
37

Chapter 3
Using the ACE Logging Facility

Every program needs to display diagnostics: error messages, debugging output,
and so on. Traditionally, we might use a number of printf() calls or cerr
statements in our application in order to help trace execution paths or display
helpful runtime information. ACE’s logging facility provides us with ways to do
these things while at the same time giving us great control over how much of the
information is printed and where it is directed.

It is important to have a convenient way to create debug statements. In this
modern age of graphical source-level debuggers, it might seem strange to pepper
your application with the equivalent of a bunch of print statements. However,
diagnostic statements are useful both during development and long after an appli-
cation is considered to be bug free.

• They can record information while the program is running and a debugger
isn’t available or practical, such as with a server.

• They can record output during testing for regression analysis, as the ACE test
suite does.

The ACE mechanisms allow us to enable and disable these statements at
compile time. When compiled in, they can also be enabled and disabled at will at
runtime. Thus, you don’t have to pay for the overhead—in either CPU cycles or
disk space—under normal conditions. But if a problem arises, you can easily
cause copious amounts of debugging information to be recorded to assist you in

APG.book Page 37 Saturday, October 11, 2003 1:45 PM

38 Chapter 3: Using the ACE Logging Facility

finding and fixing it. It is an unfortunate fact that many bugs will never appear
until the program is in the hands of the end user.

In this chapter, we cover how to

• Use basic logging and tracing techniques

• Enable and disable display of various logging message severities

• Customize the logging mechanics

• Direct the output messages to various logging sinks

• Capture log messages before they’re output

• Use the distributed ACE logging service

• Combine various logging facility features

• Dynamically configure logging sinks and severity levels

3.1 Basic Logging and Tracing

Three macros are commonly used to display diagnostic output from your code:
ACE_DEBUG, ACE_ERROR, and ACE_TRACE. The arguments to the first two are
the same; their operation is nearly identical, so for our purposes now, we’ll treat
them the same. They both take a severity indicator as one of the arguments, so you
can display any message using either; however, the convention is to use
ACE_DEBUG for your own debugging statements and ACE_ERROR for warnings
and errors. The use of these macros is the same:

ACE_DEBUG ((severity, formatting-args));

ACE_ERROR ((severity, formatting-args));

The severity parameter specifies the severity level of your message. The
most common levels are LM_DEBUG and LM_ERROR. All the valid severity
values are listed in Table 3.1.

The formatting-args parameter is a printf()-like set of format
conversion operators and formatting arguments for insertion into the output. The
complete set of formatting directives is described in Table 3.2. One might wonder
why printf()-like formatting was chosen instead of the more natural—to C++
coders—C++ iostream-style formatting. In some cases, it would have been easier
to correctly log certain types of information with type-safe insertion operators.
However, an important factor in the logging facility’s design is the ability to effec-
tively “no-op” the logging statements at compile time. Note that the ACE_DEBUG

APG.book Page 38 Saturday, October 11, 2003 1:45 PM

3.1 Basic Logging and Tracing 39

and ACE_ERROR invocations require two sets of parentheses. The outer set
delimits the single macro argument. This single argument comprises all the argu-
ments, and their enclosing parentheses, needed for a method call. If the prepro-
cessor macro ACE_NDEBUG is defined, the ACE_DEBUG macro will expand to a
blank line, ignoring the content of the inner set of parentheses. Achieving this
same optimization with insertion operators would have resulted in a rather odd
usage:

ACE_DEBUG ((debug_info << “Hi Mom” << endl));

Similarly, many of the formatting tokens, such as %I, would have been awkward
to implement and overly verbose to use:

ACE_DEBUG((debug_info<<ACE_Log_Msg::nested_indent<<“Hi
Mom”<<endl));

One could argue away the compile-time optimization by causing
ACE_NDEBUG to put the debug output stream object into a no-op mode. That may
be sufficient for some platforms, but for others, such as embedded real-time
systems, you really do want the code to simply not exist.

Unlike ACE_DEBUG and ACE_ERROR, which cause output where the macro
is placed, ACE_TRACE causes one line of debug information to be printed at the

Table 3.1. ACE_Log_Msg Logging Severity Levels

Severity Level Meaning

LM_TRACE Messages indicating function-calling sequence

LM_DEBUG Debugging information

LM_INFO Messages that contain information normally of use only
when debugging a program

LM_NOTICE Conditions that are not error conditions but that may
require special handling

LM_WARNING Warning messages

LM_ERROR Error messages

LM_CRITICAL Critical conditions, such as hard device errors

LM_ALERT A condition that should be corrected immediately, such as a
corrupted system database

LM_EMERGENCY A panic condition, normally broadcast to all users

APG.book Page 39 Saturday, October 11, 2003 1:45 PM

40 Chapter 3: Using the ACE Logging Facility

point of the ACE_TRACE statement and another when its enclosing scope is
exited. Therefore, placing an ACE_TRACE statement at the beginning of a func-
tion or method provides a trace of when that function or method is entered and
exited. The ACE_TRACE macro accepts a single character string rather than a set
of formatting directives. Because C++ doesn’t have a handy way to dump a stack
trace, this can be very useful indeed.

Let’s take a look at a simple application:

#include "ace/Log_Msg.h"

void foo (void);

int ACE_TMAIN (int, ACE_TCHAR *[])
{

ACE_TRACE(ACE_TEXT ("main"));

ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IHi Mom\n")));
foo();
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

void foo (void)
{

ACE_TRACE (ACE_TEXT ("foo"));

ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IHowdy Pardner\n")));
}

Our first step is always to include the Log_Msg.h header file. It defines many
helpful macros, including ACE_DEBUG and ACE_ERROR, to make your life
easier. The full set of output-producing macros is listed in Table 3.3.

You can use ACE_DEBUG to print just about any arbitrary string you want,
and the many format directives listed in Table 3.2 can also be modified with
printf()-style modifiers for length, precision, and fill adjustments. (See a
printf() reference for details on the modifiers.) In the preceding example,
we’ve used %I so that the ACE_DEBUG messages are nicely indented along with
the ACE_TRACE messages.

If you compile and execute the preceding code, you should get something like
this:

APG.book Page 40 Saturday, October 11, 2003 1:45 PM

3.1 Basic Logging and Tracing 41

Table 3.2. ACE Logging Format Directives

Code Argument Type Displays

A ACE_timer_t Floating-point number; long decimal number if plat-
form doesn’t support floating point

a — Aborts the program after displaying output

c char Single character

C char* Character string (narrow characters)

i,d int Decimal number

I — Indents output according to the nesting depth, obtained
from ACE_Trace::get_nesting_indent()

e,E,
f,F,
g,G

double Double-precision floating-point number

l — Line number where logging macro appears

M — Text form of the message severity level

m — Message corresponding to errno value, as done by
strerror(), for example

N — File name where logging macro appears

n — Program name given to ACE_Log_Msg::open()

o int Octal number

P — Current process ID

p ACE_TCHAR* Specified character string, followed by the appropriate
errno message, that is, as done by perror()

Q ACE_UINT64 Decimal number

r void (*)() Nothing; calls the specified function

R int Decimal number

S int Signal name of the numbered signal

s ACE_TCHAR* Character string: narrow or wide, according to
ACE_TCHAR type

T — Current time as hour:minute:sec.usec

D — Timestamp as month/day/year hour:minute:sec.usec

t — Calling thread’s ID (1 if single threaded)

APG.book Page 41 Saturday, October 11, 2003 1:45 PM

42 Chapter 3: Using the ACE Logging Facility

(1024) calling main in file `Simple1.cpp' on line 7
Hi Mom
(1024) calling foo in file `Simple1.cpp' on line 18

Howdy Pardner
(1024) leaving foo
Goodnight

(1024) leaving main

The compile-time values of three configuration settings control whether the
logging macros produce logging method calls: ACE_NTRACE, ACE_NDEBUG,
and ACE_NLOGGING. These macros are all interpreted as “not.” For example,
ACE_NTRACE is “not tracing” when its value is 1. To enable the configuration
area, set the macro to 0. ACE_NTRACE usually defaults to 1 (disabled), and the
others default to 0 (enabled). Table 3.3 shows which configuration setting controls
each logging macro. This allows you to sprinkle your code with as little or as
much debug information as you want and then turn it on or off when compiling.

