
1
Basic Ideas and Terms

We trumpeted software product lines in our introduction to Part I, raving about
the benefits that were possible and hinting about some potential risks. In this
chapter we will go beneath the surface and examine the associated ideas and
terms more closely. We begin by answering the question: What is a software
product line?

1.1 What Is a Software Product Line?

A software product line is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular mar-
ket segment or mission and that are developed from a common set of core assets
in a prescribed way.

This definition is consistent with the definition traditionally given for any
product line—a set of systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or mission. But it
adds more; it puts constraints on the way in which the systems in a software
product line are developed. Why? Because substantial production economies
can be achieved when the systems in a software product line are developed from
a common set of assets in a prescribed way, in contrast to being developed sepa-
rately, from scratch, or in an arbitrary fashion. It is exactly these production
economies that make software product lines attractive.

How is production made more economical? Each product is formed by tak-
ing applicable components from the base of common assets, tailoring them as
necessary through preplanned variation mechanisms such as parameterization

5

6 Basic Ideas and Terms

or inheritance, adding any new components that may be necessary, and assem-
bling the collection according to the rules of a common, product-line-wide
architecture. Building a new product (system) becomes more a matter of assem-
bly or generation than one of creation; the predominant activity is integration
rather than programming. For each software product line there is a predefined
guide or plan that specifies the exact product-building approach.

Certainly the desire for production economies is not a new business goal,
and neither is a product line solution. If you look carefully, you will find plenty
of examples all around you.

Product Lines Everywhere

In his bestseller, Chaos: Making a New Science, James Gleick relates how
some of the pioneers of chaos theory would, while relaxing in their favorite
coffeehouse, compete to find the nearest example of a certain kind of chaotic
system [Gleick 87, p. 262]. A flag whipping in the breeze, a dripping faucet, a
rattling car fender—they seemed to be everywhere.

I can relate. Lately it seems that no matter where I turn I see a product line.
At airports I see product lines of airliners (such as the Airbus A-318, A-319,
A-320, and A-321, a family of aircraft that range from 100 to 220 seats but
clearly share production commonalities) powered by product lines of jet
engines and equipped with product lines of navigation and communication
equipment. When I arrive at my destination, I rent an American midsize car that
is always pretty much the same except for cosmetic factors and features, even
though it could have any one of four nameplates on it. I wonder how much
more expensive the cars would be if they had nothing in common. The hotel
leaves a copy of the local newspaper at my door: the morning edition of the
citywide version. Someone else will get the afternoon edition of the upstate
version, but it will have most of the same stories, will have all of the same
comics, and will come off the same presses. On my way to work I pass residen-
tial subdivisions where the houses are all variants on a few basic designs. Even
the street signs are the same except for the names of the streets. While the
actual street name is fundamental to a street sign’s function, it is inconsequen-
tial to its fabrication and is just a variation point.

We know that product lines have been around in manufacturing almost
since manufacturing began. Remember Eli Whitney’s idea of interchangeable
parts for rifles in the early 1800s? This idea made it possible to build a product
line of firearms that shared components. Remember the IBM System/360 fam-
ily of computers? From the Principles of Operation:

Models of System/360 differ in storage speed, storage width (the
amount of data obtained in each storage access), register width, and

1.1 What Is a Software Product Line? 7

capabilities for processing data concurrently with the operation of
multiple input/output devices. Several CPU’s permit a wide choice in
internal performance. Yet none of these differences affects the logical
appearance of these models to the programmer. An individual System/360
is obtained by selecting the system components most suited to the appli-
cations from a wide variety of alternatives in internal performance,
functional ability, and input/output (I/O).

This was clearly a product line, and the operating system that powered it was a
software product line. And town plans in which the buildings look like each
other predate post-War suburbia by at least eight centuries. During the Pei Sung
dynasty of northern China (960–1127 a.d.), a book called the “Ying-tsao fa-
shih” was written by Li Chieh, the state architect of the emperor Hui-tsung, in
1100 a.d. and published in 1103 a.d. This was a set of building codes for offi-
cial buildings. It described in encyclopedic detail the layouts, materials, and
practices for designing and building official buildings. It listed standard parts
and standard ways of connecting the parts as well as recognizing and parame-
terizing variations of the parts such as allowable lengths, load capacities,
bracketing, decorations, allowed components based on the building’s purpose,
and the options available for various component choices. The book also
included design construction details that provided a process for building design
and implementation of that design. While it was influential in spreading the
most advanced techniques of the time of its first publication in 1103, by codify-
ing practice it may also have inhibited further development and contributed to
the conservatism of later techniques. Some scholars even claim that because of
it, Chinese architecture remained largely unchanged until the beginning of the
twentieth century. (In a product line, you’ve got to know when your architec-
ture has outlived its usefulness.)

