
CHAPTER 3
Using Classes and Objects in VB

The original versions of Visual Basic (1.0 through 3.0) did not contain much in
the way of object-oriented features, and many programmers’ habits were
formed by the features of these early versions. However, starting with Visual
Basic 4.0, you could create Class modules as well as Form modules, and use
them as objects. In this chapter we’ll illustrate more of the advantages of using
class modules. In the following chapter we’ll extend these concepts for the more
fully object-oriented VB.NET.

A Simple Temperature Conversion Program

Suppose we wanted to write a visual program to convert temperatures between
the Celsius and Fahrenheit temperature scales. You may remember that water
freezes at 0° on the Celsius scale and boils at 100°, whereas on the Fahrenheit
scale, water freezes at 32° and boils at 212°. From these numbers you can
quickly deduce the conversion formula that you may have forgotten.

The difference between freezing and boiling on one scale is 100° and on the
other 180° or 100/180 or 5/9. The Fahrenheit scale is “offset” by 32, since
water freezes at 32° on its scale. Thus,

C = (F – 32) * 5/9

and

F = 9/5 * C + 32

In our visual program, we’ll allow the user to enter a temperature and select the
scale to convert it, as we see in Figure 3-1.

17

Figure 3-1 Converting 35° Celsius to 95° Fahrenheit with our visual interface

Using the very nice visual builder provided in VB, we can draw the user
interface in a few seconds and simply implement routines to be called when the
two buttons are pressed.

Private Sub btConvert_Click()
Dim enterTemp As Single, newTemp As Single

enterTemp = Val(txTemperature.Text)

If opFahr.Value Then
newTemp = 9 * (enterTemp / 5) + 32

Else
newTemp = 5 * (enterTemp - 32) / 9

End If

lbNewtemp.Caption = Str$(newTemp)
End Sub
'------
Private Sub Closit_Click()
End
End Sub

The preceding program is extremely straightforward and easy to understand
and is typical of how many VB programs operate. However, it has some
disadvantages that we might want to improve on.

The most significant problem is that the user interface and the data handling
are combined in a single program module, rather than being handled separately.
It is usually a good idea to keep the data manipulation and the interface manip-
ulation separate so that changing interface logic doesn’t impact the computation
logic and vice versa.

18 CHAPTER 3 Using Classes and Objects in VB

Building a Temperature Class

As we noted in the previous chapter, a class in VB is a module that can contain
both public and private functions and subroutines and can hold data values as
well. It is logically the same as a Form, except that it has no visual aspects to it.
These functions and subroutines in a class are frequently referred to collectively
as methods.

Class modules are also like Basic Types or C structs that allow you to keep a
set of data values in a single named place and fetch those values using get and set
functions, which we then refer to as accessor methods.

You create a class module from the VB integrated development environ-
ment (IDE) using the menu item Project | Add class module. Then, you select the
Properties window (using function key F4) and enter the module’s name. In this
example, we’ll call the class module clsTemp.

What we want to do is to move all of the computation and conversion
between temperature scales into this new clsTemp class module. One way to
design this module is to rewrite the calling programs that will use the class mod-
ule first. In the code sample below, we create an instance of the clsTemp class
and use it to do whatever conversions are needed.

Private Sub btConvert_Click()
Dim enterTemp As Single, newTemp As Single
Dim clTemp As New clsTemp 'create class instance

If opFahr.Value Then
clTemp.setCels txTemperature
lbNewtemp.Caption = Str$(clTemp.getFahr)

Else
clTemp.setFahr txTemperature
lbNewtemp.Caption = Str$(clTemp.getCels)

End If

Note that to create a working copy of a class (called an instance) you have
to use the new keyword with the Dim statement.

Dim clTemp As New clsTemp 'create class instance

If you simply declare a variable without the New keyword,

Dim clTemp as clsTemp

you have created a pointer to a class instance but have not initialized an actual
instance until you actually create one using New. You can set the value of the
pointer you created using the Set keyword.

Set clTemp = New clsTemp 'create instance of clsTemp

Building a Temperature Class 19

In this program, we have two set methods—setCels and setFahr—and two
get methods—getCels and getFahr.

These methods put values into the class and retrieve other values from the
class. The actual class is just this.

