a lot to type, it’s better to use the typedef found inside std::map, which

provides a handy name —value_type—for that pair type. Alternatively, you can use

std::make_pair.

• The insert member function we called returns another pair, this time containing

an iterator (which refers to the element just inserted) and a bool that is true if the

value didn’t exist before, and false otherwise. The .second field access after the call to

insert selects this bool and returns it in a single stroke, without us having to create a

named temporary.

• erase returns the number of elements erased.

The CreateShape member function simply fetches the appropriate pointer to a func-

tion for the ID passed in, and calls it. In the case of an error, it throws an exception. Here

it is:

Shape* ShapeFactory::CreateShape(int shapeId)
{

CallbackMap::const_iterator i = callbacks_.find(shapeId);

08-A1568 01/23/2001 12:38 PM Page 205

206 Object Factories Chapter 8

if (i == callbacks_.end())
{

// not found
throw std::runtime_error("Unknown Shape ID");

}
// Invoke the creation function
return (i->second)();

}

Let’s see what this simple class brought us. Instead of relying on the large, know-it-all

switch statement, we obtained a dynamic scheme requiring each type of object to register

itself with the factory. This moves the responsibility from a centralized place to each con-

crete class, where it belongs. Now whenever you define a new Shape-derived class, you can

just add files instead of modifying files.

8.4 Type Identifiers

The only problem that remains is the management of type identifiers. Still, adding type

identifiers requires a fair amount of discipline and centralized control. Whenever you

add a new shape class, you must check all the existing type identifiers and add one that

doesn’t clash with them. If a clash exists, the second call to RegisterShape for the same ID

fails, and you won’t be able to create objects of that type.

We can solve this problem by choosing a more generous type than int for expressing

the type identifier. Our design doesn’t require integral types, only types that can be keys in

a map, that is, types that support operator== and operator<. (That’s why we can be happy

we chose maps instead of vectors.) For example, we can store type identifiers as strings and

establish the convention that each class is represented by its name: Line’s identifier is

"Line", Polygon’s identifier is "Polygon", and so forth. This minimizes the chance of clash-

ing names because class names are unique.

If you enjoy spending your weekends studying C��, maybe the previous para-

graph rang a bell for you. Let’s use type_info! The std::type_info class is part of the

runtime type information (RTTI) provided by C��. You get a reference to a std::-
type_info by invoking the typeid operator on a type or an expression. What seems

nice is that std::type_info provides a name member function that returns a const char*
pointing to a human-readable name of the type. For your compiler, you might have seen

that typeid(Line).name() points to the string “class Line”, which is exactly what we

wanted.

The problem is, this does not apply to all C�� compiler implementations. The way

type_info::name is defined makes it unsuitable for anything other than debugging

purposes (like printing it in a debug console). There is no guarantee that the string is the

actual class name, and worse, there is no guarantee that the string is unique throughout

the application. (Yes, you can have two classes that have the same name according to

std::type_info::name.) And the shotgun argument is that there’s no guarantee that the

type name will be unique in time. There is no guarantee that typeid(Line).name() points

to the same string when the application is run twice. Implementing persistence is an im-

portant application of factories, and std::type_info::name is not persistent. This all makes

08-A1568 01/23/2001 12:38 PM Page 206

Section 8.5 Generalization 207

3Microsoft’s COM factory uses such a method. They have an algorithm for generating unique 128-bit

identifiers (called globally unique identifiers, or GUIDs) for COM objects. The algorithm relies on the uniqueness

of the network card serial number or, in the absence of a card, the date, time, and other highly variable machine

states.

std::type_info deceptively close to being useful for our object factory, but it is not a real

solution.

Back to the management of type identifiers. A decentralized solution for generating

type identifiers is to use a unique value generator—for instance, a random number or ran-

dom string generator. You would use this generator each time you add a new class to the

program, then hardcode that random value in the source file and never change it.3 This

sounds like a brittle solution, but think of it this way: If you have a random string genera-

tor that has a 10�20 probability of repeating a value in a thousand years, you get a rate of er-

rors smaller than that of a program using a “perfect” factory.

The only conclusion that can be drawn here is that type identifier management is not

the business of the object factory itself. Because C�� cannot guarantee a unique, persis-

tent type ID, type ID management becomes an extra-linguistic issue that must be left to the

programmers.

