
1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

�475

Index

Note: Page numbers followed by f indicate figures and illustrations.

A
abstract class

definition of, 10, 88n
generalization of, 88
source code for, 11–12

Abstract Client
in Broker Pattern, 398
in Data Bus Pattern, 380
in Observer Pattern, 372
in Proxy Pattern, 388–389

Abstract Data class, in Data Bus Pattern,
379–380

abstract domains, 142–143, 143f, 144,
148

Abstract Hardware Domain, in Five-Layer
Architecture Pattern, 150

Abstract Instruction class, in Virtual
Machine Pattern, 178

Abstract Interrupt Handler, in Interrupt
Pattern, 216

abstract machines, in Virtual Machine
Pattern, 176–177

Abstract OS Domain, in Five-Layer
Architecture Pattern, 150

Abstract Proxy
in Broker Pattern, 398
in Proxy Pattern, 389–390

Abstract Server
in Broker Pattern, 398
in Proxy Pattern, 390

Abstract Subject
in Data Bus Pattern, 380
in Observer Pattern, 372–373

Abstract Thread class
in Critical Section Pattern, 310
in Cyclic Executive Pattern, 234
in Dynamic Priority Pattern, 253
in Highest Locker Pattern, 324–325
in Priority Ceiling Pattern, 331–333
in Priority Inheritance Pattern, 314–315
in Round Robin Pattern, 239
in Static Priority Pattern, 245

Abstract Transformation class, in Channel
Architecture Pattern, 159

abstraction, 21
for complex systems, 164, 173
in distribution architecture, 354
in physical architecture, 35f, 64–67

«access» stereotype, 24
action(s)

definition of, 8, 32
execution order of, 34
semantics of, 33
types of, 32

action language, specifying, 33
ActionSequence, 32
«active» class

in components, 139
OS and, 92

«active» objects
in architectural design, 123
in concurrency implementation, 92
rendezvous and, 92
semaphores for, 92
sizing, 31, 31f
strategies for reification of, 72–74

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 475

«active» objects (cont.)
threads managed by, 139, 204–206,

205f
activities

definition of, 33
in processes, 98, 99f
semantics of, 33
types of, 36

activity diagrams
for algorithmic decomposition, 124
for architectural views, 67
for behavior, 121, 122, 124
function of, 6
notation for, 42f, 472
for requirements detailing, 120
for specification, 119
uses of, 41

actors, 30–31, 30f, 49
actual parameter, 22
Actuation Channel(s)

in Heterogeneous Redundancy Pattern,
429

in live-lock, 448
in Monitor-Actuator Pattern, 433
monitoring, 432, 438–439
in Safety Executive Pattern, 452
in Sanity Check Pattern, 439–440
in Triple Modular Redundancy Pattern,

423
in Watchdog Pattern, 445

Actuation Data Source
in Monitor-Actuator Pattern, 433
in Sanity Check Pattern, 440
in Watchdog Pattern, 446

Actuation Validation component
in Heterogeneous Redundancy Pattern,

427–428
in Homogenous Redundancy Pattern,

416
Actuator actor

in Heterogeneous Redundancy Pattern,
428–429

in Monitor-Actuator Pattern, 433
in Protected Single Channel Pattern,

410–411
in Safety Executive Pattern, 452
in Sanity Check Pattern, 440

�476 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

in Triple Modular Redundancy Pattern,
423

in Watchdog Pattern, 446
Actuator Monitor Sensor

in Monitor-Actuator Pattern, 434
in Sanity Check Pattern, 440

adapter pattern, 88
advanced association, notation for, 460
advanced sequence diagram, notation for,

464
aggregation, 15–16

implementation of, 89
notation for, 15–16, 460

algorithmic analysis, in System Engineer-
ing phase, 120

algorithmic decomposition, activity
diagrams for, 124

allocation plan, in Static Allocation Pattern,
263

analysis
definition of, 56
vs. design, 118–119, 127
and functional requirements, 56
purpose of, 118

analysis models
vs. design models, 122
optimization of (See design patterns)
purpose of, 122

analysis pattern, 127
Analysis phase, 58–59, 112, 112f, 118–122
and-states

concurrency with, 37
notation for, 470
vs. or-states, 36, 37, 37f
synchronization of, 37–38

API (application program interface), in
Microkernel Architecture Pattern, 153

application
creation of, with MDA, 85
portability of, 176–177
precompiling of, 182

Application, in Virtual Machine Pattern, 178
Application Control Block, in Virtual

Machine Pattern, 178
Application Domain, in Five-Layer

Architecture Pattern, 148
application model, UML for, 6

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 476

application program interface (API), in
Microkernel Architecture Pattern, 153

application protocol, 354
architectural design

architectural views in, 137–140
in design phase, 59
in Systems Engineering phase, 120

architectural design patterns
for architectural views elaboration, 123
scope of, 51–52, 128

Architectural Design phase
architectural views in, 123
integration test plan in, 125

architectural views
in architectural design, 123, 137–140
definition of, 52
elaboration of, 123
patterns and, 60
in ROPES process, 67, 68f

architecture
aspects of, 52
components as elements of, 70
definition of, 56
design and, 56
evaluation of, 118
extension of, for virtual machine,

181–182
integration and test of, 125
prototype focus on, 111

artifacts, in processes, 98–99, 99f
association(s), 13–15

advanced, notation for, 459
definition of, 13
in domain hierarchies, 62–63
implementation of, 17, 89–91, 90f
in layered architecture, 146
notation for, 13, 14f, 460
pointers for, 279
in ROOM Pattern, 197
types of, 13

association label, 13, 14f
asymmetric architecture

deployment diagrams for, 81
distribution implementation for, 92–93
objects in, 75

asymmetric distribution architecture,
354

�Index 477

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

asynchronous communication, in Message
Queuing Pattern, 208–209

asynchronous event transfer, implementa-
tion of, 36

asynchronous rendezvous, 92, 208–209
attributes

definition of, 7
in detailed design, 124
function of, 12
inheritance of, 20
in model execution, 105

B
«becomes» stereotype, 82
behavior

activity diagrams for, 121, 122
control law diagrams for, 121
sequence diagrams for, 122
statecharts for, 122
in UML, 84

behavioral aspect, of models, 6
behavioral design patterns, use of, 128
BehavioralFeatures, in UML metamodel,

32
«bind» stereotype, 21, 24
Binding dependency, 23. See also «bind»

stereotype
bit-dominance protocols, throughput of, 77
Blocked Queue

in Dynamic Priority Pattern, 253–254
in Static Priority Pattern, 245

blocking, of tasks, 303–305, 304f. See also
chain blocking; priority inversion

Boundary Object, in Guarded Call Pattern,
223

bounded priority inversion, 314, 323, 330
branch pseudostate, 38, 39f
Broker, in Broker Pattern, 398
broker architecture, distributed objects in,

75
Broker Pattern, 395–402

abstract of, 395–396
application of, 395
collaboration roles in, 398–400
consequences in, 400, 401f
CORBA in, 83, 400–402, 401f

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 477

Broker Pattern (cont.)
implementation of, 400–402
patterns related to, 402
problem addressed by, 396
sample model of, 402, 402f–403f
for “soft” real-time systems, 76–77
structure of, 396, 397f

Buffered Ptr, in Garbage Compactor
Pattern, 294–295

C
C programming language

associations in, 89–91
classes in, 86–87
interfaces in, 87–88
logical models in, 91
member functions in, 86–87

C++ programming language
associations in, 89–91
classes in, 86–87
interfaces in, 87–88
logical models in, 91
name mangling in, 88–89
polymorphism in, 88
Pool Allocation Pattern in, 269–270

«call» stereotype, 24
CallAction, 32
Callback object, in Rendezvous Pattern,

229
CallEvent, 34
CAN bus protocol, 77, 355
Capsule, in ROOM Pattern, 194–195, 196
CBD (Component-Based Development),

28–29
in component-based architecture,

189–190
CDMA (Collision Detect Multiple Access),

77, 355
chain blocking, 317, 319f, 323
ChangeEvent, 34
channel(s)

in Channel Architecture Pattern, 159
definition of, 157
multiple (See multiple channels)
parallel, 411, 421–422
in Protected Single Channel Pattern, 411

