
Chapter 2

Applied (The Seven Properties)

Reading how Crystal Clear works raises two particular questions:

“What are these people concentrating on while they work?”

“Can we get farther into the safety zone?”

This chapter describes seven properties set up by the best teams. Crystal Clear
requires the first three. Better teams use the other four properties to get farther into
the safety zone. All of the properties aside from Osmotic Communication apply to
projects of all sizes.

I only recently awoke to the realization that top consultants trade notes about the
properties of a project rather than on the procedures followed. They inquire after the
health of the project: Is there a mission statement and a project plan? Do they deliver
frequently? Are the sponsor and various expert users in close contact with the team?

Consequently, and in a departure from the way in which a methodology is usually
described, I ask Crystal Clear teams to target key properties for the project. “Doing
Crystal Clear” becomes achieving the properties rather than following procedures.
Two motives drive this shift from procedures to properties:

� The procedures may not produce the properties. Of the two, the properties are
the more important.

� Other procedures than the ones I choose may produce the properties for your
particular team.

17

ch02.qxd 9/20/04 2:01 PM Page 17

18 Chapter 2 Applied (The Seven Properties)

The Crystal family focuses on the three properties Frequent Delivery, Close
Communication, and Reflective Improvement1 because they should be found on
all projects. Crystal Clear takes advantage of small team size and proximity to
strengthen close communication into the more powerful osmotic communica-
tion. Aside from that one shift, experienced developers will notice that all the
properties I outline in this chapter apply to every project, not just small-team
projects.

By describing Crystal Clear as a set of properties, I hope to reach into the
feeling of the project. Most methodology descriptions miss the critical feeling
that separates a successful team from an unsuccessful one. The Crystal Clear
team measures its condition by the team’s mood and the communication pat-
terns as much as by the rate of delivery. Naming the properties also provides the
team with catch phrases to measure their situation by: “We haven’t done any
reflective improvement for a while.” “Can we get more easy access to expert
users?” The property names themselves help people diagnose and discuss ways
to fix their current situation.

1 Thanks to Jens Coldewey of Germany for pointing this out to me!

ch02.qxd 9/20/04 2:01 PM Page 18

PROPERTY 1. FREQUENT DELIVERY
The single most important property of any project, large or small, agile or not, is that
of delivering running, tested code to real users every few months. The advantages are
so numerous that it is astonishing that any team doesn’t do it:

� The sponsors get critical feedback on the rate of progress of the team.

� Users get a chance to discover whether their original request was for what they
actually need and to get their discoveries fed back into development.

� Developers keep their focus, breaking deadlocks of indecision.

� The team gets to debug their development and deployment processes and gets a
morale boost through accomplishments.

All of these advantages come from one single property: frequent delivery. In my
interviews, I have not seen any period longer than four months that still offers this
safety. Two months is safer. Teams deploying to the Web may deliver weekly.

Have you delivered running, tested, and usable code
at least twice to your user community in the last six months?

* * *

Just what does “delivery” mean?
Sometimes it means that the software is deployed to the full set of users at the

end of each iteration for production use. This may be practical with Web-deployed
software or when the user group is relatively small.

When the users cannot accept software updates that often, the team finds itself in
a quandary. If they deliver the system frequently, the user community will get
annoyed with them. If they don’t deliver frequently, they may miss a real problem
with integration or deployment. They will encounter that problem when it is very
late, that is, at the moment of deploying the system.

The best strategy I know of in this situation is to find a friendly user who doesn’t
mind trying out the software, either as a courtesy or out of curiosity. Deploy to that
one workstation, for trial (not production) usage. This allows the team to practice
deployment and get useful feedback from at least one user.

If you cannot find a friendly user to deliver to, at least perform a full integration
and test as though you were going to. This leaves only deployment with a potential
flaw.

Property 1. Frequent Delivery 19

ch02.qxd 9/20/04 2:01 PM Page 19

* * *

The terms integration, iteration, user viewing, and release get mixed together these
days. They have different effects on development and should be considered separately.

Frequent integration should be the norm, happening every hour, every day, or, at
the worst, every week. The better teams these days have continuously running auto-
mated build-and-test scripts, so there is never more than 30 minutes from a check-in
until the automated test results are posted.

Simply performing a system integration doesn’t constitute an iteration, since an
integration is often performed after any single person or subteam completes as a frag-
ment of a programming assignment. The term iteration refers to the team
completing a section of work, integrating the system, reporting the outcome up the
management chain, doing their periodic reflective improvement (I wish), and, very
importantly, getting emotional closure on having completed the work. The closure
following an iteration is important because it sets up an emotional rhythm, some-
thing that is important to us as human beings.

In principle, an iteration can be anywhere from an hour to three months. In prac-
tice, they are usually two weeks to two months long.

The end date of an iteration is usually considered immovable, a practice called
“time boxing.” People encounter a natural temptation to extend an iteration when the
team falls behind. This has generally shown itself to be a bad strategy, as it leads to
longer and longer extensions to the iteration, jeopardizing the schedule and demoti-
vating the team. Many well-intentioned managers damage a team by extending the
iteration indefinitely, robbing the team of the joy and celebration around completion.

A better strategy is to fix the end date and have the team deliver whatever they
have completed at the end of the time box. With this strategy, the team learns what it
can complete in that amount of time, useful feedback to the project plan. It also sup-
plies the team with an early victory.

Fixed-length iterations allow the team to measure their speed of movement—the
project’s velocity. Fixed lengths iterations give that rhythm to the project that people
describe as the project’s “heartbeat.”