However, like Gleick’s scientists, I find some of the best examples of
product lines in places where I go to eat. Here’s something I saw on the menu at
a little Mexican restaurant recently:

#16. Enchiladas verdes: Corn tortillas baked with a zesty filling, cov-
ered with a green tomatillo sauce. Your choice of chicken, beef, pork, or
cheese.

#17. Enchiladas rojas: Corn tortillas baked with a zesty filling, covered
with a red ancho chile sauce. Your choice of chicken, beef, or pork.

See what I mean? This restaurant clearly produces an “enchilada” product line.
(Well, all right, “clearly” applies only to those of us who have been thinking
about this for too long.) While admittedly a cheesy example (sorry), it actually
provides a pretty good analogy with software product lines and the central con-
cepts they embody.

The enchilada product line consists of seven separate products, differenti-
ated by filling and sauce. This defines their variabilities. The corn tortillas are

8 Basic Ideas and Terms

core assets because they’re used in every product. The red and green sauces are
also core assets because they’re used in four and three products, respectively.
And the meat fillings are also core assets, used in two products each. But the
cheese is a product-specific asset, used only in the enchiladas verdes.

Some of the core assets have attached processes that indicate how they are
to be instantiated for use in products. Here, the beef, pork, and chicken have
attached processes that dictate how they’re chopped, seasoned, and cooked.
The processes call for different spices to be added depending on the sauce.

All of the products share an “architecture”—tortillas wrapped around a
filling, covered with sauce. And they also share a “production plan”: prepare
filling, wrap filling in tortilla, cover with sauce, bake at 350 degrees for 15 min-
utes, garnish, serve.

This little product line provides economies of scope; the common ingredi-
ents let the restaurant stock a small number of food items delivered from a small
number of suppliers. They provide personnel flexibility: the same person who
makes the pork enchiladas rojas is, I would bet my house, the same person
who makes the cheese enchiladas verdes. And because the choices are limited,
many of the ingredients can be pre-prepared, allowing for rapid time-to-market,
which in this case means time-to-table.

As a family, the products define a clear scope that leaves little doubt
what’s in and what’s out. Chicken enchiladas are in. Beef enchiladas are in.
And if you wanted cheese enchiladas with the red sauce instead of the green,
well, that’s probably open for discussion. As we’ll see, a scope definition with a
pronounced gray area is a healthy thing—but duck enchiladas with a white
sauce are definitely out.

Finally, because the commonalities and variabilities are exquisitely clear,
it’s easy to see how this product line’s scope could be expanded, by offering
new fillings and new sauces and perhaps new combinations. You could even see
how this efficient production capability could be used to launch an entirely new
product line to capture a new market segment: replace the corn tortillas with
flour tortillas, lose the sauce, add lettuce and tomato and other condiments, and
open a new restaurant chain that sells “wraps.”

If you already had a strong grasp of the concepts underlying software prod-
uct lines, this little culinary diversion probably had no effect on you, except pos-
sibly to make you hungry. If you didn’t, perhaps the concepts are now a bit more
palpable for you. In either case, the next time you’re at a coffeehouse or restau-
rant, try looking around to see how many product lines you can spot.

¡Buen provecho!
—PCC

But a software product line is a relatively new idea, and it should seem clear
from our description that software product lines require a different technical

1.1 What Is a Software Product Line? 9

tack. The more subtle consequence is that software product lines require much
more than new technical practices.

The common set of assets and the plan for how they are used to build prod-
ucts don’t just materialize without planning, and they certainly don’t come free.
They require organizational foresight, investment, planning, and direction. They
require strategic thinking that looks beyond a single product. The disciplined
use of the assets to build products doesn’t just happen either. Management must
direct, track, and enforce the use of the assets. Software product lines are as
much about business practices as they are about technical practices.

