wilde/lowe-47194 book June 28, 2002 9:37

6

XML Pointer Language

XPath, described in detail in the previous chapter, provides a common
foundation for other standards that need to address into XML documents.
One such standard, and the most interesting with regard to implement-
ing hypermedia based on XML technologies, is the XML Pointer Language
(XPointer) [DeRose+ 0la], which is used for fragment identifiers for XML
resources. According to RFC 3023 [Murata+ 01], XML documents are asso-
ciated with a number of MIME types.! For all these different types of XML
resources, it is possible to specify a fragment identifier, which is separated
from the URI of the resource itself by a crosshatch (#) character. As defined
in RFC 2396 [Berners-Lee+ 98] (the standard for URI syntax), a fragment
identifier is not an actual part of a URI but is often used in conjunction
with one in the so-called URI reference.

Thus, XPointer can be used for specifying references that point to
parts of an XML document, and not to the whole document. As a sim-
ple example, while the URI http://www.w3.0rg/TR/ references the tech-
nical reports page of the W3C (as shown in Figure 6.1), the URI refer-
ence http://www.w3.org/TR/#xpointer(id('xptr')) specifically points to
the entry for the XPointer standard on that page.? This mechanism makes
it possible to create links that are much more specific than through the use
of URIs only. There are, however, several things to keep in mind, as follows:

o The resource must be XML. XPointer is a mechanism for addressing
into XML documents, so the resource identified by the URI must be

!The Multipurpose Internet Mail Extensions (MIME) [Borenstein & Freed 92] define (in
addition to a multitude of other things not relevant in this context) a mechanism for identi-
fying types of resources by means of a media type (e.g., text) and a subtype (e.g., htm1).

2The XPointer standard may have changed status since the time of this writing and
consequently will not appear on the technical reports page as shown in the figure (and as
used in the examples in sections 6.4.3 and 6.4.4). However, the general principle does not
depend on the particular status of the standard or the W3C’s technical reports page.

139

wilde/lowe-47194 book June 28, 2002 9:37

140 PART Il TECHNIQUE: THE WEB’S NEW LOOK

2 November 2000, Jon Ferraiolo
Resource Description Framework (RDF) Schemas
3 March 2000, Dan Brickley, R.V. Guha
Candidate Recommendation Phase Ends 15 June 2000.

Working Drafts

The following Working Drafts have been submitted for review by W3C Members and other interested
parties. These are draft documents and may be updated, replaced or obsoleted by other documents at
any time. It is inappropriate to use W3C working drafts as reference material or to cite them as other
than “work in progress”.

Working Drafts in Last Call

A document in last call is to be reviewed by Working Groups that rely on or have a vested interest in
the technology. The duration of the last call review period is listed in the status section of the document
in review.

XML Inclusions (Xinclude) Version 1.0
17 May 2001, Jonathan Marsh, David Orchard
Last Call Ends 05 June 2001.
User Agent Accessibility Guidelines 1.0
09 April 2001, Jon Gunderson, lan Jacobs, Eric Hansen
Last Call Ends 04 May 2001.
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
15 March 2001, Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto
Last Call Ends 05 April 2001.
CSS Mobile Profile 1.0
29 January 2001, Ted Wugofski, Doug Dominiak, Peter Stark
Last Call Ends 01 March 2001.
CSS3 module: W3C selectors
26 January 2001, Tantek Celik, Daniel Glazman, lan Hickson, Peter Linss, John Williams
Last Call Ends 01 March 2001.
Character Model for the World Wide Web
26 January 2001, Martin J. Dirst (W3C), Frangois Yergeau (Alis Technologies, Inc.), Misha
Wolf (Reuters Ltd.), Asmus Freytag (ASMUS, Inc.), Tex Texin (Progress Software Corp.)
Last Call Ends 23 February 2001.
XML Pointer Language (XPointer) Version 1.0
8 January 2001, Ron Daniel Jr., Steve DeRose, Eve Maler
Last Call Ends 29 January 2001.
Speech Synthesis Markup Language Specification for the Speech Interface Framework
03 January 2001, Mark R. Walker, Andrew Hunt
Last Call Ends 31 January 2001.
Speech Recognition Grammar Specification for the W3C Speech Interface Framework
03 January 2001, Andrew Hunt, Scot McGlashan
Last Call Ends 31 January 2001.
Common Markup for micropayment per-fee-links
25 August 1999, Thierry Michel
Last Call ended 30 September 1999, but implementation experience solicited until 31 March 2000.

Working Drafts in Development

XML Blueberry Requirements
20 June 2001, John Cowan
Document Object Model (DOM) Level 3 XPath Specification

Figure 6.1 Snapshot of W3C'’s technical reports page

wilde/lowe-47194 book June 28, 2002 9:37

Chapter 6 XML Pointer Language 141

XML.? In the example just given, this is true since W3C makes its
pages available in XHTML, the XML variant of HTML. However,
the vast majority of documents on the Web are not XML, and
consequently XPointer cannot be used to address into them. While
it is assumed that XML resources will become more popular in the
near future (in particular since XHTML is the successor of HTML),
as long as non-XML browsers are still widely used,* HTML is likely
to remain the most popular language.

As a side note, HTML also supports fragment identifiers, but they
are limited to pointing to IDs only (as opposed to the XPath-based
addressing capabilities of XPointer). HTML uses its own extremely
simple syntax for fragment identifiers, which works by giving the 1D
as the fragment identifier, so the XML example just given would be
equivalent to the HTML version http://www.w3.org/TR/#xptr.?

(In this case, there is a simple correspondence between the XML and
the HTML fragment identifier, because both address the fragment
using its ID.)

e The resource must remain available. Of course, a fragment identifier
makes sense only as long as the resource is still available. This brings
up the well-known problem of broken links in the Web, and it is
independent from specifying fragment identifiers. However, because
fragment identifiers are often used with URISs, this issue must be
addressed. Resources on the Web often have an astonishingly short
life span [Dasen & Wilde 01]; and while some resources disappear
(i.e., no longer exist or at least are no longer available via a known
URI), others are moved to a new URI without having automatic
redirections set up by the Web server operator.

o The ID must remain the same. In cases where the fragment identifier
uses an ID within the document, it will work correctly only as long as

3W3C’s technical reports page is being served by the Web server with the MIME type
text/htm1, so technically it is not an XML resource. However, on inspection (and validation),
it can be concluded that the page indeed is XHTML, so it can be regarded as being an XML
resource.

4Here it is important to notice that XHTML has been specifically designed to be usable
by non-XML browsers (such as older HTML browsers). However, as long as there is only
limited market pressure to provide XHTML rather than HTML, most content providers will
be likely to continue to use HTML.

SIf this URI does not work in your browser, try http://www.w3.org/TR/#xptr instead,
which definitely should work. This, however, is not a mistake of the first variant of the URI
or of the server but a sign of a badly implemented browser [Dubost+ 01]. At the time of
writing, only Internet Explorer handles this case correctly, while Navigator and Opera get a
redirect response from the server and then fail to append the fragment identifier to the URI
to which they were redirected.

wilde/lowe-47194

142

book June 28, 2002 9:37

PART Il TECHNIQUE: THE WEB’S NEW LOOK

the ID remains valid within the document (and, in the example just
given, continues to identify the element representing the XPointer
entry within the document). However, since we do not have control
over the W3C’s document management and identification policy, we
have no guarantee that the ID will always be the same and that it
will always identify the element we want to reference. The basic
dilemma behind this is that the resource (the W3C’s Web page) and
the reference to it (our fragment identifier) are handled by different
entities, which do not necessarily cooperate (or even know each other;
for example, even though we know the W3C’s Web pages, the W3C
probably does not know that we used their ID as an example in

this book).

