
95

Chapter 4

Selecting Data from the Database

In This Chapter

• SELECT Overview and Syntax
• Choosing Columns: The SELECT Clause
• Specifying Tables: The FROM Clause
• Selecting Rows: The WHERE Clause

SELECT Overview and Syntax

In many ways, the SELECT statement is the real heart of SQL. It lets you find
and view your data in a variety of ways. You use it to answer questions based
on your data: how many, where, what kind of, even what if. Once you become
comfortable with its sometimes dauntingly complex syntax, you’ll be amazed
at what the SELECT statement can do.

Because SELECT is so important, five chapters focus on it:

• This chapter begins with the bare bones: the SELECT, FROM, and
WHERE clauses, search conditions, and expressions.

• Chapter 5 delves into some SELECT refinements: ORDER BY, the DIS-
TINCT keyword, and aggregates.

• Chapter 6 covers the GROUP BY clause, the HAVING clause, and mak-
ing reports from grouped data. Chapter 6 also summarizes the issues
regarding null values in database management.

• Chapter 7 introduces multiple-table queries with a comprehensive dis-
cussion of joining tables.

• Chapter 8 moves on to nested queries, also known as subqueries.

bowman04.fm Page 95 Wednesday, May 16, 2001 4:43 PM

96 The Practical SQL Handbook

Queries in this chapter use single tables so that you can focus on manipu-
lating the syntax in a simple environment. Following is an example of a
SELECT query—don’t worry about the syntax yet:

SQL
select address
from publishers
where pub_id = '0877'

address
==
2 2nd Ave.
[1 row]

Basic SELECT Syntax

Discovering the structure of the SELECT statement begins with this skeleton:

• The SELECT clause identifies the columns you want to retrieve.
• The FROM clause specifies the tables those columns are in.
• The WHERE clause qualifies the rows—it chooses the ones you want to

see.

SELECT select_list
FROM table_list
WHERE search_conditions

Select_list and Search_condition Expressions Both the SELECT and
WHERE clauses (in the select_list or search_conditions) can include

• Plain column names (price)
• Column names combined with other elements, such as calculations

(price * 1.085)
• Constants (character strings or display headings)

Collectively, these are expressions. Because the column name expression is
the simplest case, examples often start there and then go on to a more com-
plex expression. This does not mean that a column name is not an expres-
sion—it’s just the place to start looking at expressions. Syntax that includes
“expression” or “expr” or “char_expr” means that you can use a column name
or a more complex expression.

SYNTAX

bowman04.fm Page 96 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 97

Combining SELECT, FROM, and WHERE Artful combinations of the
SELECT, FROM, and WHERE clauses produce meaningful answers to your
questions and keep you from drowning in a sea of data. Think of the SELECT
and WHERE clauses as horizontal and vertical axes on a matrix. (Figure 4.1
illustrates the query you saw at the beginning of the chapter.) The data you get
from the SELECT statement is at the intersection of the SELECT (column)
and WHERE (row) clauses.

Let’s look at a SELECT statement with another bookbiz table, authors.
The authors table stores information about authors: ID numbers, names,
addresses, and phone numbers. If you want to know just the names of authors
who live in California (not their addresses and phone numbers), use the
SELECT clause and the WHERE clause to limit the data that the SELECT
statement returns.

Here’s a query that uses the SELECT clause’s select_list to limit the col-
umns you see. It lists just the names for the authors, ignoring their ID num-
bers, addresses, and phone numbers.

SQL
select au_lname, au_fname
from authors
au_lname au_fname
=================================== ====================
Bennet Abraham
Green Marjorie
Carson Cheryl
Ringer Albert
Ringer Anne
DeFrance Michel
Panteley Sylvia

pub_id name address city state

0736 New Age Books 1 1st St. Boston MA

0877 Binnet & Hardley 2 2nd Ave. Washington DC

1389 Algodata Infosystems 3 3rd Dr. Berkeley CA

Figure 4.1 Locating a Specific Piece of Data in a Table

bowman04.fm Page 97 Wednesday, May 16, 2001 4:43 PM

98 The Practical SQL Handbook

McBadden Heather
Stringer Dirk
Straight Dick
Karsen Livia
MacFeather Stearns
Dull Ann
Yokomoto Akiko
O'Leary Michael
Gringlesby Burt
Greene Morningstar
White Johnson
del Castillo Innes
Hunter Sheryl
Locksley Chastity
Blotchet-Halls Reginald
Smith Meander
[23 rows]

This display still doesn’t provide exactly what you want because it lists all
authors regardless of the state they live in. You need to refine the data retrieval
statement further with the WHERE clause.

SQL
select au_lname, au_fname
from authors
where state = 'CA'

au_lname au_fname
=================================== ====================
Bennet Abraham
Green Marjorie
Carson Cheryl
McBadden Heather
Stringer Dirk
Straight Dick
Karsen Livia
MacFeather Stearns
Dull Ann
Yokomoto Akiko
O'Leary Michael
Gringlesby Burt

bowman04.fm Page 98 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 99

White Johnson
Hunter Sheryl
Locksley Chastity
[15 rows]

Now you’re looking at just the names of the 15 authors having a California
address. The rows for the eight authors living elsewhere are not included in
the display.

Full SELECT Syntax

In practice, SELECT syntax can be either simpler or more complex than the
example just shown. It can be simpler in that the SELECT and (in most sys-
tems) FROM clauses are the only required ones in a SELECT statement. The
WHERE clause (and all other clauses) are optional. On the other hand, the full
syntax of the SELECT statement includes all of the following phrases and
keywords:

SELECT [ALL | DISTINCT] select_list
 FROM table/view_list
 [WHERE search_conditions]
 [GROUP BY group_by_list]
 [HAVING search_conditions]
 [ORDER BY order_by_list]

SELECT Statement Clause Order Although SQL is a free-form language, you
do have to keep the clauses in a SELECT statement in syntactical order (for
example, a GROUP BY clause must come before an ORDER BY clause).
Otherwise, you’ll get syntax errors.

Naming Conventions You may need to qualify the names of database
objects (according to the customs of your SQL dialect) if there is any ambigu-
ity about which object you mean. In this database, there are several columns
called title_id (in the titles table, the titleauthors table, and the
titleview view, among others—see Figure 2.13). When you are working
with multiple tables, you may have to specify which title_id column you’re
talking about by including the table or view name, usually separated from the
column name by a period (titles.title_id). If the system allows multiple
tables with the same name, add the owner name (mary.titles.title_id or
dba.titles.title_id)—some possible combinations appear in Figure 4.2.

SYNTAX

bowman04.fm Page 99 Wednesday, May 16, 2001 4:43 PM

100 The Practical SQL Handbook

You may also see larger elements, such as database and server names, used
this way, but that is less common.

The examples in this chapter involve queries on a single table, so qualifica-
tion is not an important issue here. Qualifiers are also omitted in most books,
articles, and reference manuals on SQL because the short forms make SELECT
statements more readable. However, it’s never wrong to include them.

Choosing Columns: The SELECT Clause

The first clause of the SELECT statement—the one that begins with the key-
word SELECT—is required in all SELECT statements. The keywords ALL and
DISTINCT, which specify whether duplicate rows are to be included in the
results, are optional. DISTINCT and ALL are discussed in the next chapter.