We have described all the elements in a typical object factory, and we have a prototype

implementation. It’s time now for the next step—the step from concrete to abstract. Then,

enriched with new insights, we’ll go back to concrete.

8.5 Generalization

Let’s enumerate the elements involved in our discussion of object factories. This gives us

the intellectual workout necessary for putting together a generic object factory.

• Concrete product. A factory delivers some product in the form of an object.

• Abstract product. Products inherit a base type (in our example, Shape). A product

is an object whose type belongs to a hierarchy. The base type of the hierarchy is the

abstract product. The factory behaves polymorphically in the sense that it returns a

pointer to the abstract product, without conveying knowledge of the concrete prod-

uct type.

• Product type identifier. This is the object that identifies the type of the concrete product.

As discussed, you have to have a type identifier to create a product because of the

static C�� type system.

• Product creator. The function or functor is specialized for creating exactly one type of

object. We modeled the product creator with a pointer to function.

The generic factory will orchestrate these elements to provide a well-defined interface, as

well as defaults for the most used cases.

It seems that each of the notions just enumerated will transform into a template

parameter of a Factory template class. There’s only one exception: The concrete product

doesn’t have to be known to the factory. Had this been the case, we’d have different

08-A1568 01/23/2001 12:38 PM Page 207

208 Object Factories Chapter 8

Factory types for each concrete product we’re adding, and we are trying to keep Factory
insulated from the concrete types. We want only different Factory types for different ab-

stract products.

This being said, let’s write down what we’ve grabbed so far:

template
<

class AbstractProduct,
typename IdentifierType,
typename ProductCreator

>
class Factory
{
public:

bool Register(const IdentifierType& id, ProductCreator creator)
{

return associations_.insert(
AssocMap::value_type(id, creator)).second;

}
bool Unregister(const IdentifierType& id)
{

return associations_.erase(id) == 1;
}
AbstractProduct* CreateObject(const IdentifierType& id)
{

typename AssocMap::const_iterator i =
associations_.find(id);

if (i != associations_.end())
{

return (i->second)();
}
handle error

}
private:

typedef std::map<IdentifierType, AbstractProduct>
AssocMap;

AssocMap associations_;
};

The only thing left out is error handling. If we didn’t find a creator registered with the

factory, should we throw an exception? Return a null pointer? Terminate the program?

Dynamically load some library, register it on the fly, and retry the operation? The actual de-

cision depends very much on the concrete situation; any of these actions makes sense in

some cases.

Our generic factory should let the user customize it to do any of these actions and

should provide a reasonable default behavior. Therefore, the error handling code should

be pulled out of the CreateObjectmember function into a separate FactoryError policy (see

Chapter 1). This policy defines only one function, OnUnknownType, and Factory gives that

function a fair chance (and enough information) to make any sensible decision.

08-A1568 01/23/2001 12:38 PM Page 208

Section 8.5 Generalization 209

4There is no need to make the name distinctive (like FactoryException), because the type is already inside

class template Factory.

The policy defined by FactoryError is very simple. FactoryError prescribes a template of

two parameters: IdentifierType and AbstractProduct. If FactoryErrorImpl is an imple-

mentation of FactoryError, then the following expression must apply:

FactoryErrorImpl<IdentifierType, AbstractProduct> factoryErrorImpl;
IdentifierType id;
AbstractProduct* pProduct = factoryErrorImpl.OnUnknownType(id);

Factory uses FactoryErrorImpl as a last-resort solution: If CreateObject cannot find

the association in its internal map, it uses FactoryErrorImpl<IdentifierType,Abstract-
Product>::OnUnknownType for fetching a pointer to the abstract product. If OnUnknownType
throws an exception, the exception propagates out of Factory. Otherwise, CreateObject
simply returns whatever OnUnknownType returned.

