
IN THIS CHAPTER

As mentioned in Chapter 1, to be successful in today’s ever-changing busi-
ness climate, software development must follow an approach that is differ-
ent from the big-bang approach. The big-bang approach, or waterfall model,
offers little risk aversion or support for modification of requirements during
development. The waterfall model forces the project team to accept insur-
mountable risks and create software that usually doesn’t approximate the
original vision of the project sponsors.

This chapter looks at Java as an enterprise solution for constructing and
implementing industrial-strength applications that will better approximate
what the sponsors intended. Java is a language that not only supports
object-oriented concepts, but also formally acknowledges many constructs
not formally found in other object languages, such as the interface. This
chapter explores Java’s object strengths.

The UML is object-oriented, and its diagrams lend themselves to being
implemented in software that is object-oriented. This chapter examines how
UML, coupled with a sound software process model, such as the Unified
Process, can produce applications that not only meet the project sponsor’s
goals, but also are adaptive to the ever-changing needs of the business.

27

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

CHAPTER 2 Java, Object-Oriented
Analysis and Design,
and UML

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 27

GOALS

➫ To review Java’s object capabilities.

➫ To explore Java and its relationship to UML.

➫ To review how UML diagrams are mapped to Java.

Java as an Industrial-Strength Development Language

Numerous tomes chronicle the emergence of Java onto the technology

landscape. Suffice it to say, things have not been quite the same since

James Gosling (the visionary behind Java’s birth at Sun Microsystems)

created Sun’s first Java applet running in a Mosaic-clone Web browser.

Java has grown immensely since that time and gone through many

upgrades and enhancements, including sizeable replacements of major

components within Java (the Swing graphics library), along with the

advent of enterprise-level Java commitment in the form of Enterprise

JavaBeans (EJB). This book focuses on the most recent release of the

Java Development Kit, JDK 1.3—more affectionately called Java 2.0. In

addition, both JavaBeans and Enterprise JavaBeans will be used exten-

sively to implement most of the Java components, and bean-managed

and container-managed persistence using the EJB 2.0 specification will

be used with commercial application servers.

Java as a career path has also turned out to be a smart decision. Stud-

ies have revealed that a majority of job postings in the U.S. market

include Java experience as a requirement over other programming lan-

guages. In fact, a recent study by the Forrester research firm reported

that 79 percent of all Fortune 1000 companies were deploying enter-

prise Java applications. Forrester also predicted that that figure will be

100 percent by the end of the year 2003.

Java and Object-Oriented Programming

Many seasoned Java developers will scoff at the fact that this section

even exists in this book. It is here for two very important reasons. The

first is that I continually run across Java applications built with a proce-

dural mind-set. The fact that you know Java doesn’t mean that you

28 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 28

have the ability to transform that knowledge into well-designed object-

oriented systems. As both an instructor and consultant, I see many

data-processing shops send COBOL and/or Visual Basic developers to a

three-day class on UML and a five-day class on Java and expect miracles.

Case in point: I was recently asked to review a Java application to

assess its design architecture and found that it had only two classes—

SystemController and ScreenController—which contained over

70,000 lines of Java code.

The second reason for the emphasis on how the language maps to

object-oriented principles is that people like language comparisons and

how they stack up to their counterparts. To appease those that live and

die by language comparisons, let’s put Java under the scrutiny of what

constitutes an object-oriented language.

No definitive definition of what makes a language object-oriented is

globally accepted. However, a common set of criteria I personally find

useful is that the language must support the following:

• Classes

• Complex types (Java reference types)

• Message passing

• Encapsulation

• Inheritance

• Polymorphism

These are discussed in the next subsections.

Java and Classes
Java allows classes to be defined. There are no stray functions floating

around in Java. A class is a static template that contains the defined

structure (attributes) and behavior (operations) of a real-world entity

in the application domain. At runtime, the class is instantiated, or

brought to life, as an object born in the image of that class. In my semi-

nars, when several folks new to the object world are in attendance, I

often use the analogy of a cookie cutter. The cookie cutter is merely the

template used to stamp out what will become individually decorated

and unique cookies. The cookie cutter is the class; the unique blue,

green, and yellow gingerbread man is the object (which I trust supports

a bite operation).