The select_list specifies the columns you want to see in the results. It can
consist of these items individually or together:

• An asterisk, shorthand for all the columns in the table, displayed in
CREATE TABLE order

• One or more column names, in any order
• One or more character constants (such as “Total”) used as display head-

ings or text embedded in the results
• One or more SQL functions (AVG) and arithmetic operators, generally

used with columns (price * 1.085)

You can mix these elements freely. As mentioned earlier, columns, con-
stants, functions, and combinations of these elements, with or without arith-

owner name

Figure 4.2 Qualifying Columns

column name

separator (.)

titles.title_id

dba.titles.title_id

mary.titles.title_id

table name

bowman04.fm Page 100 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 101

metic operators, are collectively called expressions. Separate with a comma
each element in a SELECT list from the following element.

Choosing All Columns: SELECT *

The asterisk (*) has a special meaning in the select_list. It stands for all the
column names in all the tables in the table list. The columns are displayed in
the order in which they appeared in the CREATE TABLE statement(s). Most
people read a SELECT * statement as “select star.” Use it when you want to
see all the columns in a table.

The general syntax for selecting all the columns in a table is this:

SELECT *
FROM table/view_list

Because SELECT * finds all the columns currently in a table, changes in the
structure of a table (adding, removing, or renaming columns) automatically
modify the results of a SELECT *. Listing the columns individually gives you
more precise control over the results, but SELECT * saves typing (and the frus-
tration of typographical errors). SELECT * is most useful for tables with few
columns because displays of many columns can be confusing. It also comes in
handy when you want to get a quick look at a table’s structure (what columns
it has and in what order they appear).

The following statement retrieves all columns in the publishers table and
displays them in the order in which they were defined when the publishers
table was created. Because no WHERE clause is included, this statement
retrieves every row.

SQL
select *
from publishers

pub_id pub_name address city state
====== ====================== ============= ============ =====
0736 New Age Books 1 1st St. Boston MA
0877 Binnet & Hardley 2 2nd Ave. Washington DC
1389 Algodata Infosystems 3 3rd Dr. Berkeley CA
[3 rows]

SYNTAX

bowman04.fm Page 101 Wednesday, May 16, 2001 4:43 PM

102 The Practical SQL Handbook

You get exactly the same results by listing all the column names in the table
in CREATE TABLE order after the SELECT keyword:

SQL
select pub_id, pub_name, address, city, state
from publishers

pub_id pub_name address city state
====== ====================== ================= ============ =====
0736 New Age Books 1 1st St. Boston MA
0877 Binnet & Hardley 2 2nd Ave. Washington DC
1389 Algodata Infosystems 3 3rd Dr. Berkeley CA
[3 rows]

Choosing Specific Columns

To select a subset of the columns in a table, as some of the previous examples
have demonstrated, simply list the columns you want to see in the SELECT
list:

SELECT column_name[, column_name]...
FROM table_list

Separate each column name from the following column name with a
comma.

Rearranging Result Columns The order in which columns appear in a dis-
play is completely up to you: Use the SELECT list to order them in any way
that makes sense.

Following are two examples. Both of them find and display the publisher
names and identification numbers from all three of the rows in the pub-
lishers table. The first one prints pub_id first, followed by pub_name. The
second reverses that order. The information is exactly the same; only the dis-
play format changes.

SQL
select pub_id, pub_name
from publishers

SYNTAX

bowman04.fm Page 102 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 103

pub_id pub_name
====== ==
0736 New Age Books
0877 Binnet & Hardley
1389 Algodata Infosystems
[3 rows]

select pub_name, pub_id
from publishers

pub_name pub_id
== ======
New Age Books 0736
Binnet & Hardley 0877
Algodata Infosystems 1389
[3 rows]

More Than Column Names

The SELECT statements you’ve seen so far show exactly what’s stored in a
table. This is useful, but often not useful enough. SQL lets you add to and
manipulate these results to make them easier to read or to do “what if”
queries. This means you can use strings of characters, mathematical calcula-
tions, and functions provided by your system in the SELECT list, with or
without column names.

Display Label Conventions When the results of a query are displayed, each
column has a default heading—its name as defined in the database. Column
names in databases are often cryptic (so they’ll be easy to type) or have no
meaning to users unfamiliar with departmental acronyms, nicknames, or
project jargon.

You can solve this problem by specifying display labels (sometimes
called column aliases or headings) to make query results easier to read
and understand. To get the heading you want, simply type column_name
column_heading, or column_name as column_heading in the SELECT clause
in place of the column name. For example, to change the pub_name column
heading to Publisher, try one of the following statements:

bowman04.fm Page 103 Wednesday, May 16, 2001 4:43 PM

104 The Practical SQL Handbook

SQL
select pub_name Publisher, pub_id
from publishers

SQL
select pub_name as Publisher, pub_id
from publishers

Some systems also allow this syntax:

Adaptive Server Anywhere
select Publisher = pub_name, pub_id
from publishers

The results of all three methods show a new column heading:

Results
Publisher pub_id
== ======
New Age Books 0736
Binnet & Hardley 0877
Algodata Infosystems 1389
[3 rows]

For consistency, pick one of these formats and stick with it. Many users
prefer the AS convention—it has the advantage of being simple and
unambiguous.

SQL
VARIANTS

Check to see how your system handles column headings that are longer
than defined column size. For example, what happens when you change the
pub_id column heading to a string such as “Identification #”? Does your sys-
tem increase the display size of the column or shorten the new column head-
ing to the size of the column data? The following queries show two
possibilities:

TIP

bowman04.fm Page 104 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 105

Adaptive Server Anywhere
select pub_name as Publisher, pub_id as Identification#
from publishers

Publisher Identification#
== ===============
New Age Books 0736
Binnet & Hardley 0877
Algodata Infosystems 1389
[3 rows]

Oracle
PUBLISHER IDEN
-- ----
New Age Books 0736
Binnet + Hardley 0877
Algodata Infosystems 1389

(Oracle SQL Plus shows display headings as uppercase by default. Enclose
the heading text in double quotes to preserve case.) If you use a smaller head-
ing, however, SQL doesn’t shrink the display size to less than its datatype-
defined size.

Display Label Limitations Most SQL dialects that allow you to add display
labels have some restrictions. Check your reference guide for details on

• Quotes (single and double)
• Embedded spaces
• Special characters

For example, Adaptive Server Anywhere allows single and double quotes
around column headings. The quotes are not needed unless there is an embed-
ded space in the column heading.

Adaptive Server Anywhere
select pub_name as 'Publisher #', pub_id as "Identification #"
from publishers;

Publisher # Identification #
== ================
New Age Books 0736
Binnet & Hardley 0877
Algodata Infosystems 1389

bowman04.fm Page 105 Wednesday, May 16, 2001 4:43 PM

106 The Practical SQL Handbook

However, other systems are not as forgiving.

SQL
VARIANTS

 Oracle SQL Plus rejects single quotes around column headings.

Oracle
SQL> select pub_name as Publisher, pub_id as 'Identification #'
 2 from publishers;

ERROR at line 1:
ORA-00923: FROM keyword not found where expected

Change the single quotes to double, and the query works fine. In addition,
the original case of the heading is preserved.