Some people lock the requirements during an iteration or time box. This gives
the team peace of mind while they develop, assuring them they will not have to
change directions, but can complete something at least. I once encountered a group
trying out XP where the customer didn’t want the trial to succeed. This customer
changed the requirements priorities every few days so that after several iterations the
team still had not managed to complete any one user story. In such hostile environ-
ments, both the requirements locking and the peace-of-mind are critical.
Requirements locking is rarely needed in well-behaved environments.

20 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 20

The results of an iteration may or may not get released. Just how often the software
should be sent out to real users is a topic for the whole team, including the sponsor, to
deliberate. They may find it practical to deliver after every iteration, they may deliver
every few iterations, or they may match deliveries to specific calendar dates.

Frequent delivery is about delivering the software to users, not merely iterating.
One nervous project team I visited had been iterating monthly for almost a year, but
not yet delivered any release. The people were getting pretty nervous, because the
customer hadn’t seen what they had been working on for the last year! This consti-
tutes a violation of frequent delivery.

If the team cannot deliver the system to the full user base every few months, user
viewings become all the more critical. The team needs to arrange for users to visit the
team and see the software in action, or at least one user to install and test the soft-
ware. Failure to hold these user viewings easily correlates to end failure of the project,
when the users finally, and too late, identify that the software does not meet their
needs.

For the best effect, exercise both packaging and deployment. Install the system in
as close to a real situation as possible.

Property 1. Frequent Delivery 21

ch02.qxd 9/20/04 2:01 PM Page 21

PROPERTY 2. REFLECTIVE IMPROVEMENT
The discovery that took me completely by surprise was that a project can reverse its
fortunes from catastrophic failure to success if the team will get together, list what
both is and isn’t working, discuss what might work better, and make those changes in
the next iteration. In other words, reflect and improve. The team does not have to
spend a great deal of time doing this work—an hour every few weeks or month will
do. Just the fact of taking time out of the helter-skelter of daily development to think
about what could work better is already effective.

Did you get together at least once within the last three months
for a half hour, hour, or half day to compare notes, reflect,

discuss your group’s working habits, and discover what speeds you up,
what slows you down, and what you might be able to improve?

* * * *

The project that gave me the surprise was Project Ingrid (described in Surviving
Object-Oriented Projects (Cockburn 1998)). At the end of the first iteration—which
was supposed to be four months long, but they had extended—they were far behind
schedule, demoralized, and with what they recognized as an unacceptable design. It
was what they did next that surprised me: They released twenty-three of the twenty-
four client-side programmers to go back to their old jobs, hired twenty-three new
people, changed the team and management structures, paid for several weeks of pro-
grammer training, and started over, requiring the new group to redo the work of the
first team and make additional progress.

At the end of the second iteration, they again were behind schedule but had a
design that would hold, and the team structure and programmers were functioning.
They held another reflection workshop, made additional changes, and continued.

When I interviewed them, they were in their fourth iteration, ahead of schedule
and content with their design and their work practices.

Since that interview, I have noticed that most of the projects I have visited got off
to a rough start or encountered a catastrophe early on. This is so common that I have
come to expect, almost even welcome it: from that first catastrophe come all sorts of
new and important information about the project’s working environment, which
would be deadly, but hidden.

On Project Winifred we managed at the end of the first three-month delivery cycle
what I called a “bubble-gum” release (the system was just barely held together by the

22 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 22

software equivalent of bubble-gum). However, we delivered something every three
months, getting better and better each time until we finally delivered the contracted
function on time.

After each delivery, a few of us got together. We identified what wasn’t working
and discussed ways to fix it. We kept trying new strategies until we found ones that
worked. Frequent delivery and reflective improvement became critical success factors
to us as they are to so many projects.

* * *

The people, the technology, and the assignment change over the course of a project.
The conventions the team uses need to change to match.

The people on the team are the best equipped to say what is best suited to their
situation, which is why Crystal Clear leaves so many details unstated, but for the team
to finalize. The reflective improvement mechanism allows them to make those
adjustments.

Every few weeks, once a month, or twice per delivery cycle, the people get
together in a reflection workshop or iteration retrospective to discuss how things are
working. They note the conventions they will keep and the ones they want to alter for
the next period, and they post those two lists prominently for the team members to
see while working in the next iteration.

Whatever the frequency, meeting format, and technique used, successful teams
hold this discussion periodically and try out new ideas. Teams may try, in various
forms: pair programming, unit testing, test-driven-development, single-room versus
multiple room seating, various levels of customer involvement, and even differing
iteration lengths. These are all proper variations within Crystal Clear.

For people to say they are using Crystal Clear, it is not necessary that they con-
tinue to use the starter conventions. In fact, it is expected that they will try new ideas.
In a Crystal user group meeting, people discuss what they had experimented with,
how they felt about those experiments, and how they evolved their working conven-
tions. One team may report moving the meetings from every two weeks to every
month, another moving from the format I describe in Chapter 3 to a straight discus-
sion of people’s values while developing.

I like to use the reflection workshop described in Chapter 3. Norm Kerth’s (2001)
book, Project Retrospectives, presents an extended format, along with many activities
to try within the workshop. The specifics of the workshop format aren’t nearly as sig-
nificant as the fact that the team is holding one.

Property 2. Reflective Improvement 23

ch02.qxd 9/20/04 2:01 PM Page 23

PROPERTY 3. OSMOTIC COMMUNICATION
Osmotic communication means that information flows into the background hearing
of members of the team, so that they pick up relevant information as though by
osmosis. This is normally accomplished by seating them in the same room. Then,
when one person asks a question, others in the room can either tune in or tune out,
contributing to the discussion or continuing with their work. Several people have
related their experience of it much as this person did:

We had four people doing pair programming. The boss walked in and asked my partner
a question. I started answering it, but gave the wrong name of a module. Nancy, pro-
gramming with Neil, corrected me, without Neil ever noticing that she had spoken or
that a question had been asked.