When deciding which features to enable, be aware that ACE_TRACE output is
conditional on both the ACE_NTRACE and ACE_NDEBUG configuration settings.
The reason is that the ACE_TRACE macro, when enabled, expands to instantiate
an ACE_Trace object. The ACE_Trace class’s constructor and destructor use
ACE_DEBUG to log the entry and exit messages. They’re logged at the
LM_TRACE severity level, so that level also must be enabled at runtime to show
any tracing output; it is enabled by default.

u int Unsigned decimal number

w wchar_t Single wide character

W wchar_t* Wide-character string

x,X int Hexadecimal number

@ void* Pointer value in hexadecimal

% N/A Single percent sign: “%”

Table 3.2. ACE Logging Format Directives (Continued)

Code Argument Type Displays

APG.book Page 42 Saturday, October 11, 2003 1:45 PM

3.2 Enabling and Disabling Logging Severities 43

3.2 Enabling and Disabling Logging Severities

Consider this slightly modified code:

#include "ace/Log_Msg.h"

void foo(void);

int ACE_TMAIN (int, ACE_TCHAR *[])
{

ACE_TRACE (ACE_TEXT ("main"));

ACE_LOG_MSG->priority_mask (LM_DEBUG | LM_NOTICE,
ACE_Log_Msg::PROCESS);

ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IHi Mom\n")));
foo ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

void foo(void)
{

ACE_TRACE (ACE_TEXT ("foo"));

ACE_DEBUG ((LM_NOTICE, ACE_TEXT ("%IHowdy Pardner\n")));
}

The following output is produced:

(1024) calling main in file `Simple2.cpp' on line 7
Howdy Pardner

Goodnight

In this example, we changed the logging level at runtime so that only messages
logged with LM_DEBUG and LM_NOTICE priority are displayed; all others are
ignored. The LM_INFO “Hi Mom” message is not displayed, and there is no
ACE_TRACE output.

We’ve also revealed a little more about how ACE’s logging facility works. The
ACE_Log_Msg class implements the log message formatting capabilities in
ACE. ACE automatically maintains a thread-specific singleton instance of the
ACE_Log_Msg class for each spawned thread, as well as the main thread.
ACE_LOG_MSG is a shortcut for obtaining the pointer to the thread’s singleton

APG.book Page 43 Saturday, October 11, 2003 1:45 PM

44 Chapter 3: Using the ACE Logging Facility

Table 3.3. ACE Logging Macros

Macro Function Disabled by

ACE_ASSERT(test) Much like the assert()
library call. If the test fails, an
assertion message including the
file name and line number,
along with the test itself, will be
printed and the application
aborted.

ACE_NDEBUG

ACE_HEX_DUMP
((level, buffer,
size [,text]))

Dumps the buffer as a string
of hex digits. If provided, the
optional text parameter will
be printed prior to the hex
string. The op_statusa is set
to 0.

ACE_NLOGGING

ACE_RETURN(value) No message is printed, the call-
ing function returns with
value; op_status is set to
value.

ACE_NLOGGING

ACE_ERROR_RETURN
((level, string,
...), value)

Logs the string at the
requested level. The calling
function then returns with
value; op_status is set to
value.

ACE_NLOGGING

ACE_ERROR((level,
string, ...))

Sets the op_status to –1 and
logs the string at the
requested level.

ACE_NLOGGING

ACE_DEBUG((level,
string, ...))

Sets the op_status to 0 and
logs the string at the
requested level.

ACE_NLOGGING

ACE_ERROR_INIT(
value, flags)

Sets the op_status to value
and the logger’s option flags to
flags. Valid flags values are
defined in Table 3.5.

ACE_NLOGGING

ACE_ERROR_BREAK
((level, string,
...))

Invokes ACE_ERROR() fol-
lowed by a break. Use this to
display an error message and
exit a while or for loop, for
instance.

ACE_NLOGGING

APG.book Page 44 Saturday, October 11, 2003 1:45 PM

3.2 Enabling and Disabling Logging Severities 45

instance. All the ACE logging macros use ACE_LOG_MSG to make method calls
on the correct ACE_Log_Msg instance. There is seldom a reason to instantiate an
ACE_Log_Msg object directly. ACE automatically creates a new instance for
each thread spawned, keeping each thread’s logging output separate.

We can use the ACE_Log_Msg::priority_mask() method to set the
logging severity levels we desire output to be produced for: All the available
logging levels are listed in Table 3.1. Each level is represented by a mask, so the
levels can be combined. Let’s look at the complete signature of the
priority_mask() methods:

/// Get the current ACE_Log_Priority mask.
u_long priority_mask (MASK_TYPE = THREAD);

/// Set the ACE_Log_Priority mask, returns original mask.
u_long priority_mask (u_long, MASK_TYPE = THREAD);

The first version is used to read the severity mask; the second changes it and
returns the original mask so it can be restored later. The second argument must be
one of two values, reflecting two different scopes of severity mask setting:

1. ACE_Log_Msg::PROCESS: Specifying PROCESS retrieves or sets the
processwide mask affecting logging severity for all ACE_Log_Msg instances.

2. ACE_Log_Msg::THREAD: Each ACE_Log_Msg instance also has its own
severity mask, and this value retrieves or sets it. THREAD is technically a
misnomer, as it refers to the ACE_Log_Msg instance the method is invoked
on, and you can create ACE_Log_Msg instances in addition to those that

ACE_TRACE(string) Displays the file name, line
number, and string where
ACE_TRACE appears. Displays
“Leaving ‘string’” when the
ACE_TRACE-enclosing scope
exits.

ACE_NTRACE

a. Many of the macros in this table refer to op_status. This internal variable is used to keep the
logging framework aware of the program state, that is, the “operation status.” By convention, a
value of 0 indicates good. Anything else is considered an error or exception state. Also see
Table 3.4.

Table 3.3. ACE Logging Macros (Continued)

Macro Function Disabled by

APG.book Page 45 Saturday, October 11, 2003 1:45 PM

46 Chapter 3: Using the ACE Logging Facility

ACE creates for each thread. However, that is a relatively rare thing to do, so
we usually simply refer to ACE_Log_Msg instances as thread specific.

When evaluating a log message’s severity, ACE_Log_Msg examines both the
processwide and per instance severity masks. If either of them has the message’s
severity enabled, the message is logged. By default, all bits are set at the process
level and none at the instance level, so all message severities are logged. To make
each thread decide for itself which severity levels will be logged, set the process-
wide mask to 0 and allow each thread set its own per instance mask. For example,
the following code disables all logging severities at the process level and enables
LM_DEBUG and LM_NOTICE severities in the current thread only:

ACE_LOG_MSG->priority_mask (0, ACE_Log_Msg::PROCESS);
ACE_LOG_MSG->priority_mask (LM_DEBUG | LM_NOTICE,

ACE_Log_Msg::THREAD);

A third mask maintained by ACE_Log_Msg is important when you start
setting individual severity masks on ACE_Log_Msg instances. The per instance
default mask is used to initialize each ACE_Log_Msg instance’s severity mask.
The per instance default mask is initially 0 (no severities are enabled). Because
each ACE_Log_Msg instance’s severity mask is set from the default value when
the instance is created, you can change the default for groups of threads before
spawning them. This puts the logging policy into the thread-spawning part of your
application, alleviating the need for the threads to set their own level, although
each thread can change its ACE_Log_Msg instance’s mask at any time. Consider
this example:

ACE_LOG_MSG->priority_mask (0, ACE_Log_Msg::PROCESS);
ACE_Log_Msg::enable_debug_messages ();
ACE_Thread_Manager::instance ()->spawn (service);
ACE_Log_Msg::disable_debug_messages ();
ACE_Thread_Manager::instance ()->spawn_n (3, worker);

We’ll learn about thread management in Chapter 13. For now, all you need to
know is that ACE_Thread_Manager::spawn() spawns one thread and that
ACE_Thread_Manager::spawn_n() spawns multiple threads. In the
preceding example, the processwide severity mask is set to 0 (all disabled). This
means that each ACE_Log_Msg instance’s mask controls its enabled severities
totally. The thread executing the service() function will have the LM_DEBUG
severity enabled, but the threads executing the worker() function will not.