�478 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

serial, 411
single, for safety and reliability, 410

Channel Architecture Pattern, 157–163
abstract of, 157–158
application of, 157
collaboration roles in, 159–160
consequences in, 160
implementation of, 160–161
patterns related to, 161
problem addressed by, 158
sample model of, 161–163, 162f
structure of, 158–159, 159f

checksum, for message integrity, 78
choice point pseudostate, 39f, 40
class(es). See also struct(s); subclasses;

superclasses
abstract (See abstract class)
in C-based languages, 86–87
vs. components, 28
definition of, 8
vs. interface, 12
in layered architecture, 145
in logical architecture, 138
notation for, 458
vs. objects, 6
parameterized, 22, 458
semantics of, 25
in subsystems, 139
in Subsystems and Components View,

91
class diagrams

for architectural views, 67
basic, 8, 9f
collaborations in, 122
for interfaces, 121
notation for, 458–462
purpose of, 24–25
source code for, 10–12
for structure, 123
for subsystems (See subsystem diagram)

classifiers
notation for, 462
in UML metamodel, 32

client(s)
data shared between, 377
notification of, 370–371
with unknown properties, 395–396

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 478

Client actor
in Fixed Size Buffer Plan, 276
in Garbage Collection Pattern, 288
in Garbage Compactor Pattern, 295
in Microkernel Architecture Pattern, 153
in Pool Allocation Pattern, 267
in Remote Method Call Pattern, 364–365
in Smart Pointer Pattern, 281

Client Interface, in Component-Based
Architecture Pattern, 187

Client Stub, in Remote Method Call
Pattern, 365

Client Thread
in Guarded Call Pattern, 223
in Rendezvous Pattern, 229

Client-side Proxy
in Broker Pattern, 398–399
in Proxy Pattern, 390

closed layered architecture, classes in, 145
collaboration(s). See also design patterns

in activity diagrams, 124
in analysis phase, limiting, 121–122
in class diagrams, 122, 124
definition of, 6, 51, 74, 135
in layered architecture, 146, 147f
in mechanistic design, 123
notation for, 131, 463
parameterized, 51, 131
in sequence diagrams, 122, 123, 124
in statecharts, 124
in System Engineering phase, 120
in thread reification, 74
for use cases, 121

Collaboration, in Component-Based
Architecture Pattern, 187

collaboration architecture, 354
collaboration diagram

definition of, 43, 43f
function of, 6
notation for, 463

Collectable class, in Garbage Collection
Pattern, 288

Collision Detect Multiple Access (CDMA),
77

COM+, 91–92, 189
COM (Component Object Model), 189
commercial component framework, 91–92

�Index 479

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

Commercial Off The Shelf (COTS)
components, 189

Commercial Off The Shelf (COTS)
hardware, 66

common mode fault, 408
Common Warehouse Model (CWM), 85
communication component, for

distribution implementation, 92–93
Communication Domain, in Five-Layer

Architecture Pattern, 149–150
communication infrastructure, purpose of,

356
communication protocols

binding, in CORBA, 83–84
in distribution architecture, 354
throughput and, 77–78

Comparator, in Triple Modular Redundancy
Pattern, 423

“completion” event, 36
component(s)

«active» classes in, 139
as architectural elements, 70
definition of, 6, 28, 184
in deployment models, 30
implementation of, 91–92
sizing, 31, 31f
in subsystem diagrams, 123
and subsystems, 28, 65f, 70–71, 139, 185
use of, 28–29

Component, in Component-Based
Architecture Pattern, 187

component architecture. See Subsystem
and Component View

component diagram
in architectural design, 123
notation for, 466
for Subsystem and Component View, 71,

71f
Component Framework, in Component-

Based Architecture Pattern, 187
Component Loader, in Component-Based

Architecture Pattern, 187
Component Manager, in Component-Based

Architecture Pattern, 187
Component Object Model (COM), 189
Component Repository, in Component-Based

Architecture Pattern, 188

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 479

Component View. See Subsystem and
Component View

Component-Based Architecture Pattern,
184–192

abstract of, 185–186
application of, 184–185
benefits of, 185
collaboration roles in, 187–188
consequences in, 188–189
implementation of, 189–190
patterns related to, 190–191
problem addressed by, 186
sample model of, 191–192, 191f, 193f
structure of, 186f

Component-Based Development (CBD),
28–29

in component-based architecture,
189–190

composite objects, in Static Allocation
Pattern, 263

composition, 16–17
in Hierarchical Control Pattern, 174
implementation of, 89
notation for, 14f, 16–17, 460
of passive objects, 139, 204, 205f
in Subsystems and Components View, 91

concept reuse, with patterns, 126
Concrete Client

in Broker Pattern, 399
in Data Bus Pattern, 381
in Observer Pattern, 373
in Proxy Pattern, 390

Concrete Data, in Data Bus Pattern, 380
Concrete Instruction class, in Virtual

Machine Pattern, 178
Concrete Interrupt Handler, in Interrupt

Pattern, 216
Concrete Server

in Broker Pattern, 399
in Proxy Pattern, 390

Concrete Subject
in Data Bus Pattern, 381
in Observer Pattern, 373

Concrete Thread
in Critical Section Pattern, 310
in Cyclic Executive Pattern, 234
in Dynamic Priority Pattern, 254

�480 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

in Highest Locker Pattern, 325
in Priority Ceiling Pattern, 333
in Priority Inheritance Pattern, 315
in Round Robin Pattern, 239
in Static Priority Pattern, 245

Concrete Transformation class, in Channel
Architecture Pattern, 160

concurrency
with and-states, 37
definition of, 72
implementation of, 92
management of, 204–206
modeling, 72
in physical architecture abstraction, 66
in sequence diagrams, 44–47, 46f
threads in, 204–206, 205f

Concurrency and Resource View
in architectural design, 123, 139
implementation of, 92
purpose of, 72, 139
task diagram for, 72, 73f
thread reification in, strategies for,

72–74
concurrency architecture. See Concurrency

and Resource View
concurrency patterns, 204–206
conditional pseudostate, 38, 39f
Configuration Items, packages as, 26
configuration management, defining, 117
Connector, in ROOM Pattern, 196
Consequences, in design patterns, 51, 59,

130
constraints

notation for, 462
for requirements detailing, 120
in System Engineering phase, 121

container class, for association implemen-
tation, 89–91, 90f

Control Interface, in Hierarchical Control
Pattern, 170–171, 172

control law diagrams
for behavior, 121
for requirements detailing, 120

control law specification, in System
Engineering phase, 120

Controller role, in Hierarchical Control
Pattern, 172

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 480

CORBA (Common Object Request Broker
Architecture)

binding with, 83
in Broker Pattern, 83, 400–402, 401f
for component implementation, 189
definition of, 83

core services, 151–152, 155
COTS (Commercial Off The Shelf)

components, 189
COTS hardware, 66
«create» stereotype, 24
CreateAction, 32
Critical Section Pattern, 308–313

abstract of, 308–309
application of, 308
collaboration roles in, 310–311
consequences in, 311
implementation of, 311–312
patterns related to, 312
problem addressed by, 309
sample model of, 312–313, 312f–313f
structure of, 309f

criticality, 242
CWM (Common Warehouse Model), 85
Cyclic Executive Pattern, 232–237

abstract of, 232–233
application of, 232
collaboration roles in, 234
consequences in, 234–235
implementation of, 235–236
patterns related to, 236–237, 236f
problem addressed by, 233
structure of, 233, 233f

cyclic redundancy check (CRC), for
message integrity, 78, 355

D
dangling pointers, 280
Data Bus, in Data Bus Pattern, 381–382
Data Bus Pattern, 377–387

abstract of, 377
application of, 377
collaboration roles in, 379–382
consequences in, 383
implementation of, 383
patterns related to, 383–384