Java and Object-Oriented Programming 29

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 29

Java exposes the class to potential outside users through its public

interface. A public interface consists of the signatures of the public

operations supported by the class. A signature is the operation name

and its input parameter types (the return type, if any, is not part of the

operation’s signature).

Good programming practice encourages developers to declare all

attributes as private and allow access to them only via operations. As

with most other languages, however, this is not enforced in Java. Figure

2-1 outlines the concept of a class and its interface.

The figure uses a common eggshell metaphor to describe the concept

of the class’s interface, as well as encapsulation. The internal details of

the class are hidden from the outside via a well-defined interface. In

this case, only four operations are exposed in the classes interface

(Operation_A, B, C, and D). The other attributes and operations are pro-

tected from the outside world. Actually, to the outside world, it’s as if

they don’t even exist.

30 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

Public Interface:
Operation_A
Operation_B
Operation_C
Operation_D

Private:
Attribute_1
Attribute_2
Attribute_3
Attribute_4

Private:
Operation_E
Operation_F
Operation_G
Operation_H

Op
er
at
io
n_
A

Operation_D Op
er
at
io
n_
C

Operation_B

FIGURE 2-1 Public interface of a class

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 30

Suppose you want to create an Order class in Java that has three

attributes—orderNumber, orderDate, and orderTotal—and two

operations—calcTotalValue() and getInfo(). The class definition

could look like this:

/**
* Listing 1
* This is the Order class for the Java/UML book
*/
package com.jacksonreed;
import java.util.*;

public class Order
{
private Date orderDate;
private long orderNumber;
private long orderTotal;

public Order()
{
}

public boolean getInfo()
{
return true;

}

public long calcTotalValue()
{
return 0;

}

public Date getOrderDate()
{
return orderDate;

}

public void setOrderDate(Date aOrderDate)
{
orderDate = aOrderDate;

}

public long getOrderNumber()
{
return orderNumber;

}

Java and Object-Oriented Programming 31

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 31

public void setOrderNumber(long aOrderNumber)
{
orderNumber = aOrderNumber;

}

public long getOrderTotal()
{
return orderTotal;

}

public void setOrderTotal(long aOrderTotal)
{
orderTotal = aOrderTotal;

}

public static void main(String[] args)
{
Order order = new Order();
System.out.println("instantiated Order");
System.out.println(order.getClass().getName());
System.out.println(order.calcTotalValue());

try {
Thread.currentThread().sleep(5*1000);
} catch(InterruptedException e) {}

}
}

A few things are notable about the first bit of Java code presented in

this book. Notice that each of the three attributes has a get and a set

operation to allow for the retrieval and setting of the Order object’s

properties. Although doing so is not required, it is common practice to

provide these accessor-type operations for all attributes defined in a

class. In addition, if the Order class ever wanted to be a JavaBean, it

would have to have “getters and setters” defined in this way.

Some of the method code in the main() operation does a few things

of note. Of interest is that a try block exists at the end of the operation

that puts the current thread to sleep for a bit. This is to allow the con-

sole display to freeze so that you can see the results.

If you type in this class and then compile it and execute it in your

favorite development tool or from the command prompt with

javac order.java //* to compile it
java order //* to run it

32 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 32

you should get results that look like this:

instantiated Order
com.jacksonreed.Order
0

Note: Going forward, I promise you will see no code samples with class,
operation, or attribute names of foo, bar, or foobar.

