
1

P A R T I

The Basics

3831 P-01 12/3/01 10:15 AM Page 1

3831 P-01 12/3/01 10:15 AM Page 2

3

C H A P T E R 1

Stored Procedure Primer

Today, average software development practices are becalmed in a
windless sea of code-and-fix programming—a kind of flat-earth
approach to software development that was proven ineffective 20
years ago.

—Steve McConnell1

Working from the assumption that the human brain learns by associating new
data with what it already knows, we’ll spend this chapter building a base frame-
work onto which we can assemble the knowledge conveyed by the remainder of
the book. We’ll touch on the topics covered in the book’s other chapters, but
we’ll save the details for the chapters themselves. I’m assuming that you know
some basic Transact-SQL with which we can associate these high-level con-
cepts. We’ll spend the remainder of the book filling in the details and expand-
ing on what we cover here.

This chapter serves to prime the discussion on SQL Server stored proce-
dure programming. It will tell you what a stored procedure is, how stored pro-
cedures are often used, and why and how you should use them. It will also
jumpstart the treatment of Transact-SQL as a full-fledged programming lan-
guage. If I could have you take one thing away from reading this book, it would
be that Transact-SQL programming is very much like any other type of pro-
gramming: It requires the same attention to detail, the same craftsmanship, and
the same software engineering skill to do well.

What Is a Stored Procedure?

A Transact-SQL stored procedure is a set of T-SQL code that is stored in a
SQL Server database and compiled when used. You create this set of code

1. McConnell, Steve. After the Gold Rush. Redmond, WA: Microsoft Press, 1998. Page 91.

3831 P-01 12/3/01 10:15 AM Page 3

using the CREATE PROCEDURE command. You can use most Transact-
SQL commands in a stored procedure; however, some commands (such as
CREATE PROCEDURE, CREATE VIEW, SET SHOWPLAN_TEXT, SET
SHOWPLAN_ALL, and so forth) must be the first (or only) statement in a
command batch, and therefore aren’t allowed in stored procedures. Most
Transact-SQL commands behave the same in a stored procedure as they do in
a command batch, but some have special capabilities or exhibit different behav-
ior when executed within the context of a stored procedure. Listing 1–1 shows
a simple stored procedure (only the code from the CREATE PROCEDURE
line down to the ensuing GO actually constitutes the stored procedure):

Listing 1–1 A simple stored procedure.

Use Northwind

GO

IF OBJECT_ID('dbo.ListCustomersByCity') IS NOT NULL

DROP PROC dbo.ListCustomersByCity

GO

CREATE PROCEDURE dbo.ListCustomersByCity @Country nvarchar(30)='%'

AS

SELECT City, COUNT(*) AS NumberOfCustomers

FROM Customers

WHERE Country LIKE @Country

GROUP BY City

GO

EXEC dbo.ListCustomersByCity

Stored Procedure Advantages

Although you can do most of the things a stored procedure can do with simple
ad hoc Transact-SQL code, stored procedures have a number of advantages
over ad hoc queries, including

� Execution plan retention and reuse
� Query autoparameterization
� Encapsulation of business rules and policies
� Application modularization
� Sharing of application logic between applications
� Access to database objects that is both secure and uniform
� Consistent, safe data modification

4 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 4

� Network bandwidth conservation
� Support for automatic execution at system start-up

I’ll touch on each of these as we go along.

Creating a Stored Procedure

As I’ve said, you use the Transact-SQL CREATE PROCEDURE command to
create stored procedures. All that really happens when you create a procedure is
that its syntax is checked and its source code is inserted into the syscomments sys-
tem table. Generally, object names referenced by a procedure aren’t resolved until
it’s executed. In SQL Server parlance, this is known as deferred name resolution.

“Syscomments” is a misnomer. The table doesn’t store comments per se; it
stores source code. The name is a vestige from the pre-7.0 days and was so
named because it stored the optional source code to stored procedures (and
other objects), whereas sysprocedures stored a pseudo-compiled version (a kind
of normalized query tree) of the procedures themselves. This is no longer true,
and the sysprocedures table no longer exists. Syscomments is now the sole
repository for stored procedures, views, triggers, user-defined functions
(UDFs), rules, and defaults. If you remove an object’s source code from sys-
comments, you can no longer use that object.

Deferred Name Resolution and an Interesting Exception

Before we go further, it’s worth mentioning that there’s an interesting exception
to SQL Server’s default deferred name resolution behavior. Run the code in
Listing 1–2 in Query Analyzer:

Listing 1–2 SQL Server doesn’t allow you to include more than one CREATE
TABLE statement for a given temporary table in the same stored procedure.

CREATE PROC testp @var int

AS

IF @var=1

CREATE TABLE #temp (k1 int identity, c1 int)

ELSE

CREATE TABLE #temp (k1 int identity, c1 varchar(2))

INSERT #temp DEFAULT VALUES

SELECT c1 FROM #temp

GO

Creating a Stored Procedure 5

3831 P-01 12/3/01 10:15 AM Page 5

The syntax contained in the stored procedure is seemingly valid, yet we get
this message when we run it:

Server: Msg 2714, Level 16, State 1, Procedure testp, Line 6

There is already an object named '#temp' in the database.

Why? Obviously @var can’t be both equal to one and not equal to one, right? To
get a little closer to the answer, change the temporary table reference to a per-
manent table, like the one shown in Listing 1–3.

Listing 1–3 Changing the table to a permanent table works around the
temporary table limitation.

CREATE PROC testp @var int

AS

IF @var=1

CREATE TABLE tempdb..temp (k1 int identity, c1 int)

ELSE

CREATE TABLE tempdb..temp (k1 int identity, c1 varchar(2))

INSERT #temp DEFAULT VALUES

SELECT c1 FROM #temp

GO

This procedure is created without error. What’s happening here? Why does
SQL Server care whether the table created is a temporary or a permanent
table? And why does it matter now—before the procedure is even executed and
before the value of @var can be known?

What appears to be happening is that SQL Server resolves CREATE
TABLE references to temporary tables before inserting the procedure into
syscomments—an apparent vestige from the pre-7.0 days when object refer-
ences were resolved when a procedure was first created. The same limitation
applies to variable declarations and, therefore, to the table data type. You can’t
declare a variable more than once in a single stored procedure, even if the dec-
larations reside in mutually exclusive units of code. This differs from how per-
manent tables are handled, and is the reason the code in Listing 1–3 runs
without error. It appears that, beginning with SQL Server 7.0, deferred name
resolution was enabled for permanent tables, but not for temporary ones. What-
ever the case, you can’t execute code like that shown in Listing 1–2, so here’s a
workaround (Listing 1–4):

6 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 6

Listing 1–4 Including one CREATE TABLE statement, but two sets of ALTER
TABLE statements, works around the problem.

CREATE PROC testp @var int

AS

CREATE TABLE #temp (k1 int identity)

IF @var=1

ALTER TABLE #temp ADD c1 int

ELSE

ALTER TABLE #temp ADD c1 varchar(2)

INSERT #temp DEFAULT VALUES

EXEC('SELECT c1 FROM #temp')

GO

This technique creates the table just once, then alters it to match the Data
Definition Language (DDL) specification (spec) we want to end up with. Note
the use of EXEC() to select the column we added with ALTER TABLE. The
use of dynamic SQL is necessary because the newly added column isn’t imme-
diately visible to the procedure that added it. We’re forced to create and exe-
cute an ad hoc query string to access it by name. (Note that you can reference
the column indirectly—for example, through SELECT * or via an ordinal value
in an ORDER BY clause, just not by name).

Another disadvantage of this approach is that it mixes DDL (the CREATE
and ALTER statements) and Data Modification Language (DML; the INSERT
and SELECT). Because of this, the procedure’s execution plan must be recom-
piled when the INSERT is encountered (the temporary table’s schema infor-
mation (info) has changed since the original execution plan was formulated).
Any stored procedure that creates a temporary table, then processes it further,
will cause a plan recompile because the table’s schema info did not exist when
the execution plan was first created; however, the procedure in Listing 1–4
causes an additional recompile to occur because it alters this schema, then
processes the table further. Particularly with large procedures in high-through-
put environments, this can cause performance problems as well as blocking and
concurrency issues because a compile lock is taken out on the stored procedure
while the execution plan is being recompiled. Listing 1–5 presents a work-
around that doesn’t require the use of dynamic T-SQL:

Listing 1–5 A workaround for the temporary table creation problem.

CREATE PROCEDURE testp4

AS

Creating a Stored Procedure 7

3831 P-01 12/3/01 10:15 AM Page 7

INSERT #temp DEFAULT VALUES

SELECT c1 FROM #temp

GO

CREATE PROC testp3

AS

CREATE TABLE #temp (k1 int identity, c1 varchar(2))

EXEC dbo.testp4

GO

CREATE PROC testp2

AS

CREATE TABLE #temp (k1 int identity, c1 int)

EXEC dbo.testp4

GO

CREATE PROC testp @var int

AS

IF @var=1

EXEC dbo.testp2

ELSE

EXEC dbo.testp3

GO

Although this technique alleviates the need for EXEC(), it also forces us to
completely reorganize the stored procedure. In fact, we’re forced to break the
original procedure into four separate routines and call the fourth one redun-
dantly from the second and third routines. Why? First, instead of having two
CREATE TABLE statements for the same temporary table in one procedure—
which, as we’ve discovered, isn’t supported—we moved each CREATE
TABLE to its own procedure. Second, because a temporary table is automati-
cally dropped as soon as it goes out of scope, we can’t simply create it, then
return to the top-level routine and add rows to it or SELECT from it. We have
to do that either in one of the procedures that created it or in a common rou-
tine that they call. We chose the latter, so procedures two and three call a
fourth routine that takes care of inserting the row into the temporary table and
selecting the c1 column from it. (Because objects created in a procedure are
visible to the procedures it calls, the fourth routine can “see” the table created
by its caller.) This approach works, but is far from optimal. Think about how
complex this would get for a really large procedure. Breaking it into multiple,
distinct pieces may not be practical. Still, it avoids the necessity of having to cre-
ate and execute an ad hoc T-SQL string and should generally perform better
than that approach.