The client has to support XPointers. Even if all previous requirements
are satisfied (i.e., the document is XML, it is still available via the
URI, and the XPointer can still be interpreted meaningfully), the
application processing the URI with the fragment identifier must
implement the XPointer standard. At the time of writing, this is not
the case for almost all available software, though we hope this will
change in the near future. In comparison to XLink and XPath,
XPointer is lagging behind in the standardization process; and as
long as there is no stable standard, it cannot be implemented.

The major browsers in their most current versions (at the time of
writing, Internet Explorer 5.5, Navigator 6, and Opera 5) all sup-
port XML in the sense that they are able to not only download and
interpret XML documents, but also to display them using style
sheet mechanisms (CSS and/or XSL). There is, however, no support
for XPointer currently. Nevertheless, as soon as XPointer reaches
recommendation status, we hope to see XPointer support (as well
as XLink support) in the next releases of the major browsers.

These are the requirements that must be met when using XPointer. We

believe that in the near future XPointer (along with many other XML-based
technologies) will become widely supported and a popular technology. For
an illustration of how XPointer may not only become useful for hypermedia
applications (which are the focus of this book) but also for other relatively
simple cases of usage, consider the following scenario:

You find an interesting quote on the Web, possibly in an XHTML resource, that you
would like to send to a friend. Instead of copying the quote into an e-mail (which
would mean taking the quote out of context) or simply sending the resource’s
URI (which would make it necessary to somehow indicate exactly which part of
the resource you mean), you select the quote with the mouse and then choose
the “Generate XPointer” option from your browser’s menu, which automatically

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 143

generates a URI reference that exactly identifies the selected quote. You paste this
URI reference into the e-mail and send it to your friend. This way, you have exactly
identified the quote that was important to you without taking it out of context.
Upon receiving the URI reference, your friend’s browser not only requests and
displays the resource containing the quote but also automatically highlights the
quote identified by the XPointer part of the URI reference.

This example depends on the browser’s ability to generate XPointers.
Ideally, it would do so in a clever way, because for each subresource there is
a multitude of possibilities for creating an XPointer identifying it. We will
discuss this important issue in detail later in this chapter (in sections 6.4.3
and 6.4.4), but by now it should be clear that XPointer can provide a lot
of value in an XML-based Web.

We now look at the details of XPointer. Section 6.1 discusses the general
data model of XPointer, which is a generalization of XPath’s data model.
After this introductory section, we go into the details of how XPointers may
be used as fragment identifiers, described in section 6.2. The next issue is
XPointer’s extensions to XPath and, in particular, the additional functions
that XPointer defines. These functions are discussed in section 6.3.

After this rather formal discussion of XPointer, we then spend some
time considering possible usage scenarios and how XPointer may be applied
in the best possible way (section 6.4). Finally, even though XPointer is a
very new standard, in section 6.5 we briefly describe our view of what
XPointer’s future may look like.

6.1 GENERAL MODEL

One of the most important aspects of XPointer is that it defines a gen-
eralization of the XPath concepts of nodes, node types, and node sets (as
described in section 5.1) to the XPointer concepts of locations, location
types, and location sets.% As a reminder, nodes, node types, and node sets
in XPath are used to describe concepts that can be identified as nodes in
a document’s tree representation, as described by the XML Infoset. XPath
functionality, such as filtering an axis output by predicate, is generally de-
fined in terms of operations on nodes and node sets (an exception are the
string functions, but these are rather limited and always operate on strings
within one text node).

XPointer’s goal is to define a mechanism for XML fragment identifiers.
A very common usage scenario is a user selecting arbitrary document con-
tent with a mouse and then wishing to have an XPointer generated that

6Despite their similar names, these concepts are completely independent from XPath’s
location paths and location steps and should not be confused with them.

wilde/lowe-47194 book June 28, 2002 9:37

144 PART Il TECHNIQUE: THE WEB’S NEW LOOK

identifies exactly that content (e.g., to use the XPointer for creating a link
pointing to that content). Since this selection can span multiple elements
and furthermore may start in the middle of the text of one element and
end in the middle of another, it is impossible to identify this content with
XPath’s constructs of nodes or strings. XPointer’s solution to this problem
is an extension of XPath’s data model, described in section 6.1.1. To make
the concepts of XPointer’s data model easier to understand, we give some
examples in section 6.1.2 of how this model maps to real-world scenarios.

6.1.1 XPointer Data Model

XPointer generalizes the concept of XPath nodes to locations, and, in
essence, this generalization defines each location to be an XPath node, a
point, or a range.” The following definitions are taken from the XPointer
specification® and show how XPath’s definition of a NodeType is extended
by the concepts point and range:

[11] NodeType = 'comment'

| 'text'

| "processing-instruction'
| 'node'

| "point'

| 'range'

Based on these definitions, XPointer also defines the location set as a
generalization of XPath’s node set. This definition allows XPath node tests
to select locations of type point and range from a location set that might
include locations of all three types. All locations generated by XPath con-
structs are nodes, but XPointer constructs can also generate points and
ranges. The concepts of points and ranges are defined in the next two
sections.

Point

A location of type point is defined by a node, called the container node,
and a non-negative integer, called the indez. It can represent the location
preceding any individual character, or preceding or following any node in
the information set constructed from an XML document. Two points are

"Note that the XPointer concepts of points and ranges directly correspond to the concepts
of positions and ranges as defined by the Document Object Model (DOM) [Kesselman+ 00].

8We list XPointer grammar productions only where they help in understanding the con-
cepts behind them. The numbering of the productions has been taken from the XPointer
specification [DeRose+ 0la], which should be consulted for a complete and authoritative
definition of the XPath grammar. It can be found at http://www.w3.org/TR/xptr.

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 145

identical if they have the same container node and index. Each point can
be either a node point or a character point, which are defined as follows:

e Node point. If the container node of a point is of a node type that can
have child nodes (that is, when the container node is an element node
or a root node), then the index is an index into the child nodes, and
such a point is called a node point. The index of a node point must
be greater than or equal to zero and less than or equal to the number
of child nodes of the container. An index of zero indicates the point
before any child nodes, and a non-zero index n indicates the point
immediately after the nth child node.

o Character point. When the container node of a point is of a node
type that cannot have child nodes (i.e., text nodes, attribute nodes,
namespace nodes, comment nodes, and processing instruction nodes),
then the index is an index into the characters of the string value of
the node. Such a point is called a character point. The index of a
character point must be greater than or equal to zero and less than or
equal to the length of the string value of the node. An index of zero
indicates a point immediately before the first character of the string
value, and a non-zero index n indicates the point immediately after
the nth character of the string value.

Figure 6.2 shows the relationship of container nodes, node points, and
character points for an example of an element containing text, then another
element (which also contains text), and then some more text.

XPointer’s goal is to make XPath’s concepts applicable to locations and
not only to nodes, and thus the following properties for applying XPath’s
concepts to points are defined: The self and descendant-or-self axes of
a point contain the point itself. The parent axis of a point is a location
set containing a single location, the container node. The ancestor axis con-
tains the point’s container node and its ancestors. The ancestor-or-self
axis contains the point itself, the point’s container node, and its ancestors.
The child, descendant, preceding-sibling, following-sibling, preceding,
following, attribute, and namespace axes of points are always empty.