More on Java and Classes
A class can also have what are called class-level operations and attributes.
Java supports these with the static keyword. This keyword would go

right after the visibility (public, private, protected) component of the

operation or attribute. Static operations and attributes are needed to

invoke either a service of the class before any real instances of that class

are instantiated or a service that doesn’t directly apply to any of the

instances. The classic example of a static operation is the Java construc-

tor. The constructor is what is called when an object is created with the

New keyword. Perhaps a more business-focused example is an opera-

tion that retrieves a list of Customer instances based on particular

search criteria.

A class-level attribute can be used to store information that all

instances of that class may access. This attribute might be, for example,

a count of the number of objects currently instantiated or a property

about Customer that all instances might need to reference.

Java and Complex Types (Java Reference Types)
A complex type, which in Java is called a reference type, allows vari-

ables typed as something other than primitive types (e.g., int and

boolean) to be declared. In Java, these are called reference types. In

object-oriented systems, variables that are “of” a particular class, such

as Order, Customer, or Invoice, must be defined. Taken a step further,

Order could consist of other class instances, such as OrderHeader and

OrderLine.

In Java, you can define different variables that are references to run-

time objects of a particular class type:

Public Order myOrder;
Public Customer myCustomer;
Public Invoice myInvoice;

Java and Object-Oriented Programming 33

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 33

Such variables can then be used to store actual object instances and

subsequently to serve as recipients of messages sent by other objects. In

the previous code fragment, the variable myOrder is an instance of

Order. After the myOrder object is created, a message can be sent to it

and myOrder will respond, provided that the operation is supported by

myOrder’s interface.

Java and Message Passing
Central to any object-oriented language is the ability to pass messages

between objects. In later chapters you will see that work is done in a

system only by objects that collaborate (by sending messages) to

accomplish a goal (which is specified in a use-case) of the system.

Java doesn’t allow stray functions floating around that are not

attached to a class. In fact, Java demands this. Unfortunately, as my pre-

vious story suggested, just saying that a language requires everything

to be packaged in classes doesn’t mean that the class design will be

robust, let alone correct.

Java supports message passing, which is central to the use of Java’s

object-oriented features. The format closely resembles the syntax of

other languages, such as C++ and Visual Basic. In the following code

fragment, assume that a variable called myCustomer, of type Customer,

is defined and that an operation called calcTotalValue() is defined

for Customer. Then the calcTotalValue() message being sent to the

myCustomer object in Java would look like this:

myCustomer.calcTotalValue();

Many developers feel that, in any other structured language, this is

just a fancy way of calling a procedure. Calling a procedure and send-

ing a message are similar in that, once invoked, both a procedure and a

message implement a set of well-defined steps. However, a message

differs in two ways:

1. There is a designated receiver, the object. Procedures have no des-

ignated receiver.

2. The interpretation of the message—that is, the how-to code (called

the method) used to respond to the message—can vary with differ-

ent receivers. This point will become more important later in the

chapter, when polymorphism is reviewed.

34 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 34

The concepts presented in this book rely heavily on classes and the

messaging that takes place between their instances, or objects.

Java and Encapsulation
Recall that a class exposes itself to the outside world via its public inter-

face and that this should be done through exposure to operations only,

and not attributes. Java supports encapsulation via its ability to declare

both attributes and operations as public, private, or protected. In UML

this is called visibility.
Using the code from the previous Order example, suppose you want

to set the value of the orderDate attribute. In this case, you should do

so with an operation. An operation that gets or sets values is usually

called a getter or a setter, respectively, and collectively such operations

are called accessors. The local copy of the order date, orderDate, is

declared private. (Actually, all attributes of a class should be declared

private or protected, so that they are accessible only via operations

exposed as public to the outside world.)