Private temperature As Single

Public Sub setFahr(tx As String)
temperature = 5 * (Val(tx) - 32) / 9

End Sub

Public Sub setCels(tx As String)
temperature = Val(tx)

End Sub

Public Function getFahr() As Single
getFahr = 9 * (temperature / 5) + 32

End Function

Public Function getCels() As Single
getCels = temperature

End Function

Note that the temperature variable is declared as private, so it cannot be “seen”
or accessed from outside the class. You can only put data into the class and get
it back out using the four accessor methods. The main point to this code
rearrangement is that the outer calling program does not have to know how
the data are stored and how they are retrieved: that is only known inside the
class. In this class we always store data in Celsius form and convert on the
way in and out as needed. We could also do validity checks for legal strings on
the way in, but since the Val function returns zeros and no error for illegal
strings, we don’t have to in this case.

The other important feature of the class is that it actually holds data. You
can put data into it, and it will return it at any later time. This class only holds
the one temperature value, but classes can contain quite complex sets of data
values.

We could easily modify this class to get temperature values out in other
scales without still ever requiring that the user of the class know anything about
how the data are stored or how the conversions are performed.

Converting to Kelvin

Absolute zero on the Celsius scale is defined as –273.16° degrees. This is the
coldest possible temperature, since it is the point at which all molecular motion
stops. We can add a function

20 CHAPTER 3 Using Classes and Objects in VB

Public Function getKelvin() As Single
getKelvin = temperature + 273.16

End Function

without any changes to the visual client at all. What would the setKelvin
method look like?

Putting the Decisions into the Temperature Class

Now we are still making decisions within the user interface about which meth-
ods of the temperature class. It would be even better if all that complexity could
disappear into the clsTemp class. It would be nice if we just could write our
Conversion button click method as

Private Sub btConvert_Click()
Dim clTemp As New clsTemp

'put the entered value and conversion request
'into the class
clTemp.setEnterTemp txTemperature.Text, opFahr.Value

'and get out the requested conversion
lbNewtemp.Caption = clTemp.getTempString

End Sub

This removes the decision-making process to the temperature class and reduces
the calling interface program to just two lines of code.

The class that handles all this becomes somewhat more complex, however,
but then it keeps track of what data as been passed in and what conversion must
be done.

Private temperature As Single 'always in Celsius
Private toFahr As Boolean 'conversion to F requested

Public Sub setEnterTemp(ByVal tx As String, _
ByVal isCelsius As Boolean)

'convert to Celsius and save
If Not isCelsius Then
makeCel tx 'convert and save
toFahr = False
Else
temperature = Val(tx) 'just save temperature
toFahr = True
End If
End Sub
'------
Private Sub makeCel(tx As String)

Putting the Decisions into the Temperature Class 21

temperature = 5 * (Val(tx) - 32) / 9
End Sub

Now, the isCelsius Boolean tells the class whether to convert and whether
conversion is required on fetching the temperature value. The output routine is
simply the following.

Public Function getTempString() As String
getTempString = Str$(getTempVal)
End Function
'------
Public Function getTempVal() As Single
Dim outTemp As Single
If toFahr Then 'should we convert to F?
outTemp = makeFahr 'yes
Else
outTemp = temperature 'no
End If
getTempVal = outTemp 'return temp value
End Function
'------
Private Function makeFahr() As Single
Dim t As Single
'convert t to Fahrenheit
t = 9 * (temperature / 5) + 32
makeFahr = t
End Function

In this class we have both public and private methods. The public ones are
callable from other modules, such as the user interface form module. The
private ones, makeFahr and makeCel, are used internally and operate on the
temperature variable.

Note that we now also have the opportunity to return the output tempera-
ture as either a string or a single floating point value and could thus vary the
output format as needed.

Using Classes for Format and Value Conversion

It is convenient in many cases to have a method for converting between formats
and representations of data. You can use a class to handle and hide the details of
such conversions. For example, you might enter an elapsed time in minutes and
seconds with or without the colon.

315.20
3:15.20
315.2

22 CHAPTER 3 Using Classes and Objects in VB

Since all styles are likely, you’d like a class to parse the legal possibilities and
keep the data in a standard format within. Figure 3-2 shows how the entries
“112” and “102.3” are parsed.