When osmotic communication is in place, questions and answers flow naturally
and with surprisingly little disturbance among the team.

Osmotic communication and frequent delivery facilitate such rapid and rich feed-
back that the project can operate with very little other structure.

Does it take you 30 seconds or less to get your question to the eyes or ears of the
person who might have the answer? Do you overhear something relevant from a

conversation among other team members at least every few days?

* * *

Osmotic communication is the more powerful version that small projects can
attain of close communication, a property core to the entire Crystal family. Osmotic
communication makes the cost of communications low and the feedback rate high,
so that errors are corrected extremely quickly and knowledge is disseminated quickly.
People learn the project priorities and who holds what information. They pick up new
programming, design, testing, and tool handling tricks. They catch and correct small
errors before they grow into larger ones.

Although osmotic communication is valuable for larger projects, it is, of course,
increasingly difficult to attain as the team size grows.

It is hard to simulate osmotic communication without having the people in the
same room; however, adjacent rooms with two or three people in each confers many of
the benefits. Herring (2001) reported the use of high-speed intranet with Web cameras,
microphones, and chat sessions to trade questions and code, to simulate the single
room to (some) extent. With good technology, teams can achieve some approximation
of close communication for some purposes, but I have yet to see osmotic communica-
tion achieved with other than physical proximity between team members.

24 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 24

* * *

Discussion of osmotic communication inevitably leads to discussion about office lay-
out and office furniture.

Crystal Clear needs people to be very close to each other so that they overhear
useful information and get questions answered quickly. The obvious way to do this is
to put everyone into a single room (“war room”; see Figure 2-1), repeatedly shown as
being very effective (Olson 2000).

Many people who have private offices resist moving into a group space. However,
you can sometimes turn lemons into lemonade (so to speak) with this move:

Lise was informed by her management that her department would have to reduce the
number of square feet they used. This meant giving up private offices. She suggested
that her people work together and design their own office spaces, three to five people
in a combined area. The groups put fewer square feet around each work table so they
could allocate space for additional areas with chairs, a sofa, or, in some cases, their own
meeting rooms.

Figures 2-2 and 2-3 show what one group came up with. Note that although they
had fewer square feet per person than before, they ended up with longer sight lines
and a conversation area with soft chairs.

Figure 2-4 shows the small meeting room one group put on the side of their
shared office. They used it to talk without disturbing whoever was still programming,
and also to leave their design notes and plans up on the wall.

Property 3. Osmotic Communication 25

Figure 2-1 Osmotic communication. (Courtesy of Tomax)

ch02.qxd 9/20/04 2:01 PM Page 25

26 Chapter 2 Applied (The Seven Properties)

Figure 2-3 Photo of same office. (Courtesy of Schlumberger)

Figure 2-2 Floor plan. (Courtesy of Schlumberger)

ch02.qxd 9/20/04 2:01 PM Page 26

Lise’s group used the usual office furniture: concave, designed to have the fat
CRT back into the corner. This sort of table presents a disadvantage to an agile devel-
opment team, because it is hard for a second or third person to see the screen. The
war room in Figure 2-1 may look less glamorous, but there is a utility in those ugly
tables: People can congregate around a screen; pairs of people can work together eas-
ily. It is for this reason that agile development teams prefer straight tables, or even
better, tables that bulge outward toward the typist.

If you set up a war room work area, be sure to arrange another place for people to
go to unwind and do their private e-mail. This allows people to focus when they step
into the common area and find a bit of relief from the pressure by stepping out. Such
an arrangement is referred to as a “caves and common” arrangement.

One project team got permission to set up a common discussion area with soft
chairs and sofa (Figure 2-5). On the wall in front of the chairs is the ever-present
whiteboard with whiteboard capture device. This is where the team adjourned to hold
their group design discussions, iteration planning meetings, and reflection workshops.

Agile Software Development (Cockburn 2002) contains additional information
on “convection currents” of information flow within a group, osmotic communica-
tion, the value of colocation, and examples of office layout.

* * *

Property 3. Osmotic Communication 27

Figure 2-4 Group work room attached to shared office. (Courtesy of
Schlumberger)

ch02.qxd 9/20/04 2:01 PM Page 27

Osmotic communication generates its own hazards, most commonly noise and a
flow of questions to the team’s most expert developer. People usually self-regulate
here and request less idle chit-chat or more respect for think time.

Attempting to “protect” the lead designer with a private office usually backfires.
That person really needs to be sitting in the middle of the development team. The lead
designer is often the technology expert, a domain expert, and the best programmer,
and so is necessarily in high demand. When she is taken away, the younger developers
miss the chance to develop good development habits, miss growing in the domain
and the technology, and make mistakes that otherwise would get caught very quickly.
The cost to the project ends up being greater than the benefit of quiet time to the lead
designer. Having the lead designer in the same room as the rest of the team is a strat-
egy called Expert in Earshot (Cockburn url eie), a special use of osmotic
communication. (Andrews url) has a blog entry about creating such a seating
arrangement accommodating twenty people.

Even the best success property is unsuitable under certain circumstances.
Osmotic communication is no exception. If the lead designer gets so overloaded and
so frequently interrupted as to be unable to make progress on anything, the lead
designer needs a workplace with no interruptions at all and extremely limited com-
munications with the team, a Cone of Silence, I call it. Many lead designers use the
hours from 6:00 P.M. to 2:00 A.M. as their cone of silence, but it is better for all
involved if an acceptable cone of silence can be set up within normal working hours.
The cone of silence strategy is described in detail in (Cockburn 2003b).