Encapsulation provides some powerful capabilities. To the outside

world, the design can hide how it derives its attribute values. If the

orderTotal attribute is stored in the Order object, the corresponding

get operation defined previously looks like this:

public long getOrderTotal()
{
return orderTotal;

}

This snippet of code would be invoked if the following code were exe-

cuted by an interested client:

private long localTotal;
private Order localOrder;
localOrder = New Order();
localTotal = localOrder.getOrderTotal()

However, suppose the attribute orderTotal isn’t kept as a local

value of the Order class, but rather is derived via another mechanism

(perhaps messaging to its OrderLine objects). If Order contains

OrderLine objects (declared as a Vector or ArrayList of OrderLine

objects called myOrderLines) and OrderLine knows how to obtain

its line totals via the message getOrderLineTotal(), then the corre-

sponding get operation for orderTotal within Order will look like this:

Java and Object-Oriented Programming 35

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 35

public long getOrderTotal()
{
long totalAmount=0;

for (int i=0; i < myOrderLines.length; i++)
{
totalAmount = totalAmount +

myOrderLines[i].getOrderLineTotal();
}
return totalAmount;

}

This code cycles through the myOrderLines collection, which contains

all the Orderline objects related to the Order object, sending the

getOrderLineTotal() message to each of Order’s OrderLine objects.

The getOrderTotal() operation will be invoked if the following code

is executed by an interested client:

long localTotal;
Order myOrder;
myOrder = new Order();
localTotal = localOrder.getOrderTotal()

Notice that the “client” code didn’t change. To the outside world, the

class still has an orderTotal attribute. However, you have hidden, or

encapsulated, just how the value was obtained. This encapsulation allows

the class’s interface to remain the same (hey, I have an orderTotal that

you can ask me about), while the class retains the flexibility to change

its implementation in the future (sorry, how we do business has

changed and now we must derive orderTotal like this). This kind of

resiliency is one of the compelling business reasons to use an object-

oriented programming language in general.

Java and Inheritance
The inclusion of inheritance is often the most cited reason for granting

a language object-oriented status. There are two kinds of inheritance:

interface and implementation. As we shall see, Java is one of the few lan-

guages that makes a clear distinction between the two.

Interface inheritance (Figure 2-2) declares that a class that is inherit-

ing an interface will be responsible for implementing all of the method

code of each operation defined in that interface. Only the signatures of

the interface are inherited; there is no method or how-to code.

36 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 36

Implementation inheritance (Figure 2-3) declares that a class that is

inheriting an interface may, at its option, use the method code imple-

mentation already established for the interface. Alternatively, it may

choose to implement its own version of the interface. In addition, the

class inheriting the interface may extend that interface by adding its

own operations and attributes.

Java and Object-Oriented Programming 37

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

Private Attributes
Private Operations

Op
er
at
io
n_
A

Operation_D Op
er
at
io
n_
C

Operation_B

Private Attributes
Private Operations

Op
er
at
io
n_
A

Me
th
od
_A

Method_D

Operation_D
Me
th
od
_C

Op
er
at
io
n_
C

Operation_B

Method_B

Order

Retail

Interface Inheritance

• Retail gets no “method” code
from Order—only operation
signatures.

• Retail gets no access to attributes
defined in Order.

• Retail is obligated to implement
all of the operations defined
in Order.

FIGURE 2-2 Interface inheritance

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 37

Each type of inheritance should be scrutinized and used in the

appropriate setting. Interface inheritance is best used under the follow-

ing conditions:

• The base class presents a generic facility, such as a table lookup, or

a derivation of system-specific information, such as operating-

system semantics or unique algorithms.

38 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

Private Attributes
Private Operations

Op
er
at
io
n_
A

Me
th
od
_A

Method_D

Operation_D
Me
th
od
_C

Op
er
at
io
n_
C

Operation_B

Method_B

Private Attributes
Private Operations

Op
er
at
io
n_
A

Me
th
od
_A

Method_D

Operation_D
Me
th
od
_C

Op
er
at
io
n_
C

Operation_B

Method_B

Order

Retail

Implementation Inheritance

• Retail gets all of the “method”
code from Order.

• Retail gets all of the attributes
declared protected in Order.

• Retail may choose to take as
they are or override the methods
and attributes provided by Order.

FIGURE 2-3 Implementation inheritance

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 38

• The number of operations is small.

• The base class has few, if any, attributes.