�Index 481

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

problem addressed by, 377
sample model of, 384–387, 385f, 386f
structure of, 377–378, 378f, 379f

Data class
in Broker Pattern, 399
in Observer Pattern, 373
in Proxy Pattern, 390

Data Client instance, in Shared Memory
Pattern, 357

Data ID: ID Type attribute, in Data Bus
Pattern, 380

Data Integrity Checks
in Monitor-Actuator Pattern, 434
in Sanity Check Pattern, 440

Data Name: String attribute, in Data Bus
Pattern, 380

data sharing, between processors, 356–357
Data Source instance, in Shared Memory

Pattern, 358
data stream. See channel(s)
Data Transformation component

in Heterogeneous Redundancy Pattern,
429

in Homogenous Redundancy Pattern, 417
in Monitor-Actuator Pattern, 434
in Protected Single Channel Pattern,

411–412
in Safety Executive Pattern, 452
in Sanity Check Pattern, 440
in Triple Modular Redundancy Pattern,

423
in Watchdog Pattern, 447

Data Transport Domain, in Five-Layer
Architecture Pattern, 149–150

Data Type, in Data Bus Pattern, 382
Data Units attribute, in Data Bus Pattern,

380
Data Validation component

in Heterogeneous Redundancy Pattern,
429

in Homogenous Redundancy Pattern,
417

in Protected Single Channel Pattern, 412
datum

in Channel Architecture Pattern, 160
in Triple Modular Redundancy Pattern,

424

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 481

DCOM, 189
deadlock

avoiding, 330, 338, 345
definition of, 305
detecting, 447–448
in resource management, 305–308, 307f

debugging
in model execution, 103–104, 104f
in virtual machines, 183

decomposition
algorithmic, activity diagrams for, 124
hardware-software, deployment

diagram for, 121
Recursive Containment Pattern for, 164

deep history pseudostate, 39f, 40
default pseudostate, 39f, 40
defects

strategic, expense of, 106
in waterfall lifecycle, 110

dependency, 23f
in domain hierarchies, 62–63
types of, 21

deployment, prototype focus on, 111
deployment diagram

in architectural design, 123
for asymmetric architecture, 81
for Deployment View, 81, 82f
for hardware-software decomposition,

121
notation for, 466
for symmetric architecture, 81

deployment model, 30
Deployment View

in architectural design, 123, 139
asymmetric architecture in, 81
deployment diagram for, 81, 82f
implementation of, 93
purpose of, 81, 139

design
vs. analysis, 118–119, 127
in analysis phase, 121–122
and architecture, 56
prototype focus on, 111
qualities of service and, 56

design automation tools, vs. drawing
tools, 7

design faults. See systematic faults

�482 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

design model, vs. analysis model, 122
design patterns. See also frameworks;

pattern entries
vs. analysis model, 50
architectural (See architectural design

patterns)
aspects of, 51, 129–130
concept of, 126
definition of, 50, 59, 127, xix
evaluation of, 133
index of, 473–474
instantiation of, 133, 134–135, 135f
mechanistic, 51–52, 123
mixing, 60
as parameterized collaborations, 51
qualities of service in, 50–51, 59
reading, 130
structure of, 129–130
testing, 133

Design phase, 59, 112–113, 112f
DestroyAction, 32
Detailed Design phase, 124
«device» node stereotype, 30
diagrams, mission of, 25
directionality, notation for, 14f, 15
distribution architecture. See Distribution

View
Distribution View, 76f

abstraction in, 354
in architectural design, 123, 139–140
asymmetric, 354
implementation of, 92–93
importance of, 354
performance in, 75–77
purpose of, 75, 139
reliability in, 78–79
selection of, 75
symmetric, 354
throughput in, 77–78

diverse redundancy. See heterogeneous
redundancy

domain(s)
abstract, 142–143, 143f, 144, 148
construction of, in Recursive Contain-

ment Pattern, 166
definition of, 60, 138
generalization in, 63

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 482

hierarchies of, 62–63, 62f
in logical architecture, 60–63, 138
modeling, 138
in object analysis, 121
vs. packages, 60
in physical architecture, 63, 64f
purpose of, 138
in subsystems, 138

domain diagrams, for logical architecture,
60–62, 61f

domain model, of layered architecture, 146,
147f

domain role
in 5-Layered Architecture Pattern,

149–150
in Layered Pattern, 145

«domain» stereotype
in logical architecture, 60, 138
in logical model implementation, 91
mission of, 60
in package use, 26

Domain View, in architectural design, 138
drawing tools, vs. design automation tools,

7
dynamic memory allocation

difficulties with, 260–262
fragmentation in, 261–262, 273–274

dynamic model-code associativity, in
ROPES process, 105

Dynamic Priority Pattern, 251–257
abstract of, 251–252
application of, 251
collaboration roles in, 252–255
consequences in, 255–256
implementation of, 256
patterns related to, 256
problem addressed by, 252
sample model of, 256–257, 257f
structure of, 252, 253f

E
EJB (Enterprise Java Beans), 189
Element, in Recursive Containment Pattern,

164
End Port, in ROOM Pattern, 196
engineering approach, selection of, 117

�Index 483

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

Enterprise Java Beans (EJB), 189
entry actions, guards and, 36
errors. See systematic faults
essential properties, 118
event(s)

interrupts for, 214
parameters of, 35–36
types of, 34

event loop, in Cyclic Event Pattern, 233
event source strategy, for thread reification,

73
event-name, 34
Example, in design patterns, 51
executing model. See model execution
exit actions, guards and, 36
extends, in use cases, 48
extension

of architecture, 181–182
definition of, 20–21
of frameworks, 129

External Services component, in
Microkernel Architecture Pattern, 154

Extreme Programming (XP) approach, in
nanocycle, 112

F
Façade Pattern, 11
Fail-safe Processing Channel, in Safety

Executive Pattern, 452
fail-safe state, 406–409
failures. See random faults
faults

handling, 408–409
redundancy and, 408
transient, 413, 436
types of, 406

feedback fault correction, 408
feedforward fault correction, 408–409
final pseudostate, 38–39, 39f
finite state machine (FSM), 34
Five-Layer Architecture Pattern, 148–151

abstract of, 148
application of, 148
collaboration roles in, 148–150
consequences in, 150
problem addressed by, 148

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 483

Five-Layer Architecture Pattern (cont.)
sample model of, 150–151, 151f
structure of, 148, 149f

Fixed Size Buffer Plan, 273–278
abstract for, 273
application of, 273
collaboration roles in, 276
consequences in, 277
implementation of, 277
patterns related to, 277
problem addressed by, 274
sample model of, 277, 278f
structure of, 274–275, 275f

fork pseudostate, 39, 39f
formal behavioral specification language, 49
formal parameter, 21–22
Formatter, in Remote Method Call Pattern,

365
fragmentation. See memory fragmentation
frameworks

commercial, 109
definition of, 109, 128
disadvantages of, 129
purpose of, 109
in ROPES process, 109
use of, 128–129

Free Block List
in Fixed Size Buffer Plan, 276
in Garbage Collection Pattern, 288
in Garbage Compactor Pattern, 295

«friend» stereotype, 24
FSM (finite state machine), 34
Functional Interface, in Hierarchical Control

Pattern, 170–171, 172
functional requirements

analysis and, 56
definition of, 47
in UML, 84

G
Garbage Collection Pattern, 286–292

abstract of, 286
application of, 286
collaboration roles in, 288
consequences in, 288–289
implementation of, 289–290

�484 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

patterns related to, 290
problem addressed by, 286–287
sample model of, 290–292, 291f, 292f
structure of, 287, 287f

Garbage Collector, in Garbage Collection
Pattern, 288

Garbage Compactor, in Garbage Compactor
Pattern, 295

Garbage Compactor Pattern, 293–299
abstract of, 293
collaboration roles in, 294–296
consequences in, 296–297
implementation of, 297
patterns related to, 297
problem addressed by, 293
sample model of, 297–299, 298f, 299f
structure of, 293–294, 294f

generalization, 22f
of abstract classes, 88
definition of, 48
in domains, 63
of frameworks, 128–129
function of, 18
notation for, 461
virtual methods for, 89