APG.book Page 46 Saturday, October 11, 2003 1:45 PM

3.3 Customizing the ACE Logging Macros 47

The complete method signatures for changing the per instance default mask
are:

static void disable_debug_messages
(ACE_Log_Priority priority = LM_DEBUG);

static void enable_debug_messages
(ACE_Log_Priority priority = LM_DEBUG);

Our example used the default argument, LM_DEBUG, in both cases. Even though
the method names imply that LM_DEBUG is the only severity that can be changed,
you can also supply any set of legal severity masks to either method. Unlike the
priority_mask() method, which replaces the specified mask, the
enable_debug_messages() and disable_debug_messages()
methods add and subtract, respectively, the specified severity bits in both the
calling thread’s per instance mask and the per instance default severity mask.

Of course, you can use any message severity level at any time. However, take
care to specify a reasonable level for each of your messages; then at runtime, you
can use the priority_mask() method to enable or disable messages you’re
interested in. This allows you to easily overinstrument your code and then enable
only the things that are useful at any particular time.

ACE_Log_Msg has a rich set of methods for recording the current state of
your application. Table 3.4 summarizes the more commonly used functions. Most
methods have both accessor and mutator signatures. For example, there are two
op_status() methods:

int op_status(void);
void op_status(int status));

Although the method calls are most often made indirectly via the ACE logging
macros, they are also available for direct use.

3.3 Customizing the ACE Logging Macros

In most cases, people will use the standard ACE tracing and logging macros
shown in Table 3.3. Sometimes, however, their behavior may need to be custom-
ized. Or you might want to create wrapper macros in anticipation of future
customization.

APG.book Page 47 Saturday, October 11, 2003 1:45 PM

48 Chapter 3: Using the ACE Logging Facility

3.3.1 Wrapping ACE_DEBUG
Perhaps you want to ensure that all your LM_DEBUG messages contain a partic-
ular text string so that you can easily grep for them in your output file. Or maybe
you want to ensure that every one of them is prefixed with the handy “%I” direc-
tive so they indent properly. If you lay the groundwork at the beginning of your
project and encourage your coders to use your macros, it will be easy to imple-
ment these kinds of things in the future.

The following macro definitions wrap the ACE_DEBUG macro in a handy
way. Note how we’ve guaranteed that every message will be properly indented,

Table 3.4. Commonly Used ACE_Log_Msg Methods

Method Purpose

op_status The return value of the current function. By conven-
tion, –1 indicates an error condition.

errnum The current errno value.

linenum The line number on which the message was generated.

file File name in which the message was generated.

msg A message to be sent to the log output target.

inc Increments nesting depth. Returns the previous value.

dec Decrements the nesting depth. Returns the new value.

trace_depth The current nesting depth.

start_tracing
stop_tracing
tracing_enabled

Enable/disable/query the tracing status for the current
ACE_Log_Msg instance. The tracing status of a
thread’s ACE_LOG_MSG singleton determines whether
an ACE_Trace object generates log messages.

priority_mask Get/set the set of severity levels—at instance or proc-
ess level—for which messages will be logged.

log_priority_enabled Return non-zero if the requested priority is enabled.

set Sets the line number, file name, op_status, and sev-
eral other characteristics all at once.

conditional_set Sets the line number, file name, op_status, and
errnum values for the next log message; however,
they take effect only if the next logging message’s
severity level is enabled.

APG.book Page 48 Saturday, October 11, 2003 1:45 PM

3.3 Customizing the ACE Logging Macros 49

and we’ve prefixed each message to make searching for specific strings in the
output easier.

#define DEBUG_PREFIX ACE_TEXT ("DEBUG%I")
#define INFO_PREFIX ACE_TEXT ("INFO%I")
#define NOTICE_PREFIX ACE_TEXT ("NOTICE%I")
#define WARNING_PREFIX ACE_TEXT ("WARNING%I")
#define ERROR_PREFIX ACE_TEXT ("ERROR%I")
#define CRITICAL_PREFIX ACE_TEXT ("CRITICAL%I")
#define ALERT_PREFIX ACE_TEXT ("ALERT%I")
#define EMERGENCY_PREFIX ACE_TEXT ("EMERGENCY%I")
#define MY_DEBUG(FMT, ...) \

ACE_DEBUG((LM_DEBUG, \
DEBUG_PREFIX FMT \
__VA_ARGS__))

#define MY_INFO(FMT, ...) \
ACE_DEBUG((LM_INFO, \

INFO_PREFIX FMT \
__VA_ARGS__))

#define MY_NOTICE(FMT, ...) \
ACE_DEBUG((LM_NOTICE, \

NOTICE_PREFIX FMT \
__VA_ARGS__))

#define MY_WARNING(FMT, ...) \
ACE_DEBUG((LM_WARNING, \

WARNING_PREFIX FMT \
__VA_ARGS__))

#define MY_ERROR(FMT, ...) \
ACE_DEBUG((LM_ERROR, \

ERROR_PREFIX FMT \
__VA_ARGS__))

#define MY_CRITICAL(FMT, ...) \
ACE_DEBUG((LM_CRITICAL, \

CRITICAL_PREFIX FMT \
__VA_ARGS__))

#define MY_ALERT(FMT, ...) \
ACE_DEBUG((LM_ALERT, \

ALERT_PREFIX FMT \
__VA_ARGS__))

#define MY_EMERGENCY(FMT, ...) \
ACE_DEBUG((LM_EMERGENCY, \

EMERGENCY_PREFIX FMT \
__VA_ARGS__))

APG.book Page 49 Saturday, October 11, 2003 1:45 PM

50 Chapter 3: Using the ACE Logging Facility

Of course, it would be more useful if each of our prefixes were surrounded by an
#ifdef to allow them to be overridden, but we leave that as an exercise to the
reader.

Using these macros instead of the usual ACE_DEBUG macros is, as expected,
easy to do:

#include "Trace.h"

void foo (void);

int ACE_TMAIN (int, ACE_TCHAR *[])
{

ACE_TRACE (ACE_TEXT ("main"));
MY_DEBUG (ACE_TEXT ("Hi Mom\n"));
foo ();
MY_DEBUG (ACE_TEXT ("Goodnight\n"));
return 0;

}

void foo (void)
{

ACE_TRACE (ACE_TEXT ("foo"));
MY_DEBUG (ACE_TEXT ("Howdy Pardner\n"));

}

Our output is nicely indented and prefixed as requested:

(1024) calling main in file `Wrap_Macros.cpp' on line 11
DEBUG Hi Mom

(1024) calling foo in file `Wrap_Macros.cpp' on line 20
DEBUG Howdy Pardner

(1024) leaving foo
DEBUG Goodnight
(1024) leaving main

The __VA_ARGS__ trick works fine for recent versions of the GNU C/C++
preprocessor but may not be available everywhere else, so be sure to read your
compiler’s documentation before committing yourself to this particular approach.
If something similar isn’t available to you, you can use a slightly less elegant
approach:

APG.book Page 50 Saturday, October 11, 2003 1:45 PM

3.3 Customizing the ACE Logging Macros 51

#define MY_DEBUG LM_DEBUG, ACE_TEXT ("DEBUG%I")
#define MY_INFO LM_INFO, ACE_TEXT ("INFO%I")
#define MY_NOTICE LM_NOTICE, ACE_TEXT ("NOTICE%I")
#define MY_WARNING LM_WARNING, ACE_TEXT ("WARNING%I")
#define MY_ERROR LM_ERROR, ACE_TEXT ("ERROR%I")
#define MY_CRITICAL LM_CRITICAL, ACE_TEXT ("CRITICAL%I")
#define MY_ALERT LM_ALERT, ACE_TEXT ("ALERT%I")
#define MY_EMERGENCY LM_EMERGENCY, ACE_TEXT ("EMERGENCY%I")

This approach could be used something like this:

ACE_DEBUG ((MY_DEBUG ACE_TEXT ("Hi Mom\n")));

ACE_DEBUG ((MY_DEBUG ACE_TEXT ("Goodnight\n")));

It produces exactly the same output at the expense of slightly less attractive code.