8 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 8

Listing a Stored Procedure

Assuming the object is not encrypted, you can list the source code to a proce-
dure, view, trigger, UDF, rule, or default object using the sp_helptext system
procedure. An example is included in Listing 1–6:

Listing 1–6 sp_helptext lists the source for a stored procedure.

EXEC dbo.sp_helptext 'ListCustomersByCity'

Text

CREATE PROCEDURE dbo.ListCustomersByCity @Country nvarchar(30)='%'

AS

SELECT City, COUNT(*) AS NumberOfCustomers

FROM Customers

WHERE Country LIKE @Country

GROUP BY City

Permissions and Limitations

Only members of the sysadmin, db_owner, or db_ddladmin role (or those
explicitly granted CREATE PROC permission by a member of the appropriate
role) can execute CREATE PROCEDURE.

The maximum stored procedure size is 128MB. The maximum number of
parameters a procedure may receive is 1,024.

Creation Tips

Include a comment header with each procedure that identifies its author, pur-
pose, creation date and revision history, the parameters it receives, and so forth.
A common technique is to place this comment block either immediately before
or just after the CREATE PROC statement itself (but before the rest of the
procedure) to ensure that it’s stored in syscomments and can be viewed from
tools like Enterprise Manager and Query Analyzer’s Object Browser. The sys-
tem stored procedure that follows, sp_object_script_comments, generates com-
ment headers for stored procedures, views, and similar objects (Listing 1–7):

Listing 1–7 You can use sp_object_script_comments to generate stored
procedure comment headers.

USE master

GO

IF OBJECT_ID('dbo.sp_object_script_comments') IS NOT NULL

Creating a Stored Procedure 9

3831 P-01 12/3/01 10:15 AM Page 9

DROP PROC dbo.sp_object_script_comments

GO

CREATE PROCEDURE dbo.sp_object_script_comments

-- Required parameters

@objectname sysname=NULL,

@desc sysname=NULL,

-- Optional parameters

@parameters varchar(8000)=NULL,

@example varchar(8000)=NULL,

@author sysname=NULL,

@workfile sysname='', -- Force workfile to be generated

@email sysname='(none)',

@version sysname=NULL,

@revision sysname='0',

@datecreated smalldatetime=NULL,

@datelastchanged smalldatetime=NULL

/*

Object: sp_object_script_comments

Description: Generates comment headers for SQL scripts

Usage: sp_object_script_comments @objectname='ObjectName',

@desc='Description of object",@parameters='param1[,param2...]'

Returns: (None)

$Workfile: sp_object_script_comments.sql $

$Author: Khen $. Email: khen@khen.com

$Revision: 1 $

Example: sp_object_script_comments @objectname='sp_who', @desc='Returns a

list of currently running jobs', @parameters=[@loginname]

Created: 1992-04-03. $Modtime: 1/4/01 8:35p $.

*/

AS

IF (@objectname+@desc) IS NULL GOTO Help

PRINT '/*'

10 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 10

PRINT CHAR(13)

EXEC sp_usage @objectname=@objectname,

@desc=@desc,

@parameters=@parameters,

@example=@example,

@author=@author,

@workfile=@workfile,

@email=@email,

@version=@version, @revision=@revision,

@datecreated=@datecreated, @datelastchanged=@datelastchanged

PRINT CHAR(13)+'*/'

RETURN 0

Help:

EXEC dbo.sp_usage @objectname='sp_object_script_comments',

@desc='Generates comment headers for SQL scripts',

@parameters='@objectname=''ObjectName'',

@desc=''Description of object",@parameters=''param1[,param2...]''',

@example='sp_object_script_comments @objectname=''sp_who'',

@desc=''Returns a list of currently running jobs'',

@parameters=[@loginname]',

@author='Ken Henderson',

@workfile='sp_object_script_comments.sql',

@email='khen@khen.com',

@version='3', @revision='1',

@datecreated='19920403', @datelastchanged='19990701'

RETURN -1

GO

EXEC dbo.sp_object_script_comments

This procedure generates stored procedure comment headers by calling
the sp_usage procedure included later in the chapter. It can be executed from
any database by any procedure. To use sp_object_script_comments, simply pass
it the required parameters, and it will create a fully usable comment block that
identifies a procedure or other type of object and spells out its usage and key
background info. You can copy this block of text and paste it into the header of
the routine itself and—voila!—you’ve got a nicely formatted, informative com-
ment block for your code.

In shops with lots of stored procedure code, it’s common to locate each
stored procedure in its own script and to store each script in a version control
or source code management system. Many of these systems support special
tags (these are known as keywords in Visual SourceSafe [VSS], the source code

Creating a Stored Procedure 11

3831 P-01 12/3/01 10:15 AM Page 11

management system that I use) that you can embed in T-SQL comments.
Through these tags, you allow the source code management system to auto-
matically insert revision information, the name of the person who last changed
the file, the date and time of the last change, and so on. Because the tags are
embedded in comments, there’s no danger that these changes will break your
code. Basically, you’re just allowing the system to take care of some of the
housekeeping normally associated with managing source code. Many of the
stored procedures listed in this book include tags recognized by VSS in their
headers (these tags begin and end with $). See Chapter 4 for more information.

Allow the passing of a single help parameter such as ‘/?’—or no parame-
ters—to return an informational message telling the caller how to use the pro-
cedure. Place the section that generates this usage information at the end of the
procedure to keep it out of the way and to locate it consistently from procedure
to procedure. An ideal way to do this is to set up and call a separate procedure
that accepts parameters indicating usage information and returns it in a uniform
format. Here’s a stored procedure that does just that (Listing 1–8):

Listing 1–8 You can use sp_usage to generate stored procedure usage info.

USE master

GO

IF OBJECT_ID('dbo.sp_usage') IS NOT NULL

DROP PROC dbo.sp_usage

GO

CREATE PROCEDURE dbo.sp_usage

-- Required parameters

@objectname sysname=NULL,

@desc sysname=NULL,

-- Optional parameters

@parameters varchar(8000)=NULL,

@returns varchar(8000)='(None)',

@example varchar(8000)=NULL,

@workfile sysname=NULL,

@author sysname=NULL,

@email sysname='(none)',

@version sysname=NULL,

@revision sysname='0',

@datecreated smalldatetime=NULL,

@datelastchanged smalldatetime=NULL

/*

Object: sp_usage

12 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 12

Description: Provides usage information for stored procedures and

descriptions of other types of objects

Usage: sp_usage @objectname='ObjectName', @desc='Description of object'

[, @parameters='param1,param2...']

[, @example='Example of usage']

[, @workfile='File name of script']

[, @author='Object author']

[, @email='Author email']

[, @version='Version number or info']

[, @revision='Revision number or info']

[, @datecreated='Date created']

[, @datelastchanged='Date last changed']

Returns: (None)

$Workfile: sp_usage.sql $

$Author: Khen $. Email: khen@khen.com

$Revision: 7 $

Example: sp_usage @objectname='sp_who', @desc='Returns a list of currently

running jobs', @parameters=[@loginname]

Created: 1992-04-03. $Modtime: 1/04/01 8:38p $.

*/

AS

SET NOCOUNT ON

IF (@objectname+@desc IS NULL) GOTO Help

PRINT 'Object: '+@objectname

PRINT 'Description: '+@desc

IF (OBJECTPROPERTY(OBJECT_ID(@objectname),'IsProcedure')=1)

OR (OBJECTPROPERTY(OBJECT_ID(@objectname),'IsExtendedProc')=1)

OR (OBJECTPROPERTY(OBJECT_ID(@objectname),'IsReplProc')=1)

OR (LOWER(LEFT(@objectname,3))='sp_') BEGIN -- Special handling for system

procedures

PRINT CHAR(13)+'Usage: '+@objectname+' '+@parameters

PRINT CHAR(13)+'Returns: '+@returns

END

-- $NoKeywords: $ -- Prevents the keywords below from being expanded in VSS

Creating a Stored Procedure 13

3831 P-01 12/3/01 10:15 AM Page 13

IF (@workfile IS NOT NULL)

PRINT CHAR(13)+'$Workfile: '+@workfile+' $'

IF (@author IS NOT NULL)

PRINT CHAR(13)+'$Author: '+@author+' $. Email: '+@email

IF (@version IS NOT NULL)

PRINT CHAR(13)+'$Revision: '+@version+'.'+@revision+' $'

IF (@example IS NOT NULL)

PRINT CHAR(13)+'Example: '+@example

IF (@datecreated IS NOT NULL) BEGIN -- Crop time if it's midnight

DECLARE @datefmt varchar(8000), @dc varchar(30), @lc varchar(30)

SET @dc=CONVERT(varchar(30), @datecreated, 120)

SET @lc=CONVERT(varchar(30), @datelastchanged, 120)

PRINT CHAR(13)+'Created: '+CASE

DATEDIFF(ss,CONVERT(char(8),@datecreated,108),'00:00:00') WHEN 0 THEN

LEFT(@dc,10) ELSE @dc END

+'. $Modtime: '+CASE

DATEDIFF(ss,CONVERT(char(8),@datelastchanged,108),'00:00:00') WHEN 0 THEN

LEFT(@lc,10) ELSE @lc END+' $.'