Range

A range is defined by two points, a startpoint and an endpoint.” A range
represents all of the XML structure and content between the startpoint
and the endpoint. A range whose start- and endpoints are equal is called

9The start point has to appear before the end point in document order. More discussion
about document order and point locations is at the end of this section.

wilde/lowe-47194 book June 28, 2002 9:37

146 PART Il TECHNIQUE: THE WEB’S NEW LOOK

(pid=p1’)

|
[[
| I
1! [
| : : |
Text : : Text : : Text
Node 1 i 1 Node2 | | Node 3
1 N I
Everything_is_ : : deeply_ : : intertwingled.
IIIIIIIIIIIIIII: VATELEET :IIIIIIIIIIIIIII
0 5 10 P 0 5 Lo 0 5 10
| |
positon 0inp; | | P! position 3 in p; -
text node 1 L P! text node 3
startpoint ! : : ! endpoint
- p startpoint : i i : p endpoint -*
| |
| |
textnode 1 -- | i L-text node 3
. | | .
endpoint; | | startpoint;
position 1 in p; : : position 2 in p;
em startpoint : : em endpoint
position 0 in em; —-—-! - —- position 1 in em;
text node 2 text node 2
startpoint endpoint

Figure 6.2 Container nodes, node points, and character points. Reproduced
from the XPointer specification [DeRose+ 01la] by kind permission of Steven
DeRose, spring 2002.

a collapsed range. If the container node of one point of a range is a node
of a type other than element, text, or root, then the container node of the
other point of the range must be the same node.'® The axes of a range are
identical to the axes of its startpoint.

As a side note, remember that node sets are only one of the object
types defined in XPath (the others being boolean, number, and string),
and the other XPath object types also exist in XPointer. However, there is
one important exception, and this is the result type of a whole XPointer.
While an XPath can evaluate to any object type (consider the rather simple
XPath 2+3, which evaluates to a number), XPointer requires an XPointer

10This rule has been defined to make it impossible to create ranges that start within
attribute, namespace, comment, or processing instruction nodes and end in a node other
than the same node.

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 147

to always evaluate to a location set (which is logical, given that there is no
way that objects other than location sets could be interpreted as fragment
identifiers pointing into documents).

In order to understand some of the functions XPointer provides, it is
also essential to introduce the concept of the covering range. By definition,
a covering range is a range that wholly encompasses a location. This means
that the concept of a covering range can be applied to any location, whether
it be a node, a point, or a range. Basically, a covering range is the smallest
possible range covering a given location. In detail, this is defined as follows:

e For a range location, the covering range is identical to the range.

e For an attribute or namespace location (both node locations), the
container node of the start point and end point of the covering range
is the attribute or namespace location; the index of the startpoint of
the covering range is 0; and the index of the endpoint of the covering
range is the length of the string value of the attribute or namespace
location.

e For the root location (a node location), the container node of the
startpoint and endpoint of the covering range is the root node; the
index of the start point of the covering range is 0; and the index of
the endpoint of the covering range is the number of children of the
root location.

e For a point location, the start- and endpoints of the covering range
are the point itself.

e For any other kind of location, the container node of the startpoint
and endpoint of the covering range is the parent of the location;
the index of the startpoint of the covering range is the number of
preceding sibling nodes of the location; and the index of the endpoint
is one greater than the index of the startpoint.

In summary, XPointer’s extensions to XPath’s data model include the
extension of the concept of nodes and node sets to that of locations and
location sets (with the location being a node, a point, or a range). XPointer
also introduces the concept of a covering range to support mapping of lo-
cations to ranges. For each location, there is a well-defined covering range.

In addition to these extensions of XPath’s data model, XPointer also
extends the concept of document order, as introduced in section 5.1. In gen-
eral, the concept is extended not only to arrange nodes in a well-defined
order but also to include point and range locations. Figure 6.2 shows how
the locations of a document fragment are arranged in XPointer’s docu-
ment order. For defining rules regarding how to determine document order,
XPointer introduces the concept of an immediately preceding node and then

wilde/lowe-47194 book June 28, 2002 9:37

148 PART Il TECHNIQUE: THE WEB’S NEW LOOK

uses it to define how every possible combination of the relevant location
types (i.e., nodes, points, and ranges) have to be compared to establish the
document order of these locations.

6.1.2 XPointer Data Model Examples

To make these abstract definitions more understandable, we give some ex-
amples of how the concepts of locations, points, ranges, and nodes relate to
each other. Our scenario is a browser that allows a user to create XPointers
by selecting content with a mouse and then using a menu option for gener-
ating an XPointer identifying that content.

Marking a Point Within a Document

The simplest use is to mark a point within the document and generate an
XPointer for this point (e.g., for creating an XPointer that is attached to
an e-mail saying “please insert your text here”). To do this, the browser
generates an XPointer that is a point. Depending on where the point has
been selected, it is either a node point (if it has been marked within the
root node or an element node) or a character point (in all other cases).
Depending on how the browser was implemented, different XPointers that
refer to the same point could be created. Consider the case where a user
selects the point before the first character of a paragraph. Depending on
the browser’s implementation, this could result in the following:

e a node point into the paragraph’s parent element node, identifying
the point before the paragraph child,

e a node point with index zero within the paragraph’s element node, or

e a character point with index zero within the text node of the para-
graph’s text.

All these cases make sense. In the first, the point could be used to insert
elements before the paragraph element. In the second, the point could be
used to insert elements into the paragraph before the first character; while
in the third, it could be used to insert characters before the first character
within the paragraph’s text. It is entirely dependent on the implementation
and application how these cases should be treated. Indeed, one possibility
would be for the browser to present the user with a choice as to which is
the appropriate XPointer.!!

UFurther complicating things, the browser could base its decision on the document’s
schema (e.g., the DTD) if available, which could be used to determine whether the para-
graph element may have both text and children elements or only text.

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 149

Selecting Text Within One Node

Selecting text within one node is the equivalent of selecting two points,'?
the start and the end point of the selection, that lie inside the same node
(e.g., the same element, attribute, or comment). From the user’s point of
view, it may not be apparent whether or not the two points are located
within the same node (e.g., if two elements are not visibly separated by any
formatting); but for the browser, this is easy to determine. Based on the
selection of the user, the browser generates an XPointer defining a range
between the selected start and end points. Since in this case the selected
text lies within one node, the two points can easily be used to construct an
XPointer range, which spans between the two points.

Selecting Text That Spans a Number of Nodes

If the start and the end point lie in different nodes, then the range defined
by the two points also spans multiple nodes. According to the range con-
straints defined by XPointer, this is allowed only if the containing nodes
of the startpoint and the endpoint are element, text, or root nodes (in all
other cases, the start and endpoint must lie within the same node). A pos-
sible selection that spans a number of nodes in the case of an XHTML-like
paragraph may select text that is all inside the paragraph but still spans
multiple nodes. This may be because in between there are other element
nodes (e.g., nodes representing emphasized text or hyperlinks). This situ-
ation effectively places the start and the endpoints in different text nodes
(making them both children of the same paragraph node).

To further generalize this scenario, the start point and the end point
may occur in entirely different subtrees of the document tree, for example,
within a paragraph of the first chapter and in a table cell of the third chap-
ter. This still would represent a valid range, spanning from the character
point in the text node representing the first chapter’s paragraph to the node
point in the table row node directly after the selected table cell.