Generic Pool Manager, in Pool Allocation
Pattern, 267–268

Global Data object, in Shared Memory
Pattern, 358

guard
for and-state synchronization, 37–38
definition of, 36

Guarded Call Pattern, 221–227
abstract of, 221–222
application of, 221
collaboration roles in, 223–224
consequences in, 224
implementation of, 224–225
patterns related to, 225
problem addressed by, 222
sample model for, 225–227, 226f
structure of, 222, 222f

H
Hamming codes, for message integrity,

78–79, 78f

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 484

hard real-time systems, performance in,
75–76

hardware
in Protected Single Channel Pattern, 410
in Shared Memory Pattern, 356, 359

Hardware Semaphore, in Shared Memory
Pattern, 358–359

Heap
in Garbage Collection Pattern, 288
in Garbage Compactor Pattern, 295

Heap Manager, in Fixed Size Buffer Plan, 276
heterogeneous redundancy, 79, 80f
Heterogeneous Redundancy Pattern,

426–431
abstract of, 426–427
application of, 426
collaboration roles in, 427–429
consequences in, 429–430
implementation of, 430
patterns related to, 430
problem addressed by, 427
sample model of, 430–431, 431f
structure of, 427, 428f

Hierarchical Control Pattern, 170–176
abstract of, 170–171
application of, 170
collaboration roles in, 172–173
consequences in, 173
implementation of, 173–174
patterns related to, 174
problem addressed by, 171
sample model of, 175–176, 175f
structure of, 171, 172f

Highest Locker Pattern, 323–328
abstract of, 323
application of, 323
collaboration roles in, 324–326
consequences in, 326–327
implementation of, 327
patterns related to, 328
problem addressed by, 323
sample model of, 328, 329f
structure of, 323–324, 324f

Homogenous Redundancy Pattern,
415–421

abstract of, 416
collaboration roles in, 416–418

�Index 485

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

consequences in, 418–419
faults in, 415, 418–419
implementation of, 419
patterns related to, 419
problem addressed by, 416
sample model of, 419–421, 420f
structure of, 416, 417f

I
ID Type, in Data Bus Pattern, 382
IDL (Interface Description Language)

in Broker Pattern, 400–402, 401f
in component implementation, 190
use of, 84

implementation, prototype focus on, 111
implementation diagrams, notation for,

466
«import» stereotype, 24
includes, in use cases, 48
Info Type: Data Type attribute, in Data Bus

Pattern, 380
infrastructure standards, 84. See also

CORBA
inheritance

of attributes, 20
in generalization, 18

initial pseudostate, 39f, 40
Input Filter class, in Channel Architecture

Pattern, 160
Input Processing component

in Heterogeneous Redundancy Pattern,
429

in Homogenous Redundancy Pattern,
417

in Protected Single Channel Pattern, 412
in Safety Executive Pattern, 452
in Triple Modular Redundancy Pattern,

423
Input Sensor actor

in Heterogeneous Redundancy Pattern,
429

in Homogenous Redundancy Pattern, 418
in Protected Single Channel Pattern, 412
in Safety Executive Pattern, 452
in Triple Modular Redundancy Pattern,

423

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 485

instance, 8, 139
instance multiplicity, 17
«instantiate» stereotype, 24
instantiation

of frameworks, 128
of patterns, 133

Instruction Engine, in Virtual Machine
Pattern, 178

integration and test phase, 59. See also Test
phase; Translation phase

integration plan, for architecture testing, 125
Integrity Checks component, in Watchdog

Pattern, 447
interaction(s)

definition of, 41–43
function of, 6
ordering, 44–47, 46f

interaction diagrams, 6
interaction protocols, in System

Engineering phase, 120
interface(s)

vs. class, 12
class diagrams for, 121
in component-based architecture, 187, 188
definition of, 8
in Hierarchical Control Pattern, 170–171,

174
implementation of, 87–88
management of, in Component-Based

Architecture Pattern, 188
in ROOM Pattern, 194–195, 196–197
in Subsystems and Components View, 91

interface class, as interface substitute, 88
interface compliance

generalization for, 18
interfaces for, 10

Interface Description Language. See IDL
interface device strategy, for thread

reification, 74
Interface Pattern, 11
Internal Services component

implementation of, 155
in Microkernel Architecture Pattern, 154

interrupt handlers. See Abstract Interrupt
Handler; Concrete Interrupt Handler

Interrupt Pattern, 214–220
abstract of, 214

�486 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

application of, 214
collaboration roles in, 216–217
consequences in, 217–218
implementation of, 218–219
patterns related to, 219–220
problem addressed by, 214
sample model of, 220, 220f–221f
structure of, 214–215, 215f, 216f

Interrupt Vector, in Interrupt Pattern, 217
Interrupt Vector Table, in Interrupt Pattern,

217
ISO communications model, protocol stack

in, 354
iterative development, 107–110, 108f. See

also ROPES; spiral development
lifecycle

iterative prototypes
focus of, 111
in microcycle, 111
in spiral lifecycle, 110–111

J
Java programming language

associations in, 89–91
classes in, 86
interfaces in, 87
logical models in, 91
Pool Allocation Pattern in, 270–271

JINI, 189
join pseudostate, 39f, 40
junction pseudostate, 39f, 40
Just-In-Time (JIT) compilation, 183

K
Keyed Watchdog, 448

L
latent fault, 436
layered architecture

associations in, 146
classes in, 145
collaborations in, 146, 147f
domain model of, 146, 147f
portability of, 144, 145, 148

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 486

layered models, for application creation, 85
Layered Pattern, 142–146

abstract of, 142–144
collaboration roles in, 145
consequences in, 145
function of, 142
implementation of, 146
patterns related to, 146
problem addressed by, 144
sample model of, 146, 147f
structure of, 144, 144f
for virtual machine, 181

Leaf Element class, in Hierarchical Control
Pattern, 172–173

legacy systems, MDA compliance of, 86
lifelines. See also thread(s)

ordering interactions and, 46–47, 46f
in sequence diagrams, 44

Listener object, in Data Bus Pattern, 382
live-lock, 448
local format, in communication

infrastructure, 356
Local Notification Handle class

in Broker Pattern, 399
in Proxy Pattern, 391

logical architecture
definition of, 58
domains in, 60–63
vs. physical architecture, 58, 58f
in ROPES process, 60

logical model
focus of, 138
implementation of, packages in, 91
and physical model, separation of, 139

lollipop notation, 9–10

M
macrocycle, 110–111, 111f
macrophases, 110–111
Management Interface, in Component-Based

Architecture Pattern, 188
MDA (Model-Driven Architecture)

flexibility of, 86
purpose of, 82–83, 85

mean time between failure (MTBF), 79
mechanistic design patterns, 123

�Index 487

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

scope of, 51–52, 128
Mechanistic Design phase, 123–124
member functions, and structs, 86–87
memory allocation

dynamic (See dynamic memory
allocation)

static (See Static Allocation Pattern)
Memory Block

in Garbage Collection Pattern, 288
in Garbage Compactor Pattern, 295

memory fragmentation
in dynamic memory allocation, 261–262,

273–274
removal of, 293

memory leaks
elimination of, 286–287
and pointers, 280

Memory Segment, in Fixed Size Buffer Plan,
276

merge junction pseudostate, 39f, 40
message integrity, 78–79, 355
Message object, in Shared Memory Pattern,

359
Message Queue, in Shared Memory Pattern,

359
Message Queuing Pattern, 207–213

abstract of, 208–209
application of, 207
collaboration roles in, 210–211
consequences in, 211
implementation of, 211
patterns related to, 212
problem addressed by, 209
sample model of, 212–213, 213f
structure of, 209–210, 210f

message syntax, notation for, 463
Metamodel Object Facility (MOF), 85
methods

definition of, 7, 33
function of, 12
vs. operations, 33
in subclasses, 19
in UML metamodel, 32