Figure 3-2 A simple parsing program that uses the Times class

The accessor functions for our Times class include the following.

setText (tx as String)
setSingle (t as Single)
getSingle as Single
getFormatted as String
getSeconds as Single

Parsing is quite simple and depends primarily on looking for a colon. If there is
no colon, then values greater than 99 are treated as minutes.

Public Function setText(ByVal tx As String) As Boolean
Dim i As Integer, mins As Long, secs As Single
errflag = False
i = InStr(tx, ":")
If i > 0 Then
mins = Val(Left$(tx, i - 1))
secs = Val(Right$(tx, Len(tx) - i))
If secs > 59.99 Then
errflag = True

End If
t = mins * 100 + secs

Else
mins = Val(tx) \ 100
secs = Val(tx) - (100 * mins)
If secs > 59.99 Then

Using Classes for Format and Value Conversion 23

errflag = True
t = NT

Else
setSingle Val(tx)
End If
End If
setText = errflag
End Function

Since illegal time values might also be entered, we test for cases like 89.22
and set an error flag.

Depending on the kind of time measurements these represent, you might
also have some non-numeric entries such as NT for no time or in the case of ath-
letic times, SC for scratch or DQ for disqualified. All of these are best managed
inside the class. Thus, you never need to know what numeric representations of
these values are used internally.

Private Const tmNT As Integer = 10000, tmDQ As Integer = 20000
Private Const tmSCRATCH As Integer = 30000

Some of these are processed in the code represented by Figure 3-3.

Figure 3-3 The time entry interface, showing the parsing of symbols for No Time, Scratch,
and Disqualification

Handling Unreasonable Values

A class is also a good place to encapsulate error handling. For example, it might
be that times greater than some threshold value are unlikely and might actually
be times that were entered without a decimal point. If large times are unlikely,
then a number such as 123473 could be assumed to be 12:34.73.

24 CHAPTER 3 Using Classes and Objects in VB

Public Sub setSingle(tv As Single)
t = tv
If tv > minVal And tv <> tmNT Then
t = tv / 100

End If
End Sub

The cutoff value minVal may vary with the domain of times being consid-
ered and thus should be a variable. While classes do not have a Form_Load
event like Forms do, they do have and initialize events where you can set up
default values for variables.

Private Sub Class_Initialize()
minVal = 10000

End Sub

To set up the Initialize event in the IDE, click on the left drop-down in the editor
title bar so that Class is selected and select Initialize from the right drop-down as
shown in Figure 3-4.

Figure 3-4 Selecting the Class Initialize method

A String Tokenizer Class

A number of languages provide a simple method for dividing strings into tokens
separated by a specified character. While VB does not provide a class for this
feature, we can write one quite easily using the little-known Split function. The
goal of the Tokenizer class will be to pass in a string and obtain the successive
string tokens back one at a time. For example, if we had the simple string

Now is the time

our tokenizer should return four tokens.

Now
is

A String Tokenizer Class 25

the
time

The critical part of this class is that it holds the initial string and remembers
which token is to be returned next.

We could write this class using the Instr function, or we could use the Split
function, which approximates the Tokenizer but returns an array of substrings
instead of having a class interface. The class we want to write will have a next-
Token method that returns string tokens or a zero length string when we reach
the end of the series of tokens.

The whole class is shown here.

'String tokenizer class
Private s As String, i As Integer
Private sep As String 'token separator
Private stokens() As String 'array of tokens
Public Sub init(ByVal st As String)
s = st
setSeparator " "
End Sub
Private Sub Class_Initialize()
sep = " " 'default is a space separator
End Sub
Public Sub setSeparator(ByVal sp As String)
sep = sp
stokens = Split(s, sp)
i = -1

End Sub
Public Function nextToken() As String
Dim tok As String
If i < UBound(stokens) Then
i = i + 1
tok = stokens(i)

Else
tok = ""

End If
nextToken = tok 'return token
End Function

The class is illustrated in use in Figure 3-5.
This is the code that uses the Tokenizer class.