Making Multiple Selections

Even though today’s user interfaces in most cases do not support this type
of interaction, it would be perfectly reasonable to implement an interface
that allows multiple non-contiguous selections. This could be used to cre-
ate an XPointer that references multiple ranges within the same resource
(e.g., attached to an e-mail saying “what do you think about these three
statements?”). In a case such as this, it is mainly a question of the design
of the user interface as to how multiple selections could be implemented in

12In XPointer, the startpoint of a range must occur before the endpoint in document order;
so if the user makes the selection by first selecting the endpoint, the browser must recognize
this and act accordingly.

wilde/lowe-47194 book June 28, 2002 9:37

150 PART Il TECHNIQUE: THE WEB’S NEW LOOK

a user-friendly way. From XPointer’s point of view, the multiple selections
could be easily combined to yield a single location set.

The preceding scenarios illustrate some typical cases in which XPointer
concepts are relevant.'® So far we have not discussed how exactly the hy-
pothetical browser maps the concepts to actual XPointers, and as a first
step toward resolving this issue, we first have to discuss the possible forms
of XPointers.

6.2 XPOINTER FORMS

An XPointer is an identification of a part of an XML resource and is mainly
intended to be used as a fragment identifier in a URI reference. As such,
it must somehow fit into the framework defined for URIs as described in
section 3.2. Basically, it must be represented as a printable string that
can be used within URI references and exchanged in the same way URIs
are exchanged. (To this end, XPointers must obey a number of character-
escaping rules, which are not discussed here but are described in detail in
section 6.4.1).
XPointer distinguishes three different forms as follows:

[1] XPointer ::= Name
| ChildSeq
| FullXPtr

The first one (a bare name) is defined to act mainly as a very concise form
and to be backwards compatible with HTML fragment identifiers. This first
form is described in section 6.2.1. A second form (a child sequence) still uses
an abbreviated syntax but allows more flexibility than the first form. It is
described in section 6.2.2. Finally, the full form of XPointer is discussed in
section 6.2.3. It is the most complex and most powerful XPointer form.

6.2.1 Bare Names

The simplest form of an XPointer is a bare name. Basically, it consists of
the same name as that provided for the argument of a location step using
the id function. This function returns the element that has an attribute

13Note that our examples assume that the presentation of a document in a browser can be
used to identify points in the underlying source document. However, in the case of nontrivial
presentations (such as when complex XSL style sheets that map single sections of an XML
document to multiple presentation artifacts are used), this correspondence between selections
in the presentation and the underlying document may become rather complicated. How this
issue could and should be resolved in a general way is at the time of writing still the subject
of discussions within the W3C’s standardization process for XPointer.

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 151

of type ID' with the argument’s value, so an XPointer bare name does
exactly the same thing as an HTML fragment identifier.!” As an example,
the URI reference http://www.w3.org/TR/#xptr uses a bare name'® and
may consequently be interpreted as pointing to the element that has an
attribute of type ID with the value xptr.

There are two reasons XPointer bare names are supported, despite their
very limited functionality:

e For reasons of backwards compatibility with HTML and as an easy
migration to XHTML without the need to rewrite all fragment
identifiers when converting a resource from HTML to XHTML.
Otherwise, HTML fragment identifiers become invalid if an HTML
resource is converted to XHTML.

e To encourage the use of IDs, which are the most robust mechanism
for pointing into XML documents.

XPointer bare names are very easy to understand and use, but they are
limited in two ways.

The first limitation is that they may point only to element nodes, be-
cause only elements may be identified via ID attributes. The second lim-
itation is that the element to which an XPointer should point must have
an attribute of type ID, otherwise it is impossible to point to this element
using a bare name. (If the document is under the control of the creator of
the XPointer, then an ID may be created by modifying the document, but
this is not always an option.)

As an intermediate form of XPointers (between the bare form and full
XPointers), we have the child sequence. This form of XPointer, discussed
in the next section, is also limited to pointing to element nodes, but it—in
contrast to bare names—may point to element nodes that do not carry an
attribute of type ID.

6.2.2 Child Sequences

A child sequence is a form of XPointer that selects an element node by nav-
igating through a document’s element tree. It resembles an XPath location

l4Note that it is necessary to interpret the DTD to evaluate the type of an attribute.

15Except that in HTML, IDs can also be defined using an <a> element with a name attribute,
which, although discouraged, is still widely used because of the lack of browser support for
the newer identification mechanism using the id attribute defined for virtually every HTML
element,.

6To be more precise, this URI reference’s fragment identifier may be regarded only as a
bare name XPointer if the W3C’s Web server reports an XML-based MIME type for the
resource. If it reports an HTML MIME type, as it does at the time of writing, the fragment
identifier must be interpreted as an HTML fragment identifier.

wilde/lowe-47194 book June 28, 2002 9:37

152 PART Il TECHNIQUE: THE WEB’S NEW LOOK

path in that it uses a path notation, but it is much more limited in that
it can select only elements and uses only the child axis. The syntax for a
child sequence is as follows:

[2] ChildSeq ::= Name? ('/' [1-9] [0-9]+)+

An example of a child sequence identifying the same element as the
http://www.w3.org/TR/#xptr bare name would be http://www.w3.0rg/TR/#
/1/2/17/15/1/1/1. This is nothing more than a navigation path through
the element tree of the XHTML page based on child sequences. It could be
spelled out as follows:

e Select the first child of the document root, which is the <htm1>
element.

e Select the second child of the <htm1> element, which is the <body>
element.

e Select the seventeenth child of the <body> element, which is a <d1>
element.

e Select the fifteenth child of the <d1> element, which is a <dt> element.
e Select the first child of the <dt> element, which is a element.
e Select the first child of the element, which is an <i> element.

e Select the first child of the <i> element, which is an <a> element.

This last <a> element is the one carrying the xptr ID, which is why the
bare name XPointer and the child sequence XPointer select the same ele-
ment. In this case, we have selected something that is also accessible through
an ID. However, what is interesting about the child sequence mechanism is
that it would still be possible to select the element even if was not identified
through an ID.

Child sequences have a severe disadvantage in that they are very sen-
sitive to document modifications. It is very unlikely that the example just
presented will still work after the W3C’s page has been modified since the
modification is likely to involve inserting or deleting elements preceding
the one we want to select, resulting in breaking the intention of the child
sequence. !’

Since child sequences are easy to use but also easy to break, there is
a second form of child sequence that uses an element identified by an ID

1"We discuss more about the persistence of XPointers in section 6.4.4. Here it is interesting
to note that the child sequence would probably still identify an element after the page has
been modified, but most likely not identify the element that we want to identify.

wilde/lowe-47194

[3]
[4]

[5]
[6]
[7]
[8]
[9]
[10]

book June 28, 2002 9:37

FullXPtr
XPtrPart

Scheme

SchemeSpecificExpr :
StringWithBalancedParens ::

XPtrExpr
XPtrNsDecl
XPtrNsURI

Chapter 6 XML Pointer Language 153

as the starting point rather than using the document root. In this case,
the XPointer starts with a bare name but then continues with a child se-
quence,'® navigating the document tree starting from the element with the
given ID. An example of this kind of child sequence would be http://www.
w3.org/TR/#1ast-call-1ist/15/1/1/1. This would work if the W3C had
made the <d1> element listing the document in “last call” status accessi-
ble through a last-call-Tist ID (which it has not done). This kind of
child sequence would make the XPointer more robust to modifications of
the document because only changes within the <d1> element could possibly

break the XPointer.