MFC (Microsoft Foundation Class), 109
microcycle

microphases of, 112–113, 112f, 116, 117f
(See also specific phases)

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 487

in ROPES process, 111
Microkernel Architecture Pattern, 151–157

abstract of, 152
application of, 151
collaboration roles in, 153–154
consequences in, 154
implementation of, 154
patterns related to, 155–156
problem addressed by, 152
sample model of, 156–157, 156f
structure of, 152, 153f
for virtual machine, 181

Microkernel component
implementation of, 155
in Microkernel Architecture Pattern, 154

microphases, 112–113, 112f, 116, 117f
Microsoft Foundation Class (MFC), 109
Middleware Domain, in Five-Layer

Architecture Pattern, 149–150
middleware standards, 84. See also CORBA
model(s). See also visual modeling; specific

models
definition of, 5–6
and diagrams, 24
of Operations, 33
semantics of, 25
and source code, association of, 105–106

model execution
debugging and testing in, 103–104, 104f
purpose of, 102–103
in ROPES process, 101–105, 102f
simplicity of, 105
vs. traditional development, 103
visual debugger in, 103

model-code associativity, in ROPES
process, 105–106

Model-Driven Architecture (MDA)
flexibility of, 86
purpose of, 82–83, 85

ModelElements, in UML metamodel, 32
modeling standard. See UML
MOF (Metamodel Object Facility), 85
Monitor

in Monitor-Actuator Pattern, 434
in Sanity Check Pattern, 440

Monitor-Actuator Pattern, 432–438
abstract of, 432

�488 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

application of, 432
collaboration roles in, 433–435
consequences in, 435
implementation of, 435–436
patterns related to, 436
problem addressed by, 432
sample model of, 437–438, 437f
structure of, 433, 433f

Monitoring Channel, in Monitor-Actuator
Pattern, 434

Monitoring Input Processing
in Monitor-Actuator Pattern, 434
in Sanity Check Pattern, 440

monitoring personnel, in fault handling,
408–409

MTBF (mean time between failure), 79
Multidisciplinary Level, in physical

architecture abstraction, 65f, 66
multiple channels

coordinating, 450–451
for safety and reliability, 415–416
for systematic fault detection, 426–427
for throughput efficiency, 158

multiplicity, 14–15, 14f
MultiResource object, in Simultaneous

Locking Pattern, 339–340
Mutex semaphore

in Dynamic Priority Pattern, 254
in Guarded Call Pattern, 222, 223
in Highest Locker Pattern, 325
in Message Queuing Pattern, 210–211
in Ordered Locking Pattern, 347
in Priority Ceiling Pattern, 333
in Priority Inheritance Pattern, 315–316
in Simultaneous Locking Pattern, 340
in Static Priority Pattern, 245–246

mutual exclusion problem, 207–208, 208f.
See also Mutex semaphore; PartLock
semaphore

N
name, of design patterns, 129
name mangling, 88–89
name scoping operator, 63
namespace, 91
nanocycle

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 488

activities of, 113, 113f
goal of, 113
object model evaluation in, 122
purpose of, 111–112
in ROPES process, 111–112
scope of, 111

nested states, notation for, 468
network format, in communication

infrastructure, 356
nodes, 30

definition of, 30
purpose of, 81
stereotypes of, 81

notes, notation for, 462
Notification Handle class

in Broker Pattern, 399
in Data Bus Pattern, 382
in Observer Pattern, 373
in Proxy Pattern, 391

Notification List, in Data Bus Pattern, 382
“null” event, 36

O
object(s)

active (See «active» objects)
in asymmetric architecture, 75
attributes of (See attributes)
vs. classes, 6
composite, in Static Allocation Pattern,

263
definition of, 7
notation for, 458
in symmetric architecture, 75

object analysis, purpose of, 121
Object Analysis phase, 121–122
Object Broker, purpose of, 83, 395–396
object diagrams, use of, 25
Object Factory, in Fixed Size Buffer Plan,

276
Object Level, in physical architecture

abstraction, 66–67
Object Management Group (OMG), 4
object model, evaluation of, in nanocycle,

122
object pointer, 17
object reference, 17

�Index 489

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

Object Request Brokers (OJB), 400
Object Windows Library (OWL), 109
Observer Pattern, 370–375

abstract of, 370–371
application of, 370
collaboration roles in, 372–373
consequences in, 373–374
implementation of, 374–375
patterns related to, 375
problem addressed by, 371
sample model of, 375, 376f
structure of, 371, 372f

OJB (Object Request Brokers), 400
OMG (Object Management Group), 4
open layered architecture, classes in, 145
operating system, and «active» classes, 92
operations

definition of, 33
vs. Methods, 33
modeling, 33
in UML metamodel, 32

optimality, 242–243
optimization

of analysis models (See design patterns)
and deoptimization, 126–127

Ordered Locking Pattern, 345–351
abstract of, 345
application of, 345
collaboration roles in, 347–348
consequences in, 348
implementation of, 348–349
patterns related to, 349
problem addressed by, 345
sample model of, 349, 350f–351f
structure of, 345–347, 346f

or-states, vs. and-states, 36, 37, 37f
orthogonal substates. See and-states
Output Filter class, in Channel Architecture

Pattern, 160
Output Processing component

in Heterogeneous Redundancy Pattern,
429

in Homogenous Redundancy Pattern, 418
in Monitor-Actuator Pattern, 434
in Protected Single Channel Pattern, 412
in Safety Executive Pattern, 453
in Sanity Check Pattern, 441

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 489

Output Processing component (cont.)
in Triple Modular Redundancy Pattern,

423
in Watchdog Pattern, 447

OWL (Object Windows Library), 109

P
package(s)

contents of, 26
definition of, 26
domain role as, 145
vs. domains, 60
in logical model implementation, 91
notation for, 26, 27f
semantics of, 26
use of, 26

package diagram, notation for, 467
parallel channels, 411, 421–422
parameter(s)

for collaborations, 51
of events, 35–36

Parameter class, in Virtual Machine Pattern,
178

parameterized class
definition of, 22
notation for, 458

parameterized collaborations
design patterns as, 51
notation for, 131

parameterized frameworks, 129
parity bit, for message integrity, 78
part object(s), composite and, 16–17
Part Object, in Static Allocation Pattern,

263
PartLock semaphore, in Simultaneous

Locking Pattern, 340
Party phase, 112, 112f, 116–117
passive objects, composition of, 139, 204,

205f
pattern hatching, 126, 132–133, 132f
pattern matching, 133
pattern mining, 126, 134, 134f
PDA (platform-dependent application),

85
performance, in Distribution View, 75–77
Permission dependency, 24

�490 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

physical architecture
abstraction in, 35f, 64–67
domain structure in, 63, 64f
elements in, 64
focus of, 63
vs. logical architecture, 58, 58f
model organization for, 67
in ROPES process, 67

physical model
implementation of, 91
and logical model, separation of, 139

PIM (platform independent model), 85
Platform

in Microkernel Architecture Pattern, 154
virtual machine and, 180–182

platform independence, 85
platform independent model (PIM), 85
platform-dependent application (PDA), 85
pointer(s)

for member functions, 87
problems with, 278–280

pointer arithmetic defects, 280
polymorphism

in C++, 88
definition of, 18
notation for, 18–19, 19f

Pool Allocation Pattern, 266–273
abstract of, 266
application of, 266
collaboration roles in, 267–268
consequences in, 268–269
implementation of, 269–271
patterns related to, 271
problem addressed by, 266
sample model of, 271–273, 272f
structure of, 266–267, 267f

PooledClass, in Pool Allocation Pattern, 268
Port, in ROOM Pattern, 195, 196
Port Mapper, in Remote Method Call

Pattern, 365
portability

of applications, 176–177
in layered architecture, 144, 145, 148

postconditional invariants, 9
precondition, 228
preconditional invariants, 8
Primary Actuation Channel, 418, 429, 448