3.3.2 ACE_Trace
We will now create an ACE_TRACE variant that will display the line number at
which a function exits. The default ACE_Trace object implementation doesn’t
do this and doesn’t provide an easy way for us to extend it, so, unfortunately, we
have to create our own object from scratch. However, we can cut and paste from
the ACE_Trace implementation in order to give ourselves a head start.

Consider this simple class:

class Trace
{
public:

Trace (const ACE_TCHAR *prefix,
const ACE_TCHAR *name,
int line,
const ACE_TCHAR *file)

{
this->prefix_ = prefix;
this->name_ = name;
this->line_ = line;
this->file_ = file;

ACE_Log_Msg *lm = ACE_LOG_MSG;
if (lm->tracing_enabled ()

&& lm->trace_active () == 0)
{

APG.book Page 51 Saturday, October 11, 2003 1:45 PM

52 Chapter 3: Using the ACE Logging Facility

lm->trace_active (1);
ACE_DEBUG

((LM_TRACE,
ACE_TEXT ("%s%*s(%t) calling %s in file `%s'")
ACE_TEXT (" on line %d\n"),
this->prefix_,
Trace::nesting_indent_ * lm->inc (),
ACE_TEXT (""),
this->name_,
this->file_,
this->line_));

lm->trace_active (0);
}

}

void setLine (int line)
{

this->line_ = line;
}

~Trace (void)
{

ACE_Log_Msg *lm = ACE_LOG_MSG;
if (lm->tracing_enabled ()

&& lm->trace_active () == 0)
{

lm->trace_active (1);
ACE_DEBUG

((LM_TRACE,
ACE_TEXT ("%s%*s(%t) leaving %s in file `%s'")
ACE_TEXT (" on line %d\n"),
this->prefix_,
Trace::nesting_indent_ * lm->dec (),
ACE_TEXT (""),
this->name_,
this->file_,
this->line_));

lm->trace_active (0);
}

}

private:
enum { nesting_indent_ = 3 };

const ACE_TCHAR *prefix_;

APG.book Page 52 Saturday, October 11, 2003 1:45 PM

3.3 Customizing the ACE Logging Macros 53

const ACE_TCHAR *name_;
const ACE_TCHAR *file_;
int line_;

};

Trace is a simplified version of ACE_Trace. Because our focus is printing
a modified function exit message, we chose to leave out some of the more esoteric
ACE_Trace functionality. We did, however, include a prefix parameter to the
constructor so that each entry/exit message can be prefixed (before indentation), if
you want. In an ideal world, you would simply use the following method to select
the messages you’re interested in: ACE_Log_Msg::priority_mask(). On
the other hand, if you’re asked to do a postmortem analysis of a massive, all-
debug-enabled log file, the prefixes can be quite handy.

With our new Trace class available to us, we can now create a set of simple
macros that will use this new class to implement function tracing in our code:

#define TRACE_PREFIX ACE_TEXT ("TRACE ")

#if (ACE_NTRACE == 1)
define TRACE(X)
define TRACE_RETURN(V)
define TRACE_RETURN_VOID()
#else
define TRACE(X) \

Trace ____ (TRACE_PREFIX, \
ACE_TEXT (X), \
__LINE__, \
ACE_TEXT (__FILE__))

define TRACE_RETURN(V) \
do { ____.setLine(__LINE__); return V; } while (0)

define TRACE_RETURN_VOID() \
do { ____.setLine(__LINE__); } while (0)

#endif

The addition of the TRACE_RETURN and TRACE_RETURN_VOID macros is
how our Trace object’s destructor will know to print the line number at which
the function exits. Each of these macros uses the convenient setLine() method
to set the current line number before allowing the Trace instance to go out of
scope, destruct, and print our message.

APG.book Page 53 Saturday, October 11, 2003 1:45 PM

54 Chapter 3: Using the ACE Logging Facility

This is a simple example using our new object:

#include "Trace.h"

void foo (void);

int ACE_TMAIN (int, ACE_TCHAR *[])
{

TRACE (ACE_TEXT ("main"));

MY_DEBUG (ACE_TEXT ("Hi Mom\n"));
foo ();
MY_DEBUG (ACE_TEXT ("Goodnight\n"));

TRACE_RETURN (0);
}

void foo (void)
{

TRACE (ACE_TEXT ("foo"));
MY_DEBUG (ACE_TEXT ("Howdy Pardner\n"));
TRACE_RETURN_VOID ();

}

It produces the following output:

TRACE (1024) calling main in file `Trace_Return.cpp' on line 11
DEBUG Hi Mom
TRACE (1024) calling foo in file `Trace_Return.cpp' on line 22
DEBUG Howdy Pardner
TRACE (1024) leaving foo in file `Trace_Return.cpp' on line 24
DEBUG Goodnight
TRACE (1024) leaving main in file `Trace_Return.cpp' on line 17

Although the output is a bit wordy, we succeeded in our original intent of
printing the line number at which each function returns. Although that may seem
like a small thing for a trivial program, consider the fact that few useful programs
are trivial. If you are trying to understand the flow of a legacy application, it may
well be worth your time to liberally instrument it with TRACE and
TRACE_RETURN macros to get a feel for the paths taken. Of course, training
yourself to use TRACE_RETURN may take some time, but in the end, you will
have a much better idea of how the code flows.

APG.book Page 54 Saturday, October 11, 2003 1:45 PM

3.4 Redirecting Logging Output 55

3.4 Redirecting Logging Output

As our previous examples have shown, the default logging sink for ACE’s logging
facility is the standard error stream. In this section, we discuss output to the stan-
dard error stream, as well as two other common and useful targets:

• The system logger (UNIX syslog or NT Event Log)

• A programmer-specified output stream, such as a file

3.4.1 Standard Error Stream
Output to the standard error stream (STDERR) is so common that it is, in fact, the
default sink for all ACE logging messages. Our examples so far have taken advan-
tage of this. Sometimes, you may want to direct your output not only to STDERR
but also to one of the other targets available to you. In these cases, you will have to
explicitly include STDERR in your choices:

int ACE_TMAIN (int, ACE_TCHAR *argv[])
{

// open() requires the name of the application
// (e.g. -- argv[0]) because the underlying
// implementation may use it in the log output.
ACE_LOG_MSG->open (argv[0], ACE_Log_Msg::STDERR);

or

ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IHi Mom\n")));
ACE_LOG_MSG->set_flags (ACE_Log_Msg::STDERR);
foo ();

If you choose the second approach, it may be necessary to invoke clr_flags()
to disable any other output destinations. Everything after the set_flags() will
be directed to STDERR until you invoke clr_flags() to prevent it. The
complete signatures of these methods are:

// Enable the bits in the logger's options flags.
void set_flags (unsigned long f);

// Disable the bits in the logger's options flags.
void clr_flags (unsigned long f);

The set of defined flag values are listed in Table 3.5.

APG.book Page 55 Saturday, October 11, 2003 1:45 PM

56 Chapter 3: Using the ACE Logging Facility

3.4.2 System Logger
Most modern operating systems support the notion of a system logger. The imple-
mentation details range from a library of function calls to a network daemon. The
general idea is that all applications direct their logging activity to the system
logger, which will, in turn, direct it to the correct file(s) or other configurable
destination(s). For example, UNIX system administrators can configure the UNIX
syslog facility so that different classes and levels of logging get directed to
different destinations. Such an approach provides a good combination of scal-
ability and configurability.