6.2.3 Full XPointers

Both bare names and child sequences are rather limited in their expressive-
ness, insofar as they can select only element nodes and also in the way they
select these nodes. Therefore, in many cases it is necessary to use more com-
plex XPointers (the so-called full XPointer), which provide a much more
flexible way of addressing into a document than bare names or child se-
quences do. Syntactically, a full XPointer is defined as follows:

XPtrPart (S? XPtrPart)=x

'xpointer' '(' XPtrExpr ')'

'xmins' '(' XPtrNsDecl? ')'

Scheme '(' SchemeSpecificExpr ')'

NCName

StringWithBalancedParens

[A(OD]= ('"(" StringWithBalancedParens ')' [A()]=)=
Expr

NCName S? '=' S? XPtrNsURI

Chars

As an example, now consider the W3C technical reports page. W3C
has used IDs to mark individual sections (which are visible as headings
and subheadings in Figure 6.1); but unfortunately in XHTML the actual
contents of a section are not contained in any specific element. Instead they
simply follow a sectioning element, such as the <h3> element used for the
“Working Drafts in Last Call” section heading. Consequently, using only
child sequences, it is impossible to point to the entry for the XPointer
working draft entry. This is because the XPointer entry is part of the <d1>
list following the “Working Drafts in Last Call” heading. So if we want to

18This is possible because XML rules state that name tokens, the syntax used for IDs, may
not contain slash characters, which are used in defining child sequences.

wilde/lowe-47194 book June 28, 2002 9:37

154 PART Il TECHNIQUE: THE WEB’S NEW LOOK

point to the entry for XPointer starting from the heading with the ID, we
have to use a full XPointer as follows:

http://www.w3.org/TR/#xpointer(id('last-call')/following::d1[1]/dt[7]//a)

Here we mainly exploit the fact that the “Working Drafts in Last Call”
heading is identified by the 1ast-call ID. The XPointer part of the URI
reference could be interpreted as follows (commenting on the individual
location steps):

e Select the element having the Tast-call ID. (This is the <h3>
element with the “Working Drafts in Last Call” content.) Here
we use XPath’s id function as described in section 5.4.4.

e Select the first definition list (represented by a <d1> element)
following the <h3> element. (For an explanation of the XPath
following axis, refer to section 5.2.2.)

o Select the seventh definition term of this list (i.e., the seventh <dt>
child of the <d1> element).

e Select the <a> element, which is (directly or indirectly) contained
in the <dt> element.

In this example, we see that a normal XPath can be used within an XPointer.
Apart from a few exceptions, XPointer allows unlimited use of XPath’s ex-
pressiveness. Therefore, it is necessary to know XPath if we are to create
anything more than trivial XPointers (i.e., bare names and child sequences).

Looking at the example just given, note the presence of a special key-
word, xpointer, which, according to rule 4 from the syntactic definition,
is the specification of a scheme. XPointer schemes are an important mech-
anism for building robust XPointers. According to rule 3 of the syntax,
full XPointers use schemes to define any number of scheme-specific parts.
XPointer specifies that scheme parts must be evaluated left to right, so the
interpretation of the scheme parts is well defined. Currently, there are only
two schemes defined for XPointer (as indicated by rule 4):

e xpointer — This is by far the most widely used scheme, and it indi-
cates that the expression that follows (contained in parentheses) is
an XPointer expression. This scheme has been used in the example
just given.

e xmins — This second scheme is for the initialization of namespaces.
In XPath (and, therefore, in XPointer), an expression may contain a
qualified name (i.e., a name containing a namespace prefix and a local
name). In order to make the interpretation of qualified names possible,

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 155

there must be a mechanism for the initialization of namespaces (i.e.,
for the assignment of a namespace URI to a namespace prefix). This
scheme will be discussed in detail in section 6.4.2.

While these two schemes are the only ones defined in the XPointer
specification, it is possible for applications to define their own schemes,
which can then be used to access subresources in an application-specific
way. This would, however, make the XPointer unusable for any application
not supporting the application-specific extension. It is useful to note that
the XPointer specification states that interpretation proceeds from left to
right and stops once a scheme part that can be successfully interpreted as
a locator into the resource has been identified. Consequently, it is possible
to concatenate multiple scheme parts, and if the interpretation of a scheme
part fails (a so-called subresource error'®), then the interpretation of the
XPointer continues with the next scheme part. A simple example for this
is the following URI reference:

http://www.w3.0org/TR/#xpointer(id('xptr'))
xpointer(/«[1]1/+[21/«[17]/«[15]/+«[11/=[1]/+[1])

In this case, the XPointer consists of two scheme parts, both being
of the xpointer scheme. If an element with the ID xptr is present in the
resource, then the XPointer will locate it.? Otherwise, the first scheme part
results in a subresource error, and the second part then successfully locates
the resource by simply counting element children.?! Given our example used
so far, this XPointer would continue to work even if the ID xptr was removed
from the document. However, the XPointer would still break if the ID was
removed and the resource’s structure was changed in such a way that the
“child sequence” no longer identified the element we want to locate.??

YXPointer defines three error types: syntax errors for XPointers being syntactically in-
valid, resource errors for XPointers pointing into nonexistent or non-XML resources, and
subresource errors. Note that XPath allows empty node sets as results and does not regard
this situation as an error. However, because XPointer is intended as a specification of docu-
ment locations, an empty result is an error.

20Here it can be seen that a bare name XPointer used in a URI reference such as .. .#name
is identical to the full form ...#xpointer(id(‘name’)).

2In this case, it can be seen that a child sequence XPointer in a URI reference such as
...#/a/b/c is identical to the full form ...#xpointer(/«[al/x[b]/«[c]). (In this case, the
abbreviation mechanisms of XPath are used, otherwise each step would look like child::
*[position()=a], which makes explicit the child sequence positioning.)

221t should be noted that given the modification frequency of W3C’s technical reports
page, the structure of this page is likely to change at least once per week, even though some
subtrees (such as the Recommendations section) may remain stable for months.

wilde/lowe-47194 book June 28, 2002 9:37

156 PART Il TECHNIQUE: THE WEB’S NEW LOOK

Formally, as already mentioned, the XPointer specification states that
evaluation of XPointer scheme parts must be left to right but also that
evaluation of scheme parts must continue if one of the following conditions
is met while evaluating a scheme part:

e The scheme is unknown to the application evaluating the XPointer.

e The scheme is not applicable to the media type of the resource.

e The scheme does not locate any subresource present in the resource.?

This applies to XPointer expressions evaluating to an empty location
set (a subresource error).

e If the scheme being interpreted is xpointer, the following applies:

— The string argument in a string-range function is not found in the
string-value of the location, or the third or fourth argument of the
function indicates a string that is beyond the beginning or end of
the document.

— The point returned by the start-point function is of type attribute
or namespace.

This set of rules for the evaluation of XPointer scheme parts makes
it possible to create XPointers with built-in “fault tolerance” (through
providing fall-back scheme parts to be used if the original scheme part
does not work anymore). In section 6.4.3 we will discuss some interesting
examples.

6.3 FUNCTIONS

XPointer is built on top of XPath and extends XPath in several ways. At
the most fundamental level, it extends XPath’s data model, and this aspect
has been covered in section 6.1.1. However, in order to fully exploit this
extended data model, XPointer also extends the list of functions provided
by XPath. XPath’s functions have been described in section 5.4, with an
overview provided in Table 5.4. XPointer significantly extends this list of
functions. The additional functions provided by XPointer are summarized
in Table 6.1.

Before covering the functions in detail, we should note that when XPath
was developed it was assumed that the XPath functions would be extended
by other specifications. (Indeed, as we have mentioned previously, XPath

ZNote that an XPointer part that uses the xmIns scheme never returns a subresource and
thus always fails. However, its evaluation has a potential effect on XPointer parts to its right
(see section 6.4.2 for more information).