28 Chapter 2 Applied (The Seven Properties)

Figure 2-5 Group discussion area. (Courtesy of Darin Cummins and
ADP’s Dealer Services)

ch02.qxd 9/20/04 2:01 PM Page 28

PROPERTY 4. PERSONAL SAFETY
Personal safety is being able to speak when something is bothering you, without fear
of reprisal. It may involve telling the manager that the schedule is unrealistic, a col-
league that her design needs improvement, or even letting a colleague know that she
needs to take a shower more often. Personal safety is important, because with it the
team can discover and repair its weaknesses. Without it, people won’t speak up, and
the weaknesses will continue to damage the team.

Personal safety is an early step toward trust. Trust, which involves giving some-
one else power over oneself, with accompanying risk of personal damage, is the extent
to which one is comfortable with handing that person the power. Some people trust
others by default, and wait to be hurt before withdrawing the trust. Others are disin-
clined to trust others, and wait until they see evidence that they won’t be hurt before
they give the trust. Presence of trust is positively correlated with team performance
(Costa 2002).

The different ways in which one can be hurt lead to different forms of trust and
distrust (Mishra 1996). A person lacking open honesty might lie or conceal. One who
lacks congruence in actions will be inconsistent. A person lacking either competence
or reliability will fail to complete assignments. A person lacking concern for others
may act to damage them, including giving away sensitive information.

Accepting exposure to these varied potential damages is using different forms of
trust. It is neither realistic nor necessary to ask everyone on a project to trust each
other in all forms. It is important that people can speak and act freely—they need to
trust each other with respect to damaging actions and betrayal.

When there is no evidence of betrayal or damage, people will reveal information
more freely, which will speed the project. Therefore, personal safety is the critical
property to attain.

Can you tell your boss you mis-estimated by more than 50 percent,
or that you just received a tempting job offer? Can you disagree

with your boss about the schedule in a team meeting? Can people
end long debates about each other’s designs with friendly disagreement?

* * *

Establishing trust involves being in a situation where one of those dangers is
present and seeing that the other people do not hurt you. In other words, to build
trust, there must be exposure.

Property 4. Personal Safety 29

ch02.qxd 9/20/04 2:01 PM Page 29

Three particular exposures are relevant in software development:

� Revealing one’s ignorance

� Revealing a mistake

� Revealing one’s incapability on an assignment

Skillful leaders expose their team members (and themselves!) to these situations
early, and then demonstrate with speed and authenticity that not only will damage not
accrue, but also that the leader and the team as a whole will act to support the person.

One project leader2 told me that when a new person joined her team, she would visit
that person privately to discuss his work and progress, and wait for the inevitable
moment when he had to admit he hadn’t done or didn’t know something.

This was the crucial moment to her, because until he revealed a weakness, she
couldn’t demonstrate to him that she would cover for him or get him assistance. She
knew she was not going to get both reliable information and full cooperation from him
until he understood properly that when he revealed a weakness or mistake, he would
actually get assistance. She said that some people got the message after her first visit,
while others needed several demonstrations before opening up.

Another project leader told of building cohesion and safety in the team by having
the group work together to solve a difficult problem they were facing. In solving the
problem together, they learned several things:

� First, they wouldn’t get hurt if they admitted ignorance, even in their own area.

� Second, they learned how to interpret each other’s mannerisms as nonthreaten-
ing, even in heavy argument.

� Finally, they learned that together they could solve things they couldn’t solve
alone.

Trust is enhanced with frequent delivery. When the software is delivered, people
recognize who did their share of the work and who shirked, who told the truth, who
damaged or protected whom, and who, despite their superficial manners, could be
trusted along which dimensions. With personal safety, they speak from their heart
during the reflective improvement sessions.

* * *

30 Chapter 2 Applied (The Seven Properties)

2 Thanks to Victoria Einarsson in Sweden.

ch02.qxd 9/20/04 2:01 PM Page 30

Personal safety goes hand in hand with amicability, the willingness to listen
with goodwill. The project suffers when any one person on the team stops listening
with goodwill, or loses the inclination to pass along possibly important informa-
tion. In addition to personal skill, a project’s forward progress relies only on the
speed of movement of information across people (“meme-meters per minute,” if
you will).

Usually one person on the team sets the lead in amicability. On a larger project,
it is often crucially the project manager. On a Crystal Clear project, it can be anyone
on the team. Unless there is a specific reason countering it, amicability spreads
quickly and makes the team more comfortable in exchanging information quickly.
Personal safety and amicability together help lead to collaboration across organiza-
tional boundaries, the establishment of global lifelines for the project. I set
amicability as significant management element on a project, partly as evidence for
personal safety.

Once personal safety and amicability are established, a useful, playful dynamic
may emerge. People may wage competition with each other. They may argue loudly,
even to the verge of fighting, without taking it personally. In the case where someone
does take it personally, they sort it out and set things straight again.

Be careful, though, not to confuse personal safety with politeness. Some teams
appear to have personal safety in place, but actually are just being polite because they
are unwilling to show disagreement.3 Covering their disagreements with politeness
and conciliation, they don’t detect and repair mistakes that are present. This damages
the project in the end, as in the case of overamicability described in Agile Software
Development (Cockburn 2002, p. 101).

There is a fair amount of literature on the subject of trust, some of which you
may find applicable to your situation. Read more in Hohmann (1997), Kramer (1996),
Costa (2002), and Adams (2002).