Other Voices: Beyond Technology

The primary thesis of this book is that software product lines, although
enmeshed in the highly technological field of software, rely on much more than
technology to succeed. Martin Griss, a reuse expert at Hewlett-Packard and co-
author of the highly regarded Software Reuse: Architecture, Process, and
Organization for Business Success [Jacbobson 97], put it this way [Griss 95]:

. . . In almost all cases, a simple architecture, a separate component
group, a stable application domain, standards, and organizational sup-
port are the keys to success. Correct handling of these (largely non-
technical) issues is almost always more critical to successful reuse than
the choice of specific language or design method, yet too many . . .
experts choose to ignore these factors.

. . . Over the last 10 years, software reuse researchers and prac-
titioners have learned that success with systematic reuse requires
careful attention be paid to both technical and nontechnical issues.
Furthermore, the nontechnical issues are more pervasive and complex
than was realized at first. Without a systematic and joint focus on
people, process, and product issues, a project will not succeed at man-
aging the scope and magnitude of the changes and investment nec-
essary to achieve reuse. Simply creating and announcing a reusable
class library will not work. Without a “reuse mindset,” organizational
support, and methodical processes directed at the design and construc-
tion of appropriate reusable assets, the reuse investment will not be
worthwhile.

. . . Often, sweeping changes in the software development organiza-
tion are needed to institute large-scale, systematic reuse. These include
business, process, management, and organizational changes

Software product lines give you economies of scope, which means that
you take economic advantage of the fact that many of your products are very

10 Basic Ideas and Terms

similar—not by accident, but because you planned it that way. You make delib-
erate, strategic decisions and are systematic in effecting those decisions.

Other Voices: Japanese Software Factories and Economies of Scope

In 1991, Michael Cusumano’s Japan’s Software Factories [Cusumano 91]
burst onto the scene, revealing the “secrets” of the Japanese software compa-
nies that, at the time, it was feared were going to bury American and European
firms with their sky-high productivity rates. And what was their secret? Largely
it was what we would call today a software product line approach, based on
that feeling of déjà vu that all eventual product line managers share: “You
know, I could swear we’ve built this product already.” The driving concept of
economies of scope was born. Cusumano wrote:

The Japanese software facilities discussed in this book differed in
some respects, reflecting variations in products, competitive strategies,
organizational structures, and management styles. Nonetheless, the
approaches of Hitachi, Toshiba, NEC, and Fujitsu had far more elements
in common than in contrast, as each firm attempted the strategic manage-
ment and integration of activities required in software production, as well
as the achievement of planned economies of scope—cost reductions or
productivity gains that come from developing a series of products within
one firm (or facility) more efficiently than building each product from
scratch in a separate project. Planned scope economies thus required the
deliberate (rather than accidental) sharing of resources across different
projects, such as product specifications and designs, executable code,
tools, methods, documentation and manuals, test cases, and personnel
experience. It appears that scope economies helped firms combine process
efficiency with flexibility, allowing them to deliver seemingly unique or
tailored products with higher levels of productivity than if they had not
shared resources among multiple projects.

Japanese managers did not adopt factory models and pursue
scope economies simply out of faith. Detailed studies concluded that as
much as 90 percent of the programs they developed in any given year,
especially in business applications, appeared similar to work they had
done in the past, with designs of product components falling into a lim-
ited number of patterns. Such observations convinced managers of the
possibility for greater efficiencies, in scope if not in scale, and set an
agenda for process improvement. Companies subsequently established
facilities focused on similar products, collected productivity and quality
data, standardized tools and techniques, and instituted appropriate
goals and controls. As the factory discussions demonstrate, Japanese
firms managed in this way not simply one or two special projects for a
few years. They established permanent software facilities and research

1.2 What Software Product Lines Are Not 11

and development efforts, as well as emphasized several common ele-
ments in managing across a series of projects [not the least of which
was a commitment to process improvement].