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language

Table 6.1 Overview of XPointer Functions

157

Function name

Result type

Arguments

Page

end-point
here

origin

range
range-inside
range-to
start-point
string-range

location-set
location-set
location-set
location-set
location-set
location-set
location-set
location-set

Tocation-set
n/a

n/a
Tocation-set
Tocation-set
location-set
Tocation-set
location-set,

string, number?,

number?

157
158
158
158
158
159
160
160

is more intended as a foundation for other specifications than as a stand-
alone standard.) Consequently, the extension of XPath'’s set of functions is
perfectly legal and well defined within the XPath model.

One particularly useful observation about the XPointer functions is

e end-point — Returns the end point of a location.
Signature: Tocation-set end-point(location-set)
The end-point function accepts a location set as its argument. For
each of the locations in this location set, the function adds the end
point of the location to the resulting location set, according to the
following rules (with x being a location in the argument location set):

— If = is of type point, the resulting point is x.
— If x is of type range, the resulting point is the end point of x.
— If x is of type root or element, the container node of the resulting

point is x, and the index is the number of children of x.
— If x is of type text, comment, or processing instruction, the

that they all accept arguments and produce results using the extended
XPointer data model. Furthermore, from the function names it can be con-
cluded that the majority of functions are used for defining ranges. This is
not surprising given that ranges are XPointer’s most important extension of
the XPath data model and are not supported at all by XPath’s functions.
In the following list, we cover all XPointer functions (supplementing the
core XPath functions) in detail:

container node of the resulting point is x, and the index is the

length of the string-value of x.

— If x is of type attribute or namespace, the XPointer part in which
the function appears fails.

wilde/lowe-47194 book June 28, 2002 9:37

158 PART Il TECHNIQUE: THE WEB’S NEW LOOK

Thus, the end-point function can be used to locate the end
point of any location. The complementary function of the end-point
function is the start-point function.

e here — Returns the context of the XPointer.
Signature: Tocation-set here()
The here function makes it possible to create XPointers relative to
the context in which they appear. Since this makes sense only for
XPointers within XML resources, an XPointer part containing the
here function always fails if the XPointer does not appear inside an
XML resource.?* If the containing resource is XML, the here func-
tion returns a location set with one member: If the XPointer being
evaluated appears in a text node inside an element node, the location
returned is the element node. Otherwise, the location returned is the
node that directly contains the XPointer being evaluated.

e origin — Returns the context of the traversal initiation.
Signature: Tocation-set origin()
This function makes sense only in a context where XPointers are used
within linking constructs (such as those provided by XLink) and
where the processing model is such that the XPointer evaluation is
initiated by the traversal of links. If this is the case, the origin
function returns a location set with one member, which locates the
element from which a user or program initiated traversal of the link.
If the origin function is used in a URI reference where a URI is
also provided and identifies a containing resource different from the
resource from which traversal was initiated, the result is a resource
error. It is also a resource error to use the origin function in a
context where traversal is not occurring.

e range — Returns covering ranges of locations.
Signature: Tocation-set range(location-set)
The range function returns the covering ranges of all locations in
the argument location set. Thus, the result location set of the range
function always contains a set of range locations, and this set con-
tains, at most, as many range locations as there are locations in the
argument location set.?

e range-inside — Returns ranges covering the contents of locations.
Signature: Tocation-set range-inside(location-set)
The range-inside function is similar to the range function in that it

240ne possible scenario would be an XPointer being typed into the address bar of a browser,
which would not have an XML document as context.

251t contains fewer range locations if at least some of the argument locations have the same
covering ranges.

wilde/lowe-47194 book June 28, 2002 9:37

Chapter 6 XML Pointer Language 159

also returns ranges covering the locations in the argument location
set. However, the range-inside function does not return the covering
ranges for the locations in the argument location set but instead
returns ranges covering the contents of these locations. The following
rules are used to construct the result location set, based on the type
of each location in the argument location set:

— For range locations, the location (i.e., the range) is added to the
result location set.

— For point locations, the location (i.e., the point) is added to the
result location set. Consequently, the result location set of the
range-inside function can contain range and point locations.

— For node locations, the location (i.e., the node) is used as the con-
tainer node of the start and end points of the range location to be
added to the resulting location set. The index of the start point of
the range is zero. If the end point is a character point, then its
index is the length of the string value of the argument node
location; otherwise it is the number of children of the argument
node location.

This definition of the range-inside function makes sure that
only the contents of locations are added to the result location set.
For example, if the argument location is an element, then the range-
inside function returns the contents of this element as the result (in
contrast, the range function would return the element itself).

e range-to — Returns range from context location to argument location.
Signature: Tocation-set range-to(location-set)
This function has a special position among the other functions in that
it requires a change of the XPath syntax as described in section 5.2.%
In XPointer, rule 4 of XPath’s syntax of location paths is changed

from

[4] Step ::= AxisSpecifier NodeTest Predicate=
| AbbreviatedStep

to the following form:

[4xptr] Step ::= AxisSpecifier NodeTest Predicates=
| AbbreviatedStep

| 'range-to' '(' Expr ')' Predicatex

20This way of incorporating the range-to functionality into XPointer is not very elegant;
and in order to avoid similar situations in the future, the XPointer specifications states: “This
change is a single exception for the range-to function. It is not a generic change and is not
extensible to other functions. The modified production expresses that a range computation
must be made for each of the nodes in the current node list” [DeRose+ 0lal.

wilde/lowe-47194

160

book June 28, 2002 9:37

PART Il TECHNIQUE: THE WEB’S NEW LOOK

This modification of the syntax makes it possible to use the
range-to function directly as a step of a location path (instead of
the situation with other functions, which may be used only within
predicates or other expressions). The range-to function operates on
the context provided by the previous step and produces the context
for the following step.

For each location in the context, the range-to function returns
a range. The start of this range is the start point of the context
location, and the end of the range is the end point of the location
found by evaluating the expression argument with respect to that
context location. Thus, if the context is a location set with more than
one location, then for each of these locations, the range-to function’s
argument is evaluated with respect to the location. The result of
evaluating the range-to function then is the union of all ranges that
are the results of these evaluations.

start-point — Returns the start point of a location.

Signature: Tocation-set start-point(location-set)

The start-point function accepts a location set as its argument. For

each of the locations in this location set, the function adds the start

point of the location to the resulting location set, according to the

following rules (with 2 being a location in the argument location

set):

— If x is of type point, the start point is x.

— If x is of type range, the start point is the start point of x.

— If x is of type root, element, text, comment, or processing in-
struction, the container node of the start point is x, and the index
is 0.

— If x is of type attribute or namespace, the XPointer part in which
the function appears fails.

Thus, the start-point function can be used to locate the start
point of any location. The complementary function of the start-
point function is the end-point function.

string-range — Matches strings in a location set.

Signature: Tocation-set string-range(location-set, string,
number?, number?)

This is one of the most important (and complex) functions provided

by XPointer. In many cases, it is necessary not only to use the struc-

ture provided by XML (such as elements, attributes, or processing

instructions) for identifying resource fragments but also to be able to

identify fragments that are text-based. Basically, the string-range

function enables the identification of strings (or sets of strings) as

ranges (or sets of ranges).

wilde/lowe-47194 book June 28, 2002 9:37

Chapter 6 XML Pointer Language 161

For each location in the argument location set, the location’s string
value (see section 5.1 for the definition of the string value) is searched
for the given string.?” Each non-overlapping match of this string is
then added (as a range location) to the resultant location set. If no
matching string exists, then the XPointer part (within which the
string-range function appears) fails.