Property 4. Personal Safety 31

3 Thanks to Kay Johanssen for this distinction.

ch02.qxd 9/20/04 2:01 PM Page 31

PROPERTY 5. FOCUS
Focus is first knowing what to work on, and then having time and peace of mind to
work on it. Knowing what to work on comes from communication about goal direc-
tion and priorities, typically from the executive sponsor. Time and peace of mind
come from an environment where people are not taken away from their task to work
on other, incompatible things.

Do all the people know what their top two priority items to work on are?
Are they guaranteed at least two days in a row and two uninterrupted

hours each day to work on them?

* * *

Even with the best of intentions, developers will work on things that only ran-
domly bring business value if they are not told what will provide business value. It is
the job of the executive sponsor, starting from the project chartering activity and run-
ning continuously throughout the project, to make it clear to everyone where the
organization’s priorities lie.

The vice president of a fifty-person company sat down one night, prioritized the
seventy pending company initiatives, and announced the results to her managers the
following day. She went around to each developer individually and made sure they
each knew the top two items for them.

One lead designer I met kept the project’s mission statement and priorities
posted on the wall and referred to them regularly.

Just knowing what is important isn’t enough. Developers regularly report that
meetings, requests to give demos, and demands to fix run-time bugs keep them from
completing their work. It quite typically takes a person about twenty minutes and
considerable mental energy to regain her train of thought after one of these interrup-
tions. When the interruptions happen three or four times a day, it is not uncommon
for the person to simply idle between interruptions, feeling that it is not worth the
energy to get deeply into a train of thought when the next distraction will just show
up in the middle of it.

People asked to work on two or three projects at the same time regularly report
that they are unable to make progress on any one project. It seems to take an hour and
a half for a person to regain the train of thought after working on a different project.

Among the experienced project managers that I interview, the consensus is that
about one and one-half projects is the most that a person can be on and stay effective.
By the time a third project is added, the developer becomes ineffective on all three.

32 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 32

Contrast this with the inexperienced managers who, underestimating the cost of
switching between projects, assign developers to work on three to five projects at the
same time. I encountered one developer assigned to seventeen projects simultane-
ously! You can imagine that he barely had time to report at the various meetings his
ongoing lack of progress on all fronts.

The repair is simple, though uncomfortable. The sponsor makes it clear which
projects and work items are top priority for each person, and arranges for the top two
items to be distinctly higher in priority than all the rest.

The team should then adopt conventions that provide focus time for the team
members. One such convention is that once a person starts working on a project, that
person is guaranteed at least two full days before having to switch to a second project.
This allows for some project switching, while guaranteeing the person enough time
to make actual progress instead of using all the time just to get back up to speed on
each project before leaving it again.

The next convention to adopt may be to localize distracting interruptions. My
experience is that it is generally impractical to bottle up interruptions to something
so neat and tidy as “mornings only” or “between 1 and 3 in the afternoon.” It is in the
nature of interruptions to come sporadically and with high priority. What the team
can do is to create a two-hour time window during which interruptions are blocked.
There are very few interruptions that can’t wait for two hours. Some teams use from
10:00 to noon as a time when meetings, phone calls, and demos are not allowed.

With two hours of guaranteed focus time each day, and two days in a row on the
same project, a developer who otherwise is being driven to distraction may get four
full hours of work done in a week. One developer who adopted these reported after a
few weeks that he had gotten more done in those few weeks than in the several
months before that.

Property 5. Focus 33

ch02.qxd 9/20/04 2:01 PM Page 33

PROPERTY 6. EASY ACCESS TO EXPERT USERS
Continued access to expert user(s) provides the team with

� A place to deploy and test the frequent deliveries

� Rapid feedback on the quality of their finished product

� Rapid feedback on their design decisions

� Up-to-date requirements

Researchers Keil and Carmel published results showing how critical it is to have
direct links to expert users (Keil 1995). Surveying managers who had worked both
with and without easy access to real users, they write

. . . in 11 of the 14 paired cases, the more successful project involved a greater number
of links than the less successful project. . . . This difference was found to be statistically
significant in a paired t-test (p < 0.01).

Their research led them to a specific recommendation: “Reduce Reliance on
Indirect Links.” In other words, get real access to real users.

Does it take less than three days, on the average, from the time you come up with a
question about system usage to when an expert user answers the question? Can you

get the answer in a few hours?

* * *

All very nice, but how many users, and how much time?
Even one hour a week of access to a real and expert user is immensely valuable.

The more hours each week that an expert user is available to a team, the more advan-
tage they can take of that proximity. The first hour, however, is the most crucial.

The other thing that is important is the length of time until a question gets
answered. If a question won’t be answered for another three days, the programmers
are likely to put into the code their best current guess, and may forget to recheck
their decision when they are with the users again. Therefore, they should have tele-
phone access to the expert user during the week.

Here are the three user access methods I hear about most often:

� Weekly or semiweekly user meetings with additional phone calls. You may find
that the user loads the team with information in the first weeks. Over time, the

34 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 34

developers need less time from the user(s), as they develop code. Eventually, a
natural rhythm forms, as the user provides new requirements information and
also reviews draft software. This natural rhythm might involve one, two, or three
hours a week per expert user. If you add a few phone calls during the week, then
questions get answered quickly enough to keep the development team from
going off in a false direction.

� One or more experienced users directly on the development team. This is only
rarely possible, but don’t discount it. I periodically find a team located inside the
user community or is in some way collocated with an expert user.

� Send the developers to become trainee users for a period. Odd though this may
sound, some development teams send the developers to either shadow users or
become apprentice users themselves. While I don’t have a very large base of sto-
ries to draw from, I have not yet heard a negative story related to using this
strategy. The developers return with a respect for the users and an appreciation
for the way their new software can change the working lives of the users.