To use the system logger, you would do something like this:

int ACE_TMAIN (int, ACE_TCHAR *argv[])
{

ACE_LOG_MSG->open
(argv[0], ACE_Log_Msg::SYSLOG, ACE_TEXT ("syslogTest"));

Although one would think that we could use the set_flags() method to
enable syslog output after the ACE_Log_Msg instance has been opened, that isn’t

Table 3.5. Valid ACE_Log_Msg Flags Values

Flag Meaning

STDERR Write messages to STDERR

LOGGER Write messages to the local client logger daemon (see
Section 3.6)

OSTREAM Write messages to the assigned output stream

MSG_CALLBACK Write messages to the callback object (see Section 3.5)

VERBOSE Prepends program name, timestamp, host name, process
ID, and message priority to each message

VERBOSE_LITE Prepends timestamp and message priority to each message

SILENT Do not print messages at all

SYSLOG Write messages to the system’s event log

CUSTOM Write messages to the user-provided back end: an advanced
usage topic not discussed in this book

APG.book Page 56 Saturday, October 11, 2003 1:45 PM

3.4 Redirecting Logging Output 57

the case, unfortunately. Likewise, if you want to quit sending output to syslog, a
simple clr_flags() won’t do the trick.

In order to communicate with the system logger, ACE_Log_Msg must
perform a set of initialization procedures that are done only in the open()
method. Part of the initialization requires the program name that will be recorded
in syslog: (the third argument). If we don’t do this when our program starts, we
will have to do it later, in order to get the behavior we expect from invoking
set_flags(). Similarly, the open() method will properly close down any
existing connection to the system logger if invoked without the
ACE_Log_Msg::SYSLOG flag:

#include "ace/Log_Msg.h"

void foo (void);

int ACE_TMAIN (int, ACE_TCHAR *argv[])
{

// This will be directed to stderr (the default ACE_Log_Msg
// behavior).
ACE_TRACE (ACE_TEXT ("main"));

ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IHi Mom\n")));

// Everything from foo() will be directed to the system logger
ACE_LOG_MSG->open

(argv[0], ACE_Log_Msg::SYSLOG, ACE_TEXT ("syslogTest"));
foo ();

// Now we reset the log output to default (stderr)
ACE_LOG_MSG->open (argv[0]);
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

void foo (void)
{

ACE_TRACE (ACE_TEXT ("foo"));

ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IHowdy Pardner\n")));
}

APG.book Page 57 Saturday, October 11, 2003 1:45 PM

58 Chapter 3: Using the ACE Logging Facility

Although it may seem strange to invoke ACE_LOG_MSG->open() more
than once in your application, nothing is wrong with it. Think of it as more of a
reopen. Before we end this chapter, we will create a simple LogManager class to
help hide some of these kinds of details.

Directing logging output to SYSLOG means different things on different plat-
forms, according to what the platform’s native “system logger” is and what it is
capable of. If the runtime platform doesn’t support any type of system logger,
directing output to SYSLOG has no effect. The following platforms have SYSLOG
support in ACE:

• Windows NT 4 and newer, such as Windows 2000 and XP: ACE directs
SYSLOG output to the system’s Event Log. The third argument to
ACE_Log_Msg::open() is an ACE_TCHAR* character string. It is
optional; if supplied, it replaces the program name as the event source name
for recording events in the system’s event log. The ACE message severities
are mapped to Event Log severities, as shown in Table 3.6.

• UNIX/Linux: ACE directs SYSLOG output to the syslog facility. The syslog
facility has its own associated configuration details about logging facilities,
which are different from ACE’s logging severity levels. ACE’s syslog back
end specifies the LOG_USER syslog facility by default. This value can be
changed at compile time by changing the config.h setting
ACE_DEFAULT_SYSLOG_FACILITY. Please consult the syslog man page
for details on how to configure the logging destination for the specified
facility.

Table 3.6. Mapping ACE Logging Severity to Windows Event Log Severity

ACE Severity Event Log Severity

LM_STARTUP
LM_SHUTDOWN
LM_TRACE
LM_DEBUG
LM_INFO

EVENTLOG_INFORMATION_TYPE

LM_NOTICE
LM_WARNING

EVENTLOG_WARNING_TYPE

LM_ERROR
LM_CRITICAL
LM_ALERT
LM_EMERGENCY

EVENTLOG_ERROR_TYPE

APG.book Page 58 Saturday, October 11, 2003 1:45 PM

3.4 Redirecting Logging Output 59

3.4.3 Output Streams
The preferred way to handle output to files and other targets in C++ is output
streams (C++ ostream objects). They provide enhanced functionality over the
printf() family of functions and usually result in more readable code. The
ACE_Log_Msg::msg_ostream() method lets us provide an output stream
on which the logger will write our information:

ACE_OSTREAM_TYPE *output =
new std::ofstream ("ostream.output.test");

ACE_LOG_MSG->msg_ostream (output, 1);
ACE_LOG_MSG->set_flags (ACE_Log_Msg::OSTREAM);
ACE_LOG_MSG->clr_flags (ACE_Log_Msg::STDERR);

Note that it’s perfectly safe to select OSTREAM as output—via either open()
or set_flags()—and then generate logging output before you invoke
msg_ostream(). If you do so, the output will simply disappear, because no
ostream is assigned. Also note that we have used the two-argument version of
msg_ostream(). This not only sets the ostream for the ACE_Log_Msg
instance to use but also tells ACE_Log_Msg that it should assume ownership and
delete the ostream instance when the ACE_Log_Msg object is deleted. The
single-argument version of msg_ostream() doesn’t specify its default
behavior with regard to ownership, so it pays to be explicit in your wishes.

You may wonder why the stream type is ACE_OSTREAM_TYPE instead of
simply std::ostream. This is another aspect of ACE that helps its portability
to platforms of all sizes and capabilities. ACE_OSTREAM_TYPE can be defined
with or without the std namespace declaration, and it can also be defined as
FILE for platforms without any C++ iostream support at all, such as some
embedded environments.

3.4.4 Combined Techniques
We can now easily combine all these techniques and distribute our logging infor-
mation among all three choices:

#include "ace/Log_Msg.h"
#include "ace/streams.h"

int ACE_TMAIN (int, ACE_TCHAR *argv[])
{

// Output to default destination (stderr)
ACE_LOG_MSG->open (argv[0]);

APG.book Page 59 Saturday, October 11, 2003 1:45 PM

60 Chapter 3: Using the ACE Logging Facility

ACE_TRACE (ACE_TEXT ("main"));

ACE_OSTREAM_TYPE *output =
new std::ofstream ("ostream.output.test");

ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IThis will go to STDERR\n")));

ACE_LOG_MSG->open
(argv[0], ACE_Log_Msg::SYSLOG, ACE_TEXT ("syslogTest"));

ACE_LOG_MSG->set_flags (ACE_Log_Msg::STDERR);
ACE_DEBUG

((LM_DEBUG, ACE_TEXT ("%IThis goes to STDERR & syslog\n")));

ACE_LOG_MSG->msg_ostream (output, 0);
ACE_LOG_MSG->set_flags (ACE_Log_Msg::OSTREAM);
ACE_DEBUG ((LM_DEBUG,

ACE_TEXT ("%IThis will go to STDERR, ")
ACE_TEXT ("syslog & an ostream\n")));

ACE_LOG_MSG->clr_flags (ACE_Log_Msg::OSTREAM);
delete output;

return 0;
}

Beware of a subtle bug waiting to get you when you use an ostream. Note
that before we deleted the ostream instance output, we first cleared the
OSTREAM flag on the ACE_Log_Msg instance. Remember that the ACE_TRACE
for main still has to write its final message when the trace instance goes out of
scope at the end of main(). If we delete the ostream without removing the
OSTREAM flag, ACE_Log_Msg will dutifully attempt to write that final message
on a deleted ostream instance, and your program will most likely crash.

3.5 Using Callbacks

To this point, we’ve been content to give our logging output to ACE_Log_Msg,
which formatted the messages and directed them to the configured logging sinks.
For most cases, that will be fine. What if, though, we want to do something with
that output ourselves? Can we inspect or even modify the logging output before it

APG.book Page 60 Saturday, October 11, 2003 1:45 PM

3.5 Using Callbacks 61

reaches its final destination? Of course. That’s where ACE_Log_Msg_
Callback comes in.