END

RETURN 0

Help:

EXEC dbo.sp_usage @objectname='sp_usage', -- Recursive call

@desc='Provides usage information for stored procedures and

descriptions of other types of objects',

@parameters='@objectname=''ObjectName'', @desc=''Description of

object''

[, @parameters=''param1,param2...'']

[, @example=''Example of usage'']

[, @workfile=''File name of script'']

[, @author=''Object author'']

[, @email=''Author email'']

[, @version=''Version number or info'']

[, @revision=''Revision number or info'']

[, @datecreated=''Date created'']

[, @datelastchanged=''Date last changed'']',

@example='sp_usage @objectname=''sp_who'',

@desc=''Returns a list of currently running jobs'',

@parameters=[@loginname]',

@author='Ken Henderson',

@workfile='sp_usage.sql',

@email='khen@khen.com',

@version='3', @revision='1',

14 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 14

@datecreated='4/3/92', @datelastchanged='7/1/99'

RETURN -1

GO

EXEC dbo.sp_usage

By passing in the appropriate parameters, you can use sp_usage to report
usage info for any procedure. Sp_usage even calls itself for that very purpose
(that’s why we receive the warning message: “Cannot add rows to sysdepends
for the current stored procedure because it depends on the missing object
‘sp_usage.’ The stored procedure will still be created.”). Because Transact-SQL
doesn’t support subroutines, sp_usage uses a GOTO label to place the help
message at the end of the procedure. This approach allows code at the start of
the procedure to check for invalid parameter values and to jump quickly to the
usage routine if necessary.

Set the QUOTED_IDENTIFIER and ANSI_NULLS options before you
execute CREATE PROCEDURE (in its own command batch) because they’re
reset to the values they had at the time the procedure was created when it’s exe-
cuted (their values are stored in the status column of the procedure’s row in
sysobjects). This change lasts only for the duration of the procedure; afterward,
they’re restored to whatever they were before you executed the procedure.
Setting QUOTED_IDENTIFIER or ANSI_NULLS inside a stored procedure
has no effect on the execution of the stored procedure. To see how this works,
run the code in Listing 1–9 in Query Analyzer:

Listing 1–9 SET ANSI_NULLS has no effect inside a stored procedure.

USE tempdb

GO

SET ANSI_NULLS ON

GO

CREATE PROC testn

AS

SET ANSI_NULLS OFF

DECLARE @var int

SET @var=NULL

SELECT * FROM Northwind..Customers WHERE @var=NULL

GO

EXEC testn

(Results abridged)

Creating a Stored Procedure 15

3831 P-01 12/3/01 10:15 AM Page 15

CustomerID CompanyName ContactName

---------- -- ----------------

(0 row(s) affected)

If ANSI_NULLS is actually off at the time of the SELECT, as the SET
command inside the procedure specifies, the SELECT should return all the
rows in the Northwind Customers table. As you can see, this is not what
happens. Now change the SET ANSI_NULLS command that precedes the
CREATE PROCEDURE to turn ANSI null handling OFF, and rerun the pro-
cedure. You should see all the rows in the Customers table listed.

Set environmental options (e.g., NOCOUNT, LOCK_TIMEOUT, and
so on) that materially affect the procedure early on. It’s a good practice to
set them at the very start of the procedure so that they stand out to other
developers.

Avoid broken ownership chains when dealing with stored procedures and
the objects they reference. Try to ensure that the owner of a stored procedure
and the owner of the objects it references are the same. The best way to do this
is by specifying the dbo user as the owner of every object you create. Having
multiple objects with the same name but different owners adds an unnecessary
layer of indirection to the database that’s almost always more trouble than it’s
worth. While perhaps useful during the development phase of a project, it’s def-
initely something you should avoid on production servers.

When used within a stored procedure, certain commands require the
objects they reference to be owner qualified (an object reference is said to be
owner qualified when the object name is prefixed with the name of the owner
and a period) if the procedure is to be executed by users other than the owner.
These commands are

� CREATE TABLE
� ALTER TABLE
� DROP TABLE
� TRUNCATE TABLE
� CREATE INDEX
� DROP INDEX
� UPDATE STATISTICS
� All DBCC commands

Don’t use the sp_ prefix for anything but system procedures. Because of
the confusion it can cause, avoid creating procedures in user databases with the
sp_ prefix. Also, don’t create nonsystem procedures in the master database. If

16 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 16

a procedure is not a system procedure, it’s likely that you don’t need to put it in
the master database in the first place.

Include USE dbname at the top of creation scripts for procedures that must
reside in a specific database. This ensures that they end up where they belong
and alleviates having to remember to set the current database context before
executing the script.

Keep each stored procedure as simple and modular as possible. Ideally, a
stored procedure will accomplish a single task or a small group of closely related
tasks.

As a rule, SET NOCOUNT ON should be the first statement in every
stored procedure you create because it minimizes network traffic between SQL
Server and client applications. Setting NOCOUNT on disables DONE_IN_
PROC messages—the messages SQL Server normally sends to the client indi-
cating the number of rows affected by a T-SQL statement. Because these mes-
sages are very rarely used, eliminating them conserves network bandwidth
without really giving up any functionality and can speed up applications con-
siderably. Note that you can disable DONE_IN_PROC messages for the entire
server via a trace flag (3640) and for a particular user session via the sp_
configure ‘user options’ command. (In rare circumstances, disabling
DONE_IN_PROC messages can cause problems with some applications—for
example, some older versions of Microsoft Access and certain ill-behaved
OLEDB providers).

Create a procedure using the WITH ENCRYPTION option if you want to
keep its source code from being viewable by users. Don’t delete it from syscom-
ments. Doing so will render the procedure inaccessible and you’ll have to drop
and recreate it.

Altering Stored Procedures

Just as you create stored procedures using the CREATE PROCEDURE com-
mand, you alter them with ALTER PROCEDURE. The advantage of using
ALTER PROCEDURE to change a stored procedure is that it preserves access
permissions, whereas CREATE PROCEDURE doesn’t. A key difference
between them is that ALTER PROCEDURE requires the use of the same
encryption and recompile options as the original CREATE PROCEDURE
statement. If you omit or change them when you execute ALTER PROCE-
DURE, they’ll be omitted or changed permanently in the actual procedure
definition.

Altering Stored Procedures 17

3831 P-01 12/3/01 10:15 AM Page 17

A procedure can contain any valid Transact-SQL command except these:
CREATE DEFAULT, CREATE FUNCTION, CREATE PROC, CREATE
RULE, CREATE SCHEMA, CREATE TRIGGER, CREATE VIEW, SET
SHOWPLAN_TEXT, and SET SHOWPLAN_ALL. These commands must
reside in their own command batches, and, therefore, can’t be part of a stored
procedure. Procedures can create databases, tables, and indexes, but not other
procedures, defaults, functions, rules, schemas, triggers, or views.

TIP: You can work around this limitation—the inability to construct most other
kinds of objects from within a stored procedure—by constructing a T-SQL string and
executing it via sp_executesql or the EXEC() function, as shown in Listing 1–10:

Listing 1–10 You can create procedures, views, UDFs, and other objects from
within stored procedures by using sp_executesql and EXEC().

CREATE PROC test AS

DECLARE @sql nvarchar(100)

SET @sql=N'create proc dbo.test2 as select ''1'''

EXEC dbo.sp_executesql @sql

EXEC dbo.test2

GO

EXEC dbo.test

(Results)

Cannot add rows to sysdepends for the current stored procedure because it

depends on the missing object 'dbo.test2'. The stored procedure will still

be created.

1

The warning message is due to the fact that the test2 procedure doesn’t
exist when the test procedure is first created. You can safely ignore it.

Executing Stored Procedures

Although executing a stored procedure can be as easy as listing it on a line by
itself in a T-SQL command batch, you should make a habit of prefixing all
stored procedure calls with the EXEC keyword, like this:

EXEC dbo.sp_who

18 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 18

Stored procedure calls without EXEC must be the first command in a com-
mand batch. Even if this were the case initially, inserting additional lines before
the procedure call at some point in the future would break your code.

You should also be sure to owner-qualify procedure calls (“dbo” in the pre-
vious example). Omitting the owner from a procedure call causes SQL Server to
momentarily place a compile lock on the procedure because it cannot locate it
immediately in the procedure cache. This lock is released once the procedure-
sans-owner is located in the cache, but can still cause problems in high-through-
put environments. Owner-qualifying objects is simply a good habit to get into.
It’s one of those things you can do to save yourself problems down the road.

INSERT and EXEC

The INSERT command supports calling a stored procedure to supply rows for
insertion into a table. Listing 1–11 shows how:

Listing 1–11 You can use INSERT…EXEC to save a stored procedure’s output
in a table.