Keil and Carmel name additional user links, including facilitated teams, user-
interface prototyping, interviews, tests, bulletin boards, usability labs, observational
study, and focus groups. In a quick search on the Internet, I turned up a number of
companies that specialize in finding subjects and testing software with real users.

I distinguish between the expert user and the business expert, because they are
often different people. The business expert knows the business policies, including
which are fixed, which are likely to change, and the dependencies between them.
Users generally don’t know this information. On the other hand, the expert user
knows which operations are common and which are rare, what shortcuts are needed,
what information doesn’t really have to be entered, and what information needs to be
visible at the same time. The business expert won’t know this information, since it
comes only from continuous daily operation.

The development team will contain a business expert (see Roles in Chapter 5).
That person may be the sponsor, or the expert user, or it may be the lead designer.
Such a person is almost always available to a project, and so I don’t fuss about it so
much. The expert user, on the other hand, is usually missing, to the detriment of the
project, which is why I fuss about it so much here. Easy access to expert users pro-
vides a safety net for the team, as well as being a competitive advantage. It is likely to
be a critical success factor for a small team.

* * *

Property 6. Easy Access to Export Users 35

ch02.qxd 9/20/04 2:01 PM Page 35

“Okay, we’ve got the users—now what do we do with them?”
You need to know what they want, what their sponsors are willing to pay for,

where their fast and rare-but-significant usage patterns lie, whether you have over-
looked something critical. You need the users before, during, and after design.

Before you get too far into designing the system, you need to identify the user
roles that the sponsors consider the most important people to fit the application.
These are the focal roles. The system will present different “personalities” (e.g., fast
and efficient or warm and friendly) to each different role. The designers will accentu-
ate one personality over others, and you want to make sure they accentuate the most
important one(s).

The technique described in a section of the next chapter, Essential Interaction
Design, is one way to identify the focal roles and personalities to develop. The attrac-
tion of this workshop technique is that you can gather the information in just a few
days.

During design, you will need answers to many small questions. For this you need
easy access to expert users on an ongoing basis as described in this section.

After design, when you think you are done, you need users again, to evaluate your
results. If the system will go to a few, local users, simply invite them in for a test drive.
If, on the other hand, you have a large number of geographically dispersed users, then
the cost of evaluation is greater. I don’t know of any special efficiencies for this situa-
tion. Techniques for usability evaluation have been described for decades (customer
focus groups and usability samples being the prime examples).

Before I leave this property, I ask you to read again the last paragraphs of the fre-
quent delivery, in which I describe the troubles arising from not arranging for real
user feedback. Even teams that do every other practice in agile development find
themselves facing catastrophic bad news at the end of the project if they neglect such
feedback during the project.

36 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 36

PROPERTY 7. TECHNICAL ENVIRONMENT WITH
AUTOMATED TESTS, CONFIGURATION
MANAGEMENT, AND FREQUENT
INTEGRATION

The elements I highlight in this property are such well-established core elements that
it is embarrassing to have to mention them at all. Let us consider them one at a time
and all together.

Automated Testing. Teams do deliver successfully using manual tests, so this
can’t be considered a critical success factor. However, every programmer I’ve inter-
viewed who once moved to automated tests swore never to work without them again.
I find this nothing short of astonishing.

Their reason has to do with improved quality of life. During the week, they revise
sections of code knowing they can quickly check that they hadn’t inadvertently bro-
ken something along the way. When they get code working on Friday, they go home
knowing that they will be able on Monday to detect whether anyone had broken it
over the weekend—they simply rerun the tests on Monday morning. The tests give
them freedom of movement during the day and peace of mind at night.

Configuration Management. The configuration management system allows peo-
ple to check in their work asynchronously, back changes out, wrap up a particular
configuration for release, and roll back to that configuration later on when trouble
arises. It lets the developers develop their code both separately and together. It is
steadily cited by teams as their most critical noncompiler tool.

Frequent Integration. Many teams integrate the system multiple times a day. If
they can’t manage that, they do it daily, or, in the worst case, every other day. The
more frequently they integrate, the more quickly they detect mistakes, the fewer
additional errors that pile up, the fresher their thoughts, and the smaller the region
of code that has to be searched for the miscommunication.

The best teams combine all three into continuous integration-with-test. They
catch integration-level errors within minutes.

Can you run the system tests to completion without having to be physically present?
Do all your developers check their code into the configuration management system?

Do they put in a useful note about it as they check it in?
Is the system integrated at least twice a week?

* * *

Property 7. Technical Environment with Automated Tests, Configuration Management 37

ch02.qxd 9/20/04 2:01 PM Page 37

How frequent should frequent integration be? There is no fixed answer to this any
more than to the question of how long a development iteration should be.

One lead designer reported to me that he was unable to convince anyone on his
team to run the build more than three times a week. While he did not find this com-
fortable, it worked for that project. The team used one-month-long iterations, had
osmotic communications, reflective improvement, configuration management, and
some automated testing in place. Having those properties in place made the fre-
quency of their frequent integration less critical.

The most advanced teams use a build-and-test machine such as Cruise Control4

to integrate and test nonstop (note: having this machine running is not yet sufficient
. . . the developers have to actually check in their code to the main line code base mul-
tiple times a day!). The machine posts the test results to a Web page that team
members leave open on their screens at all times. One internationally distributed
development team (obviously not using Crystal Clear!) reports that this use of Cruise
Control allows the developers to keep abreast of the changing code base, which to
some extent mitigates their being in different time zones.