Using a callback object is quite easy. Follow these steps:

1. Derive a callback class from ACE_Log_Msg_Callback, and reimplement
the following method:

virtual void log (ACE_Log_Record &log_record);

2. Create an object of your new callback type.

3. To register the callback object with an ACE_Log_Msg instance, pass a
pointer to your callback object to the ACE_Log_Msg::msg_callback()
method.

4. Call ACE_Log_Msg::set_flags() to enable output to your callback
object.

Once registered and enabled, your callback object’s log() method will be
invoked with an ACE_Log_Record object any time ACE_Log_Msg::log()
is invoked. As it turns out, that is exactly what happens when an output-producing
ACE logging macro is used.

Some important caveats to remember when using the callback approach are
documented on the ACE_Log_Msg_Callback reference page. They bear
repeating here.

• Callback registration and enabling are specific to each ACE_Log_Msg
instance. Therefore, a callback set up in one thread won’t be used by any other
thread in your application.

• Callback objects are not inherited by the ACE_Log_Msg instances created for
any threads you create. So if you’re going to be using callback objects with
multithreaded applications, you need to take special care that each thread is
given an appropriate callback instance. It is possible to use a single object
safely: see the description of ACE_Singleton in Section 1.6.3.

• As with the OSTREAM caveat, be sure that you don’t delete a callback instance
that might still be used by the ACE_Log_Msg instance it’s registered with.

A simple callback implementation follows:

#include "ace/streams.h"
#include "ace/Log_Msg.h"
#include "ace/Log_Msg_Callback.h"
#include "ace/Log_Record.h"

class Callback : public ACE_Log_Msg_Callback
{

APG.book Page 61 Saturday, October 11, 2003 1:45 PM

62 Chapter 3: Using the ACE Logging Facility

public:
void log (ACE_Log_Record &log_record) {

log_record.print (ACE_TEXT (""), 0, cerr);
log_record.print (ACE_TEXT (""), ACE_Log_Msg::VERBOSE, cerr);

}
};

The program that uses it follows:

#include "ace/Log_Msg.h"
#include "Callback.h"

int ACE_TMAIN (int, ACE_TCHAR *[])
{

Callback *callback = new Callback;

ACE_LOG_MSG->set_flags (ACE_Log_Msg::MSG_CALLBACK);
ACE_LOG_MSG->clr_flags (ACE_Log_Msg::STDERR);
ACE_LOG_MSG->msg_callback (callback);

ACE_TRACE (ACE_TEXT ("main"));

ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IHi Mom\n")));
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

The program creates this output:

(1024) calling main in file `Use_Callback.cpp' on line 12
Sep 24 12:35:02.829 2003@@22396@LM_TRACE@(1024) calling main in fi
le `Use_Callback.cpp' on line 12

Hi Mom
Sep 24 12:35:02.830 2003@@22396@LM_DEBUG@ Hi Mom

Goodnight
Sep 24 12:35:02.830 2003@@22396@LM_INFO@ Goodnight
(1024) leaving main
Sep 24 12:35:02.830 2003@@22396@LM_TRACE@(1024) leaving main

The first log_record.print() simply prints the message we’ve always
seen. The second, however, uses the VERBOSE flag to provide much more infor-
mation. Both direct their output to the standard error stream.

APG.book Page 62 Saturday, October 11, 2003 1:45 PM

3.5 Using Callbacks 63

Once you have access to the ACE_Log_Record instance, you have control
to do anything you want. Let’s take a look at a bit more of the information
contained in ACE_Log_Record:

#include "ace/streams.h"
#include "ace/Log_Msg_Callback.h"
#include "ace/Log_Record.h"
#include "ace/SString.h"

class Callback : public ACE_Log_Msg_Callback
{
public:

void log (ACE_Log_Record &log_record)
{

cerr << "Log Message Received:" << endl;
unsigned long msg_severity = log_record.type ();
ACE_Log_Priority prio =
ACE_static_cast (ACE_Log_Priority, msg_severity);

const ACE_TCHAR *prio_name =
ACE_Log_Record::priority_name (prio);

cerr << "\tType: "
<< ACE_TEXT_ALWAYS_CHAR (prio_name)
<< endl;

cerr << "\tLength: " << log_record.length () << endl;

const time_t epoch = log_record.time_stamp ().sec ();
cerr << "\tTime_Stamp: "

<< ACE_TEXT_ALWAYS_CHAR (ACE_OS::ctime (&epoch))
<< flush;

cerr << "\tPid: " << log_record.pid () << endl;

ACE_CString data (">> ");
data += ACE_TEXT_ALWAYS_CHAR (log_record.msg_data ());

cerr << "\tMsgData: " << data.c_str () << endl;
}

};

The following output is created:

APG.book Page 63 Saturday, October 11, 2003 1:45 PM

64 Chapter 3: Using the ACE Logging Facility

Log Message Received:
Type: LM_TRACE
Length: 88
Time_Stamp: Wed Sep 24 12:35:09 2003
Pid: 22411
MsgData: >> (1024) calling main in file `Use_Callback2

.cpp' on line 12

Log Message Received:
Type: LM_DEBUG
Length: 40
Time_Stamp: Wed Sep 24 12:35:09 2003
Pid: 22411
MsgData: >> Hi Mom

Log Message Received:
Type: LM_INFO
Length: 40
Time_Stamp: Wed Sep 24 12:35:09 2003
Pid: 22411
MsgData: >> Goodnight

Log Message Received:
Type: LM_TRACE
Length: 48
Time_Stamp: Wed Sep 24 12:35:09 2003
Pid: 22411
MsgData: >> (1024) leaving main

As you can see, we have quite a bit of access to the ACE_Log_Record inter-
nals. We’re not limited to changing only the message text. We can, in fact, change
any of the values we want. Whether that makes any sense is up to your applica-
tion. Table 3.7 lists the attributes of ACE_Log_Record and what they mean.

3.6 The Logging Client and Server Daemons

Put simply, the ACE Logging Service is a configurable two-tier replacement for
UNIX syslog. Both syslog and the Windows Event Logger are pretty good at what
they do and can even be used to capture messages from remote hosts. But if you
have a mixed environment, they simply aren’t sufficient.

APG.book Page 64 Saturday, October 11, 2003 1:45 PM

3.6 The Logging Client and Server Daemons 65

The ACE netsvcs logging framework has a client/server design. On one host in
the network, you run the logging server that will accept logging requests from any
other host. On that and every host in the network where you want to use the
distributed logger, you invoke the logging client. The client acts somewhat like a
proxy by accepting logging requests from clients on the local system and
forwarding them to the server. This may seem to be a bit of an odd design, but it
helps prevent pounding the server with a huge number of client connections, many
of which may be transient. By using the proxy approach, the proxy on each host
absorbs a little bit of the pounding, and everyone is better off.

To configure our server and client proxy, we will use the ACE Service Config-
urator framework. The Service Configurator is an advanced topic that is covered
in Chapter 19. We will show you just enough here to get things off the ground.
Feel free to jump ahead and read a bit more about the Service Configurator now,
or wait and read it later.

To start the server, you need to first create a file server.conf with the
following content:

dynamic Logger Service_Object * ACE:_make_ACE_Logging_Strategy() "
-s foobar -f STDERR|OSTREAM|VERBOSE"

dynamic Server_Logging_Service Service_Object * netsvcs:_make_ACE_
Server_Logging_Acceptor() active "-p 20009"

Table 3.7. ACE_Log_Record Attributes

Attribute Description

type The log record type from Table 3.1

priority Synonym for type

priority_name The log record’s priority name

length The length of the log record, set by the creator of the
log record

time_stamp The timestamp—generally, creation time—of the log
record; set by the creator of the log record

pid ID of the process that created the log record instance

msg_data The textual message of the log record

msg_data_len Length of the msg_data attribute

APG.book Page 65 Saturday, October 11, 2003 1:45 PM

66 Chapter 3: Using the ACE Logging Facility

Note these lines are wrapped for readability. Your server.conf should
contain only two lines, each beginning with the word dynamic. The first line
defines the logging strategy to write the log output to standard error and the output
stream attached to a file named foobar. This line also requests verbose log
messages instead of a more terse format. (Section 3.8 discusses more ways to use
this service.) The second line of server.conf causes the server to listen for
client connections at TCP (Transmission Control Protocol) port 200091 on all
network interfaces available on your computer. You can now start the server with:

$ACE_ROOT/netsvcs/servers/main -f server.conf

The next step is to create the configuration file for the client proxy and start
the proxy. The file could be named client.conf and should look something
like this:

dynamic Client_Logging_Service Service_Object * netsvcs:_make_ACE_
Client_Logging_Acceptor() active "-p 20009 -h localhost"

Again, that’s all on one line. The important parts are -p 20009, which tells the
proxy which TCP port the server will be listening to—this should match the -p
value in your server.conf—and -h localhost, which sets the host name
where the logging server is executing. For our simple test, we are executing both
client and server on the same system. In the real world, you will most likely have
to change localhost to the name of your real logging server.