CREATE TABLE #locks (spid int, dbid int, objid int, objectname sysname

NULL, indid int, type char(4), resource char(15), mode char(10), status

char(6))

INSERT #locks (spid, dbid, objid, indid, type, resource, mode, status)

EXEC dbo.sp_lock

SELECT * FROM #locks

DROP TABLE #locks

This is a handy way of trapping the output of a stored procedure in a table
so that you can manipulate it or retain it for later use. Prior to the advent of cur-
sor OUTPUT parameters, this was the only way to perform further work on a
stored procedure’s result set within Transact-SQL.

Note that INSERT…EXEC works with extended procedures that return
result sets as well. A simple example is shown in Listing 1–12:

Listing 1–12 INSERT…EXEC works with extended procedures as well.

CREATE TABLE #cmd_result (output varchar(8000))

INSERT #cmd_result

EXEC master.dbo.xp_cmdshell 'TYPE C:\BOOT.INI'

SELECT * FROM #cmd_result

DROP TABLE #cmd_result

Executing Stored Procedures 19

3831 P-01 12/3/01 10:15 AM Page 19

Execution Plan Compilation and Execution

When you execute a stored procedure for the first time, it’s compiled into an
execution plan. This plan is not compiled into machine code or even byte codes,
but is pseudo-compiled in order to speed execution. By “pseudo-compiled” I
mean that object references are resolved, join strategies and indexing selections
are made, and an efficient plan for executing the work that the procedure is to
carry out is rendered by the SQL Server query optimizer. The optimizer com-
pares a number of potential plans for performing the procedure’s work and
selects the one it thinks will cost the least in terms of total execution time. It
bases this decision on a number of factors, including the estimated I/O cost
associated with each plan, the CPU cost, the memory requirements, and so on.

Once an execution plan has been created, it’s stored in the procedure cache
for future execution. This cache grows and contracts as necessary to store exe-
cution plans for the stored procedures and ad hoc queries executed by the
server. SQL Server balances the need to supply adequate memory to the pro-
cedure cache with the server’s other memory requirements, such as providing
adequate resources for the data cache. Obviously, memory taken up by cached
execution plans can’t be used to cache data, so the server manages this carefully.
Caching execution plans in memory saves the optimizer from having to con-
struct a new plan each time a procedure is executed, and can improve perfor-
mance dramatically.

Monitoring Execution

You can inspect the manner in which SQL Server compiles, stores, and runs
execution plans using SQL Server’s Profiler utility. To observe what happens
when you create and run a procedure, follow these steps:

1. Start the Query Analyzer utility, connect to your server, and load the
stored procedure script from Listing 1–1 (you can find the complete
script on the CD accompanying this book).

2. Start the Profiler utility. You should find it in your Microsoft SQL
Server Start|Programs folder.

3. Click the New Trace button and connect to your server.
4. On the Events page, remove every event class from the list on the right

except the SQL:BatchStarting event class in the TSQL group.
5. Add every event class in the Stored Procedures group on the left except

the SP:StmtStarting and SP:StmtComplete events. (A trace template
file that includes these events, BasicTrace.TDF, is on the CD accom-
panying this book).

20 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 20

6. Click the Run button at the bottom of the Trace Properties dialog.
7. Return to Query Analyzer and run the script.
8. Return to Profiler and click the Stop Selected Trace button. You should

see something like the following in the events window:

(Results abridged)

EventClass TextData

--------------------- -----------------------------------

SQL:BatchStarting Use Northwind

SQL:BatchStarting IF OBJECT_ID('dbo.ListCustomersByCi

SQL:BatchStarting CREATE PROCEDURE dbo.ListCustomersB

SQL:BatchStarting EXEC dbo.ListCustomersByCity

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert

SP:Starting EXEC dbo.ListCustomersByCity

SP:Completed EXEC dbo.ListCustomersByCity

The trace output begins with four separate T-SQL command batches.
Because the commands are separated by the GO batch terminator, each exe-
cutes as a separate T-SQL batch. The last batch is the call to the stored proce-
dure via the EXEC command. This call is responsible for the events that follow.

Note the SP:CacheInsert event immediately before the SP:Starting event.
In conjunction with the SP:CacheMiss events, this tells us that ListCustomers-
ByCity wasn’t in the procedure cache when it was called, so an execution plan
was compiled for it and inserted into the cache. The final two events in the
trace, the SP:Starting and SP:Completed events, indicate that once the execu-
tion plan for the stored procedure was inserted into the cache, it was executed.

To see what happens when a procedure is executed directly from the cache,
follow these steps:

1. Click the Start Selected Trace button to restart the trace.
2. Return to Query Analyzer, highlight the EXEC line in the query, and

run it by itself.
3. Return to Profiler and stop the trace. You should see something like

this:

(Results abridged)

EventClass TextData

-------------------- ----------------------------

SQL:BatchStarting EXEC dbo.ListCustomersByCity

SP:ExecContextHit

Executing Stored Procedures 21

3831 P-01 12/3/01 10:15 AM Page 21

SP:Starting EXEC dbo.ListCustomersByCity

SP:Completed EXEC dbo.ListCustomersByCity

The ExecContextHit event tells us that an executable version of the stored
procedure was found in the cache. Note the absence of the SP:CacheMiss and
CacheInsert events. This tells us that the execution plan that was created and
inserted into the cache when we ran the stored procedure the first time is
reused when we run it a second time.

Execution Plans

When SQL Server runs an execution plan, each step of the plan is processed
and dispatched to an appropriate internal manager process (e.g., the T-SQL
manager, the DDL and DML managers, the transaction manager, the stored
procedure manager, the utility manager, the ODSOLE manager, and so on).
SQL Server calls these managers repeatedly until it has processed all the steps
in the execution plan.

Execution plans are never stored permanently. The only portion of a stored
procedure that is stored on disk is its source code (in syscomments). Because
they’re cached in memory, cycling the server disposes of all current execution
plans (as does the DBCC FREEPROCCACHE() command).

SQL Server automatically recreates a stored procedure’s execution plan
when

� The procedure’s execution environment differs significantly from its cre-
ation environment (see Environmental Issues discussed later in the
chapter for more information)

� The sysobjects schema_ver column changes for any of the objects the
procedure references. The schema_ver and base_schema_ver columns
are updated any time the schema information for a table changes. This
includes column additions and deletions, data type changes, constraint
additions and deletions, as well as rule and default bindings.

� The statistics have changed for any of the objects the procedure refer-
ences. This means that the auto-update statistics and auto-create statis-
tics events can cause stored procedure recompilation.

� An index is dropped that was referenced by the procedure’s execution
plan

� A copy of the procedure’s execution plan is not available in the cache.
Execution plans are removed from the cache to make room for new
plans using a Least Recently Used (LRU) algorithm.

22 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 22

� Certain other specialized circumstances occur, such as when a temporary
table is modified a fixed number of times, when DDL and DML state-
ments are interleaved, and when the sp_configure system procedure is
called (sp_configure calls DBCC FREEPROCCACHE)

During the earlier discussion on creating procedures and SQL Server’s
limitation regarding having multiple CREATE TABLE statements for a tem-
porary table in a single procedure, I mentioned that the ad hoc code approach
(Listing 1–4) forces the procedure’s execution plan to be recompiled while it’s
running. To see this for yourself, restart the trace we’ve been using and rerun
the stored procedure from that query. You should see something like the fol-
lowing in Profiler:

EventClass TextData

--------------------- --

SQL:BatchStarting exec testp 2

SQL:StmtStarting exec testp 2

SP:ExecContextHit

SP:Starting exec testp 2

SQL:StmtStarting -- testp CREATE TABLE #temp (k1 int identity)

SQL:StmtStarting -- testp IF @var=1

SQL:StmtStarting -- testp ALTER TABLE #temp ADD c1 varchar(2)

SP:Recompile

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert

SQL:StmtStarting -- testp ALTER TABLE #temp ADD c1 varchar(2)

SQL:StmtStarting -- testp INSERT #temp DEFAULT VALUES

SP:Recompile

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert

SQL:StmtStarting -- testp INSERT #temp DEFAULT VALUES

SQL:StmtStarting -- testp EXEC('SELECT c1 FROM #temp')

SQL:StmtStarting -- Dynamic SQL SELECT c1 FROM #temp

SP:Completed exec testp 2

Notice that not one, but two SP:Recompile events occur during the execu-
tion of the procedure: one when the ALTER TABLE is encountered (this state-
ment refers to the temporary table created by the procedure, forcing a
recompile) and another when the INSERT is encountered (this statement
accesses the newly modified temporary table schema, again forcing a recom-

Executing Stored Procedures 23

3831 P-01 12/3/01 10:15 AM Page 23

pile). Assuming you’ve captured the SQL:StmtStarting or SP:StmtStarting
event class in the trace, you’ll typically see an SP:Recompile event enveloped in
two identical StmtStarting events: The first one indicates that the statement
began to be executed, but was put on hold so that the recompile could happen;
the second indicates that the statement is actually executing now that the
recompile has completed. This starting/stopping activity can have a serious
impact on the time it takes the procedure to complete. It’s worth pointing out
again: Creating a temporary table within a procedure that you then process in
other ways will cause the procedure’s execution plan to be recompiled (one way
to avoid temporary tables is to use local table variables instead). Moreover,
interleaving DDL and DML within a procedure can also cause the plan to be
recompiled. Because it can cause performance and concurrency problems, you
want to avoid causing execution plan recompilation when you can.