1.2 What Software Product Lines Are Not

There are many approaches that at first blush could be confused with software
product lines. In fact, you might be asking: “Isn’t software product line just a
new name for x?” Though we certainly want you to build on previous knowl-
edge and experience, we want to ensure from the outset that you don’t erro-
neously equate software product lines with something they are not. Describing
what you don’t mean is often as instructive as describing what do you mean.
When we speak of software product lines, we don’t mean any of the following:

1.2.1 Fortuitous Small-Grained Reuse

Reuse, as a software strategy for decreasing development costs and improving
quality, is not a new idea, and software product lines definitely involve reuse—
reuse, in fact, of the highest order. So what’s the difference? Past reuse agendas
have focused on the reuse of relatively small pieces of code—that is, small-
grained reuse. Organizations have built reuse libraries containing algorithms,
modules, objects, or components. Almost anything a software developer writes
goes into the library. Other developers are then urged (and sometimes required)
to use what the library provides instead of creating their own versions.
Unfortunately, it often takes longer to locate these small pieces and integrate
them into a system than it would take to build them anew. Documentation, if it
exists at all, might explain the situation for which the piece was created but not
how it can be generalized or adapted to other situations. The benefits of small-
grained reuse depend on the predisposition of the software engineer to use what
is in the library, the suitability of what is in the library for the engineer’s partic-
ular needs, and the successful adaptation and integration of the library units into
the rest of the system. If reuse occurs at all under these conditions, it is fortu-
itous and the payoff is usually nonexistent.

In a software product line approach, the reuse is planned, enabled, and
enforced—the opposite of opportunistic. The asset base includes those artifacts
in software development that are most costly to develop from scratch—namely,
the requirements, domain models, software architecture, performance models,
test cases, and components. All of the assets are designed to be reused and are
optimized for use in more than a single system. The reuse with software product
lines is comprehensive, planned, and profitable.

12 Basic Ideas and Terms

1.2.2 Single-System Development with Reuse

You are developing a new system that seems very similar to one you have built
before. You borrow what you can from your previous effort, modify it as neces-
sary, add whatever it takes, and field the product. What you have done is what is
called “clone and own.” You certainly have taken economic advantage of previ-
ous work; you have reused a part of another system. But now you have two
entirely different systems, not two systems built from the same base. You need
to maintain two systems as entirely separate entities. This is again ad hoc reuse.

There are two major differences between this approach and a software
product line approach. First, software product lines reuse assets that were
designed explicitly for reuse. Second, the product line is treated as a whole, not
as multiple products that are viewed and maintained separately. In mature prod-
uct line organizations, the concept of multiple products disappears. Each prod-
uct is simply a tailoring of the core assets. It is the core assets that are designed
carefully and evolved over time. It is the core assets that are the organization’s
premiere intellectual property.

1.2.3 Just Component-Based Development

Software product lines rely on a form of component-based development, but
much more is involved. The typical definition of component-based development
involves the selection of components from an in-house library or the marketplace
to build products. Although the products in software product lines certainly are
composed of components, these components are all specified by the product line
architecture. Moreover, the components are assembled in a prescribed way,
which includes exercising built-in variability mechanisms in the components to
put them to use in specific products. The prescription comes from both the archi-
tecture and the production plan and is missing from standard component-based
development. In a product line, the generic form of the component is evolved and
maintained in the asset base. In component-based development, if any variation
is involved, it is usually accomplished by writing code, and the variants are most
likely maintained separately. Component-based development alone also lacks
the technical and organizational management aspects that are so important to the
success of a software product.

1.2.4 Just a Reconfigurable Architecture

Reference architectures and object-oriented frameworks are designed to be
reused in multiple systems and to be reconfigured as necessary. Reusing archi-
tectural structures is a good idea because the architecture is a pivotal part of any
system and a costly one to construct. A product line architecture is designed to
support the variation needed by the products in the product line, and so making

1.3 A Note on Terminology 13

it reconfigurable makes sense. But the product line architecture is just one asset,
albeit an important one, in the product line’s asset base.