Private Sub Tokenize_Click()
Dim tok As New Tokenizer
Dim s As String

tok.init txString.Text 'set the string from the input
lsTokens.Clear 'clear the list box
s = tok.nextToken 'get a token

26 CHAPTER 3 Using Classes and Objects in VB

Figure 3-5 The tokenizer in use

While Len(s) > 0 'as long as not of zero length
lsTokens.AddItem s 'add into the list
s = tok.nextToken 'and look for next token

Wend
End Sub

Classes as Objects

The primary difference between ordinary procedural programming and object-
oriented (OO) programming is the presence of classes. A class is just a module
as we have just shown, that has both public and private methods and that can
contain data. However, classes are also unique in that there can be any number
of instances of a class, each containing different data. We frequently refer to these
instances as objects. We’ll see some examples of single and multiple instances
following.

Suppose we have a file of results from a swimming event stored in a text
data file. Such a file might look, in part, like this.

1 Emily Fenn 17 WRAT 4:59.54
2 Kathryn Miller 16 WYW 5:01.35
3 Melissa Sckolnik 17 WYW 5:01.58
4 Sarah Bowman 16 CDEV 5:02.44
5 Caitlin Klick 17 MBM 5:02.59
6 Caitlin Healey 16 MBM 5:03.62

The columns represent place, names, age, club, and time. If we wrote a pro-
gram to display these swimmers and their times, we’d need to read in and parse
this file. For each swimmer, we’d have a first and last name, an age, a club, and a

Classes as Objects 27

time. An efficient way to keep the data for each swimmer grouped together is to
design a Swimmer class and create an instance for each swimmer.

Here is how we read the file and create these instances. As each instance is
created, we add it into a Collection object.

Private swimmers As New Collection

Private Sub Form_Load()
Dim f As Integer, S As String
Dim sw As Swimmer
Dim i As Integer

f = FreeFile
'read in data file and create swimmer instances
Open App.Path & "\500free.txt" For Input As #f
While Not EOF(f)
Line Input #f, S
Set sw = New Swimmer 'create instances
sw.init S 'load in data
swimmers.Add sw 'add to collection

Wend
Close #f
'put names of swimmers in list box
For i = 1 To swimmers.Count
Set sw = swimmers(i)
lsSwimmers.AddItem sw.getName

Next i
End Sub

The Swimmer class itself parses each line of data from the file and stores it for
retrieval using getXXX accessor functions.

Private frname As String, lname As String
Private club As String
Private age As Integer
Private tms As New Times
Private place As Integer
'------
Public Sub init(dataline As String)
Dim tok As New Tokenizer

tok.init dataline 'initilaize string tokenizer
place = Val(tok.nextToken) 'get lane number
frname = tok.nextToken 'get first name
lname = tok.nextToken 'get last name
age = Val(tok.nextToken) 'get age
club = tok.nextToken 'get club
tms.setText tok.nextToken 'get and parse time
End Sub
'------

28 CHAPTER 3 Using Classes and Objects in VB

Public Function getTime() As String
getTime = tms.getFormatted
End Function
'------
Public Function getName() As String
'combine first and last names and return together
getName = frname & " " & lname
End Function
'------
Public Function getAge() As Integer
getAge = age
End Function
'------
Public Function getClub() As String
getClub = club
End Function

Class Containment

Each instance of the Swimmer class contains an instance of the Tokenizer that it
uses to parse the input string and an instance of the Times class we wrote previ-
ously to parse the time and return it in formatted form to the calling program.
Having a class contain other classes is a very common ploy in OO programming
and is one of the main ways we can build up more complicated programs from
rather simple components.

The program that displays these swimmers is shown in Figure 3-6.

Figure 3-6 A list of swimmers and their times, using containment

When you click on any swimmer, her time is shown in the box on the right. The
code for showing that time is extremely easy to write, since all the data are in the
swimmer class.

Classes as Objects 29

Private Sub lsSwimmers_Click()
Dim i As Integer
Dim sw As Swimmer
i = lsSwimmers.ListIndex 'get index of list
If i >= 0 Then
Set sw = swimmers(i) 'get that swimmer
lbTime.Caption = sw.getTime 'display that time

End If
End Sub

Class Initialization

As we showed previously, you can use the Class_Initialize event to set up default
values for some class variables. However, if you want to set up some values that
are specific for each instance (such as our swimmer’s names and times), we need
a standard way to do this. In other languages, classes have special methods
called constructors that you can use to pass in useful data at the same time you
create the instance. Since VB6 classes lack these methods, we introduce the con-
vention of an init method that we’ll use to pass in instance specific data.

In our preceding Swimmer class, note that we have an init method that in
turn calls the init method of the Tokenizer class.