Another interesting fact that’s revealed by the trace is that the execution
plan for the dynamic T-SQL string the procedure creates and executes is not
cached. Note that there’s no CacheMiss, CacheInsert, CacheHit, or ExecCon-
textHit event corresponding to the dynamic SQL query near the end of the
trace log. Let’s see what happens when we change the EXEC() call to use
sp_executesql instead (Listing 1–13):

Listing 1–13 You can use sp_executesql rather than EXEC() to execute dynamic
T-SQL.

USE tempdb

GO

drop proc testp

GO

CREATE PROC testp @var int

AS

CREATE TABLE #temp (k1 int identity)

IF @var=1

ALTER TABLE #temp ADD c1 int

ELSE

ALTER TABLE #temp ADD c1 varchar(2)

INSERT #temp DEFAULT VALUES

EXEC dbo.sp_executesql N'SELECT c1 FROM #temp'

GO

exec testp 2

When you execute the procedure, you should see trace output like this:

24 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 24

EventClass TextData

------------------ ---

SQL:BatchStarting exec testp 2

SQL:StmtStarting exec testp 2

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert

SP:Starting exec testp 2

SQL:StmtStarting -- testp CREATE TABLE #temp (k1 int identity)

SQL:StmtStarting -- testp IF @var=1

SQL:StmtStarting -- testp ALTER TABLE #temp ADD c1 varchar(2)

SP:Recompile

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert

SQL:StmtStarting -- testp ALTER TABLE #temp ADD c1 varchar(2)

SQL:StmtStarting -- testp INSERT #temp DEFAULT VALUES

SP:Recompile

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert

SQL:StmtStarting -- testp INSERT #temp DEFAULT VALUES

SQL:StmtStarting -- testp EXEC dbo.sp_executesql N'SELECT c1 FROM #temp'

SP:CacheMiss

SP:CacheMiss

SP:CacheInsert SELECT c1 FROM #temp

SQL:StmtStarting SELECT c1 FROM #temp

SP:Completed exec testp 2

Note the SP:CacheInsert event that occurs for the dynamic SELECT state-
ment now that we are calling it via sp_executesql. This indicates that the exe-
cution plan for the SELECT statement has been inserted into the cache so that
it can be reused later. Whether it actually will be reused is another matter, but

Executing Stored Procedures 25

3831 P-01 12/3/01 10:15 AM Page 25

at least the possibility exists that it can be. If you run the procedure a second
time, you’ll see that the call to sp_executesql itself generates an ExecContextHit
event rather than the CacheMiss event it causes the first time around. By using
sp_executesql, we’ve been able to use the procedure cache to make the proce-
dure run more efficiently. The moral of the story is this: sp_executesql is gen-
erally a more efficient (and therefore faster) method of executing dynamic SQL
than EXEC().

Forcing Plan Recompilation

You can also force a procedure’s execution plan to be recompiled by

� Creating the procedure using the WITH RECOMPILE option
� Executing the procedure using the WITH RECOMPILE option
� Using the sp_recompile system procedure to “touch” any of the tables

the procedure references (sp_recompile merely updates sysobjects’
schema_ver column)

Once an execution plan is in the cache, subsequent calls to the procedure
can reuse the plan without having to rebuild it. This eliminates the query tree
construction and plan creation that normally occur when you execute a stored
procedure for the first time, and is the chief performance advantage stored
procedures have over ad hoc T-SQL batches.

Automatically Loading Execution Plans

A clever way of loading execution plans into the cache at system start-up is to
execute them via an autostart procedure. Autostart procedures must reside in
the master database, but they can call procedures that reside in other data-
bases, forcing those procedures’ plans into memory as well. If you’re going to
take this approach, creating a single autostart procedure that calls the proce-
dures you want to load into the cache rather than autostarting each procedure
individually will conserve execution threads (each autostart routine gets its
own thread).

TIP: To prevent autostart procedures from running when SQL Server first loads,
start SQL Server with the 4022 trace flag. Adding –T4022 to the SQL Server
command line tells the server not to run autostart procedures, but does not
change their autostart status. The next time you start the server without the
4022 trace flag, they will again execute.

26 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 26

Executing a Stored Procedure via Remote Procedure
Calls (RPC)

As an aside, one thing I should mention here is that the call to a stored proce-
dure need not be a T-SQL batch. The ADO/OLEDB, ODBC, and DB-Library
APIs all support executing stored procedures via RPC. Because it bypasses
much of the usual statement and parameter processing, calling stored proce-
dures via the RPC interface is more efficient than calling them via T-SQL
batches. In particular, the RPC API facilitates the repetitive invocation of a rou-
tine with different sets of parameters. You can check this out in Query Analyzer
(which uses the ODBC API) by changing the EXEC line in the script to the line
in Listing 1–14:

Listing 1–14 Calling ListCustomersByCity via RPC

{CALL dbo.ListCustomersByCity}

This line uses the ODBC “call escape sequence” to invoke the routine using an
RPC call. Restart the trace in Profiler, then execute the CALL command in
Query Analyzer. You should see something like the following in the Profiler
events window:
(Results abridged)

EventClass TextData

------------------- ------------------------------

RPC:Starting exec dbo.ListCustomersByCity

SP:ExecContextHit

SP:Starting exec dbo.ListCustomersByCity

SP:Completed exec dbo.ListCustomersByCity

RPC:Completed exec dbo.ListCustomersByCity

Note the absence of the BatchStarting event. Instead, we have an RPC:
Starting event followed, ultimately, by an RPC:Completed event. This tells us
that the RPC API is being used to invoke the procedure. The procedure cache
is unaffected by the switch to the RPC API; we still execute the procedure using
the plan in the procedure cache.

Temporary Procedures

You create temporary procedures the same way you create temporary tables—
a prefix of a single pound sign (#) creates a local temporary procedure that is

Executing Stored Procedures 27

3831 P-01 12/3/01 10:15 AM Page 27

visible only to the current connection, whereas a double pound sign prefix (##)
creates a global temporary procedure all connections can access.

Temporary procedures are useful when you want to combine the advan-
tages of using stored procedures such as execution plan reuse and improved
error handling with the advantages of ad hoc code. Because you can build and
execute a temporary stored procedure at run-time, you get the best of both
worlds. For the most part, sp_executesql can alleviate the necessity for tempo-
rary procedures, but they’re still nice to have around when your needs exceed
the capabilities of sp_executesql.

System Procedures

System procedures reside in the master database and are prefixed with sp_. You
can execute a system procedure from any database. When executed from a data-
base other than the master, a system procedure runs within the context of that
database. So, for example, if the procedure references the sysobjects table
(which exists in every database) it will access the one in the database that was
current when it was executed, not the one in the master database, even though
the procedure actually resides in the master. Listing 1–15 is a simple system pro-
cedure that lists the names and creation dates of the objects that match a mask:

Listing 1–15 A user-created system procedure that lists objects and their
creation dates.

USE master

IF OBJECT_ID('dbo.sp_created') IS NOT NULL

DROP PROC dbo.sp_created

GO

CREATE PROC dbo.sp_created @objname sysname=NULL

/*

Object: sp_created

Description: Lists the creation date(s) for the specified object(s)

Usage: sp_created @objname="Object name or mask you want to display"

Returns: (None)

$Author: Khen $. Email: khen@khen.com

$Revision: 2 $

Example: sp_created @objname="myprocs%"

28 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 28

Created: 1999-08-01. $Modtime: 1/04/01 12:16a $.

*/

AS

IF (@objname IS NULL) or (@objname='/?') GOTO Help

SELECT name, crdate FROM sysobjects

WHERE name like @objname

RETURN 0

Help:

EXEC dbo.sp_usage @objectname='sp_created',

@desc='Lists the creation date(s) for the specified object(s)',

@parameters='@objname="Object name or mask you want to display"',

@example='sp_created @objname="myprocs%"',

@author='Ken Henderson',

@email='khen@khen.com',

@version='1', @revision='0',

@datecreated='19990801', @datelastchanged='19990815'

RETURN -1

GO

USE Northwind

EXEC dbo.sp_created 'Order%'

(Results)

name crdate

------------------------ -------------------------

Order Details 2000-08-06 01:34:08.470

Order Details Extended 2000-08-06 01:34:10.873

Order Subtotals 2000-08-06 01:34:11.093

Orders 2000-08-06 01:34:06.610

Orders Qry 2000-08-06 01:34:09.780

As I’ve said, any system procedure, whether it’s one you’ve created or one
that ships with SQL Server, will use the current database context when exe-
cuted. Listing 1–16 presents an example that uses one of SQL Server’s own sys-
tem stored procedures. It can be executed from any database to retrieve info on
that database:

Listing 1–16 System procedures assume the current database context when
executed.

USE Northwind

EXEC dbo.sp_spaceused

Executing Stored Procedures 29

3831 P-01 12/3/01 10:15 AM Page 29

database_name database_size unallocated space

------------------------------------ ------------------ ------------------

Northwind 163.63 MB 25.92 MB

reserved data index_size unused

------------------ ------------------ ------------------ ------------------

4944 KB 2592 KB 1808 KB 544 KB

Sp_spaceused queries several of SQL Server’s system tables to create
the report it returns. Because it’s a system procedure, it automatically reflects
the context of the current database even though it resides in the master data-
base.

Note that, regardless of the current database, you can force a system pro-
cedure to run in the context of a given database by qualifying its name with the
database name (as though it resided in that database) when you invoke it. List-
ing 1–17 illustrates:

Listing 1–17 You can force a system procedure to assume a specific database
context.