Oracle
SQL> select pub_name as "Publisher #", pub_id as "Identification #"
 2 from publishers;
Publisher # Iden
-- ----
New Age Books 0736
Binnet & Hardley 0877
Algodata Infosystems 1389

Other implementations object to spaces or special characters.

Informix
select pub_name as Publisher, pub_id as Identification#
from publishers

SQL Error. An illegal character has been found.

The illegal character is the pound sign (#). Quotation marks don’t help in
this case.

Character Strings in Query Results Sometimes a little text can make query
results easier to understand. That’s where strings (of characters) come in
handy.

Let’s say you want a listing of publishers with something like “The pub-
lisher’s name is” in front of each item. All you have to do is insert the string in

bowman04.fm Page 106 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 107

the correct position in the SELECT list. Be sure to enclose the entire string in
quotes (single quotes are standard, but some dialects allow both single and
double quotes) so your system can tell it’s not a column name and separate it
with commas from other elements in the select_list .

Follow your system’s rules for protecting embedded apostrophes and quotes,
if any appear in the string. In most cases, double single quotes do the trick and
prevent the apostrophe from being interpreted as a close quote.

SQL
select 'The publisher''s name is', pub_name as Publisher
from publishers

'The publisher''s name is' Publisher

========================== ============================

The publisher's name is New Age Books

The publisher's name is Binnet & Hardley

The publisher's name is Algodata Infosystems

[3 rows]

The constants create a new column in the display only—what you see
doesn’t affect anything that’s physically in the database.

Combining Columns, Display Headings, and Text You can combine col-
umns, display headings, and text in a SELECT list.

Remember to put quotes around the text but not around the column names.
You need quotes around display headings only if they contain spaces (or other
special characters). Figure 4.3 illustrates mixing several techniques.

Computations with Constants The SELECT list is the place where you indi-
cate computations you want to perform on numeric data or constants.

Here are the available arithmetic operators:

Symbol Operation
+ addition
− subtraction
/ division
* multiplication

bowman04.fm Page 107 Wednesday, May 16, 2001 4:43 PM

108 The Practical SQL Handbook

The arithmetic operators—addition, subtraction, division, and multiplica-
tion—can be used on any numeric column.

Certain arithmetic operations can also be performed on date columns, if
your system provides date functions.

You can use all of these operators in the SELECT list with column names
and numeric constants in any combination. For example, to see what a pro-
jected sales increase of 100 percent for all the books in the titles table looks
like, type this:

SQL
select title_id, ytd_sales, ytd_sales * 2
from titles

title_id ytd_sales titles.ytd_sales*2
======== =========== ==================
PC8888 4095 8190
BU1032 4095 8190
PS7777 3336 6672
PS3333 4072 8144
BU1111 3876 7752
MC2222 2032 4064
TC7777 4095 8190
TC4203 15096 30192
PC1035 8780 17560
BU2075 18722 37444
PS2091 2045 4090

Adaptive Server Anywhere:
select 'The name for publisher #' as 'Long Text',
 pub_id as Num, 'is' as Text, pub_name
from publishers

Long Text Num Text pub_name
======================== ==== ==== =====================
The name for publisher # 0736 is New Age Books
The name for publisher # 0877 is Binnet & Hardley
The name for publisher # 1389 is Algodata Infosystems

Display label
with
embedded
space—
needs quotes

Column
name—no
quotes

Text—needs
quotes

Display heading with
no embedded
space—no quotes

Figure 4.3 Column Names, Text, and Display Headings

bowman04.fm Page 108 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 109

PS2106 111 222
MC3021 22246 44492
TC3218 375 750
MC3026 (NULL) (NULL)
BU7832 4095 8190
PS1372 375 750
PC9999 (NULL) (NULL)

[18 rows]

Notice the null values in the ytd_sales column and the computed column.
When you perform any arithmetic operation on a null value, the result is
NULL.

SQL
VARIANTS

The null value may show up as a blank, as the word NULL, or as some
other symbol determined by the system. Check your vendor’s documentation:
You may have a way to change the default NULL display.

Oracle
SQL> select title_id, ytd_sales, ytd_sales * 2
 2 from titles
 3 where title_id > 'M' and title_id < 'PS';
TITLE_ YTD_SALES YTD_SALES*2
------ --------- -----------
MC2222 2032 4064
MC3021 22246 44492
MC3026
PC1035 8780 17560
PC8888 4095 8190
PC9999
6 rows selected.

Computed Column Display Headings You can give the computed column a
heading (for example, Projected_Sales):

SQL
select title_id, ytd_sales, ytd_sales * 2 as Projected_Sales
from titles

bowman04.fm Page 109 Wednesday, May 16, 2001 4:43 PM

110 The Practical SQL Handbook

For a fancier display, try adding character strings such as “Current sales =”
and “Projected sales are” to the SELECT statement.

Sometimes, as in the previous example, you’ll want both the original data
and the computed data in your results. But you don’t have to include the col-
umn on which the computation takes place in the SELECT list. To see just the
computed values, type this:

SQL
select title_id, ytd_sales * 2
from titles

title_id titles.ytd_sales*2
======== ==================
PC8888 8190
BU1032 8190
PS7777 6672
PS3333 8144
BU1111 7752
MC2222 4064
TC7777 8190
TC4203 30192
PC1035 17560
BU2075 37444
PS2091 4090
PS2106 222
MC3021 44492
TC3218 750
MC3026 (NULL)
BU7832 8190
PS1372 750
PC9999 (NULL)
[18 rows]

Computations with Column Names You can also use arithmetic operators
for computations on the data in two or more columns, with no constants
involved. Here’s an example:

bowman04.fm Page 110 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 111

SQL
select title_id, ytd_sales * price
from titles

title_id titles.ytd_sales*titles.price
======== ================================
PC8888 81900.00
BU1032 81859.05
PS7777 26654.64
PS3333 81399.28
BU1111 46318.20
MC2222 40619.68
TC7777 61384.05
TC4203 180397.20
PC1035 201501.00
BU2075 55978.78
PS2091 22392.75
PS2106 777.00
MC3021 66515.54
TC3218 7856.25
MC3026 (NULL)
BU7832 81859.05
PS1372 8096.25
PC9999 (NULL)
[18 rows]

Finally, you can compute new values on the basis of columns from more
than one table. (Chapter 7, on joining, and Chapter 8, on subqueries, give
information on how to work with multiple-table queries, so check them for
details.)

Arithmetic Operator Precedence When there is more than one arithmetic
operator in an expression, the system follows rules that determine the order
in which the operations are carried out (Figure 4.4). According to commonly
used precedence rules, multiplication and division are calculated first, fol-
lowed by subtraction and addition. When more than one arithmetic operator
in an expression has the same level of precedence, the order of execution is
left to right. Expressions within parentheses take precedence over all other
operations.

Here’s an example: The following SELECT statement subtracts the advance
on each book from the gross revenues realized on its sales (price multiplied by

bowman04.fm Page 111 Wednesday, May 16, 2001 4:43 PM

112 The Practical SQL Handbook

ytd_sales). The product of ytd_sales and price is calculated first because
the operator is multiplication.