Let’s code these additions and changes (shown in bold):

template
<

class AbstractProduct,
typename IdentifierType,
typename ProductCreator,
template<typename, class>

class FactoryErrorPolicy
>
class Factory

: public FactoryErrorPolicy<IdentifierType, AbstractProduct>
{
public:

AbstractProduct* CreateObject(const IdentifierType& id)
{

typename AssocMap::const_iterator i = associations_.find(id);
if (i != associations_.end())
{

return (i->second)();
}
return OnUnknownType(id);

}
private:

... rest of functions and data as above ...
};

The default implementation of FactoryError throws an exception. This exception’s

class is best made distinct from all other types so that client code can detect it sepa-

rately and make appropriate decisions. Also, the class should inherit one of the stan-

dard exception classes so that the client can catch all kinds of errors with one catch block.

FactoryError defines a nested exception class (called Exception)4 that inherits std::run-
time_error.

08-A1568 01/23/2001 12:38 PM Page 209

210 Object Factories Chapter 8

template <class IdentifierType, class ProductType>
class DefaultFactoryError
{
public:

class Exception : public std::exception
{
public:

Exception(const IdentifierType& unknownId)
: unknownId_(unknownId)

{
}
virtual const char* what()
{

return "Unknown object type passed to Factory.";
}
const IdentifierType GetId()
{

return unknownId_;
};

private:
IdentifierType unknownId_;

};
protected:

StaticProductType* OnUnknownType(const IdentifierType& id)
{

throw Exception(id);
}

};

Other, more advanced implementations of FactoryError can look up the type identifier

and return a pointer to a valid object, return a null pointer (if use of exceptions is undesir-

able), throw some exception object, or terminate the program. You can tweak the behavior

by defining new FactoryError implementations and specifying them as the fourth argu-

ment of Factory.

8.6 Minutiae

Actually, Loki’s Factory implementation does not use std::map. It uses a drop-in re-

placement for map, AssocVector, which is optimized for rare inserts and frequent

lookups, the typical usage pattern of Factory. AssocVector is described in detail in

Chapter 11.

In an initial draft of Factory, the map type was customizable by being a template pa-

rameter. However, just too often AssocVector fits the bill exactly; in addition, using stan-

dard containers as template template parameters is not, well, standard. This is because

standard container implementers are free to add more template arguments, as long as they

provide defaults for them.

Let’s focus now on the ProductCreator template parameter. Its main requirement is that

it should have functional behavior (accept operator() taking no arguments) and return a

pointer convertible to AbstractProduct*. In the concrete implementation shown earlier,

08-A1568 01/23/2001 12:38 PM Page 210

Section 8.7 Clone Factories 211

ProductCreator was a simple pointer to a function. This suffices if all we need is to create

objects by invoking new, which is the most common case. Therefore, we choose

AbstractProduct* (*)()

as the default type for ProductCreator. The type looks a bit like a confusing emoticon be-

cause its name is missing. If you put a name after the asterisk within the parentheses,

like so,

AbstractProduct* (*PointerToFunction)()

the type reveals itself as a pointer to a function taking no parameters and returning a

pointer to AbstractProduct. If this still looks unfamiliar to you, you may want to refer to

Chapter 5, which includes a discussion on pointers to functions.

By the way, speaking of that chapter, there is a very interesting template parameter

you can pass to Factory as ProductCreator, namely Functor<AbstractProduct*>. If you

choose this, you gain great flexibility: You can create objects by invoking a simple function,

a member function, or a functor, and bind appropriate parameters to any of them. The glue

code is provided by Functor.

Our Factory class template declaration now looks like this:

template
<

class AbstractProduct,
class IdentifierType,
class ProductCreator = AbstractProduct* (*)(),
template<typename, class>

class FactoryErrorPolicy = DefaultFactoryError
>
class Factory;

Our Factory class template is now ready to be of use.

8.7 Clone Factories

Although genetic factories producing clones of the universal soldier are quite a scary pros-

pect, cloning C�� objects is a harmless and useful activity most of the time. Here the goal

is slightly different from what we dealt with so far: We don’t have to create objects from

scratch anymore. We have a pointer to a polymorphic object, and we’d like to create an ex-

act copy of it. Because we don’t exactly know the type of the polymorphic object, we don’t

exactly know what new object to create, and this is the actual issue.

Because we do have an object at hand, we can apply classic polymorphism. Thus, the

usual idiom used for object cloning is to declare a virtual Clone member function in the

base class and to have each derived class override it. Here’s an example using our geomet-

ric shapes hierarchy:

class Shape
{

08-A1568 01/23/2001 12:38 PM Page 211

212 Object Factories Chapter 8

public:
virtual Shape* Clone() const = 0;
...