USE pubs

EXEC Northwind..sp_spaceused

database_name database_size unallocated space

------------------------------------ ------------------ ------------------

Northwind 163.63 MB 25.92 MB

reserved data index_size unused

------------------ ------------------ ------------------ ------------------

4944 KB 2592 KB 1808 KB 544 KB

In this example, even though sp_spaceused resides in the master and the
current database is pubs, sp_spaceused reports space utilization info for the
Northwind database because we qualified its name with Northwind when we
invoked it. SQL Server correctly locates sp_spaceused in the master and exe-
cutes it within the context of the Northwind database.

System Objects versus System Procedures

User-created system procedures are listed as user objects rather than system
objects in Enterprise Manager. Why? Because the system bit of a procedure’s

30 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 30

status column in sysobjects (0xC0000000) isn’t set by default. You can call the
undocumented procedure sp_MS_marksystemobject to set this bit. The lone
parameter taken by the procedure is the name of the object with the system bit
you wish to set. Many undocumented functions and DBCC command verbs do
not work properly unless called from a system object (See Chapter 22 for more
information). Check the IsMSShipped property of the OBJECTPROPERTY()
function to determine whether an object’s system bit has been set. Listing 1–18
is a code fragment that demonstrates this function:

Listing 1–18 System procedures and system objects are two different things.

USE master

GO

IF OBJECT_ID('dbo.sp_test') IS NOT NULL

DROP PROC dbo.sp_test

GO

CREATE PROC dbo.sp_test AS

select 1

GO

SELECT OBJECTPROPERTY(OBJECT_ID('dbo.sp_test'),'IsMSShipped') AS 'System

Object?', status, status & 0xC0000000

FROM sysobjects WHERE NAME = 'sp_test'

GO

EXEC sp_MS_marksystemobject 'sp_test'

GO

SELECT OBJECTPROPERTY(OBJECT_ID('dbo.sp_test'),'IsMSShipped') AS 'System

Object?', status, status & 0xC0000000

FROM sysobjects WHERE NAME = 'sp_test'

(Results)

System Object? status

-------------- ----------- -----------

0 1610612737 1073741824

(1 row(s) affected)

System Object? status

-------------- ----------- -----------

1 -536870911 -1073741824

(1 row(s) affected)

Executing Stored Procedures 31

3831 P-01 12/3/01 10:15 AM Page 31

As I’ve said, there are a variety of useful features that do not work correctly
outside system procedures. For example, a stored procedure can’t manipulate
full text indexes via DBCC CALLFULLTEXT() unless its system bit is set.
Regardless of whether you actually end up using this functionality, it’s instruc-
tive to at least know how it works.

Extended Stored Procedures

Extended procedures are routines residing in DLLs that function similarly to
regular stored procedures. They receive parameters and return results via SQL
Server’s Open Data Services API and are usually written in C or C++. They must
reside in the master database and run within the SQL Server process space.

Although the two are similar, calls to extended procedures work a bit dif-
ferently than calls to system procedures. Extended procedures aren’t automat-
ically located in the master database and they don’t assume the context of the
current database when executed. To execute an extended procedure from a
database other than the master, you have to fully qualify the reference (e.g.,
EXEC master.dbo.xp_cmdshell ‘dir’).

A technique for working around these differences is to “wrap” an extended
procedure in a system stored procedure. This allows it to be called from any
database without requiring the master prefix. This technique is used with a
number of SQL Server’s own extended procedures. Many of them are wrapped
in system stored procedures that have no purpose other than to make the
extended procedures they call a bit handier. Listing 1–19 is an example of a sys-
tem procedure wrapping a call to an extended procedure:

Listing 1–19 System procedures are commonly used to “wrap” extended
procedures.

USE master

IF (OBJECT_ID('dbo.sp_hexstring') IS NOT NULL)

DROP PROC dbo.sp_hexstring

GO

CREATE PROC dbo.sp_hexstring @int varchar(10)=NULL, @hexstring

varchar(30)=NULL OUT

/*

Object: sp_hexstring

Description: Return an integer as a hexadecimal string

32 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 32

Usage: sp_hexstring @int=Integer to convert, @hexstring=OUTPUT parm to

receive hex string

Returns: (None)

$Author: Khen $. Email: khen@khen.com

$Revision: 1 $

Example: sp_hexstring "23", @myhex OUT

Created: 1999-08-02. $Modtime: 1/4/01 8:23p $.

*/

AS

IF (@int IS NULL) OR (@int = '/?') GOTO Help

DECLARE @i int, @vb varbinary(30)

SELECT @i=CAST(@int as int), @vb=CAST(@i as varbinary)

EXEC master.dbo.xp_varbintohexstr @vb, @hexstring OUT

RETURN 0

Help:

EXEC sp_usage @objectname='sp_hexstring',

@desc='Return an integer as a hexadecimal string',

@parameters='@int=Integer to convert, @hexstring=OUTPUT parm to

receive hex string',

@example='sp_hexstring "23", @myhex OUT',

@author='Ken Henderson',

@email='khen@khen.com',

@version='1', @revision='0',

@datecreated='19990802', @datelastchanged='19990815'

RETURN -1

GO

DECLARE @hex varchar(30)

EXEC sp_hexstring 10, @hex OUT

SELECT @hex

(Results)

0x0000000A

Extended Stored Procedures 33

3831 P-01 12/3/01 10:15 AM Page 33

The whole purpose of sp_hexstring is to clean up the parameters to be
passed to the extended procedure xp_varbintohexstr before calling it. Because
sp_hexstring is a system procedure, it can be called from any database without
requiring the caller to reference xp_varbintohexstr directly.

Internal Procedures

A number of system-supplied stored procedures are neither true system pro-
cedures nor extended procedures—they’re implemented internally by SQL
Server. Examples of these include sp_executesql, sp_xml_preparedocument,
most of the sp_cursor routines, sp_reset_connection, and so forth. These rou-
tines have stubs in master..sysobjects, and are listed as extended procedures,
but they are actually implemented internally by the server, not within an exter-
nal ODS-based DLL. This is important to know because you cannot drop these
or replace them with updated DLLs. They can be replaced only by patching
SQL Server itself, which normally only happens when you apply a service pack.

Environmental Issues

A number of SQL Server environmental settings affect the behavior of stored
procedures. You specify most of these via SET commands. They control the
way that stored procedures handle nulls, quotes, cursors, BLOB fields, and so
forth. Two of these—QUOTED_IDENTIFIER and ANSI_NULLS—are
stored permanently in each procedure’s status field in sysobjects, as I men-
tioned earlier in the chapter. That is, when you create a stored procedure, the
status of these two settings is stored along with it. QUOTED_IDENTIFIER
controls whether strings within double quotes are interpreted as object identi-
fiers (e.g., table or column references), and ANSI_NULLS controls whether
non-ANSI equality comparisons with NULLs are allowed.

SET QUOTED_IDENTIFIER is normally used with a stored procedure
to allow the procedure to reference objects with names that contain reserved
words, spaces, or other illegal characters. An example is provided in Listing
1–20.

Listing 1–20 SET QUOTED_IDENTIFIER allows references to objects with names
with embedded spaces.

USE Northwind

SET QUOTED_IDENTIFIER ON

GO

34 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 34

IF OBJECT_ID('dbo.listorders') IS NOT NULL

DROP PROC dbo.listorders

GO

CREATE PROC dbo.listorders

AS

SELECT * FROM "Order Details"

GO

SET QUOTED_IDENTIFIER OFF

GO

EXEC dbo.listorders

(Results abridged)

OrderID ProductID UnitPrice Quantity Discount

----------- ----------- --------------------- -------- --------------------

10248 11 14.0000 12 0.0

10248 42 9.8000 10 0.0

10248 72 34.8000 5 0.0

10249 14 18.6000 9 0.0

10249 51 42.4000 40 0.0

10250 41 7.7000 10 0.0

“Order Details” contains both a reserved word and a space, so it can’t be refer-
enced without special handling. In this case, we turned on quoted identifier
support and enclosed the table name in double quotes, but a better way would
be to use SQL Server’s square brackets ([]) to enclose the name (e.g., [Order
Details]) because this alleviates the need to change any settings. Note that
bracketed object names are not supported by the ANSI/ISO SQL standard.

The ANSI_NULLS setting is even more useful to stored procedures. It
controls whether non-ANSI equality comparisons with NULLs work properly.
This is particularly important with stored procedure parameters that can
receive NULL values. See Listing 1–21 for an example:

Listing 1–21 SET ANSI_NULLS allows comparisons between variables or
columns and NULL values to work as you would expect.

USE Northwind

IF (OBJECT_ID('dbo.ListRegionalEmployees') IS NOT NULL)

DROP PROC dbo.ListRegionalEmployees

GO

SET ANSI_NULLS OFF

GO

CREATE PROC dbo.ListRegionalEmployees @region nvarchar(30)

Environmental Issues 35

3831 P-01 12/3/01 10:15 AM Page 35

AS

SELECT EmployeeID, LastName, FirstName, Region FROM employees

WHERE Region=@region

GO

SET ANSI_NULLS ON

GO

EXEC dbo.ListRegionalEmployees NULL

(Results)

EmployeeID LastName FirstName Region

----------- -------------------- ---------- ---------------

5 Buchanan Steven NULL

6 Suyama Michael NULL

7 King Robert NULL

9 Dodsworth Anne NULL

Thanks to SET ANSI_NULLS, the procedure can successfully compare a
NULL @region with the region column in the Northwind Employees table.
The query returns the rows that have NULL region values because, contrary to
the ANSI SQL specification, SQL Server checks the NULL variable against the
column for equality. The handiness of this becomes more evident when a pro-
cedure defines a large number of “NULL-able” parameters. Without the abil-
ity to test NULL values for equality in a manner identical to non-NULL values,
each NULL-able parameter would require special handling (perhaps using the
IS NULL predicate), very likely multiplying the amount of code necessary to
process query parameters.