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 490

Primary Actuation Validation component,
427–428

Primary Actuator actor, 417, 418, 428–429
Primary Data Transformation component,

429
Primary Data Validation component, 429
Primary Input Processing component, 429
Primary Input Sensor actor, 418, 429
Primary Output Processing component, 429
Primitive Object, 263
Priority Ceiling Pattern, 330–338

abstract of, 330
application of, 330
collaboration roles in, 331–334
consequences in, 334–335
implementation of, 335
patterns related to, 335
problem addressed by, 330
sample model of, 335–338, 336f–337f
structure of, 330, 331f, 332f

Priority Inheritance Pattern, 314–322
abstract of, 314
application of, 314
collaboration roles in, 314–317
consequences in, 317–318, 318f, 319f
implementation of, 320
patterns related to, 320
problem addressed by, 314
sample model of, 320–322, 321f
structure of, 314, 315f

priority inversion. See also task(s), blocking
bounded, 314, 323, 330
definition of, 305
unbounded, 305, 306f, 342

priority scheduling. See also Scheduler
dynamic, 251–252
static, 242–243, 303
for urgency and criticality management,

242, 251
priority-based protocols, 77–78, 355
Problem, in design patterns, 51, 59,

129–130
process

benefits of, 97–98
definition of, 98
elements of, 98–99, 99f
purpose of, 97

�Index 491

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

Process Assessment, in Party phase, 118
processing, monitoring, 443–444
processor(s), data shared between,

356–357, 377
Processor, in Shared Memory Pattern, 359
«processor» node stereotype, 30
profiles, 84–85
propagation of events, for and-state

synchronization, 38
Protected Single Channel Pattern, 409–415

abstract of, 410
application of, 409–410
collaboration roles in, 410–412
consequences in, 412–413
implementation of, 413
patterns related to, 413–414
problem addressed by, 410
sample model of, 414–415, 414f
structure of, 410, 411f

protocol
for applications, 354
redundancy in, 355
and reliability, 355

Protocol, in ROOM Pattern, 195, 196
protocol architecture, purpose of, 354–355
protocol stack, in ISO communications

model, 354
prototypes

focus of, 111
in iterative development, 107–108, 108f
mission of, 107, 125
requirements analysis for, 119
scheduling, 108
in semispiral lifecycle, 116
in spiral lifecycle, 110–111
testing, 125
use cases for, selection of, 119

Proxy Pattern, 387–395
abstract of, 387
application of, 387
collaboration roles in, 388–391
consequences in, 391–392
implementation of, 392
patterns related to, 392–393
problem addressed by, 387–388
sample model of, 393–395, 393f, 394f
structure of, 388, 389f

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 491

pseudostates. See also specific pseudostates
definition of, 38, 39f
notation for, 470
vs. states, 38

Publish-Subscribe Pattern. See Observer
Pattern

Q
qualities of service (QoS), 127–128

in architecture evaluation, 118
conflicts among, 56–57, 128
control interfaces for, 170–171
design and, 56
in design patterns, 59
in Distribution View, 75
protocols and, 77
for resources, 302

qualities of service requirements
definition of, 47
in design patterns, 50–51

Queue container, in Message Queuing
Pattern, 210–211

R
radar channels, redundancy in, 79
random faults

definition of, 406
in Homogenous Redundancy Pattern,

415, 418–419
in Triple Modular Redundancy Pattern,

424
Ready Queue

in Dynamic Priority Pattern, 254
in Static Priority Pattern, 246

Real Machine, in Virtual Machine Pattern,
179

«realize» stereotype, 21
real-time and embedded (RTE) systems

hard, performance in, 75–76
requirements of, xix
soft, performance in, 76–77

Real-Time UML Profile (UML Profile for
Schedulability, Performance and Time),
84–85

Receiver, in Shared Memory Pattern, 359

�492 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

recurrence properties strategy, for thread
reification, 74

Recursive Containment Pattern, 163–169
abstract of, 164
application of, 163
collaboration roles in, 164
consequences in, 165
implementation of, 165–166
patterns related to, 166
problem addressed by, 164
sample model of, 167–169, 167f, 168f,

169f, 170f
structure of, 164, 165f

redundancy
with Channel Architecture Pattern,

157–158
cost of, 409–410, 429–430
and faults, 408
implementation of, 93
in protocols, 355
in Safety and Reliability View, 79–81, 80f,

406
refactoring, 118
«refine» stereotype, 21
related information strategy, for thread

reification, 73–74
Relay Port, in ROOM Pattern, 196
reliability. See also Safety and Reliability

View
definition of, 79, 406
in Distribution View, 78–79
fail-safe state in, 407
protocols and, 355
in Remote Method Calls, 366
vs. safety, 140, 406–408, 407f

Remote Method Call Pattern, 362–370
abstract of, 362–363
application of, 362
collaboration roles in, 364–366
consequences in, 366
implementation of, 366–367
patterns related to, 367–368
problem addressed by, 363
sample model of, 368–370, 368f, 369f
structure of, 363, 364f

Remote Notification Handle class
in Broker Pattern, 399–400

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 492

in Proxy Pattern, 391
Remote Procedure Calls (RPCs), for

services, 362
rendezvous

asynchronous, 92, 208–209
definition of, 72
forcing, 221–222

Rendezvous object, in Rendezvous Pattern,
229

Rendezvous Pattern, 227–232
abstract of, 228
application of, 227
collaboration roles in, 229–230
consequences in, 230
implementation of, 230–231, 230f
patterns related to, 231
problem addressed by, 228
sample model for, 231–232, 231f–232f
structure of, 228f, 229

requirements. See also functional
requirements; qualities of service
requirements

capturing, 49
detailing, 120
negative, 119
prototype focus on, 111
specifying, 121
for subsystems, in System Engineering

phase, 120
testing based on, 106–107, 108
in use cases, 47

Requirements Analysis phase
in microcycle, 119–120
in semispiral lifecycle, 114, 115f, 119
validation test plan in, 125

resource
definition of, 72, 302
implementation of, 92
management of, 302–308

resource architecture. See Concurrency and
Resource View

Resource Client
in Ordered Locking Pattern, 347
in Simultaneous Locking Pattern,

340–341
Resource ID, in Ordered Locking Pattern,

347

�Index 493

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

Resource List, in Ordered Locking Pattern,
347

resource objects, semaphores for, 92
Resource Pool Manager, in Pool Allocation

Pattern, 268
ResourceMaster, in Simultaneous Locking

Pattern, 341
restart, in fault handling, 408–409
ReturnAction, 32
reuse

of concepts, 126
of core services, 152
of virtual machine, 180–182

reuse plan, defining, 117
Rhapsody, 4–5
risk

definition of, 80
in prototypes, 107

role names
in composition, 17
definition of, 13
notation for, 13, 14f

ROOM (Real-Time Object-Oriented
Methodology) Pattern, 194–200

abstract of, 194–195
application of, 194
collaboration roles in, 196
consequences in, 196–197
implementation of, 197–198
patterns related to, 198
problem addressed by, 195
sample model of, 198–199, 199f, 200f
structure of, 195f

ROPES (Rapid Object-Oriented Process for
Embedded Systems). See also specific
phases

architectural views in, 67, 68f
architecture in, 52, 57, 57f, 60, 67
diagrams delineated in, 25
flexibility of, 100–101
frameworks in, 109
iterative development in, 107, 109–110
logical architecture in, 60
macrocycle in (See macrocycle)
microcycle in (See microcycle)
mission of, 100–101
model execution in (See model execution)

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 493

ROPES (cont.)
model-code associativity in, 105–106
nanocycle in (See nanocycle)
packages in, 26
physical architecture in, 67
prototypes in, 107–108, 108f
scalability of, 100, 101
testing in, 106–108, 109–110
use case detailing in, 49, 119–120
visual modeling in, 101

Round Robin Pattern, 237–242
abstract of, 237
application of, 237
collaboration roles in, 239
consequences in, 240
implementation of, 240
patterns related to, 240
problem addressed by, 237
sample model of, 241–242, 241f
structure of, 238, 238f