};

class Line : public Shape
{
public:

virtual Line* Clone() const
{

return new Line(*this);
}
...

};

The reason that Line::Clone does not return a pointer to Shape is that we took advan-

tage of a C�� feature called covariant return types. Because of covariant return types, you

can return a pointer to a derived class instead of a pointer to the base class from an over-

ridden virtual function. From now on, the idiom goes, you must implement a similar Clone
function for each class you add to the hierarchy. The contents of the functions are the same:

You create a Polygon, you return a new Polygon(*this), and so on.

This idiom works, but it has a couple of major drawbacks:

• If the base class wasn’t designed to be cloneable (didn’t declare a virtual function equiv-

alent to Clone) and is not modifiable, the idiom cannot be applied. This is the case when

you write an application using a class library that requires you to derive from its base

classes.

• Even if all the classes are changeable, the idiom requires a high amount of discipline.

Forgetting to implement Clone in some derived classes will remain undetected by the

compiler and may cause runtime behavior ranging from bizarre to pernicious.

The first point is obvious; let’s discuss the second one. Imagine you derived a class

DottedLine from Line and forgot to override DottedLine::Clone. Now say you have a

pointer to a Shape that actually points to a DottedLine, and you invoke Clone on it:

Shape* pShape;
...
Shape* pDuplicateShape = pShape->Clone();

The Line::Clone function will be invoked, returning a Line. This is a very unfortunate sit-

uation because you assume pDuplicateShape to have the same dynamic type as pShape,

when in fact it doesn’t. This might lead to a lot of problems, from drawing unexpected

types of lines to crashing the application.

There’s no solid way to mitigate this second problem. You can’t say in C��: “I define

this function, and I require any direct or indirect class inheriting it to override it.” You must

shoulder the painful repetitive task of overriding Clone in every shape class, and you’re

doomed if you don’t.

If you agree to complicate the idiom a bit, you can get an acceptable runtime check.

08-A1568 01/23/2001 12:38 PM Page 212

Section 8.7 Clone Factories 213

Make Clone a public nonvirtual function. From inside it call a private virtual function called,

say, DoClone, and then enforce the equality of the dynamic types. The code is simpler than

the explanation:

class Shape
{

...
public:

Shape* Clone() const //nonvirtual
{

// delegate to DoClone
Shape* pClone = DoClone();
// Check for type equivalence
// (could be a more sophisticated test than assert)
assert(typeid(*pClone) == typeid(*this));
return pClone;

}
private:

virtual Shape* DoClone() const = 0; // private
};

The only downside is that you cannot use covariant return types anymore.

Shape derivees would always override DoClone, leave it private so clients cannot

call it, and leave Clone alone. Clients use Clone only, which performs the runtime check.

As you certainly figured out, programming errors, such as overriding Clone or making

DoClone public, can still sneak in.

Don’t forget that, no matter what, if you cannot change all the classes in the hierarchy

(the hierarchy is closed) and if it wasn’t designed to be cloneable, you don’t have any chance

of implementing this idiom. This is quite a dismissive argument in many cases, so we

should look for alternatives.

Here a special object factory may be of help. It leads to a solution that doesn’t have the

two problems mentioned earlier, at the cost of a slight performance hit—instead of a vir-

tual call, there is a map lookup plus a call via a pointer to a function. Because the number

of classes in an application is never really big (they are written by people, aren’t they?), the

map tends to be small, and the hit should not be significant.

It all starts from the idea that in a clone factory, the type identifier and the product have

the same type. You receive the object to be duplicated as a type identifier and pass as out-

put a new object that is a copy of the type identifier. To be more precise, they’re not quite

the same type: A cloning factory’s IdentifierType is a pointer to AbstractProduct. The ex-

act deal is that you pass a pointer to the clone factory, and you get back another pointer,

which points to a cloned object.

But what’s the key in the map? It can’t be a pointer to AbstractProduct because

you don’t need as many entries as the objects we have. You need only one entry per type
of object to be cloned, which brings us again to the std::type_info class. The fact that the

type identifier passed when the factory is asked to create a new object is different from

the type identifier that’s stored in the association map makes it impossible for us to reuse

the code we wrote so far. Another consequence is that the product creator now needs the

08-A1568 01/23/2001 12:38 PM Page 213

214 Object Factories Chapter 8

pointer to the object to be cloned; in the factory from scratch above, no parameter was

needed.