SQL
select title_id, ytd_sales * price - advance
from titles

To avoid misunderstandings, use parentheses. The following query has the
same meaning and gives the same results as the previous one, but it is easier
to understand:

SQL
select title_id, (ytd_sales * price) - advance
from titles

title_id titles.ytd_sales*titles.price
======== =============================
PC8888 155800.00
BU1032 117809.05
PS7777 56014.64
PS3333 120119.28
BU1111 80078.20
MC2222 60939.68

Parentheses

Multiplication Division

Subtraction Addition

Figure 4.4 Precedence Hierarchy for Arithmetic Operators

bowman04.fm Page 112 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 113

TC7777 114809.05
TC4203 327357.20
PC1035 370101.00
BU2075 233073.78
PS2091 42612.75
PS2106 -4113.00
MC3021 273975.54
TC3218 8356.25
MC3026 (NULL)
BU7832 117809.05
PS1372 8596.25
PC9999 (NULL)
[18 rows]

Another important use of parentheses is changing the order of execution:
Calculations inside parentheses are handled first. If parentheses are nested
(one set of parentheses inside another), the most deeply nested calculation has
precedence. For example, the result and meaning of the query just shown can
be changed if you use parentheses to force evaluation of the subtraction before
the multiplication:

SQL
select title_id, ytd_sales * (price - advance)
from titles

title_id titles.ytd_sales*(titles.pric
======== =============================
PC8888 -32596200.00
BU1032 -20352190.95
PS7777 -13283985.36
PS3333 -8021880.72
BU1111 -19294921.80
MC2222 60939.68
TC7777 -32637190.95
TC4203 -60052642.80
PC1035 -61082899.00
BU2075 -189317051.22
PS2091 -4607487.25
PS2106 -664113.00
MC3021 -333401024.46
TC3218 -2609643.75

bowman04.fm Page 113 Wednesday, May 16, 2001 4:43 PM

114 The Practical SQL Handbook

MC3026 (NULL)
BU7832 -20352190.95
PS1372 -2609403.75
PC9999 (NULL)
[18 rows]

Specifying Tables: The FROM Clause

The table list names the table(s), the view(s), or both, that contain columns
included in the SELECT list and in the WHERE clause. (Views are covered in
Chapter 9—for now, just consider them a kind of table.) Separate table names
in the table list with commas. The FROM syntax looks like this:

SELECT select_list
FROM [qualifier.]{table_name | view_name} [alias]
 [, [qualifier.]{table_name | view_name} [alias]]...

The full naming syntax for tables and views, with qualifying database and
owner names, is always permitted in the table list. It’s necessary, however,
only when there might be some confusion about the name.

Using Table Aliases

In many SQL dialects, you can give table names aliases to save typing. Assign
an alias in the table list by giving the alias after the table name, like this:

SQL
select p.pub_id, p.pub_name
from publishers p

The p in front of each of the column names in the SELECT list acts as a
substitute for the full table name (publishers). This query is equivalent to

SQL
select publishers.pub_id, publishers.pub_name
from publishers

SYNTAX

bowman04.fm Page 114 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 115

You can’t combine the two naming conventions. Once you assign an alias,
you must use the alias or no qualifier—alternately using the alias and the full
table name in a given query isn’t allowed because the alias actually substitutes
for the table or view name during the query. In effect, the table name does not
exist. Here’s an example of assigning an alias but also using the full name:

SQL
select publishers.pub_id, p.pub_name
from publishers p

Correlation name ‘publishers’ not found.

Since only one table is involved in these queries, there is no ambiguity
about which pub_id column you’re referencing, so using the table name—
either its alias or its full name—as a qualifier is optional. Aliases are really use-
ful only in multiple-table queries where you need to qualify columns from dif-
ferent tables. You’ll see examples of their use in Chapters 7 and 8.

Skipping FROM

Some systems allow you to write queries without a FROM clause. For exam-
ple, a query for the current date and time (information not stored in a table)
may work fine, like this:

Adaptive Server Anywhere
select current date

current date
============
Mar 01 2000 12:00am
[1 row]

SQL
VARIANTS

Other systems don’t allow you to skip FROM. When you retrieve nontable
information, you must use FROM with a dummy table that you create or the
system supplies (for Oracle, dual).

bowman04.fm Page 115 Wednesday, May 16, 2001 4:43 PM

116 The Practical SQL Handbook

Oracle
SQL> select sysdate
 2 from dual;

SYSDATE

Mar 01 2000 12:00 AM

Selecting Rows: The WHERE Clause

The WHERE clause is the part of the SELECT statement that specifies the
search conditions. These conditions determine exactly which rows are
retrieved. The general format is this:

SELECT select_list
FROM table_list
WHERE search_conditions

When you run a SELECT statement with a WHERE clause, your system
searches for the rows in the table that meet your conditions (also called
qualifications).

SQL provides a variety of operators and keywords for expressing the search
conditions, including these:

• Comparison operators (=, <, >, and so on)
select title
from titles
where advance * 2 > ytd_sales * price

• Combinations or logical negations of conditions (AND, OR, NOT)
select title
from titles
where advance < 5000 or ytd_sales > 2000

• Ranges (BETWEEN and NOT BETWEEN)
select title
from titles
where ytd_sales between 4095 and 12000

SYNTAX

bowman04.fm Page 116 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 117

• Lists (IN, NOT IN)
select pub_name
from publishers
where state in ('CA', 'IN', 'MD')

• Unknown values (IS NULL and IS NOT NULL)
select title
from titles
where advance is null

• Character matches (LIKE and NOT LIKE)
select au_lname
from authors
where phone not like '415%'

Each of these keywords and operators is explained and illustrated in this
chapter. In addition, the WHERE clause can include join conditions (see
Chapter 7) and subqueries (see Chapter 8).

Comparison Operators

You often want to look at values in relation to one another to find out which is
“larger” or “smaller” or “lower” in the alphabet sort or “equal” to some other
database value or to a constant. SQL provides a set of comparison operators for
these purposes. In most dialects, the comparison operators are these:

Operator Meaning

= equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
< > not equal to

The operators are used in the syntax:

WHERE expression comparison_operator expression

An expression can be a plain column name or something more complex—a
character string, a function or calculation (usually involving a column name),

SYNTAX

bowman04.fm Page 117 Wednesday, May 16, 2001 4:43 PM

118 The Practical SQL Handbook

or any combination of these elements connected by arithmetic operators.
When evaluated, an expression produces a single value per row.

In contexts other than SQL, the comparison operators are usually used
with numeric values. In SQL, they are also used with char and varchar data
(< means earlier in the dictionary order and > means later) and with dates
(< means earlier in chronological order and > means later). When you use
character and date values in a SQL statement, be sure to put quotes around
them.

The order in which uppercase and lowercase characters and special char-
acters are evaluated depends on the character-sorting sequence you are
using, imposed by your database system or by the machine you are using.
(There are more details on sort order in “Character Sets and Sort
Orders”). Check your system to see how it handles trailing blanks in
comparisons. Is “Dirk” considered the same as “Dirk ”?

Comparing Numbers The following SELECT statements and their results
should give you a good sense of how the comparison operators are used. The
first query finds the books that cost more than $25.00.