• Classes realizing or implementing the interface are diverse, with

little or no common code.

Implementation inheritance is best used under the following

conditions:

• The class in question is a domain class that is of primary interest

to the application (i.e., not a utility or controller class).

• The implementation is complex, with a large number of operations.

• Many attributes and operations are common across specialized

implementations of the base class.

Some practitioners contend that implementation inheritance leads to

a symptom called the fragile base class problem. Chiefly, this term refers

to the fact that over time, what were once common code and attributes

in the superclass may not stay common as the business evolves. The

result is that many, if not all, of the subclasses, override the behavior of

the superclass. Worse yet, the subclasses may find themselves over-

riding the superclass, doing their own work, and then invoking the same

operation again on the superclass. These practitioners espouse the

idea of using only interface inheritance. Particularly with the advent

of Java and its raising of the interface to a first-class type, the concept

and usage of interface-based programming have gained tremendous

momentum.

As this book evolves, keeping in mind the pointers mentioned here

when deciding between the two types of inheritance will be helpful.

Examples of both constructs will be presented in the theme project that

extends throughout this book.

Implementation Inheritance
Java supports implementation inheritance with the extends keyword.

A class wanting to take advantage of implementation inheritance sim-

ply adds an extendsClassName statement to its class definition. To

continue the previous example, suppose you have two different types

of orders, both warranting their own subclasses: Commercial and

Retail. You would still have an Order class (which isn’t instantiated

Java and Object-Oriented Programming 39

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 39

directly and which is called abstract). The previous fragment showed

the code for the Order class. Following is the code for the Commercial

class.

package com.jacksonreed;
public class Commercial extends Order
{
public Commercial()
{
}

/* Unique Commercial code goes here */
}

Implementation inheritance allows the Commercial class to utilize

all attributes and operations defined in Order. This will be done auto-

matically by the Java Virtual Machine (JVM) in conjunction with the

language environment. In addition, implementation inheritance has the

ability to override and/or extend any of Order’s behavior. Commercial

may also add completely new behavior if it so chooses.

Interface Inheritance
Java supports interface inheritance with the implements keyword. A

class wanting to realize a given interface (actually being responsible for

the method code) simply adds an implements InterfaceName state-

ment. However, unlike extension of one class by another class, imple-

mentation of an interface by a class requires that the interface be

specifically defined as an interface beforehand.

Looking again at the previous example with Order, let’s assume that

this system will contain many classes—some built in this release, and

some built in future releases—that need the ability to price themselves.

Remember from earlier in this chapter that one of the indicators of

using interface inheritance is the situation in which there is little or

no common code but the functional intent of the classes is the same.

This pricing functionality includes three services: the abilities to calcu-

late tax, to calculate an extended price, and to calculate a total price.

Let’s call the operations for these services calcExtendedPrice(),

calcTax(), and calcTotalPrice(), respectively, and assign them to a

Java interface called IPrice. Sometimes interface names are prefixed

with the letter I to distinguish them from other classes:

40 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 40

package com.jacksonreed;

interface IPrice
{
long calcExtendedPrice();
long calcTax();
long calcTotalPrice();

}

Notice that the interface contains only operation signatures; it has no

implementation code. It is up to other classes to implement the actual

behavior of the operations. For the Order class to implement, or realize,

the IPrice interface, it must include the implements keyword fol-

lowed by the interface name:

public class Order implements IPrice
{
}

If you try to implement an interface without providing implementa-

tions for all of its operations, your class will not compile. Even if you

don’t want to implement any method code for some of the operations,

you still must have the operations defined in your class.

One very powerful aspect of interface inheritance is that a class can

implement many interfaces at the same time. For example, Order could

implement the IPrice interface and perhaps a search interface called

ISearch. However, a Java class may extend from only one other class.

Java and Polymorphism
Polymorphism is one of those $50 words that dazzles the uninformed

and sounds really impressive. In fact, polymorphism is one of the most

powerful features of any object-oriented language.