Public Sub init(dataline As String)
Dim tok As New Tokenizer

tok.init dataline 'initialize string tokenizer

Other languages, including VB7, also allow classes to have a series of con-
structors that each have different arguments. Since this is not a feature of VB6,
we’ll use various setXXX methods instead.

Classes and Properties

Classes in VB can have Property methods as well as public and private functions
and subs. These correspond to the kinds of properties you associate with Forms,
but they can store and fetch any kinds of values you care to use. For example,
rather than having methods called getAge and setAge, you could have a single Age
property that then corresponds to a Property Let and a Property Get method.

Property Get age() As Integer
age = sAge 'return the current age
End Property
'------
Property Let age(ag As Integer)
sAge = ag 'save a new age
End Property

30 CHAPTER 3 Using Classes and Objects in VB

To use these properties, you refer to the Let property on the left side of an
equals sign and the Get property on the right side.

myAge = sw.Age 'Get this swimmer’s age
sw.Age = 12 'Set a new age for this swimmer

Properties are somewhat vestigial, since they really applied more to Forms,
but many programmers find them quite useful. They do not provide any fea-
tures not already available using get and set methods, and both generate equally
efficient code.

In the revised version of our SwimmerTimes display program, we convert
all of the get and set methods to properties and then allow users to vary the
times of each swimmer by typing in new ones. Here is the Swimmer class.

Option Explicit
Private frname As String, lname As String
Private sClub As String
Private sAge As Integer
Private tms As New Times
Private place As Integer
'------
Public Sub init(dataline As String)
Dim tok As New Tokenizer

tok.init dataline 'initilaize string tokenizer
place = Val(tok.nextToken) 'get lane number
frname = tok.nextToken 'get first name
lname = tok.nextToken 'get last name
sAge = Val(tok.nextToken) 'get age
sClub = tok.nextToken 'get club
tms.setText tok.nextToken 'get and parse time
End Sub
'------
Property Get time() As String
time = tms.getFormatted
End Property
'------
Property Let time(tx As String)
tms.setText tx
End Property
'------
Property Get Name() As String
'combine first and last names and return together
Name = frname & " " & lname
End Property
'------
Property Get age() As Integer
age = sAge 'return the current age
End Property
'------

Classes and Properties 31

Property Let age(ag As Integer)
sAge = ag ‘save a new age
End Property
'------
Property Get Club() As String
Club = sClub
End Property

Then when the txTime text entry field loses focus, we can store a new time
as follows.

Private Sub txTime_Change()
Dim i As Integer
Dim sw As Swimmer
i = lsSwimmers.ListIndex 'get index of list
If i >= 0 Then
Set sw = swimmers(i) 'get that swimmer
sw.time = txTime.Text 'store that time
End If
End Sub

Another Interface Example—The Voltmeter

Suppose that you need to interface a digital voltmeter to your computer. We’ll
assume that the meter can connect to your serial port and that you send it a
string command and get the measured voltage back as a string. We’ll also
assume that you can set various measurement ranges such as millivolts, volts,
and tens of volts. The methods for accessing this voltmeter might look like this.

'The Voltmeter class
Public Sub setRange(ByVal maxVal As Single)
'set maximum voltage to measure

End Sub
'------
Public Function getVoltage() As Single
'get the voltage and convert it to a Single
End Function

The nice visual data-gathering program you then write for this voltmeter
works fine, until you suddenly need to make another simultaneous set of mea-
surements. You discover that the model of voltmeter that you wrote the program
for is no longer available and that the new model has different commands. It
might even have a different interface (IEEE-488 or USB, for instance).

This is an ideal time to think about program interfaces. The simple two-
method interface we specified previously should work for any voltmeter, and
the rest of the program should run without change. All you need to do is write
a class for the new voltmeter that implements the same interface. Then your

32 CHAPTER 3 Using Classes and Objects in VB

data-gathering program only needs to be told which meter to use and it will run
completely unchanged, as we show here.

Private Sub OK_Click()
If opPe.Value Then

Set vm = New PE2345
Else
Set vm = New HP1234

End If
vm.getVoltage
End Sub

Further, should your data needs expand so that there are still more meters,
you can quickly write more classes that implement this same Voltmeter inter-
face. This is the advantage of OO programming in a nutshell: Only the individ-
ual classes have detailed knowledge of how they work. The only external
knowledge is contained in the interfaces.