SQL
select title, price
from titles
where price > $25.00
title price
=== =====
Secrets of Silicon Valley 40.00
The Busy Executive's Database Guide 29.99
Prolonged Data Deprivation: Four Case Studies 29.99
Silicon Valley Gastronomic Treats 29.99
Sushi, Anyone? 29.99
But Is It User Friendly? 42.95
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 40.95
Straight Talk About Computers 29.99
Computer Phobic and Non-Phobic Individuals: Behavior Variations 41.59
[9 rows]

TIP

bowman04.fm Page 118 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 119

SQL
VARIANTS

Check your system to see if it allows dollar signs with money values. Most
do not. Transact-SQL is an exception, and so is Adaptive Server Anywhere.

Comparing Character Values The next SELECT statement finds the authors
whose last names follow McBadden in the alphabet. Notice the name is in sin-
gle quotes. (Some systems allow both single and double quotes around charac-
ter and date constants in the WHERE clause, but most allow single quotes
only.)

SQL
select au_lname, au_fname
from authors
where au_lname >'McBadden'

au_lname au_fname
== ===============
O'Leary Michael
Panteley Sylvia
Ringer Albert
Ringer Anne
Smith Meander
Straight Dick
Stringer Dirk
White Johnson
Yokomoto Akiko
[9 rows]

(Your results may differ, depending on the sort order your system uses. See
Chapter 5 for more on this issue.)

Comparing Imaginary Values The next query displays hypothetical infor-
mation—it calculates double the price of all books for which advances over
$10,000 were paid and displays the title identification numbers and calculated
prices:

bowman04.fm Page 119 Wednesday, May 16, 2001 4:43 PM

120 The Practical SQL Handbook

SQL
select title_id, price * 2
from titles
where advance > 10000

title_id titles.price*2
======== ==============
BU2075 25.98
MC3021 25.98
[2 rows]

Finding Values Not Equal to Some Value Following is a query that finds the
telephone numbers of authors who don’t live in California, using the not equal
comparison operator (in some SQL dialects, you can use != as the not equal
operator).

SQL
select au_id, phone
from authors
where state <> 'CA'

au_id phone
=========== ============
998-72-3567 801 826-0752
899-46-2035 801 826-0752
722-51-5454 219 547-9982
807-91-6654 301 946-8853
527-72-3246 615 297-2723
712-45-1867 615 996-8275
648-92-1872 503 745-6402
341-22-1782 913 843-0462
[8 rows]

Connecting Conditions with Logical Operators

Use the logical operators AND, OR, and NOT when you’re dealing with more
than one condition in a WHERE clause. The logical operators are also called
Boolean operators.

bowman04.fm Page 120 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 121

AND AND joins two or more conditions and returns results only when all of
the conditions are true. For example, the following query will find only the
rows in which the author’s last name is Ringer and the author’s first name is
Anne. It will not find the row for Albert Ringer.

SQL
select au_id, au_lname, au_fname
from authors
where au_lname = 'Ringer'
 and au_fname = 'Anne'

au_id au_lname au_fname
=========== =================================== ========
899-46-2035 Ringer Anne
[1 row]

The next example finds business books with a price higher than $20.00 and
for which an advance of less than $20,000 was paid:

SQL
select title, type, price, advance
from titles
where type = 'business'
 and price > 20.00
 and advance < 20000

title type price advance
======================================= ======== ====== ========
The Busy Executive's Database Guide business 29.99 5000.00
Cooking with Computers: Surreptitious
 Balance Sheets business 21.95 5000.00
Straight Talk About Computers business 29.99 5000.00
[3 rows]

OR OR also connects two or more conditions, but it returns results when any
of the conditions is true. The following query searches for rows containing
Anne or Ann in the au_fname column:

bowman04.fm Page 121 Wednesday, May 16, 2001 4:43 PM

122 The Practical SQL Handbook

SQL
select au_id, au_lname, au_fname
from authors
where au_fname = 'Anne'
 or au_fname = 'Ann'

au_id au_lname au_fname
=========== ================================= ==========
899-46-2035 Ringer Anne
427-17-2319 Dull Ann
[2 rows]

The following query searches for books with a price higher than $20.00 or
an advance less than $5,000:

SQL
select title, type, price, advance
from titles
where price > $30.00
 or advance < $5000

title type price advance
== ============ ===== =======
Secrets of Silicon Valley popular_comp 40.00 8000.00
Emotional Security: A New Algorithm psychology 17.99 4000.00
Prolonged Data Deprivation: Four Case
 Studies psychology 29.99 2000.00
Silicon Valley Gastronomic Treats mod_cook 29.99 0.00
Fifty Years in Buckingham Palace Kitchens trad_cook 21.95 4000.00
But Is It User Friendly? popular_comp 42.95 7000.00
Is Anger the Enemy? psychology 21.95 2275.00
Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean trad_cook 40.95 7000.00
Computer Phobic and Non-Phobic
 Individuals: Behavior Variations psychology 41.59 7000.00
[9 rows]

Semantic Issues with OR and AND One more example using OR will dem-
onstrate a potential for confusion. Let’s say you want to find all the business
books, as well as any books with a price higher than $10 and any books with
an advance less than $20,000. The English phrasing of this problem suggests

bowman04.fm Page 122 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 123

the use of the operator AND, but the logical meaning dictates the use of OR
because you want to find all the books in all three categories, not just books
that meet all three characteristics at once. Here’s the SQL statement that finds
what you’re looking for:

SQL
select title, type, price, advance
from titles
where type = 'business'
 or price > $20.00
 or advance < $20000

title type price advance
=== ============ ===== =======
Secrets of Silicon Valley popular_comp 40.00 8000.00
The Busy Executive's Database Guide business 29.99 5000.00
Emotional Security: A New Algorithm psychology 17.99 4000.00
Prolonged Data Deprivation:
 Four Case Studies psychology 29.99 2000.00
Cooking with Computers:
 Surreptitious Balance Sheets business 21.95 5000.00
Silicon Valley Gastronomic Treats mod_cook 29.99 0.00
Sushi, Anyone? trad_cook 29.99 8000.00
Fifty Years in Buckingham Palace Kitchens trad_cook 21.95 4000.00
But Is It User Friendly? popular_comp 42.95 7000.00
You Can Combat Computer Stress! business 12.99 10125.00
Is Anger the Enemy? psychology 21.95 2275.00
Life Without Fear psychology 17.00 6000.00
The Gourmet Microwave mod_cook 12.99 15000.00
Onions, Leeks, and Garlic:
 Cooking Secrets of the Mediterranean trad_cook 40.95 7000.00
Straight Talk About Computers business 29.99 5000.00
Computer Phobic and Non-Phobic
 Individuals: Behavior Variations psychology 41.59 7000.00
[16 rows]

Compare this query and its results to the earlier example that is identical
except for the use of AND instead of OR.

bowman04.fm Page 123 Wednesday, May 16, 2001 4:43 PM

124 The Practical SQL Handbook

NOT The logical operator NOT negates an expression. When you use it with
comparison operators, put it before the expression rather than before the com-
parison operator. The following two queries are equivalent:

SQL
select au_lname, au_fname, state
from authors
where state <> 'CA'

SQL
select au_lname, au_fname, state
from authors
where not state = 'CA'

Here are the results:

Results
au_lname au_fname state
================================== =============== =====
Ringer Albert UT
Ringer Anne UT
DeFrance Michel IN
Panteley Sylvia MD
Greene Morningstar TN
del Castillo Innes MI
Blotchet-Halls Reginald OR
Smith Meander KS
[8 rows]

Logical Operator Precedence Like the arithmetic operators, logical opera-
tors are handled according to precedence rules. When both kinds of operators
occur in the same statement, arithmetic operators are handled before logical
operators. When more than one logical operator is used in a statement, NOT
is evaluated first, then AND, and finally OR. Figure 4.5 shows the hierarchy.