Roget’s II: The New Thesaurus cross-references the term polymorphism
to the main entry of variety. That will do for starters. Variety is the key

to polymorphism. The Latin root for polymorphism means simply “many

forms.” Polymorphism applies to operations in the object-oriented con-

text. So by combining these two thoughts, you could say that opera-

tions are polymorphic if they are identical (not just in name but also in

signatures) but offer variety in their implementations.

Polymorphism is the ability of two different classes each to have an

operation that has the same signature, while having two very different

Java and Object-Oriented Programming 41

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 41

forms of method code for the operation. Note that to take advantage of

polymorphism, either an interface inheritance or an implementation

inheritance relationship must be involved.

In languages such as COBOL and FORTRAN, defining a routine

to have the same name as another routine will cause a compile error.

In object-oriented languages such as Java and C++, several classes

might have an operation with the same signature. Such duplication is

in fact encouraged because of the power and flexibility it brings to the

design.

As mentioned previously, the implements and extends keywords

let the application take advantage of polymorphism. As we shall see,

the sample project presented later in this book is an order system for a

company called Remulak Productions. Remulak sells musical equip-

ment, as well as other types of products. There will be a Product class,

as well as Guitar, SheetMusic, and Supplies classes.

Suppose, then, that differences exist in the fundamental algorithms

used to determine the best time to reorder each type of product (called

the economic order quantity, or EOQ). I don’t want to let too much out

of the bag at this point, but there will be an implementation inheritance

relationship created with Product as the ancestor class (or superclass)

and the other three classes as its descendants (or subclasses). The sce-

nario that follows uses implementation inheritance with a polymor-

phic example. Note that interface inheritance would yield the same

benefits and be implemented in the same fashion.

To facilitate extensibility and be able to add new products in the

future in a sort of plug-and-play fashion, we can make calcEOQ()

polymorphic. To do this in Java, Product would define calcEOQ() as

abstract, thereby informing any inheriting subclass that it must provide

the implementation. A key concept behind polymorphism is this: A
class implementing an interface or inheriting from an ancestor class can be
treated as an instance of that ancestor class. In the case of a Java interface, the
interface itself is a valid type.

For example, assume that a collection of Product objects is defined

as a property of the Inventory class. Inventory will support an opera-

tion, getAverageEOQ(), that needs to calculate the average economic

order quantity for all products the company sells. To do this requires

that we iterate over the collection of Product objects called myProducts

to get each object’s unique economic order quantity individually, with

the goal of getting an average:

42 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 42

public long getAverageEOQ()
{
long totalAmount=0;

for (int i=0; i < myProducts.length; i++)
{
totalAmount = totalAmount + myProducts[i].calcEOQ();

}
return totalAmount / myProducts.length;

}

But wait! First of all, how can Inventory have a collection of Product

objects when the Product class is abstract (no instances were ever

created on their own)? Remember the maxim from earlier: Any class

implementing an interface or extending from an ancestor class can be

treated as an instance of that interface or extended class. AGuitar “is a”

Product, SheetMusic “is a” Product, and Supplies “is a” Product.

So anywhere you reference Guitar, SheetMusic, or Supplies, you can

substitute Product.

Resident in the array myProducts within the Inventory class are

individual concrete Guitar, SheetMusic, and Supplies objects. Java

figures out dynamically which object should get its own unique

calcEOQ() message. The beauty of this construct is that later, if you

add a new type of Product—say, Organ—it will be totally transparent

to the Inventory class. That class will still have a collection of Product

types, but it will have four different ones instead of three, each of which

will have its own unique implementation of the calcEOQ() operation.

This is polymorphism at its best. At runtime, the class related to the

object in question will be identified and the correct “variety” of the

operation will be invoked. Polymorphism provides powerful extensi-

bility features to the application by letting future unknown classes

implement a predictable and well-conceived interface without affect-

ing how other classes deal with that interface.