Because SQL Server stores the QUOTED_IDENTIFIER and ANSI_
NULLS settings with each stored procedure, you can trust them to have the
values you require when a procedure runs. The server restores them to the val-
ues they had when the procedure was created each time the procedure runs,
then resets them afterward. Here’s an example:

SET ANSI_NULLS ON

EXEC dbo.ListRegionalEmployees NULL

The stored procedure still executes as though ANSI_NULLS is set to OFF.
Note that you can check the saved status of a procedure’s QUOTED_IDEN-
TIFIER and ANSI_NULLS settings via the OBJECTPROPERTY() function.
An example is provided in Listing 1–22:

36 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 36

Listing 1–22 You can check the ANSI_NULLS and QUOTED_IDENTIFIER status
for a procedure using the OBJECTPROPERTY function.

USE Northwind

SELECT OBJECTPROPERTY(OBJECT_ID('dbo.ListRegionalEmployees'),

'ExecIsAnsiNullsOn') AS 'AnsiNulls'

(Results)

AnsiNulls

0

A number of other environmental commands affect how stored procedures
execute. SET XACT_ABORT, SET CURSOR_CLOSE_ON_COMMIT, SET
TEXTSIZE, SET IMPLICIT_TRANSACTIONS, and numerous others help
determine how a stored procedure behaves when executed. If you have a stored
procedure that requires a SET command to have a particular value to run prop-
erly, set it to that value as early as possible in the procedure and document why
it’s necessary via comments.

Parameters

Parameters can be passed to stored procedures by name or by position. An
example of each method is presented in Listing 1–23:

Listing 1–23 You can pass procedure parameters by position or by name.

EXEC dbo.sp_who 'sa'

EXEC dbo.sp_who @loginame='sa'

Obviously, the advantage of referencing parameters by name is that you can
specify them out of order.

You can force a parameter for which a default value has been defined to use
that default by omitting it altogether or by passing it the DEFAULT keyword,
as in Listing 1–24:

Listing 1–24 Passing DEFAULT for a parameter causes it to assume its default
value.

EXEC dbo.sp_who @loginame=DEFAULT

Parameters 37

3831 P-01 12/3/01 10:15 AM Page 37

You can specify NULL to supply individual parameters with NULL values.
This is sometimes handy for procedures that expose special features when
parameters are omitted or set to NULL. An example is presented in Listing
1–25:

Listing 1–25 You can pass NULL to a parameter.

EXEC dbo.sp_who @loginame=NULL

(Results abridged)

spid ecid status loginame

------ ------ ------------------------------ -----------

1 0 background sa

2 0 background sa

3 0 sleeping sa

4 0 background sa

5 0 background sa

6 0 sleeping sa

7 0 background sa

8 0 background sa

9 0 background sa

10 0 background sa

11 0 background sa

12 0 background sa

13 0 background sa

51 0 sleeping SKREWYTHIN\khen

52 0 sleeping SKREWYTHIN\khen

53 0 sleeping SKREWYTHIN\khen

Here, sp_who returns a list of all active connections because its @loginame
parameter is passed NULL. When a valid login name is specified, sp_who
returns only those connections established by the specified login name. You’d
see the same result if @loginame had not been supplied at all—all connections
would be listed.

Return Status Codes

Procedures return status codes via the RETURN command. For an example,
see Listing 1–26:

38 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 38

Listing 1–26 Use RETURN to render stored procedure status codes.

RETURN(-100)

-- and

RETURN –100

These return a status code of –100 to the caller of the procedure (the parame-
ters are optional). A return code of 0 indicates success, values –1 through –14
indicate different types of failures (see the Books Online for descriptions of
these), and values –15 through –99 are reserved for future use.

You can access a procedure’s return code by assigning it to an integer vari-
able, as in Listing 1–27:

Listing 1–27 You can save a procedure’s return status code to an integer
variable.

DECLARE @res int

EXEC @res=dbo.sp_who

SELECT @res

Output Parameters

In addition to the return status code that every stored procedure supports, you
can use output parameters to return other types of values from a procedure.
These parameters can be integers, character strings, dates, and even cursors. An
example is provided in Listing 1–28:

Listing 1–28 Cursor output parameters are handy for returning result sets.

USE pubs

IF OBJECT_ID('dbo.listsales') IS NOT NULL

DROP PROC dbo.listsales

GO

CREATE PROC dbo.listsales @bestseller tid OUT, @topsales int OUT,

@salescursor cursor varying OUT

AS

SELECT @bestseller=bestseller, @topsales=totalsales

FROM (

SELECT TOP 1 title_id AS bestseller, SUM(qty) AS totalsales

FROM sales

GROUP BY title_id

Parameters 39

3831 P-01 12/3/01 10:15 AM Page 39

ORDER BY 2 DESC) bestsellers

DECLARE s CURSOR

LOCAL

FOR SELECT * FROM sales

OPEN s

SET @salescursor=s

RETURN(0)

GO

DECLARE @topsales int, @bestseller tid, @salescursor cursor

EXEC dbo.listsales @bestseller OUT, @topsales OUT, @salescursor OUT

SELECT @bestseller, @topsales

FETCH @salescursor

CLOSE @salescursor

DEALLOCATE @salescursor

(Results abridged)

------ -----------

PS2091 108

stor_id ord_num ord_date qty payterms title_id

------- --------- ---------- ---- --------- --------

6380 6871 1994-09-14 5 Net 60 BU1032

Using a cursor output parameter is a good alternative for returning a result
set to a caller. By using a cursor output parameter rather than a traditional
result set, you give the caller control over how and when to process the result
set. The caller can also determine various details about the cursor through sys-
tem function calls before actually processing the result.

Output parameters are identified with the OUTPUT keyword (you can
abbreviate this as “OUT”). Note the use of the OUT keyword in the procedure
definition as well as in the EXEC parameter list. Output parameters must be
identified in a procedure’s parameter list as well as when the procedure is
called.

The VARYING keyword is required for cursor parameters and indicates
that the return value is nonscalar—that is, it can return more than one value.
Cursor parameters can be output parameters only, so the OUT keyword is also
required.

40 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 40

Listing Procedure Parameters

You can list a procedure’s parameters (which include its return status code, con-
sidered parameter 0) by querying the INFORMATION_SCHEMA.PARA-
METERS view (Listing 1–29).

Listing 1–29 INFORMATION_SCHEMA.PARAMETERS returns stored procedure
parameter info.

USE Northwind

SELECT PARAMETER_MODE, PARAMETER_NAME, DATA_TYPE

FROM INFORMATION_SCHEMA.PARAMETERS

WHERE SPECIFIC_NAME='Employee Sales by Country'

(Results abridged)

PARAMETER_MODE PARAMETER_NAME DATA_TYPE

-------------- ---------------- ----------

IN @Beginning_Date datetime

IN @Ending_Date datetime

General Parameter Notes

In addition to what I’ve already said about parameters, here are a few more tips:

� Check stored procedure parameters for invalid values early on.
� Human-friendly names allow parameters to be passed by name more

easily.
� It’s a good idea to provide default values for parameters when you can.

This makes a procedure easier to use. A parameter default can consist of
a constant or the NULL value.

� Because parameter names are local to stored procedures, you can use the
same name in multiple procedures. If you have ten procedures that each
take a user name parameter, name the parameter @UserName in all ten
of them—for simplicity’s sake and for general consistency in your code.

� Procedure parameter information is stored in the syscolumns system
table.

� A stored procedure can receive as many as 1,024 parameters. If you have
a procedure that you think needs more parameters than 1,024, you
should probably consider redesigning it.

� The number and size of stored procedure local variables is limited only
by the amount of memory available to SQL Server.

Parameters 41

3831 P-01 12/3/01 10:15 AM Page 41

Automatic Variables, a.k.a. System Functions

By their very nature, automatic variables, also known as system functions, are
usually the province of stored procedures. This makes most of them germane in
some way to a discussion about stored procedures. Several, in fact, are used
almost exclusively in stored procedures. Table 1–1 summarizes them.

Flow Control Language

Certain Transact-SQL commands affect the order in which statements are exe-
cuted in a stored procedure or command batch. These are referred to as flow
control or control-of-flow statements because they control the flow of Transact-
SQL code execution. Transact-SQL flow control language statements include
IF…ELSE, WHILE, GOTO, RETURN, WAITFOR, BREAK, CONTINUE,
and BEGIN…END. We’ll discuss the various flow control commands further
in the book, but for now here’s a simple procedure that illustrates all of them
(Listing 1–30):

Listing 1–30 Flow control statements as they behave in the wild.