Some examples will clarify the situation. The following query finds all the
business books in the titles table, no matter what their advances are, as well
as all psychology books that have an advance greater than $5,500. The
advance condition pertains to psychology books and not to business books
because the AND is handled before the OR.

bowman04.fm Page 124 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 125

SQL
select title_id, type, advance
from titles
where type = 'business'
 or type = 'psychology'
 and advance > 5500

title_id type advance
======== ============ ============
BU1032 business 5000.00
BU1111 business 5000.00
BU2075 business 10125.00
PS2106 psychology 6000.00
BU7832 business 5000.00
PS1372 psychology 7000.00
[6 rows]

Parentheses

Multiplication, Division

Subtraction, Addition

NOT

AND

OR

Figure 4.5 Precedence Hierarchy for Logical Operators

bowman04.fm Page 125 Wednesday, May 16, 2001 4:43 PM

126 The Practical SQL Handbook

The results include three business books with advances less than $5,500
because the query was evaluated according to the following precedence rules:

1. Find all psychology books with advances greater than $5,500.

2. Find all business books (never mind about advances).

3. Display both sets of rows in the results.

You can change the meaning of the previous query by adding parentheses to
force evaluation of the OR first. With parentheses added, the query executes
differently:

1. Find all business and psychology books.

2. Locate those that have advances over $5,500.

3. Display only the final subset.

SQL
select title_id, type, advance
from titles
where (type = 'business' or type = 'psychology')
 and advance > 5500

title_id type advance
======== ============ ============
BU2075 business 10125.00
PS2106 psychology 6000.00
PS1372 psychology 7000.00
[3 rows]

The parentheses cause SQL to find all business and psychology books and,
from among those, to find those with advances greater than $5,500.

Here’s a query that includes arithmetic operators, comparison operators,
and logical operators. It searches for books that are not bringing in enough
money to offset their advances. Specifically, the query searches for any books
with gross revenues (that is, ytd_sales times price) less than twice the
advance paid to the author(s). The user who constructed this query has tacked
on another condition: She wants to include in the results only books published
before October 15, 2000, because those books have had long enough to estab-
lish a sales pattern. The last condition is connected with the logical operator

bowman04.fm Page 126 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 127

AND; according to the rules of precedence, it is evaluated after the arithmetic
operations.

SQL
select title_id, type, price, advance, ytd_sales
from titles
where price * ytd_sales < 2 * advance
 and pubdate < '10/15/2000'

title_id type price advance ytd_sales
======== =========== ========= =========== ===========
PS2106 psychology 17.00 6000.00 111
[1 row]

SQL
VARIANTS

If you run this query on a system with a different date format, you may
need to change the pubdate value to correspond to that format. For example, if
your SQL engine expects dates to look like DD-MON-YYYY, you could write
the query like this:

Oracle
SQL> select title_id, type, price, advance, ytd_sales
 2 from titles
 3 where price * ytd_sales < 2 * advance
 4 and pubdate < '21 OCT 2000';

TITLE_ TYPE PRICE ADVANCE YTD_SALES
------ ------------ --------- --------- ---------
PS2106 psychology 17 6000 111

Ranges (BETWEEN and NOT BETWEEN)

Another common search condition is a range. There are two different ways to
specify ranges:

• With the comparison operators > and <
• With the keyword BETWEEN

bowman04.fm Page 127 Wednesday, May 16, 2001 4:43 PM

128 The Practical SQL Handbook

Use BETWEEN to specify an inclusive range, in which you search for the
lower value and the upper value as well as the values they bracket. For exam-
ple, to find all the books with sales between (and including) 4,095 and 12,000,
you could write this query:

SQL
select title_id, ytd_sales
from titles
where ytd_sales between 4095 and 12000

title_id ytd_sales
======== ===========
PC8888 4095
BU1032 4095
TC7777 4095
PC1035 8780
BU7832 4095
[5 rows]

Notice that books with sales of 4,095 are included in the results. If there
were any with sales of 12,000, they would be included too. In this way, the
BETWEEN range is different from the greater-than/less-than (> <) range. The
same query using the greater-than and less-than operators returns different
results because the range is not inclusive:

SQL
select title_id, ytd_sales
from titles
where ytd_sales > 4095 and ytd_sales < 12000

title_id ytd_sales
======== ===========
PC1035 8780
[1 row]

NOT BETWEEN The phrase NOT BETWEEN finds all the rows that are not
inside the range. To find all the books with sales outside the range of 4,095 to
12,000, type this:

bowman04.fm Page 128 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 129

SQL
select title_id, ytd_sales
from titles
where ytd_sales not between 4095 and 12000

title_id ytd_sales
======== ===========
PS7777 3336
PS3333 4072
BU1111 3876
MC2222 2032
TC4203 15096
BU2075 18722
PS2091 2045
PS2106 111
MC3021 22246
TC3218 375
PS1372 375
[11 rows]

You can get the same results with comparison operators, but notice in this
query that you use OR between the two ytd_sales comparisons rather than
AND.

SQL
select title_id, ytd_sales
from titles
where ytd_sales < 4095 or ytd_sales > 12000

title_id ytd_sales
======== ===========
PS7777 3336
PS3333 4072
BU1111 3876
MC2222 2032
TC4203 15096
BU2075 18722
PS2091 2045
PS2106 111
MC3021 22246
TC3218 375
PS1372 375
[11 rows]

bowman04.fm Page 129 Wednesday, May 16, 2001 4:43 PM

130 The Practical SQL Handbook

This is another case where it’s easy to get confused because of the way the
question can be phrased in English. You might ask to see all books whose sales
are less than 4,095 and all books whose sales are greater than 12,000. The log-
ical meaning, however, calls for the use of the Boolean operator OR. If you sub-
stitute AND, you’ll get no results at all because no book can have sales that are
simultaneously less than 4,095 and greater than 12,000.

Lists (IN and NOT IN)

The IN keyword allows you to select values that match any one of a list of val-
ues. For example, without IN, if you want a list of the names and states of all
the authors who live in California, Indiana, or Maryland, you can type this
query:

SQL
select au_lname, state
from authors
where state = 'CA' or state = 'IN' or state = 'MD'

However, you get the same results with less typing if you use IN. The items
following the IN keyword must be

• inside parentheses
• separated by commas
• enclosed in quotes, if they are character or date values

SQL
select au_lname, state
from authors
where state in ('CA', 'IN', 'MD')

Following is what results from either query:

Results
au_lname state
== =====
Bennet CA
Green CA
Carson CA
DeFrance IN
Panteley MD

bowman04.fm Page 130 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 131

McBadden CA
Stringer CA
Straight CA
Karsen CA
MacFeather CA
Dull CA
Yokomoto CA
O'Leary CA
Gringlesby CA
White CA
Hunter CA
Locksley CA
[17 rows]

The more items in the list, the greater the savings in typing by using IN
rather than specifying each condition separately.