Why UML and Java

When modeling elements, our goal is to sketch the application’s frame-

work with a keen eye toward using sound object-oriented principles.

For this reason, UML, as an object-oriented notation, is a nice fit for any

Why UML and Java 43

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 43

project using Java as its implementation language. Java was built from

the ground up with the necessary “object plumbing” to benefit from

the design elements of UML models. More importantly, when UML is

combined with a sound software process such as the Unified Process,

the chances for the project’s success increase dramatically.

James Rumbaugh once said, “You can’t expect a method to tell you

everything to do. Writing software is a creative process, like painting,

writing, or architectural design. There are principles of painting, for

example, that give guidelines on composition, color selection, and per-

spective, but they won’t make you a Picasso.” You will see what he

means when later in the book the UML elements are presented in a

workable context during the development of an application using Java.

At that time, artifacts will be chosen that add the most value to the

problem. We will still need a sound process to be successful, how-

ever—and a little luck wouldn’t hurt, either.

All of the UML artifacts used in this book will cumulatively lead to

better-built Java applications. However, some of the UML deliverables

will have a much closer counterpart to the actual Java code produced.

For example, use-cases are technology neutral. Actually, use-cases

would benefit any project, regardless of the software implementation

technology employed, because they capture the application’s essential

requirements. All subsequent UML deliverables will derive from the

foundations built in the use-cases.

For core business and commercial applications, three UML diagrams

most heavily affect the Java deliverable: use-case, class, and sequence

(or collaboration). Now, I run the risk already of having you think the

other diagrams are never used; they are, depending on a project’s char-

acteristics and requirements. Yes, the project may also benefit, on the

basis of its unique characteristics, from other diagrams, such as state

and activity diagrams. In my experience, however, the previously men-

tioned three diagrams, along with their supporting documentation, are

the pivotal models that will be most heavily used. Table 2-1 maps the

UML diagrams to Java.

Class Diagram
The king of UML diagrams is the class diagram. This diagram is used

to generate Java code with a visual modeling tool (in this book, Ratio-

nal Software’s Rose). In addition, everything learned from all of the

44 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 44

other diagrams will in one way or another influence this diagram. For

example, the key class diagram components are represented in Java as

follows:

• Classes: The classes identified will end up as automatically gen-

erated .java class files.

• Attributes: The attributes identified in the class will be generated

as private (optionally public or protected) member variables in

the class module. At the option of the designer, the generation

process will also automatically generate the necessary accessor

operations (i.e., get and set).

Why UML and Java 45

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

TABLE 2-1 Mapping UML Diagrams to Java

UML Diagram Specific Element Java Counterpart

Package Instance of Java packages

Use-case Instance of User interface artifacts (downplayed early on) in

the form of pathways that will eventually become

sequence diagrams

Class Operations Operations/methods

Attributes Member variables and related accessor operations

Associations Member variables and related accessor operations

Sequence Instance of Operation in a controller class to coordinate flow

Message target Operation in the target class

Collaboration Instance of Operation in a controller class to coordinate flow

Message target Operation in the target class

State Actions/activities Operations in the class being lifecycled

Events Operations in the class being lifecycled or in another

collaborating class

State variables Attributes in the class being lifecycled

Activity Action states Method code to implement a complex operation or

to coordinate the messaging of a use-case pathway

Component Components Typically one .java and/or one .class file

Deployment Nodes Physical, deployable install sets destined for client

and/or server hosting

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 45

• Interface: Through the messaging patterns uncovered in the

sequence diagrams, the interface of the class—that is, its public

operations—will begin to take shape as operations are added to

the class.

• Operations: Every operation defined for a class will end up as a

public, private, or protected operation within the class. The oper-

ations initially will lack the complete signature specification

(operation name only), but eventually they will contain fully

specified signatures.

• Associations: The associations identified between classes will

end up as attributes of the classes to enable messaging patterns as

detailed by sequence diagrams.

• Finalized classes: Finalized classes can often be used to generate

first-cut database schemas (assuming a relational database as the

persistence store) in the form of Data Definition Language (DDL).