The optional third and fourth arguments can be used to control
the range, which is added to the resulting location set. The third
argument specifies from which point, relative to the start of the
matched string, the result should be taken. The default value for
the third argument is 1, which means the result should be from
before the first character matching the search string. The fourth
argument specifies the length of the range to be added. The default
is the range that extends to the end of the matched string.

These functions can be used to compose XPointers. It should also be
noted that most XPath functions can also be used within XPointers. In
particular, it can be observed (most easily from looking at Table 6.1) that
XPointer’s functions are mainly concerned with supporting the concept of
locations, which are a construct introduced by XPointer mainly for the
purpose of including ranges in the data model.

6.4 USING XPOINTERS

So far we have discussed the specifics of XPointer as a way of identifying
resource fragments. In this section, we talk about some of the issues that
arise when using XPointers. One of the obvious problems when creating
and using XPointers in an environment that is essentially character-based
is the issue of character escaping (described in section 6.4.1). Another topic
of a similar nature is the question of how to use XPointers with XML
Namespaces (discussed in section 6.4.2).

XPointers identify resource fragments by describing ways for locating
them inside the resources. As pointed out earlier, this can be done in an
endless variety of ways, so composing XPointers is not a mechanical process.
Rather, it requires some intelligence in order to compose “good” XPointers.
Since XPointer is a new technology, there is not much implementation

?TThe string given as string-range’s argument is matched literally, which means it is case-
sensitive, no regular expressions of any type are possible, and the only normalization that is
done is the whitespace handling as defined by XML (which is, in particular, important for
line ends). Sophisticated string matching (such as regular expressions) is not supported by
XPointer and must be handled at the application level.

wilde/lowe-47194 book June 28, 2002 9:37

162 PART Il TECHNIQUE: THE WEB’S NEW LOOK

experience to build on; but nevertheless in section 6.4.3 we describe some
guidelines for composing good XPointers. Finally, in section 6.4.4 we look
into the question of what exactly good means. In many cases, it will have a
lot to do with ensuring XPointer persistence.

6.4.1 XPointer Character Escaping

While composing XPointers is based on the way subresources within XML
documents should be identified, they must also be coded in a way that makes
it possible to exchange and interpret them unambiguously. XPointers use
a character-based notation and are thus easy to compose and read. But
several characters within XPointers have special meaning and must there-
fore be escaped, if they have to be embedded into XPointers. Because of
the different standards involved when actually using an XPointer, escaping
mechanisms occur on different levels, as follows:

e XPointer escaping rules. The XPointer specification defines escaping
rules for some special characters. Most importantly, parentheses in
XPointer must be balanced. This is because XPointer is built on the
assumption that the end of syntactic constructs using parentheses can
be found by identifying the balanced parenthesis. Consequently,
unbalanced parentheses in XPointers must be escaped, and this is
done by prefixing them with the circumflex character, “A”. This
makes it necessary to also escape the circumflex character, which is
done by escaping it with itself (i.e., the literal circumflex character
within an XPointer is written as “AA”).

o XML escaping rules. Very often XPointers will be used within XML
documents, and in this case XML’s rules for escaping XML special
characters must be observed. This means that any characters not
representable in the character encoding of the XML document (as
well as any characters relevant for XML markup) must be written
as character references or as predefined entity references.

e URI escaping rules. URI references must adhere to the syntactic rules
defined by RFC 2396 [Berners-Lee+ 98|, which allows only a limited
set of characters. All other characters must be represented using the
URI escape mechanism, which represents these characters by a per-
cent sign, “%”, followed by two hexadecimal digits.

These character-escaping rules in many cases must be combined when
XPointers are used in an XML-based environment. Consequently, character
escaping can become quite complicated. The XPointer specification gives

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 163

Table 6.2 XPointer Character Escaping (Example 1)

Level Example

Initial xpointer(string-range(//P,"a 1little hat A"))

XPointer xpointer(string-range(//P,"a Tittle hat AA"))

XML xpointer(string-range(//P,"a little hat AA"))
URI xpointer(string-range(//P,%22a%2011itt1e%20hat%20%5E%5E%22))

Table 6.3 XPointer Character Escaping (Example 2)

Level Example

Initial and XPointer xpointer(id('résumé'))

XML xpointer(id(' résumé "))
URI xpointer(id('r%C3%A9sum%C3%A9"))

some examples of how the different escaping mechanisms affect a given
XPointer (reproduced in Tables 6.2 and 6.3).

In the first example (Table 6.2), it is interesting to see that even trivial
things such as space characters must be escaped in the URI encoding be-
cause spaces are not allowed to appear literally within URIs. In the XML
encoding, the double quotes must be escaped only if the XPointer appears
within an XML attribute that is delimited with double quotes.

The second example (shown in Table 6.3) shows how to deal with non-
ASCII characters. Because XPointer is based on Unicode, the accented
letter appears both in the initial and the XPointer form. Based on the
assumption that the XML document supports only ASCII, the accented let-
ter must be represented by a character reference to its Unicode code point
[Unicode 00]. In the URI encoding, however, the accented character has first
to be encoded in UTF-8 [Yergeau 98] before the resulting byte sequence is
escaped, so the result looks quite different from the XML escaping.

6.4.2 XPointers and Namespaces

In section 6.2.3, we discussed how XPointer defines the concept of schemes
(in fact, each full XPointer is nothing more than a sequence of scheme-
specific parts) and that currently only the xpointer and the xmIns schemes
are specified. XPath (and thus, XPointer) makes it possible to use qualified
names that have a namespace prefix and a local part. (For a discussion
of qualified names and XML Namespaces in general, see section 4.2.) In

wilde/lowe-47194 book June 28, 2002 9:37

164 PART Il TECHNIQUE: THE WEB’S NEW LOOK

XML documents, the namespace prefix can easily be interpreted because,
in order for the qualified name to be valid, there must be a namespace
declaration associating that prefix with a namespace URI somewhere on an
ancestor element.?® This is no problem since the qualified names in XML are
embedded into the context provided by the XML document (in particular,
the namespace declarations within this document). An XPointer, however,
does not have such a context because it may be used outside any document,
simply as part of a URI reference. Consequently, there must be a way to
establish the context of namespace declarations for XPointers.

XPointer defines the xmlns scheme for declaring namespaces. This is,
in a way, very similar to namespace declarations in XML documents. Each
xmlns scheme part associates one namespace prefix with a namespace URI.
However, the syntax is slightly different from the one used in XML. The
syntax is defined in rules 9 and 10 of the standard, as shown in section 6.2.3
(and repeated here):

[4] XPtrPart 'xpointer' '(' XPtrExpr ')'
'xmlns' '(' XPtrNsDecl1? ")’
Scheme '(' SchemeSpecificExpr ')'

NCName S? '=' S? XPtrNsURI
Char‘-k

[9] XPtrNsDecl
[10] XPtrNsURI

Thus, whenever an XPointer is used that contains qualified names, it has
to contain xmlns scheme parts for declaring the prefixes being used in the
qualified names, as shown in the following example:

.. .#xmIns(html=http://www.w3.0rg/1999/xhtml)xpointer(//html:h3[9])

It is important to note that the prefix used in the XPointer and the
prefix used in the resource need not be the same in order for the XPointer
to match. The important part in this case is the namespace URI, so it
is necessary only that the URI in the XPointer xmIns scheme part and the
URI in the XML document (i.e., the namespace declaration using the xmlns
attribute) are the same.

If two xmTns scheme parts within one XPointer declare the same prefix,
then the second (i.e., right) declaration overrides the first (i.e., left) one.
However, because evaluation of XPointer scheme parts is done stepwise from
left to right, an xpointer scheme part that appears between the two xmlns
scheme parts declaring the same prefix will be interpreted using the first
declaration.