An important use for the IN keyword is in nested queries, also referred to as
subqueries. For a full discussion of subqueries, see Chapter 8.

Selecting Null Values

From earlier chapters (“NULLs” in Chapter 1), you may recall that NULL is a
placeholder for unknown information. It does not mean zero or blank.

To clarify this NULL–zero difference, take a look at the following listing
showing title and advance amount for books belonging to one particular
publisher.

SQL
select title, advance
from titles
where pub_id = '0877'

title advance
=== =======
Silicon Valley Gastronomic Treats 0.00
Sushi, Anyone? 8000.00
Fifty Years in Buckingham Palace Kitchens 4000.00
The Gourmet Microwave 15000.00
Onions, Leeks, and Garlic: Cooking Secrets of the
 Mediterranean 7000.00
The Psychology of Computer Cooking (NULL)
[6 rows]

bowman04.fm Page 131 Wednesday, May 16, 2001 4:43 PM

132 The Practical SQL Handbook

A cursory perusal shows that one book (Silicon Valley Gastronomic Treats)
has an advance of $0.00, probably due to extremely poor negotiating skills on
the author’s part. This author will receive no money until the royalties start
coming in. Another book (The Psychology of Computer Cooking) has a NULL
advance: Perhaps the author and the publisher are still working out the details
of their deal, or perhaps the data entry clerk hasn’t made the entry yet. Eventu-
ally, in this case, an amount will be known and recorded. Maybe it will be zero,
maybe millions, maybe a couple of thousand dollars. The point is that right
now the data does not disclose what the advance for this book is, so the
advance value in the table is NULL.

What happens in the case of comparisons involving NULLs? Since a NULL
represents the unknown, it doesn’t match anything, even another NULL. For
example, a query that finds all the title identification numbers and advances
for books with moderate advances (under $5,000) will not find the row for
MC3026, The Psychology of Computer Cooking.

SQL
select title_id, advance
from titles
where advance < $5000

title_id advance
======== ============
PS7777 4000.00
PS3333 2000.00
MC2222 0.00
TC4203 4000.00
PS2091 2275.00
[5 rows]

Neither will a query for all books with an advance over $5,000:

SQL
select title_id, advance
from titles
where advance > $5000

title_id advance
======== ============
PC8888 8000.00
TC7777 8000.00
PC1035 7000.00

bowman04.fm Page 132 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 133

BU2075 10125.00
PS2106 6000.00
MC3021 15000.00
TC3218 7000.00
PS1372 7000.00
[8 rows]

NULL is neither above nor below (nor equal to) $5,000 because NULL is
unknown.

IS NULL But don’t despair! You can retrieve rows on the basis of their NULL/
NOT NULL status with the following special pattern:

WHERE column_name IS [NOT] NULL

Use it to find the row for books with null advances like this:

SQL
select title_id, advance
from titles
where advance is null

title_id advance
======== ============
MC3026 (NULL)
PC9999 (NULL)
[2 rows]

SQL
VARIANTS

Some systems allow the equal sign, in addition to “is”.

Adaptive Server Enterprise
select title_id, advance
from titles
where advance = null

Since IS NULL is specified in the ANSI standard, it makes sense to use it,
rather than use the less common = NULL.

TIP

SYNTAX

bowman04.fm Page 133 Wednesday, May 16, 2001 4:43 PM

134 The Practical SQL Handbook

IS NULL and Other Comparison Operators You can use the IS NULL pat-
tern in combination with other comparison operators. Here’s how a query for
books with an advance under $5,000 or a null advance would look:

SQL
select title_id, advance
from titles
where advance < $5000
 or advance is null

title_id advance
======== ============
PS7777 4000.00
PS3333 2000.00
MC2222 0.00
TC4203 4000.00
PS2091 2275.00
MC3026 (NULL)
PC9999 (NULL)
[7rows]

Matching Character Strings: LIKE

Some problems can’t be solved with comparisons. Here are a few examples:

• “His name begins with ‘Mc’ or ‘Mac’—I can’t remember the rest.”
• “We need a list of all the 415 area code phone numbers.”
• “I forget the name of the book, but it has a mention of exercise in the

notes.”
• “Well, it’s Carson, or maybe Karsen—something like that.”
• “His first name is ‘Dirk’ or ‘Dick.’ Four letters, starts with a D and ends

with a k.”

In each of these cases, you know a pattern embedded somewhere in a col-
umn, and you need to use the pattern to retrieve all or part of the row. The
LIKE keyword is designed to solve this problem. You can use it with character
fields (and on some systems, with date fields). It doesn’t work with numeric
fields defined as integer, money, and decimal or float. The syntax is this:

bowman04.fm Page 134 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 135

WHERE column_name [NOT] LIKE 'pattern'
 [ESCAPE escape_char]

The pattern must be enclosed in quotes and must include one or more
wildcards (symbols that take the place of missing letters or strings in the pat-
tern). You use the ESCAPE keyword when your pattern includes one of the
wildcards and you need to treat it as a literal.

ANSI SQL provides two wildcard characters for use with LIKE, the percent
sign (%) and the underscore or underbar (_).

Wildcard Meaning

% any string of zero or more characters
_ any single character

SQL
VARIANTS

Many systems offer variations (notations for single characters that fall
within a range or set, for example). Check your system’s reference guide to see
what’s available.

LIKE Examples Following are answers to the questions just posed and the
queries that generated them. First, the search for Scottish or Irish surnames:

SQL
select au_lname, city
from authors
where au_lname like 'Mc%' or au_lname like 'Mac%'

au_lname city
====================================== =================
McBadden Vacaville
MacFeather Oakland
[2 rows]

The LIKE pattern instructs the system to search for a name that begins with
“Mc” and is followed by a string of any number of characters (%) or that begins
with “Mac” and is followed by any number of characters. Notice that the wild-
card is inside the quotes.

SYNTAX

bowman04.fm Page 135 Wednesday, May 16, 2001 4:43 PM

136 The Practical SQL Handbook

Now the 415 area code list:

SQL
select au_lname, phone
from authors
where phone like '415%'

au_lname phone
== ============
Bennet 415 658-9932
Green 415 986-7020
Carson 415 548-7723
Stringer 415 843-2991
Straight 415 834-2919
Karsen 415 534-9219
MacFeather 415 354-7128
Dull 415 836-7128
Yokomoto 415 935-4228
Hunter 415 836-7128
Locksley 415 585-4620
(11 rows affected)

Here again, you’re looking for some known initial characters followed by a
string of unknown characters.

The book with “exercise” somewhere in its notes is a little trickier. You
don’t know if it’s at the beginning or end of the column, and you don’t know
whether the first letter of the word is capitalized. You can cover all these possi-
bilities by leaving the first letter out of the pattern and using the same “string
of zero or more characters” wildcard at the beginning and end of the pattern.