The UML class diagram and its Java counterpart, the class .java file,

are the core of what drives the application’s implementation.

Sequence Diagram
The tasks required to satisfy an application’s goals are specified as path-
ways through a use-case. For a banking environment, one use-case might

be Handle Deposits. Apathway through this use-case, one of many, might

be deposits processed at the teller window. In most cases, each major

pathway will have a sequence diagram created for it. Each, although logi-

cally stated in the use-case, will eventually end up as a dynamic collabo-

ration between runtime objects, all sending messages to one another.

For example, when the Customer object wants each of its Order

objects to perform the operation calcTotalValue(), it sends a mes-

sage. Each message requires the receiver object (the Order) to have an

operation defined to honor the request. Operations all end up in a class

somewhere. These classes eventually are used to generate code in the

Java environment.

The project team uses the sequence diagram to “walk through” the

application. Once the project team has become comfortable with UML,

and the accompanying Unified Process, it will no longer need to walk

through code. Once the sequence diagram has passed inspection, the

method-level coding can be implemented.

46 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 46

Eventually the sequence diagram walk-throughs will be the primary

confirmation of whether a use-case pathway is correct. Most visual

modeling tools, at present, do not generate Java code from the message

patterns outlined in the sequence diagram (Together Control Center

from TogetherSoft will reverse engineer sequence diagrams from Java

code). However, I contend that this wouldn’t be difficult for all visual

modeling tools, and the next version of these products likely will sup-

port this ability. Having it would certainly differentiate competitors.

Component Diagram
The fully developed classes are assigned to components in the visual

modeling tool’s component diagrams. Many will fit a variety of pos-

sible physical manifestations:

• Graphical forms (applets and/or applications)

• Business-level rule components

• Transaction or persistence components

These component choices will be reflected in .java files.

Deployment Diagram
Components defined in the visual modeling tool are deployed on

nodes specified in the deployment diagrams. These diagrams depict

the physical machines that will house the components specified as

components previously. These deployment strategies may be Web-

based solutions, multitier solutions, or standalone Java applications.

Visual Modeling Tool Support
The UML and Java fit together well. The value that UML adds is en-

hanced by the use of a visual modeling tool that supports both forward

and reverse engineering (creating code from models and creating mod-

els from code). The use of a visual modeling tool also aids traceability

and cross-checking of the model components.

A project that combines an effective software process model and a

robust modeling language such as UML nevertheless will be hindered

if it lacks a visual modeling tool. Without such a tool, the project will

produce paper models that won’t be updated or, worse, that will be lost

Why UML and Java 47

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 47

in the shuffle of day-to-day project activity. Many excellent products

are available, and they continue to evolve. Pick a tool and make it part

of your process. Personally, I wouldn’t be caught dead without one.

Checkpoint

Where We’ve Been

• Once a set-top language destined to control the toasters of the

world, Java has become the language darling in the software

industry and is quickly eclipsing many other long-standing lan-

guages that have been around for years.

• Java has grown in acceptance for many reasons, including its sup-

port of a write-once, run-anywhere strategy. In addition, the vast

middleware marketplace that affords multitier solutions has

embraced Java as its prime source of enablement.

• Java cleanly implemented the notion of interface and imple-

mentation inheritance, allowing for a more natural and easy-to-

understand use of the constructs.

• Java is greatly influenced by the work done in three UML diagrams:

use-case, class, and sequence (or collaboration).

Where We’re Going Next

In the next chapter we:

• Explore the project plan for the Unified Process model.

• Review the importance of creating a vision for a project, and look

at deliverables from that effort.

• Get acquainted with the book’s continuing project, Remulak Pro-

ductions.

• Produce an event list as a precursor to use-case analysis.

48 Chapter 2 Java, Object-Oriented Analysis and Design, and UML

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

28427 01 pp001-380 r7jm.ps 10/17/01 10:42 AM Page 48