28This is with the exception of the xm1 prefix, which is always bound to the namespace
URI of the XML Namespaces standard.

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 165

6.4.3 How to Compose XPointers

In section 5.5 we described in detail how to use XPath. The same princi-
ples apply to XPointer, particularly the key points of “being as specific as
possible” and “filtering as early as possible.” However, it is important to
see the difference in possible application scenarios:

e XPath and XSLT. Today, the most frequently used application of
XPath is in XSLT. In XSLT, XPaths may be evaluated very often
during the processing of a style sheet, so it is important to keep an
eye on the efficiency of the XPaths being used. Furthermore, the
XSLT author often also controls the XML document (as well as the
schema behind it), which makes it easier to compose XPaths that are
not compromised by modifications to documents or even the schema.

o XPath and XPointer. In XPointer, however, XPath is often used
for identifying fragments in resources not under the control of the
XPointer’s author. On the other hand, XPointers are usually eval-
uated only once (when locating the fragment within the resource),
so efficiency is not a significant issue. Robustness, on the other hand,
is very important since the XPointer should continue to work even
if the resource that it points into changes.

Consequently, there is a difference between using XPath in the context
of XSLT and using it in the context of XPointer. In general, the most
important aspect of composing XPointers is robustness, which therefore is
discussed separately in section 6.4.4.

As pointed out already, there are countless ways for each given fragment
to be identified by an XPointer. We have already demonstrated this with the
example of W3C’s technical reports Web page at the start of this chapter.
Continuing this discussion, we could add that, if, for example, the heading
was not identified by the last-call ID, it would be possible to locate the
heading based on its content,?’ as shown in the following URI:

http://www.w3.org/TR#xpointer(//h3[contains(string(.),
'"Working%20Drafts%20in%20Last%20Call"')/following: :d1[1]/dt[7]//a)

However, it would not make much sense to list a huge number of pos-
sible XPointers identifying the same resource because this list would never
be exhaustive. Furthermore, without knowing the schemas behind the re-
sources and the characteristics of how they are modified, it is hard to actu-
ally rate the many variants qualitatively.

2YBecause the XPointer is used in a URI reference here, the space characters in the search
string must be URI-encoded as %20 (as described in section 6.4.1).

wilde/lowe-47194 book June 28, 2002 9:37

166 PART Il TECHNIQUE: THE WEB’S NEW LOOK

The main point is that anybody involved in the creation of XPointers
(either manually or programmatically) should be aware that this is not a
strict science but more of an art form. In particular, any software generating
XPointers should be carefully designed in order to generate good XPointers,
and doing this is a non-trivial task. The quality criteria depend on the
application domain and on how much knowledge there is available about
the resources being used. In particular, one criterion that will very often be
highly ranked is the persistence of XPointers.

6.4.4 Persistence

As discussed in the introduction to this chapter, the persistence of an
XPointer is a serious issue (see also the discussion in section 3.3.2). Even
if the resource addressed by a URI is still available, it may have changed,
and the XPointer may not work any more, or it may not work as expected.
In order to construct robust XPointers (i.e., XPointers that are tolerant
against modifications of the resource), it is necessary to follow some guide-
lines. These guidelines, however, depend on how much is known about the
resources being used.

As an example, it is fairly certain that the W3C will keep its overall
structure of the technical reports page (see Figure 6.1), and that additions
to the individual sections (e.g., “Working Drafts in Last Call”) will always
be at the start of the section. It would therefore be a reasonable idea to use
a section’s ID and to then start to count from the end of the list contained
within the following:

http://www.w3.org/TR#xpointer(id('last-call')/
following::d1[1]/dt[Tast()-4]1//a)

While this approach could (and probably would) work within the
“Recommendations” or “Notes” sections (where documents remain), it is
less likely to work in the “Working Drafts in Last Call” section where work-
ing drafts may change status and may be deleted. By now it should be clear
that constructing robust XPointers requires a good deal of knowledge about
the resources, which may be impractical or too expensive to acquire.

Using IDs is always a good idea; and as long as there are IDs being
used within the resource, it is a good idea to start with an ID and then
navigate from there. But again, if the schema of a resource is unknown,
then it is not really possible to find out which attributes are used as IDs.
(However, it may be possible to make an educated guess, such as looking
for attributes with unique values or attributes having the string id as part
of their name.)

wilde/lowe-47194

book

June 28, 2002 9:37

Chapter 6 XML Pointer Language 167

Besides all these worries about XPointers becoming invalid or incorrect
because of resource modifications, it should always be remembered that even
though XPointer is the W3C standard for XML fragment identification, it
is not the only means of identifying fragments. If, for example, the validity
of fragments is very important, then one alternative might be not only
to generate XPointers but also to generate information for checking the
XPointer’s validity. One approach to this might be to use the modification
time of the resource at the time the XPointer was generated, or even a digital
fingerprint of the resource or subresource (using checksum algorithms such
as MD5 [Rivest 92] or SHA [NIST 93]).

Information such as dates or checksums could easily be incorporated
into XPointers themselves by using proprietary schemes, which, by defini-
tion, would be ignored by applications not knowing or supporting them.
That way it would be possible to generate XPointers that would work on
all platforms supporting XPointer and that would have the added benefit
of being able to be tested for possible modifications of the fragment by
platforms supporting the additional XPointer scheme.

6.5 FUTURE DEVELOPMENTS

Of all the W3C specifications relevant to XML linking, XPointer is the
standard that has progressed most slowly. There are several reasons. One
is that adoption of XPointer has been very slow, and at the time of writing
there is only one implementation available. This is not sufficient to act as a
catalyst for the W3C standardization process to continue. Some implemen-
tors are concerned that XPointer is too complex (in particular, its concept
of ranges) and that this keeps vendors from supporting it. There have also
been attempts to create profiles of XPointer (which exclude ranges and are
therefore much easier to implement); but this would significantly reduce the
functionality supported by the core standard, and so far the W3C work-
ing group has not agreed to this plan. Unfortunately, XPointer is one of
the essential building blocks of the XML linking framework; but as long as
the W3C standardization process remains stalled, there will be either little
or no progress or some vendors will introduce proprietary solutions to the
problem of addressing subresources.

Apart from these more political issues, XPointer is already becoming
somewhat outdated by the continuing development of the standards on
which it is based—most particularly, XPath. While XPointer is built on
top of XPath 1.0, XPath 2.0 [Berglund+ 01], described in section 5.6, is
already under development, and it is very possible that it will reach rec-
ommendation status earlier than XPointer. Because of the problems with

wilde/lowe-47194 book June 28, 2002 9:37

168 PART Il TECHNIQUE: THE WEB’S NEW LOOK

XPointer standardization, currently no attempts are being made to base
XPointer on XPath 2.0.

It is our opinion that it is often better to have a mediocre standard
than no standard at all. While XPath and XSLT have demonstrated that
even non-perfect standards can provide many benefits (and the opportunity
to improve them with their next release), XPointer’s development is an
example of how the lack of standardization of an essential component of a
bigger framework (the XML linking technologies) can stall the development
of a very interesting and promising set of technologies and applications.

6.6 CONCLUSIONS

XPointer is the official fragment identifier for XML documents. Using
XPointer, it is possible not only to link complete resources but also to cre-
ate links between parts of resources. XPointer is built on top of XPath, and
it extends XPath’s model with some new concepts. This chapter describes
XPointer in detail and demonstrates to readers how to create their own
XPointers. These XPointers may then be used in links, which are described
in the following chapter.