SQL
select title_id, notes
from titles
where notes like '%xercise%'

title_id notes
======== ==
PS2106 New exercise, meditation, and nutritional techniques
 that can reduce the shock of daily interactions.
 Popular audience. Sample menus included, exercise
 video available separately.
[1 row]

bowman04.fm Page 136 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 137

When you know the number of characters missing, you can use the single-
character wildcard, (_). In the next example, the first letter is either K or C and
the next to the last is either e or o. If the authors table contained the last name
Karson, it would also be included in the results. Starson or Karstin would not.

SQL
select au_lname, city
from authors
where au_lname like '_ars_n'

au_lname city
== ====================
Carson Berkeley
Karsen Oakland
(2 rows affected)

The next example is similar to the previous one. It looks for four-letter first
names starting with D and ending with k.

SQL
select au_lname, au_fname, city
from authors
where au_fname like 'D_ _k'

au_lname au_fname city
=================================== ================== ==============
Stringer Dirk Oakland
Straight Dick Oakland
[2 rows]

NOT LIKE You can also use NOT LIKE with wildcards. To find all the phone
numbers in the authors table that do not have 415 as the area code, you could
use either of these queries (they are equivalent):

SQL
select phone
from authors
where phone not like '415%'

select phone
from authors
where not phone like '415%'

bowman04.fm Page 137 Wednesday, May 16, 2001 4:43 PM

138 The Practical SQL Handbook

Escaping Wildcard characters are almost always used together with the LIKE
keyword. Without LIKE, the wildcard characters are interpreted literally and
represent exactly their own values. The query that follows finds any phone
numbers that consist of the four characters “415%” only. It will not find phone
numbers that start with 415:

SQL
select phone
from authors
where phone = '415%'

What if you want to search for a value that contains one of the wildcard
characters? For example, in one row in the titles table, the notes column
contains a claim to increase readers’ friends by some percentage. You can
search for the percent mark by using ESCAPE to appoint a character to strip
the percent sign of its magic meaning and convert it to an ordinary character.
A wildcard directly after the escape character has only its literal meaning.
Other wildcards continue to have their special significance. In the following
LIKE expression, you are looking for a literal percent sign somewhere in the
notes column. Since it’s probably not the first or last character, you use wild-
card percent signs at the beginning and end of the expression and a percent
sign preceded by the escape character in the middle.

SQL
select title_id, notes
from titles
where notes like '%@%%' escape '@'

title_id notes
====== ===
TC7777 Detailed instructions on improving your position in
 life by learning how to make authentic Japanese sushi
 in your spare time. 5-10% increase in number of
 friends per recipe reported from beta test.
[1 row]

Following are some examples of LIKE with escaped and unescaped wildcard
character searches (the @ sign is the designated escape character):

bowman04.fm Page 138 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 139

Symbol Meaning

LIKE ‘27%’ 27 followed by any string of 0 or more characters
LIKE ‘27@%’ 27%
LIKE ‘_n’ an, in, on, etc.
LIKE ‘@_n’ _n

Like, Is IN LIKE Equals . . . ?

Don’t get confused by the similarities of equal, IN, and LIKE.

Equals Use the equal comparison operator when you want all data that
exactly matches a single value—you know just what you are looking for. You
can use the equal comparison operator with any kind of data—character, date,
or numeric. Put quotes around character and date data. In this query, you are
looking for authors named “Meander.”

SQL
select au_lname, au_fname, phone
from authors
where au_fname = 'Meander'

au_lname au_fname phone
============================= ============= ============
Smith Meander 913 843-0462
[1 row]

IN Use IN when you have two or more values and are looking for data that
exactly matches any one of these values. IN works with any kind of data—
character, date, or numeric. Put quotes around character and date data. Here,
you are trying to find any writers called “Meander,” “Malcolm,” or “Stearns.”

SQL
select au_lname, au_fname, phone
from authors
where au_fname in ('Meander', 'Malcolm', 'Stearns')

au_lname au_fname phone
============================= ============= ============
MacFeather Stearns 415 354-7128
Smith Meander 913 843-0462
[2 rows]

bowman04.fm Page 139 Wednesday, May 16, 2001 4:43 PM

140 The Practical SQL Handbook

LIKE Use LIKE when you want to find data that matches a pattern. For
example, if you are trying to locate all the people with the letters “ea” in their
names, you could write code like this:

SQL
select au_lname, au_fname, phone
from authors
where au_fname like '%ea%'

au_lname au_fname phone
============================= ============= ============
McBadden Heather 707 448-4982
MacFeather Stearns 415 354-7128
Smith Meander 913 843-0462
[3 rows]

 In most cases, LIKE works with character and date data only.

SQL
VARIANTS

Some systems support autoconvert capabilities that allow you to use LIKE
with numeric data. Notice that you have to put quotes around the pattern, just
as if it were character:

Oracle
SQL> select title_id, price
 2 from titles
 3 where price like '%.99'

TITLE_ PRICE
------ ---------
BU1032 29.99
PS7777 17.99
PS3333 29.99
MC2222 29.99
TC7777 24.99
BU2075 12.99
MC3021 12.99
BU7832 29.99
8 rows selected.

Other systems give an error for the same code:

bowman04.fm Page 140 Wednesday, May 16, 2001 4:43 PM

Selecting Data from the Database 141

SQL Server
select title_id, price
from titles
where price like '%.99'

Server: Msg 257, Level 16, State 3, Line 1
Implicit conversion from data type money to varchar is not allowed.
Use the CONVERT function to run this query.

Comparing the Three The guidelines for differentiating among equal, IN,
and LIKE are compared and summarized in Figure 4.6.

Keyword Use Example Notes

= Exact matches to a
single value

where fname = 'Meander' All datatypes. Use
quotes around
character and date
data.

IN Exact matches to one
or more values in a set
of values—another way
of specifying a series of
OR clauses

where au_fname in
('Meander', 'Malcolm',
'Stearns')

All datatypes. Use
quotes around
character and date
data. Separate elements
with commas.

LIKE Matches to a pattern,
always used with
wildcards (%, _)

where au_fname like
'%ea%'

Character and date
datatypes—others if
the system does some
autoconversion.
ESCAPE neutralizes
the wildcards.

Figure 4.6 Equal, IN, LIKE

bowman04.fm Page 141 Wednesday, May 16, 2001 4:43 PM

142 The Practical SQL Handbook

Summary

This chapter concentrates on the basic clauses of the SELECT statement. Now
you are familiar with the SELECT statement basics. These include:

• Using the asterisk for all columns in CREATE TABLE order, or listing
individual column names, in any order, for a tailored report. You’ve also
learned how to modify display labels, add text, and perform calculations
in the SELECT clause.

• Specifying tables in the FROM clause, and assigning aliases as needed.
• Selecting rows in the WHERE clause, using comparison operators, logi-

cal operators, IN, IS NULL, and BETWEEN to zero in on just the values
you want.

The next chapter covers some refinements on selection: ordering results with
ORDER BY, eliminating duplicates in results with DISTINCT, and using
aggregate functions for creating summary values.

bowman04.fm Page 142 Wednesday, May 16, 2001 4:43 PM