Although we provide the port on which the server is listening, we did not
provide a port value for clients of the proxy. This value is known as the logger key,
and its form and value change, depending on the capabilities of the platform the
client logger is built on. On some platforms, it’s a pipe; where that’s not possible,
it’s a loopback TCP socket at address localhost:20012. If you want your
client proxy to listen at a different address, you can specify that with the -k
parameter in client.conf.

You can now start the client logger with:

$ACE_ROOT/netsvcs/servers/main -f client.conf

Using the logging service in one of our previous examples is trivial:

1. Although nothing is particularly magic about the port 20009, a standard set of ports is typically
used by the ACE examples and tests. Throughout this text, we have tried to maintain consistency
with that set.

APG.book Page 66 Saturday, October 11, 2003 1:45 PM

3.6 The Logging Client and Server Daemons 67

#include "ace/Log_Msg.h"

int ACE_TMAIN (int, ACE_TCHAR *argv[])
{

ACE_LOG_MSG->open (argv[0],
ACE_Log_Msg::LOGGER,
ACE_DEFAULT_LOGGER_KEY);

ACE_TRACE (ACE_TEXT ("main"));

ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IHi Mom\n")));
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

As with the syslog example, we must use the open() method when we want
to use the logging service; set_flags() isn’t sufficient. Note also the open()
parameter ACE_DEFAULT_LOGGER_KEY. This has to be the same logger key
that the client logger is listening at; if you changed it with the -k option in
client.conf, you must specify the new value to open().

To summarize: On every machine on which you want to use the logging
service, you must execute an instance of the client logger. Each instance is config-
ured to connect to a single instance of the logging server somewhere on your
network. Then, of course, you execute that server instance on the appropriate
system.

For the truly adventurous, your application can communicate directly with the
logging server instance. This approach has two problems:

1. Your program is now more complicated because of the connection and logging
logic.

2. You run the risk of overloading the server instance because you’ve removed
the scaling afforded by the client proxies.

However, if you still want your application to talk directly to the logging server,
here’s a way to do so:

#include "ace/Log_Msg.h"
#include "Callback-3.h"

int ACE_TMAIN (int, ACE_TCHAR *[])
{

Callback *callback = new Callback;

APG.book Page 67 Saturday, October 11, 2003 1:45 PM

68 Chapter 3: Using the ACE Logging Facility

ACE_LOG_MSG->set_flags (ACE_Log_Msg::MSG_CALLBACK);
ACE_LOG_MSG->clr_flags (ACE_Log_Msg::STDERR);
ACE_LOG_MSG->msg_callback (callback);

ACE_TRACE (ACE_TEXT ("main"));

ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("%IHi Mom\n")));
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

This looks very much like our previous callback example. We use the callback
hook to capture the ACE_Log_Record instance that contains our message. Our
new Callback object then sends that to the logging server:

#include "ace/streams.h"
#include "ace/Log_Msg.h"
#include "ace/Log_Msg_Callback.h"
#include "ace/Log_Record.h"
#include "ace/SOCK_Stream.h"
#include "ace/SOCK_Connector.h"
#include "ace/INET_Addr.h"

#define LOGGER_PORT 20009

class Callback : public ACE_Log_Msg_Callback
{
public:

Callback ()
{

this->logger_ = new ACE_SOCK_Stream;
ACE_SOCK_Connector connector;
ACE_INET_Addr addr (LOGGER_PORT, ACE_DEFAULT_SERVER_HOST);

if (connector.connect (*(this->logger_), addr) == -1)
{

delete this->logger_;
this->logger_ = 0;

}
}

virtual ~Callback ()
{

APG.book Page 68 Saturday, October 11, 2003 1:45 PM

3.6 The Logging Client and Server Daemons 69

if (this->logger_)
{

this->logger_->close ();
}

delete this->logger_;
}

void log (ACE_Log_Record &log_record)
{

if (!this->logger_)
{

log_record.print
(ACE_TEXT (""), ACE_Log_Msg::VERBOSE, cerr);

return;
}

size_t len = log_record.length();
log_record.encode ();

if (this->logger_->send_n ((char *) &log_record, len) == -1)
{

delete this->logger_;
this->logger_ = 0;

}
}

private:
ACE_SOCK_Stream *logger_;

};

We’ve introduced some things here that you won’t read about for a bit. The
gist of what we’re doing is that the callback object’s constructor opens a socket to
the logging service. The log() method then sends the ACE_Log_Record
instance to the server via the socket. Because several of the ACE_Log_Record
attributes are numeric, we must use the encode() method to ensure that they are
in a network-neutral format before sending them. Doing so will prevent much
confusion if the byte ordering of the host executing your application is different
from that of the host executing your logging server.

APG.book Page 69 Saturday, October 11, 2003 1:45 PM

70 Chapter 3: Using the ACE Logging Facility

3.7 The LogManager Class

The preceding sections explained how to direct the logging output to several
places. We noted that you can change your mind at runtime and direct the logging
output somewhere else. Unfortunately, what you need to do when you change
your mind isn’t always consistent. Let’s take a look at a simple class that attempts
to hide some of those details:

class LogManager
{
public:

LogManager ();
~LogManager ();

void redirectToDaemon
(const ACE_TCHAR *prog_name = ACE_TEXT (""));

void redirectToSyslog
(const ACE_TCHAR *prog_name = ACE_TEXT (""));

void redirectToOStream (ACE_OSTREAM_TYPE *output);
void redirectToFile (const char *filename);
void redirectToStderr (void);
ACE_Log_Msg_Callback * redirectToCallback

(ACE_Log_Msg_Callback *callback);

// ...
};

The idea is pretty simple: An application will use the redirect* methods at
any time to select the output destination:

void foo (void);

int ACE_TMAIN (int, ACE_TCHAR *[])
{

LOG_MANAGER->redirectToStderr ();
ACE_TRACE (ACE_TEXT ("main"));
LOG_MANAGER->redirectToSyslog ();
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IHi Mom\n")));
foo ();
LOG_MANAGER->redirectToDaemon ();
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IGoodnight\n")));

return 0;
}

APG.book Page 70 Saturday, October 11, 2003 1:45 PM

3.7 The LogManager Class 71

void foo (void)
{

ACE_TRACE (ACE_TEXT ("foo"));
LOG_MANAGER->redirectToFile ("output.test");
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%IHowdy Pardner\n")));

}

“But wait,” you say. “Where did LOG_MANAGER come from?” This is an
example of the ACE_Singleton template, mentioned in Section 1.6.3. That’s
what we’re using behind LOG_MANAGER. ACE_Singleton simply ensures that
we create one single instance of the LogManager class at runtime, even if
multiple threads all try to create one at the same time. Using a singleton gives you
quick access to a single instance of an object anywhere in your application. To
declare our singleton, we add the following to our header file:

typedef ACE_Singleton<LogManager, ACE_Null_Mutex>
LogManagerSingleton;

#define LOG_MANAGER LogManagerSingleton::instance()

To deal with compilers that don’t do automatic template instantiation, we must
add the following to our .cpp file:

#if defined (ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION)
template class ACE_Singleton<LogManager, ACE_Null_Mutex>;
#elif defined (ACE_HAS_TEMPLATE_INSTANTIATION_PRAGMA)
#pragma instantiate ACE_Singleton<LogManager, ACE_Null_Mutex>
#elif defined (__GNUC__) && (defined (_AIX) || defined (__hpux))
template ACE_Singleton<LogManager, ACE_Null_Mutex> *