Experiment with different integration frequency, and find the pace that works
for your team. Include this topic as part of your reflective improvement. For more
on configuration management, I refer you to Configuration Management
Principles and Practice (Hass 2003) Configuration Management Patterns
(Berczuk 2003), and Pragmatic Version Control using CVS by the Pragmatic
Programmers (Thomas 2003). You may need to hire a consultant to come in for a
few days, help set up the configuration management system, and tutor the team on
how to use it.

* * *

Automated testing means that the person can start the tests running, go away,
not having to intervene in or look at the screens, and then come back to find the test
results waiting. No human eyes and no fingers are needed in the process. Each per-
son’s test suites can be combined into a very large one that can, if needed, be run over
the weekend (still needing no human eyes or fingers).

Three questions immediately arise about automated testing:

� At what level should they be written?

� How automated do they have to be?

� How quickly should they run?

38 Chapter 2 Applied (The Seven Properties)

4 http://cruisecontrol.sourceforge.net/

ch02.qxd 9/20/04 2:01 PM Page 38

Besides usability tests, which are best performed by people outside the project,5 I
find three levels of tests hotly discussed:

� Customer-oriented acceptance tests running in front of the GUI and relying on
mouse and keyboard movements

� Customer-oriented acceptance tests running just behind the GUI, testing the
actions of the system without needing a mouse or keyboard simulator

� Programmer-oriented function, class, and module tests (commonly called unit
tests)

The automated tests that my interviewees are so enthusiastic over are from the
latter two of those categories. Automating unit tests allow the programmers to check
that their code hasn’t accidentally broken out from under them while they are adding
new code or improving old code (refactoring). The GUI-less acceptance tests do the
same for the integrated system, and are stable over many changes in the system’s
internal design. Although GUI-less acceptance tests are highly recommended, I rarely
find teams using them, for the reason that they require the system architecture to
carefully separate the GUI from the function. This is a separation that has been rec-
ommended for decades, but few teams manage.

Automated GUI-driven system tests are not in the highly recommended short list
because they are costly to automate and must be rebuilt with every change of the GUI.
This difficulty makes it all the more important that the development team creates an
architecture that supports GUI-less acceptance tests.

A programmer’s unit tests need to execute in seconds, not minutes. Running that
fast, the programmer will not lose her concentration while they run, which means
that the tests are actually run as the programmer works. If the tests take several min-
utes to run, she is unlikely to rerun the tests after typing in just a few lines of new
code or moving two lines of code to a new function or class.

Tests may take longer when the code is checked into the configuration manage-
ment system. At this point, the programmer has completed a sequence of design
actions, and can afford to walk away for a few minutes while the tests run.

The acceptance tests can take a long time to run, if needed. I write this sentence
advisedly: The reason the tests run a long time should be because there are so many
tests or there is a complicated timing sequence involved, not because the test harness
is sloppy. Once again, if the tests run quickly, they will get run more often. For some
systems, though, the acceptance tests do need to run over the weekend.

Property 7. Technical Environment with Automated Tests, Configuration Management 39

5 Google even has a category for it: Computers > Human-Computer Interaction >
Companies and Consultants > Usability Testing.

ch02.qxd 9/20/04 2:01 PM Page 39

Crystal Clear does not mandate when the tests get written. Traditionally, pro-
grammers and testers write the tests after the code is written. Also traditionally,
they don’t have much energy to write tests after they write code. Partially for
this reason, more and more developers are adopting test-driven development
(Beck 2003).

The best way I know to get started with automated testing is to download a
language-specific copy of the X-unit test framework (where X is replaced by the lan-
guage name), invented by Kent Beck. There is JUnit for Java programmers, CppUnit
for C++ programmers, and so on for Visual Basic, Scheme, C, and even PHP. Then get
one of the books on test-driven development (Beck 2003, Astels 2003) and work
through the examples. A Web search will turn up more resources on X-unit.

Both httpUnit and Ward Cunningham’s FIT (Framework for Integrated Tests)
help with GUI-less acceptance tests. The former is for testing HTML streams of Web-
based systems, the latter to allow the business expert to create her own test suites
without needing to know about programming. Robert Martin integrated FIT with
Ward’s Wiki technology to create FITnesse.6 Many teams use spreadsheets to allow
the business experts to easily type in scenario data for these system-function tests.

There are, sadly, no good books on designing the system for easy GUI-less accep-
tance testing. The Mac made the idea of scriptable interfaces mainstream for a short
while (Simone url) and scripting is standard with Microsoft Office. In general, how-
ever, the practice has submerged and is used by a relatively small number of
outstanding developers. The few people I know who could write these books are too
busy programming.

* * *

I end this section with a small testimonial to test-driven development that I hope
will sway one or two readers. Thanks to David Brady for this note:

Yesterday I wrote a function that takes a variable argument, like printf(). That function
decomposes the list arguments, and drops the whole mess onto a function pointer. The
pointer points to a function on either the console message sink object or a kernel-side
memory buffer message sink object. (This is just basic inheritance, but it’s all gooky
because I’m writing it in C.)

Anyway, in the past I would expect a problem of that complexity to stall me for an
indefinite amount of time while I tried to debug all the bizarre and fascinating things
that can go wrong with a setup like that.

40 Chapter 2 Applied (The Seven Properties)

6 http://fit.c2.com and http://fitnesse.org respectively.

ch02.qxd 9/20/04 2:01 PM Page 40

It took me less than an hour to write the test and the code using test-first.

My test was pretty simple, but coming up with it was probably the hardest part
of the whole process. I finally decided that if my function returned the correct num-
ber of characters written (same as printf), that I would infer that the function was
working.