RPCs (Remote Procedure Calls), for
services, 362

RTE systems. See real-time and embedded
systems

S
safety

definition of, 406
fail-safe state in, 407
vs. reliability, 140, 406–408, 407f
risk in, 80
and software, 408

Safety and Reliability View
in architectural design, 123, 140
implementation of, 93
purpose of, 79, 140
redundancy in, 79–81, 80f
risk in, 80

Safety Coordinator class, in Safety Executive
Pattern, 453

Safety Executive component, in Safety
Executive Pattern, 453

Safety Executive Pattern, 450–456
abstract of, 450
application of, 450
collaboration roles in, 452–454

�494 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

consequences in, 454
implementation of, 454
patterns related to, 454
problem addressed by, 451
sample model of, 455–456, 455f
structure of, 451–452, 451f

safety level strategy, for thread reification,
74

Safety Measure class, in Safety Executive
Pattern, 453

Safety Policy class, in Safety Executive
Pattern, 453

Sanity Check Channel, in Sanity Check
Pattern, 441

Sanity Check Pattern, 438–442
abstract of, 438–439
application of, 438
collaboration roles in, 439–441
consequences in, 441
implementation of, 442
patterns related to, 442
problem addressed by, 439
sample model for, 442, 443f
structure of, 439, 439f

scalability, 100
scaling, of architecture, 118
scenario modeling, of use cases, 49, 119
Scheduler

in Critical Section Pattern, 310
in Cyclic Executive Pattern, 234
in Dynamic Priority Pattern, 254–255
in Highest Locker Pattern, 325–326
locking, 308–309
in Priority Ceiling Pattern, 333–334
in Priority Inheritance Pattern, 316
in Round Robin Pattern, 239
in Static Priority Pattern, 246

scheduling, in planning, in Party phase,
117

scheduling, of tasks
non-priority-based, 237–242
priority-based (See priority scheduling)
by virtual machines, 183

scope, 116–117
SCSI bus protocol, 355

throughput of, 77–78
Secondary Actuation Channel, 418, 429

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 494

Secondary Actuation Validation component,
427–428

Secondary Actuator actor, 418, 428–429
Secondary Data Transformation component,

429
Secondary Data Validation component, 429
Secondary Input Processing component, 429
Secondary Input Sensor actor, 418, 429
Secondary Output Processing component,

429
Segment, in Garbage Compactor Pattern,

295–296
semantic(s), of actions, 33
semantic models

components of, 5–6
and diagrams, 7

semantic objects, vs. subsystems, 27–28
semaphores, 92
semispiral lifecycle, 114–116, 115f
«send» stereotype, 24
SendAction, 32
Sender object, in Shared Memory Pattern,

359
Sensor Input Processing component

in Monitor-Actuator Pattern, 435
in Sanity Check Pattern, 441
in Watchdog Pattern, 447

sequence diagram
advanced, notation for, 464
for architectural views, 67
for behavior, 121, 122, 123, 124
for collaboration structure, 124
concurrency in, 44–47, 46f
definition of, 44, 45f
function of, 6
in model execution, 104
notation for, 464
for requirements detailing, 120
for scenario modeling, 49, 119

Sequencer, in Virtual Machine Pattern, 179
sequential substates, notation for, 469
Sequential Watchdog, 448
serial channels, 411
server(s)

data shared between, 377
properties of, hiding, 387–388
with unknown properties, 395–396

�Index 495

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

Server, in Remote Method Call Pattern, 365
Server object, in Guarded Call Pattern, 223
Server Stub, in Remote Method Call

Pattern, 366
Server Thread, in Guarded Call Pattern, 223
Server-side Proxy

in Broker Pattern, 400
in Proxy Pattern, 391

service(s)
core set of, 151–152, 155
synchronous invocation of, 362–363

service components, 152
Set Point Source

in Monitor-Actuator Pattern, 435
in Sanity Check Pattern, 441

shallow history pseudostate, 39f, 40
Shared Memory, in Shared Memory Pattern,

359
Shared Memory Pattern, 356–361

abstract of, 356–357
application of, 356
collaboration roles in, 357–359
consequences in, 359–360
implementation of, 360
patterns related to, 360
problem addressed by, 357
sample model of, 361, 361f–362f
structure of, 357, 358f

Shared Resource object
in Critical Section Pattern, 310–311
in Dynamic Priority Pattern, 255
in Guarded Call Pattern, 223–224
in Highest Locker Pattern, 326
in Ordered Locking Pattern, 347–348
in Priority Ceiling Pattern, 334
in Priority Inheritance Pattern, 316
in Simultaneous Locking Pattern, 341
in Static Priority Pattern, 246

SignalEvent, 34
Simultaneous Locking Pattern, 338–345

abstract of, 338
application of, 338
collaboration roles in, 339–341
consequences in, 341–342
implementation of, 342–343
patterns related to, 343
problem addressed by, 338

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 495

Simultaneous Locking Pattern (cont.)
sample model of, 343–345, 343f–344f
structure of, 339, 339f

single channels, for safety and reliability,
410

single-event groups strategy, for thread
reification, 73

Sized Heap, in Fixed Size Buffer Plan, 276
sizing, 31, 31f
Smart Pointer, in Smart Pointer Pattern,

281–282
Smart Pointer Pattern, 278–285

abstract of, 279
application of, 278–279
collaboration roles in, 281–282
consequences in, 282–284
implementation of, 284
patterns related to, 284
problem addressed by, 279–280
sample model of, 284, 285f
structure of, 280, 281f

soft real-time systems, performance in,
76–77

software
complexity of, 97
development plan for, 116–117
and safety, 408

Software Component Level, in physical
architecture abstraction, 65f, 66

software subsystems, purpose of, 69
Solution, in design patterns, 51, 59, 130
source level code

for class diagrams, 10–12
generation of, 6, 124–125
legacy, integration of, 125
in ROPES process, 105–106
testing, 125
and visual model, association of,

105–106
source-level languages, binding, in

CORBA, 83–84
specialization

definition of, 18
notation for, 461

specification
for requirements capture, 49
for use case detailing, 119

�496 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

spiral development lifecycle. See also
ROPES

drawbacks in using, 113–114
testing in, 110
vs. waterfall lifecycle, 110

stability, 242
Stack

in Dynamic Priority Pattern, 255
in Round Robin Pattern, 239
in Static Priority Pattern, 246

standard(s), benefits of using, 4–5
Standard Template Library, containers in,

90
state(s)

nested, notation for, 468
vs. pseudostates, 38

state icon, notation for, 468
state machines

finite (FSM), 34
statecharts for, 124

statecharts
for architectural views, 67
for behavior, 122, 124
benefits of, 34
for control interfaces, 170–171
definition of, 8
elements of, 34, 35f
function of, 6
in Hierarchical Control Pattern, 174
in model execution, 104
notation for, 468–471
for requirements detailing, 120
in ROOM Pattern, 194–195
for specification, 49, 119
for state machines, 124
in System Engineering phase, 121

Static Allocation Pattern, 260–265
abstract of, 260
application of, 260
collaboration roles in, 263
consequences in, 263–264
implementation of, 264
patterns related to, 264
problem addressed by, 260–262
sample model for, 265, 265f
structure of, 262, 262f

static priority, 242

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 496

Static Priority Pattern, 242–251
abstract of, 242–243
application of, 242
collaboration rolls in, 245–247
consequences in, 247–248
implementation of, 248
patterns related to, 248–249
problem addressed by, 243
sample model of, 249–251, 250f
structure of, 243–244, 244f

stereotypes
definition of, 9
of dependencies, 21
function of, 17
of nodes, 81
notation for, 14f, 17, 81, 82f, 462

strategic defects, expense of, 106
struct(s), for class implementation, 86–87
structural aspect, of models, 6
structural design patterns, 128
structural diagrams, 24–25, 67
structure

class diagrams for, 123
in UML, 84

stub pseudostate, 39f, 41
subactivities, in processes, 98
subclasses

methods in, 19–20
for specialization, 18

submachines, notation for, 471
substates

concurrency with, 37
notation for, 470
vs. or-states, 36, 37, 37f
sequential, notation for, 469
synchronization of, 37–38

substitutability, 21
subsystem(s)

aspects of, 28
classes in, 139
and components, 28, 65f, 70–71, 139, 185
content of, 138–139
core services and, 152
criteria for inclusion in, 69
definition of, 6, 70, 138
in deployment models, 30
domains in, 138