Let’s recap. The clone factory gets a pointer to an AbstractProduct. It applies the

typeid operator to the pointed-to object and obtains a reference to a std::type_info
object. It then looks up that object in its private map. (The before member function of

std::type_info introduces an ordering over the set of std::type_info objects, which

makes it possible to use a map and perform fast searches.) If an entry is not found, an

exception is thrown. If it is, the product creator will be invoked, with the pointer to the

AbstractProduct passed in by the user.

Because we already have the Factory class template handy, implementing the Clone-
Factory class template is a simple exercise. (You can find it in Loki.) There are a few dif-

ferences and new elements:

• CloneFactory uses TypeInfo instead of std::type_info. The class TypeInfo, discussed

in Chapter 2, is a wrapper around a pointer to std::type_info, having the purpose of

defining proper initialization, assignment, operator==, and operator<, which are all

needed by the map. The first operator delegates to std::type_info::operator==; the

second operator delegates to std::type_info::before.

• There is no IdentifierType anymore because the identifier type is implicit.

• The ProductCreator template parameter defaults to AbstractProduct*(*) (Abstract-
Product*).

• The IdToProductMap is now AssocVector<TypeInfo,ProductCreator>.

The synopsis of CloneFactory is as follows:

template
<

class AbstractProduct,
class ProductCreator =

AbstractProduct* (*)(AbstractProduct*),
template<typename, class>

class FactoryErrorPolicy = DefaultFactoryError
>
class CloneFactory
{
public:

AbstractProduct* CreateObject(const AbstractProduct* model);
bool Register(const TypeInfo&,

ProductCreator creator);
bool Unregister(const TypeInfo&);

private:
typedef AssocVector<TypeInfo, ProductCreator>

IdToProductMap;
IdToProductMap associations_;

};

The CloneFactory class template is a complete solution for cloning objects belonging to

closed class hierarchies (that is, class hierarchies that you cannot modify). Its simplicity and

08-A1568 01/23/2001 12:38 PM Page 214

Section 8.8 Using Object Factories with Other Generic Components 215

effectiveness stem from the conceptual clarifications made in the previous sections and from

the runtime type information that C�� provides through typeid and std::type_info.

Had RTTI not existed, clone factories would have been much more awkward to imple-

ment—in fact, so awkward that putting them together wouldn’t have made much sense in

the first place.

8.8 Using Object Factories with Other Generic Components

Chapter 6 introduced the SingletonHolder class, which was designed to provide spe-

cific services to your classes. Because of the global nature of factories, it is natural to use

Factory with SingletonHolder. They are very easy to combine by using typedef. For

instance:

typedef SingletonHolder< Factory<Shape, std::string> > ShapeFactory;

Of course, you can add arguments to any SingletonHolder or Factory to choose dif-

ferent trade-offs and design decisions, but it’s all in one place. From now on, you can iso-

late a bunch of important design choices in one place and use ShapeFactory throughout the

code. Within the simple type definition just shown, you can select the way the factory

works and the way the singleton works, thus exploiting all the combinations between the

two. With a single line of declarative code, you direct the compiler to generate the right

code for you and nothing more, just like at runtime you’d call a function with various pa-

rameters to perform some action in different ways. Because in our case it all happens

at compile time, the emphasis is more on design decisions than on runtime behavior. Of

course, runtime behavior is affected as well, but in a more global and subtle way. By writ-

ing “regular” code, you specify what’s going to happen at runtime. When you write a type

definition like the one above, you specify what’s going to happen during compile time—

in fact, you kind of call code-generation functions at compile time, passing arguments

to them.

As alluded to in the beginning of this chapter, an interesting combination is to use

Factory with Functor:

typedef SingletonHolder
<

Factory
<

Shape, std::string, Functor<Shape*>
>

>
ShapeFactory;

This gives you great flexibility in creating objects, by leveraging the power of Functor (for

which implementation we took great pains in Chapter 5). You can now create Shapes in al-

most any way imaginable by registering various Functors with the Factory, and the whole

thing is a Singleton.