1.2.5 Releases and Versions of Single Products

Organizations routinely produce new releases and versions of products. Each of
these new versions and releases is typically constructed using the architecture,
components, test plans, and other features of the prior releases. Why are soft-
ware product lines different? First, in a product line there are multiple simulta-
neous products, all of which are going through their own cycles of release and
versioning simultaneously. Thus, the evolution of a single product must be con-
sidered within a broader context—namely, the evolution of the product line as a
whole. Second, in a single-product context, once a product is updated there’s
often no looking back—whatever went into the production of earlier products is
no longer considered to be of any value. But in a product line, an early version
of a product that is still considered to have market potential can easily be kept as
a viable member of the family: it is, after all, an instantiation of the core assets,
just like other versions of other products.

1.2.6 Just a Set of Technical Standards

Many organizations set up technical standards to limit the choices their soft-
ware engineers can make regarding the kinds and sources of components to
incorporate in systems. They audit at architecture and design reviews to ensure
that the standards are being followed. For example, the developer might be able
to select between two identified database choices and two identified Web
browsers but must use a specific middleware or spreadsheet product if either is
necessary. Technical standards are constraints to promote interoperability and
to decrease the cost associated with maintenance and support of commercial
components. An organization that undertakes a product line effort may have
such technical standards, in which case the product line architecture and com-
ponents will need to conform to those standards. However, the standards are
simply constraints that are inputted to the software product line, no more.

1.3 A Note on Terminology

Now that we have covered what we don’t mean, the following terms lay out
what we do mean:

A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular

14 Basic Ideas and Terms

market segment or mission and that are developed from a common set of core
assets in a prescribed way. This is the definition we provided in Section 1.1.

Core assets are those assets that form the basis for the software product
line. Core assets often include, but are not limited to, the architecture, reusable
software components, domain models, requirements statements, documentation
and specifications, performance models, schedules, budgets, test plans, test
cases, work plans, and process descriptions. The architecture is key among the
collection of core assets.

Development is a generic term used to describe how core assets (or prod-
ucts) come to fruition. Software enters an organization in any one of three ways:
the organization can build it itself (either from scratch or by mining legacy soft-
ware), purchase it (buy it, largely unchanged, off the shelf), or commission it
(contract with someone else to develop it especially for the organization). So
our use of the term “development” may actually involve building, acquisition,
purchase, retrofitting earlier work, or any combination of these options. We rec-
ognize and address these options, but we use “development” as the general term.

A domain is a specialized body of knowledge, an area of expertise, or a col-
lection of related functionality. For example, the telecommunications domain is
a set of telecommunications functionality, which in turn consists of other
domains such as switching, protocols, telephony, and network. A telecommuni-
cations software product line is a specific set of software systems that provides
some of that functionality.

Software product line practice is the systematic use of core assets to assem-
ble, instantiate, or generate the multiple products that constitute a software
product line. The choice of verb depends on the production approach for the
product line. Software product line practice involves strategic, large-grained
reuse.

Some practitioners use a different set of terms to convey essentially the
same meaning. In this alternate terminology, a product line is a profit and loss
center concerned with turning out a set of products; it refers to a business unit,
not a set of products. The product family is that set of products, which we call
the product line. The core asset base is called the platform. Figure 1.1 shows the
mapping between our terminology and this different set of terms.

To us, the terminology is not as important as the concepts. That having
been said, you might encounter both sets of terms in other places and should be
able to translate between them. You might also use an entirely different set of
terms that are equivalent to the ones we use. In that case you will probably want
to do your own mapping, akin to that shown in Figure 1.1, before you proceed
with the rest of the book. Although we have tried not to invent vocabulary, as
you read on you may find other terms we use that you may call by different
names, and you may want to expand your map.

The next chapter discusses the benefits (and the risks) of software product
lines.

1.5 Discussion Questions 15

1.4 For Further Reading

See Section 3.6.

1.5 Discussion Questions

1. Some would argue that a software product line is just the group of products
produced by a single business unit (profit/loss center). What distinguishes
this definition from the one we gave in Section 1.3?

2. What is the difference between software product line practice and domain
engineering? What is the difference between software product line practice
and application engineering?

3. Suppose your organization has a library of components and a reconfig-
urable architecture to support a family of products that have many common
features. Do you have a software product line? If not, what is missing?

4. Describe an experience you have had with software reuse. Identify the sim-
ilarities and differences between software product line practice and your
experience.

Product Line
Core Assets
Business Unit

Our Terminology Alternate Terminology

Product Family
Platform
Product Line

Figure 1.1 Alternate Terminology