With the test in place, I had an incredible amount of focus. I knew what I had to
make the code do, and there was no need to wander around aimlessly in the code trying
to support every possible case. No, it was just “get this test to run.” When I had the test
running, I was surprised to realize that I was indeed finished. There wasn’t anything
extra to add; I was actually done!

I usually cut 350–400 lines of production-grade code on a good day. Yesterday I
didn’t feel like I had a particularly good day, but I cut 184 test LOC and 529 production
LOC, pLOC that I *know* works, because the tests tell me so, pLOC that includes one
of the top-10 trickiest things I’ve ever done in C (that went from “no idea” to “fully
functional” in under 60 minutes).

Wow. I’m sold.

Test infection. Give it a warm, damp place to start, and it’ll do the rest. . . .

David Brady

Property 7. Technical Environment with Automated Tests, Configuration Management 41

ch02.qxd 9/20/04 2:01 PM Page 41

EVIDENCE: COLLABORATION ACROSS
ORGANIZATIONAL BOUNDARIES

There is a side-effect from attending to personal safety, amicability within the team,
and easy access to expert users: it becomes natural to include other stakeholders into
the project, as well.

Géry Derbier, working with the French postal service (La Poste) to build software
to run a new facility to handle all the mail going into and out of northern France,
reported on his use of Crystal. With twenty-five people, his was a project in the Crystal
Yellow category. However, he knew the principles of the Crystal methodologies family,
particularly the “stretch to fit” principle, and therefore chose to extend Crystal Clear
to his larger setting wherever possible.

We discussed his project, and at one point covered their project’s linkage to the inte-
gration testing team located 30 km away and to the business and usage expert working
for La Poste. I asked questions of the sort: “How often did that person visit the team?
How did he feel about that? How did his manager feel about his coming over so often?”
Géry’s answers were, for both external groups: “One day a week; comfortable; happy to
be involved so early.”

After our discussion, I realized that Géry had built the additional safety of collab-
oration across organizational boundaries into his project. His project was happily
linked into both the customer and integration environments with a colleague on each
end. La Poste’s contract measured and paid according to integrated test results every
few months (frequent delivery). The La Poste executives got software delivered in
growing increments and paid accordingly. Géry’s bosses, who had no previous experi-
ence with incremental delivery, were happy about this also, since they saw regular
delivery turn into regular payments. Géry had a support structure on all sides.

Collaboration across organizational boundaries is not a given result on any proj-
ect. It results from working with honesty amicability and integrity within and outside
the team. It is hard to achieve if the team does not itself have personal safety and, to a
lesser extent, frequent delivery. I consider the presence of good collaboration across
organizational boundaries as partial evidence that some of the top seven safety prop-
erties are being achieved.

42 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 42

REFLECTION ON THE PROPERTIES
I don’t believe that any prescribed procedures exists that can assure that projects land
in the safety zone every time. Nor, with the exception of incremental development, do
I show up on a project with any particular set of rules in hand, even though I have my
favorites. This is why Crystal Clear is built around critical properties instead of speci-
fication of procedures.

A Crystal team works to set the seven properties into place, using whatever group
conventions, techniques, and standards fit their situation. The conventions may vary
by project and by month. New techniques get invented with each new technology
(and usually go out of style again a few years later). These seven properties, on the
other hand, have been applied on good projects for decades.

My intention with Crystal is to not invade the natural workings of individuals on
the project where possible, and to allow the most possible variation across different
teams, while still getting those diverse projects into the safety zone. To allow varia-
tion, I must remove constraints. Removing constraints means finding broader
mechanisms that provide a safety net. The ones I choose to rely on are these:

� People are by nature good at looking around and communicating.

� They take initiative when provided with information.

� They do better in an environment that is safe with respect to personal and emo-
tional safety and particularly freedom from personal attacks.

� They do their best work if they can satisfy their need for contribution, accom-
plishment, and pride-in-work.

The Crystal Clear safety net is built on those things. Personal safety gives people
the personal courage to share whatever they discover. Osmotic communication gives
them the greatest chance to discover important information from each other and
does so with very low communication cost. Reflective improvement gives them a
channel to apply feedback to their working process. Easy access to expert users gives
them the opportunity to quickly discover relevant information from the user(s).
Frequent delivery creates feedback to the system’s requirements and the development
process. The technical development environment including automated tests, configu-
ration management, and frequent integration allows people to safely make changes to
the system, synchronize the multiple minds that are in motion at the same time, and
get feedback on the system’s intermediate stages quickly. Focus allows the team to
spend their energy well on the most important things.

Reflection on the Properties 43

ch02.qxd 9/20/04 2:01 PM Page 43

Ron Jeffries once characterized Crystal Clear as, “Bring a few developers together
in peace, love and harmony, shipping code every other month, and good software will
emerge.” He is close.

* * *

You should be asking at this point, “But what is special in all this about small pro-
jects? Shouldn’t all project teams set these properties in place?”

The answer—with two side notes—is, “Of course.” The properties that make a
small-team project successful should be very similar to making any project success-
ful, but should be optimized for the small-project situation.

The first note is that the properties are easier to reach on a small project.
Personal safety is easier, since the people interact with each other more often and
come to know each other sooner. The feedback loops are much smaller, and the rest
of the properties follow accordingly.

The second note is that osmotic communication, which lives from background
hearing and communication along lines-of-sight, really only works with small teams.
Larger teams will set up osmotic communication within subteams and close com-
munication across subteams.

44 Chapter 2 Applied (The Seven Properties)

ch02.qxd 9/20/04 2:01 PM Page 44