ACE_Singleton<LogManager, ACE_Null_Mutex>::singleton_;
#endif /* ACE_HAS_EXPLICIT_TEMPLATE_INSTANTIATION */

Our LogManager implementation is a straightforward application of the
things discussed earlier in this chapter:

LogManager::LogManager ()
: log_stream_ (0), output_stream_ (0)

{ }

LogManager::~LogManager ()
{

if (log_stream_)
log_stream_->close ();

delete log_stream_;
}

APG.book Page 71 Saturday, October 11, 2003 1:45 PM

72 Chapter 3: Using the ACE Logging Facility

void LogManager::redirectToSyslog (const ACE_TCHAR *prog_name)
{

ACE_LOG_MSG->open (prog_name, ACE_Log_Msg::SYSLOG, prog_name);
}

void LogManager::redirectToDaemon (const ACE_TCHAR *prog_name)
{

ACE_LOG_MSG->open (prog_name, ACE_Log_Msg::LOGGER,
ACE_DEFAULT_LOGGER_KEY);

}

void LogManager::redirectToOStream (ACE_OSTREAM_TYPE *output)
{

output_stream_ = output;
ACE_LOG_MSG->msg_ostream (this->output_stream_);
ACE_LOG_MSG->clr_flags

(ACE_Log_Msg::STDERR | ACE_Log_Msg::LOGGER);
ACE_LOG_MSG->set_flags (ACE_Log_Msg::OSTREAM);

}

void LogManager::redirectToFile (const char *filename)
{

log_stream_ = new std::ofstream ();
log_stream_->open (filename, ios::out | ios::app);
this->redirectToOStream (log_stream_);

}

void LogManager::redirectToStderr (void)
{

ACE_LOG_MSG->clr_flags
(ACE_Log_Msg::OSTREAM | ACE_Log_Msg::LOGGER);

ACE_LOG_MSG->set_flags (ACE_Log_Msg::STDERR);
}

ACE_Log_Msg_Callback *
LogManager::redirectToCallback (ACE_Log_Msg_Callback * callback)
{

ACE_Log_Msg_Callback *previous =
ACE_LOG_MSG->msg_callback (callback);

if (callback == 0)
ACE_LOG_MSG->clr_flags (ACE_Log_Msg::MSG_CALLBACK);

else
ACE_LOG_MSG->set_flags (ACE_Log_Msg::MSG_CALLBACK);

return previous;
}

APG.book Page 72 Saturday, October 11, 2003 1:45 PM

3.8 Runtime Configuration with the ACE Logging Strategy 73

The primary limitation of the LogManager class is the assumption that
output will go to only one place at a time. For our trivial examples, that may be
sufficient but could be a problem for a real application. Modifying the LogMan-
ager class to overcome this should be a fairly easy task, and we leave that to the
reader.

3.8 Runtime Configuration with the ACE Logging Strategy

Thus far, all our decisions about what to log and where to send the output have
been determined at compile time. In many cases, it is unreasonable to require a
recompile to change the logging options. We could, of course, provide parameters
or a configuration file to our application, but we would have to spend valuable
time writing and debugging that code. Fortunately, ACE has already provided us
with a convenient solution in the form of the ACE_Logging_Strategy object.

Consider the following file:

dynamic Logger Service_Object * ACE:_make_ACE_Logging_Strategy()
"-s log.out -f STDERR|OSTREAM -p INFO"

We’ve seen this kind of thing before when we were talking about the distributed
logging service. In this case, we’re instructing the ACE Service Configurator to
create and configure a logging strategy instance just like the distributed logging
server. Again, the Service Configurator is an advanced topic with many exciting
features2 and is covered in Chapter 19.

The following sample application uses the preceding file:

int ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{

if (ACE_Service_Config::open (argc,
argv,
ACE_DEFAULT_LOGGER_KEY,
1,
0,
1) < 0)

2. One of the most exciting is the ability to reconfigure the service object while the application is
running. In the context of our logging strategy, this means that you can change the -p value to
reconfigure the logging level without stopping and restarting your application!

APG.book Page 73 Saturday, October 11, 2003 1:45 PM

74 Chapter 3: Using the ACE Logging Facility

ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("%p\n"),
ACE_TEXT ("Service Config open")),

1);
ACE_TRACE (ACE_TEXT ("main"));
ACE_DEBUG ((LM_NOTICE, ACE_TEXT ("%t%IHowdy Pardner\n")));
ACE_DEBUG ((LM_INFO, ACE_TEXT ("%t%IGoodnight\n")));

return 0;
}

The key is the call to ACE_Service_Config::open(), which is given
our command line parameters. By default it will open a file named svc.conf,
but we can specify an alternative by specifying -f someFile. In either case,
the file’s content would be something like the preceding, which tells the logging
service to direct the output to both STDERR and the file log.out.

Be careful that you call ACE_Service_Config::open() as shown
rather than with the default parameters. If the final parameter is not 1, the
open() method will restore the logging flags to their preopen values. Because
the logging service loads its configuration and sets the logging flags from within
the service configuration’s open(), you will be unpleasantly surprised to find
that the logging strategy had no effect on the priority mask once open()
completes.

Recall that, by default, all logging severity levels are enabled at a processwide
level. If you specify -p INFO in your config file, you will probably be surprised
when you get other logging levels also; they were already enabled by default. To
get what you want, be sure to use the disable flags, such as ~INFO, as well; these
are listed in Table 3.8.

One of the most powerful features of the logging strategy is the ability to
rotate the application’s log files when they reach a specified size. Use the -m
parameter to set the size and the -N parameter to set the maximum number of files
to keep. Authors of long-running applications will appreciate this, as it will go a
long way toward preventing rampant disk space consumption.

Table 3.8 lists all the ACE Logging Strategy options that can be specified and
their values. The possible values for -p and -t are the same as those listed in
Table 3.1, but without the LM_ prefix. Any value can be prefixed with ~ to omit
that log level from the output. Multiple flags can be OR’d (|) together as needed.

APG.book Page 74 Saturday, October 11, 2003 1:45 PM

3.9 Summary 75

3.9 Summary

Every program needs to have a good logging mechanism. ACE provides you with
more than one way to handle such things. Consider your application and how you
expect it to grow over time. Your choices range from the simple ACE_DEBUG
macros to the highly flexible logging service. You can run “out of the box” or
customize things to fit your specific environment. Take the time to try out several
approaches before settling on one. With ACE, changing your mind is easy.

Table 3.8. ACE Logging Strategy Configuration Options

Option Arguments and Meaning

-f Specify ACE_Log_Msg flags (OSTREAM, STDERR, LOGGER, VER-
BOSE, SILENT, VERBOSE_LITE) used to control logging.

-i The interval, in seconds, at which the log file size is sampled (default is 0;
do not sample by default).

-k Specify the rendezvous point for the client logger.

-m The maximum log file size in Kbytes.

-n Set the program name for the %n format specifier.

-N The maximum number of log files to create.

-o Request the standard log file ordering (keeps multiple log files in num-
bered order). Default is not to order log files.

-p Pass in the processwide priorities to either enable (DEBUG, INFO, WARN-
ING, NOTICE, ERROR, CRITICAL, ALERT, EMERGENCY) or to disable
(~DEBUG, ~INFO, ~WARNING, ~NOTICE, ~ERROR, ~CRITICAL,
~ALERT, ~EMERGENCY).

-s Specify the file name used when OSTREAM is specified as an output tar-
get.

-t Pass in the per instance priorities to either enable (DEBUG, INFO, WARN-
ING, NOTICE, ERROR, CRITICAL, ALERT, EMERGENCY) or to disable
(~DEBUG, ~INFO, ~WARNING, ~NOTICE, ~ERROR, ~CRITICAL,
~ALERT, ~EMERGENCY).

-w Cause the log file to be wiped out on both start-up and reconfiguration.

APG.book Page 75 Saturday, October 11, 2003 1:45 PM

APG.book Page 76 Saturday, October 11, 2003 1:45 PM