�Index 497

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

function of, 91
implementation of, 91–92
instances in, 139
notation for, 28, 29f
packages and, 27
semantic objects, 27–28
sizing, 31, 31f
software, 69
in Systems Engineering phase, 59
threads in, 139
use cases for, 49
use of, 27–28, 70

Subsystem and Component View
in architectural design, 123, 138
component diagram for, 71, 71f
implementation of, 91–92
purpose of, 52, 68
subsystem diagram for, 69, 70f
in System Engineering phase, , 120

subsystem architecture. See Subsystem and
Component View

subsystem diagram
components in, 123
for Subsystem and Component View, 69,

70f
in System Engineering phase, 121

subsystem interfaces, in System
Engineering phase, 120

«subsystem» stereotype, 28, 29f
superclasses

extension of, 20–21
generalization for, 18
methods in, 19–20
specialization of (See subclasses)

Switch To Backup Pattern. See Homoge-
nous Redundancy Pattern

symmetric architecture
definition of, 83
deployment diagrams for, 81
distribution implementation for, 93
objects in, 75

symmetric distribution architecture, 354
Synch Policy, in Rendezvous Pattern,

229–230
synch pseudostates

definition of, 39, 39f
notation for, 471

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 497

synchronous event transfer, implementa-
tion of, 36

system(s)
in scenario modeling, 49
sizing, 31, 31f

system development, model execution vs.
traditional, 103

system functional aspect, of models, 6
System Level, in physical architecture

abstraction, 65, 65f
system model, architectural aspects in, 52
System Object, in Static Allocation Pattern,

263
System View, 68, 69f
systematic faults

definition of, 406
in Heterogeneous Redundancy Pattern,

426–427
in Homogenous Redundancy Pattern,

415, 419
in Triple Modular Redundancy Pattern,

424
Systems Engineering Level, in physical

architecture abstraction, 65–66, 65f
Systems Engineering phase

activities in, 59, 120
design in, 58–59
integration test plan in, 125
in microcycle, 120–121
purpose of, 59, 120
in semispiral lifecycle, 114–115, 115f
Subsystem View in, 69

T
Target, in Smart Pointer Pattern, 282
target object strategy, for thread reification,

74
Target Wrapper, in Smart Pointer Pattern, 282
task(s)

blocking, 303–305, 304f
priority scheduling for, 303, 308–309

Task Control Block (TCB)
in Critical Section Pattern, 311
in Dynamic Priority Pattern, 255
in Highest Locker Pattern, 326
in Priority Ceiling Pattern, 334

�498 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

in Priority Inheritance Pattern, 317
in Round Robin Pattern, 239
in Static Priority Pattern, 246

task diagram, for Concurrency and
Resource View, 72, 73f

task rendezvous, in Deployment View
implementation, 93

«Task» stereotype, for Concurrency and
Resource View, 72, 73f

TCP/IP
and QoS requirements, 77
reliability of, 355

TDMA (Time Division Multiple Access),
77, 355

technical disciplines, of subsystems, in
System Engineering phase, 120

technology, prototype focus on, 111
terminal pseudostate, 38–39, 39f
TerminateAction, 32
Test phase, 112f, 113, 125–126
testing

automating, 108
of patterns, 133
of prototypes, against mission, 125
requirements-based, 106–107, 108
in ROPES process, 106–108, 109–110
of source code, 125
in spiral lifecycle, 110
in waterfall lifecycle, 110

textual descriptions
for interfaces, 121
for requirements detailing, 120

this pointer, for member functions, 87
thread(s)

«active» object management of, 139,
204–206, 205f

communication between, 207–208,
227–228

in concurrency, 204–206, 205f
creation of, 92
destruction of, 92
properties of, 206
reification of, strategies for, 72–74
in subsystems, 139
synchronization of (See rendezvous)

Thread Level, in physical architecture
abstraction, 65f, 66

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 498

Thread object, in Message Queuing Pattern,
210

throughput
architecture for (See Channel Architec-

ture Pattern)
in Distribution View, 77–78

time, in sequence diagram, 44
Time Division Multiple Access (TDMA), 77
time event, 36
Timebase

in Safety Executive Pattern, 453
in Watchdog Pattern, 447

TimeEvent, 34
Timer, in Round Robin Pattern, 239
timing constraints, in sequence diagram,

44, 45f
tools, for UML, 4–5
training, for UML, 5
transient faults

in Monitor-Actuator Pattern, 436
in Protected Single Channel Pattern, 413

transition(s)
notation for, 468
in statecharts, 34

transition actions, guards and, 36
Translation phase, 112f, 113, 124–125
translation tools, for application creation,

85
Transport Protocol Domain, in 5-Layer

Architecture Pattern, 149–150
Triple Modular Redundancy Pattern,

421–426
abstract of, 421
application of, 421
collaboration roles in, 423
consequences in, 424
faults in, 424
implementation of, 424
patterns related to, 424–425
problem addressed by, 422
sample model of, 425–426, 425f
structure of, 422–423, 422f

U
UDP, reliability of, 355
UML (Unified Modeling Language)

�Index 499

1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
9
3
1
2
3
4
5
6
7
3
3
4

vs. CORBA, 84
definition of, 4
diagrams in, 4, 7, 24, 25 (See also specific

diagrams)
notation in, 4, 458–472
tools for, 4–5
training for, 5
versatility of, 5

UML metamodel
components of, 32
purpose of, 4

UML Profile for Schedulability, Performance
and Time (Real-Time UML Profile),
84–85

UML-RT. See ROOM Pattern
unbounded priority inversion, 305, 306f,

314, 323
Unified Modeling Language. See UML
uninitialized pointers, 280
UninterpretedAction, 32
Unit Type, in Data Bus Pattern, 382
urgency, 242
Usage dependency, 24
use case(s)

for architectural views, 67
for behavior, 121
contents of, 121
definition of, 47
detailing, 49, 119–120
function of, 6
notation for, 47–48, 48f, 465
for prototypes, 111, 119
scenario modeling of, 49
selection of, 117
for subsystems, 120
in Subsystems and Components View,

91
use case diagram, notation for, 465
use case relationships, notation for, 465
User Interface Domain, in Five-Layer

Architecture Pattern, 149

V
Validation testing, of prototypes, 125
“Victorian novel” approach, for

specification, 49

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 499

views
in application model, 6–7
diagrams for, 25

virtual function table (VTBL), for
generalization in C++, 89

Virtual Machine component, 179,
180–184

Virtual Machine Pattern, 176–184
abstract of, 176–177
application of, 176
collaboration roles in, 178–179
consequences in, 179–180
implementation of, 180–184
patterns related to, 184
problem addressed by, 177
structure of, 177f

virtual methods, 89
visibility, notation for, 458
visual debugger, in model execution,

103
visual modeling, in ROPES process, 101,

102f

�500 Index

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

W
Watchdog

in Safety Executive Pattern, 453
in Watchdog Pattern, 447

watchdog, definition of, 444
Watchdog Pattern, 443–450

abstract of, 444
application of, 443–444
collaboration roles in, 445–447
consequences in, 447–448
implementation of, 448–449
patterns related to, 449
problem addressed by, 444
sample model of, 449–450, 449f
structure of, 444–445, 445f, 446f

waterfall lifecycle, 110, 115–116
worker roles, in processes, 98, 99f

X
XP (Extreme Programming) approach, in

nanocycle, 112

29066 DOUGLASS 04 475-508 r3.ps 8/22/02 9:46 AM Page 500