USE pubs

IF OBJECT_ID('dbo.listsales') IS NOT NULL

DROP PROC dbo.listsales

GO

CREATE PROC dbo.listsales @title_id tid=NULL

AS

IF (@title_id='/?') GOTO Help -- Here's a basic IF

42 Chapter 1 Stored Procedure Primer

Function Returns

@@FETCH_STATUS The status of the last FETCH operation
@@NESTLEVEL The current procedure nesting level
@@OPTIONS A bitmap of the currently specified user options
@@PROCID The object ID of the current procedure
@@SPID The process ID of the current process
@@TRANCOUNT The current transaction nesting level

Table 1–1 Stored Procedure-Related Functions

3831 P-01 12/3/01 10:15 AM Page 42

-- Here's one with a BEGIN..END block

IF NOT EXISTS(SELECT * FROM titles WHERE title_id=@title_id) BEGIN

PRINT 'Invalid title_id'

WAITFOR DELAY '00:00:03' -- Delay 3 secs to view message

RETURN -1

END

IF NOT EXISTS(SELECT * FROM sales WHERE title_id=@title_id) BEGIN

PRINT 'No sales for this title'

WAITFOR DELAY '00:00:03' -- Delay 3 secs to view message

RETURN -2

END

DECLARE @qty int, @totalsales int

SET @totalsales=0

DECLARE c CURSOR

FOR SELECT qty FROM sales WHERE title_id=@title_id

OPEN c

FETCH c INTO @qty

WHILE (@@FETCH_STATUS=0) BEGIN -- Here's a WHILE loop

IF (@qty<0) BEGIN

Print 'Bad quantity encountered'

BREAK -- Exit the loop immediately

END ELSE IF (@qty IS NULL) BEGIN

Print 'NULL quantity encountered -- skipping'

FETCH c INTO @qty

CONTINUE -- Continue with the next iteration of the loop

END

SET @totalsales=@totalsales+@qty

FETCH c INTO @qty

END

CLOSE c

DEALLOCATE c

SELECT @title_id AS 'TitleID', @totalsales AS 'TotalSales'

RETURN 0 -- Return from the procedure indicating success

Help:

EXEC sp_usage @objectname='listsales',

@desc='Lists the total sales for a title',

Flow Control Language 43

3831 P-01 12/3/01 10:15 AM Page 43

@parameters='@title_id="ID of the title you want to check"',

@example='EXEC listsales "PS2091"',

@author='Ken Henderson',

@email='khen@khen.com',

@version='1', @revision='0',

@datecreated='19990803', @datelastchanged='19990818'

WAITFOR DELAY '00:00:03' -- Delay 3 secs to view message

RETURN -1

GO

EXEC dbo.listsales 'PS2091'

EXEC dbo.listsales 'badone'

EXEC dbo.listsales 'PC9999'

TitleID TotalSales

------- -----------

PS2091 191

Invalid title_id

No sales for this title

Errors

The @@ERROR automatic variable returns the error code of the last Transact-
SQL statement. If there was no error, @@ERROR returns zero. Because
@@ERROR is reset after each Transact-SQL statement, you must save it to a
variable if you wish to process it further after checking it.

If you want to write robust code that runs for years without having to be
reengineered, make a habit of checking @@ERROR often in your stored pro-
cedures, especially after data modification statements. A good indicator of
resilient code is consistent error checking, and until Transact-SQL supports
structured exception handling, checking @@ERROR frequently is the best way
to protect your code against unforeseen circumstances.

Error Messages

The system procedure sp_addmessage adds custom messages to the sysmes-
sages table that can then be raised (returned to the client) by the RAISERROR
command. User messages should have error numbers of 50,000 or higher. The
chief advantage of using SQL Server’s system messages facility is international-
ization. Because you specify a language ID when you add a message via

44 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 44

sp_addmessage, you can add a separate version of your application’s messages
for each language it supports. When your stored procedures then reference a
message by number, the appropriate message will be returned to your applica-
tion using SQL Server’s current language setting.

RAISERROR

Stored procedures report errors to client applications via the RAISERROR
command. RAISERROR doesn’t change the flow of a procedure; it merely dis-
plays an error message, sets the @@ERROR automatic variable, and optionally
writes the message to the SQL Server error log and the NT application event
log. RAISERROR can reference an error message added to the sysmessages
table via the sp_addmessage system procedure, or you can supply it a message
string of your own. If you pass a custom message string to RAISERROR, the
error number is set to 50,000; if you raise an error by number using a message
ID in the sysmessages table, @@ERROR is assigned the message number you
raise. RAISERROR can format messages similarly to the C PRINTF() function,
allowing you to supply your own arguments for the error messages it returns.

Both a severity and a state can be specified when raising an error message
with RAISERROR. Severity values less than 16 produce informational mes-
sages in the application event log (when logged). A severity of 16 produces a
warning message in the event log. Severity values greater than 16 produce error
messages in the event log. Severity values up through 18 can be raised by any
user; severity values 19 through 25 are reserved for members of the sysadmin
role and require the use of the WITH LOG option. Severity values of 20 and
higher are considered fatal and cause the client connection to be terminated.

State has no predefined meaning to SQL Server; it’s an informational
value that you can use to return state information to an application. Raising an
error with a state of 127 will cause the ISQL and OSQL utilities to set the
operating system ERRORLEVEL variable to the error number returned by
RAISERROR.

The WITH LOG option copies the error message to the NT event log (if
SQL Server is running on Windows NT, Windows 2000, or Windows XP) and
the SQL Server error log regardless of whether the message was defined using
the WITH_LOG option of sp_addmessage. The WITH NOWAIT option
causes the message to be returned immediately to the client. The WITH
SETERROR option forces @@ERROR to return the last error number raised,
regardless of the severity of the error message. See Chapter 7 for detailed
examples of how to use RAISERROR(), @@ERROR, and SQL Server’s other
error-handling mechanisms.

Errors 45

3831 P-01 12/3/01 10:15 AM Page 45

Nesting

You can nest stored procedure calls up to 32 levels deep. Use the
@@NESTLEVEL automatic variable to check the nesting level from within a
stored procedure or trigger. From a command batch, @@NESTLEVEL
returns 0. From a stored procedure called from a command batch and from
first-level triggers, @@NESTLEVEL returns 1. From a procedure or trigger
called from nesting level 1, @@NESTLEVEL returns 2; procedures called
from level 2 procedures return level 3, and so on. Objects (including temporary
tables) and cursors created within a stored procedure are visible to all objects it
calls. Objects and cursors created in a command batch are visible to all the
objects referenced in the command batch.

Recursion

Because Transact-SQL supports recursion, you can write stored procedures
that call themselves. Recursion can be defined as a method of problem solving
wherein the solution is arrived at by repetitively applying it to subsets of the
problem. A common application of recursive logic is to perform numeric com-
putations that lend themselves to repetitive evaluation by the same processing
steps. Listing 1–31 presents an example that features a stored procedure that
calculates the factorial of a number:

Listing 1–31 Stored procedures can call themselves recursively.

SET NOCOUNT ON

USE master

IF OBJECT_ID('dbo.sp_calcfactorial') IS NOT NULL

DROP PROC dbo.sp_calcfactorial

GO

CREATE PROC dbo.sp_calcfactorial @base_number decimal(38,0), @factorial

decimal(38,0) OUT

AS

SET NOCOUNT ON

DECLARE @previous_number decimal(38,0)

IF ((@base_number>26) and (@@MAX_PRECISION<38)) OR (@base_number>32) BEGIN

RAISERROR('Computing this factorial would exceed the server''s max.

numeric precision of %d or the max. procedure nesting level of

32',16,10,@@MAX_PRECISION)

46 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 46

RETURN(-1)

END

IF (@base_number<0) BEGIN

RAISERROR('Can''t calculate negative factorials',16,10)

RETURN(-1)

END

IF (@base_number<2) SET @factorial=1 -- Factorial of 0 or 1=1

ELSE BEGIN

SET @previous_number=@base_number-1

EXEC dbo.sp_calcfactorial @previous_number, @factorial OUT -- Recursive

call

IF (@factorial=-1) RETURN(-1) -- Got an error, return

SET @factorial=@factorial*@base_number

IF (@@ERROR<>0) RETURN(-1) -- Got an error, return

END

RETURN(0)

GO

DECLARE @factorial decimal(38,0)

EXEC dbo.sp_calcfactorial 32, @factorial OUT

SELECT @factorial

The procedure begins by checking to make sure it has been passed a valid
number for which to compute a factorial. It then recursively calls itself to per-
form the computation. With the default maximum numeric precision of 38,
SQL Server can handle numbers in excess of 263 decillion. (Decillion is the U.S.
term for 1 followed by 33 zeros. In Great Britain, France, and Germany, 1 fol-
lowed by 33 zeros is referred to as 1,000 quintillion.) As you’ll see in Chapter
11, UDFs functions are ideal for computations like factorials.

Summary

In this chapter you learned the basics of writing stored procedures. We dis-
cussed how to monitor stored procedure activity using the Profiler utility, and
we dealt with several real-world stored procedure programming issues. You
learned about the procedure cache, how SQL Server uses it, and how you can
watch it for signs of inefficiencies in your code. You learned about many of the
nuances and quirks in SQL Server’s stored procedure programming language,

Summary 47

3831 P-01 12/3/01 10:15 AM Page 47

Transact-SQL, and you learned how to use them to your advantage and/or how
to work around them as appropriate. You learned how to pass parameters to
stored procedures, how to return stored procedure status codes, and how to
return data via output parameters. We talked about how to nest stored proce-
dures, as well as how to call them recursively. Hopefully, through all this, you’ve
begun to glimpse a bit of the power available to you in Transact-SQL and SQL
Server stored procedures. We’ll build on this throughout the remainder of the
book.

48 Chapter 1 Stored Procedure Primer

3831 P-01 12/3/01 10:15 AM Page 48