A vbFile Class

File handling in VB is for the most part awkward and primitive for historical
reasons. The statements for opening files have this form.

f = FreeFile
Open "file.txt" for Input as #f

And those for reading data from files have this form.

Input #f, s
Line Input #f, sLine

There is no simple statement for checking for the existence of a file, and the
file rename and delete have counterintuitive names.

Exists = len(dir$(filename))>0 'file exists
Name file1 as file2 'Rename file
Kill filename 'Delete file

None of these statements are at all object oriented. There ought to be
objects that encapsulate some of this awkwardness and keep the file handles
suitably hidden.

VB6 introduced the Scripting.FileSystemObject as a way to handle files
in a presumably more object-oriented way. However, these objects are not fully
realized and a bit difficult to use. Thus, we might do well to create our own
vbFile object with convenient methods. These methods could include the
following.

A vbFile Class 33

Public Function OpenForRead(Filename As String) As Boolean
Public Function fEof() As Boolean
Public Function readLine() As String
Public Function readToken() As String
Public Sub closeFile()
Public Function exists() As Boolean
Public Function delete() As Boolean
Public Function OpenForWrite(fname As String) As Boolean
Public Sub writeText(s As String)
Public Sub writeLine(s As String)
Public Sub setFilename(fname As String)
Public Function getFilename() As String

A typical implementation of a few of these methods includes the following.

Public Function OpenForRead(Filename As String) As Boolean
'open file for reading
f = FreeFile 'get a free handle
File_name = Filename 'save the filename

On Error GoTo nofile 'trap errors
Open Filename For Input As #f

opened = True 'set true if open successful
oexit:

OpenForRead = opened 'return to caller
Exit Function
'--error handling--
nofile:
end_file = True 'set end of file flag
errDesc = Err.Description 'save error messae
opened = False 'no file open
Resume oexit 'and resume

End Function
'------
Public Function fEof() As Boolean
'return end of file
If opened Then
fEof = EOF(f)
Else
fEof = True 'if not opened then end file is true
End If
End Function
'------
Public Function readLine() As String
Dim s As String
'read one line from a text file
If opened Then
Line Input #f, s
readLine = s

Else
readLine = ""

End If
End Function

34 CHAPTER 3 Using Classes and Objects in VB

With these useful methods, we can write a simple program to read a file and
display it in a list box.

Dim fl As New vbFile
cDlg.ShowOpen 'use common dialog open

fl.OpenForRead cDlg.Filename
'read in up to end of file
sline = fl.readLine
While Not fl.fEof
lsFiles.AddItem sline
sline = fl.readLine

Wend
fl.closeFile

Now, the implementation of this vbFile object can change as VB evolves. How-
ever, by concealing the details, we can vary the implementation in the future.
We’ll see another implementation of this class when we discuss VB.NET.

Programming Style in Visual Basic

You can develop any of a number of readable programming styles for VB. The
one we use here is partly influenced by Microsoft’s Hungarian notation (named
after its originator, Charles Simonyi) and partly on styles developed for Java.

We favor using names for VB controls such as buttons and list boxes that
have prefixes that make their purpose clear, and we will use them whenever
there is more than one of them on a single form.

We will name classes in ways that describe their purpose and only precede
them with clsXXX if there is any ambiguity. We will not generally create new
names for labels, frames, and forms when they are never referred to directly in
the code. Even though VB is case insensitive, we otherwise will begin class

Control Prefix Example

Buttons bt btCompute

List boxes ls lsSwimmers

Radio (option buttons) op opFSex

Combo boxes cb cbCountry

Menus mnu mnuFile

Text boxes tx TxTime

Programming Style in Visual Basic 35

names with capital letters and instances of classes with lowercase letters. We
will also spell instances and classes with a mixture of lowercase and capital let-
ters to make their purpose clearer.

swimmerTime

Summary

In this chapter, we’ve introduced VB classes and shown how they can contain
public and private methods and can contain data. Each class can have many
instances and each could contain different data values. Classes can also have
Property methods for setting and fetching data. These Property methods pro-
vide a simpler syntax over the usual getXXX and setXX accessor methods but
have no other substantial advantages.

36 CHAPTER 3 Using Classes and Objects in VB