08-A1568 01/23/2001 12:38 PM Page 215

216 Object Factories Chapter 8

8.9 Summary

Object factories are an important component of programs using polymorphism. They help

in creating objects when their type is either not available or available in a form that’s in-

compatible for use with language constructs.

Object factories are used mostly in object-oriented frameworks and libraries, as well as

in various object persistence and streaming schemes. The latter case was analyzed in depth

with a concrete example. The solution discussed essentially distributes a switch on type

across multiple implementation files, thus achieving low coupling. Although the factory

remains a central authority that creates objects, it doesn’t have to collect knowledge about

all the static types in a hierarchy. Instead, it’s the responsibility of each type to register it-

self with the factory. This marks a fundamental difference between the “wrong” and the

“right” approach.

Type information cannot be easily transported at runtime in C��. This is a funda-

mental feature of the family of languages to which C�� belongs. Because of this, type

identifiers that represent types have to be used instead. They are associated with creator

objects that are callable entities, as described in Chapter 5 on generalized functors (point-

ers to functions or functors). A concrete object factory starting from these ideas was im-

plemented and was then generalized into a class template.

Finally, we discussed clone factories (factories that are able to duplicate polymorphic

objects).

8.10 Factory Class Template Quick Facts

• Factory declaration:

template
<

class AbstractProduct,
class IdentifierType,
class ProductCreator = AbstractProduct* (*)(),
template<typename, class>

class FactoryErrorPolicy = DefaultFactoryError
>
class Factory;

• AbstractProduct is the base class of the hierarchy for which you provide the object

factory.

• IdentifierType is the type of the “cookie” that represents a type in the hierarchy. It has

to be an ordered type (able to be stored in a std::map). Commonly used identifier types

are strings and integral types.

• ProductCreator is the callable entity that creates objects. This type must support

operator() taking no parameters and returning a pointer to AbstractProduct. A

ProductCreator object is always registered together with a type identifier.

• Factory implements the following primitives:

08-A1568 01/23/2001 12:38 PM Page 216

Section 8.11 CloneFactory Class Template Quick Facts 217

bool Register(const IdentifierType& id, ProductCreator creator);

Registers a creator with a type identifier. Returns true if the registration was success-

ful; false otherwise (if there already was a creator registered with the same type

identifier).

bool Unregister(const IdentifierType& id);

Unregisters the creator for the given type identifier. If the type identifier was previously

registered, the function returns true.

AbstractProduct* CreateObject(const IdentifierType& id);

Looks up the type identifier in the internal map. If found, it invokes the corresponding

creator for the type identifier and returns its result. If the type identifier is not found,

the result of FactoryErrorPolicy<IdentifierType,AbstractProduct>:: OnUnknownType
is returned. The default implementation of FactoryErrorPolicy throws an exception of

its nested type Exception.

8.11 CloneFactory Class Template Quick Facts

• CloneFactory declaration:

template
<

class AbstractProduct,
class ProductCreator =

AbstractProduct* (*)(ConstAbstractProduct*),
template<typename, class>

class FactoryErrorPolicy = DefaultFactoryError
>
class CloneFactory;

• AbstractProduct is the base class of the hierarchy for which you want to provide the

clone factory.

• ProductCreator has the role of duplicating the object received as a parameter and re-

turning a pointer to the clone.

• CloneFactory implements the following primitives:

bool Register(const TypeInfo&, ProductCreator creator);

Registers a creator with an object of type TypeInfo (which accepts an implicit conver-

sion constructor from std::type_info). Returns true if the registration was successful;

false otherwise.

bool Unregister(const TypeInfo& typeInfo);

08-A1568 01/23/2001 12:38 PM Page 217

218 Object Factories Chapter 8

Unregisters the creator for the given type. If the type was previously registered, the

function returns true.

AbstractProduct* CreateObject(const AbstractProduct* model);

Looks up the dynamic type of model in the internal map. If found, it invokes the

corresponding creator for the type identifier and returns its result. If the type identifier

is not found, the result of FactoryErrorPolicy<OrderedTypeInfo, AbstractProduct>
::OnUnknownType is returned.

08-A1568 01/23/2001 12:38 PM Page 218

