
4-1

Chapter 4
Using the Canvas Widget

You can turn an ordinary program into an extraordinary application by using graphics to
convey information. After all, a picture is worth a thousand words. And in the realm of
graphical user interfaces, an interactive picture is worth a thousand buttons!

Imagine an application that monitors a factory floor for problems on the production
line. Suppose it displays a diagram of the factory floor, and it marks problem areas with a
flashing red square. That kind of interface lets you see the status of the entire factory at a
glance, and it is much more intuitive than a listbox full of status messages.

Tk has something called thecanvas widget that makes it easy to build such things.
You simply create a canvas and add the lines, rectangles, and polygons that make up a
drawing. You can even make the drawing come to life by binding actions to certain events
on the canvas. When you click on a problem area on the factory floor, for example, the
program could display the status for that area. When you drop a wrench icon onto the
problem area, the program could dispatch a maintenance crew.

In this chapter, we’ll see how you can use the canvas to build interactive displays.
We’ll start by explaining how the canvas works with some simple examples. Then we’ll
look at a series of case studies to see how the various features work together:

• We’ll build a progress gauge showing the status of a task from 0% to 100% complete.

• We’ll build a color selection wheel.

• We’ll add some tabs to the notebook that we created in Section 2.1.7, to create a tabbed
notebook.

• We’ll build a calendar that lets you page through the months and click to select individ-
ual days.

4-2 Using the Canvas Widget

• We’ll build a simple drawing program that lets you create things like rectangles and cir-
cles. We’ll add bindings so that you can select these items, resize them, move them and
change their color.

You can use the same techniques to build other displays such as the factory floor monitor,
a seat assignment chart for airline reservations, or whatever else your application requires.

4.1 Understanding the Canvas Widget

When you create a canvas like this:
canvas .c -width 2i -height 1i

you get an empty canvas—just a blank area with no default behavior. In this example, the
canvas is 2 inches wide and 1 inch high. You create a drawing on the canvas by adding
drawing elements calleditems. For example, we can draw a line by creating a line item
like this:

.c create line 0 15 15 25 35 5 50 15 -width 2 -fill blue

Each pair of numbers represents an (x,y) coordinate for the line. So this line goes from
(0,15) to (15,25) to (35,5) to (50,15). All of these coordinates are relative to the origin at
(0,0), which is in the upper-left corner of the window. X-coordinates increase toward the
right, and y-coordinates increase going down. In this example, the numbers are just inte-
gers, so they are treated as pixel coordinates. But you can add a letter after each number to
indicate its units. For example, the value1.5i is 1 inches, and10c is 10 centimeters.

Each item has configuration options that control its appearance. By default, lines are
black. But this particular line is blue, and it has a width of 2 pixels.

You can create many different kinds of items on the canvas. Figure 4.1 shows exam-
ples of the various types. If you are looking for a detailed description of each item and its
configuration options, you can find it on the manual page for the canvas widget. But we’ll
mention each type briefly below, so you get a feeling for the things that you can create on
a canvas:

• line

A line has two or more coordinates. You can add arrowheads at the ends. If you turn on
smoothing, the line is drawn as a set of Bezier splines.

• rectangle

A rectangle has two coordinates representing two opposite corners. You can set a color
and a line width for its outline, and you can set a separate color to fill its interior.

• polygon

A polygon has three or more coordinates. Like a rectangle, you can set its outline color
and its line width, and you can use a separate color to fill its interior. Like a line, you
can turn on smoothing, and its outline will be drawn as a set of Bezier splines.

4.1 Understanding the Canvas Widget 4-3

• oval

An oval has two coordinates representing the rectangle that contains it. Like a rectan-
gle, you can set its outline color and its line width, and you can use a separate color to
fill its interior.

• arc

An arc is like an oval, but it has a starting angle and an extent that control how much of
the oval is drawn. An arc also has a style option. It can be drawn as a line, as a pie
wedge, or with a chord connecting the end points.

• bitmap

A bitmap has one coordinate representing its anchor point. The bitmap is aligned with
this point according to its-anchor option. Each bitmap has only two colors: a fore-
ground color which is normally black, and a background color which is normally the
same as the canvas widget.

• image

An image has one coordinate representing its anchor point. But unlike a bitmap, an

Figure 4.1. The various items that you can create on a canvas.

4-4 Using the Canvas Widget

image can have any number colors, and it will dither automatically when it is displayed
on a monochromatic screen.

• text

A text item has one coordinate representing its anchor point. A single text item can
have multiple lines, and you can control their justification. You can also set the color
and the font for the text.

• window

A window item has one coordinate representing its anchor point. It acts as a place-
holder for a widget embedded in the canvas. So you can mix things like buttons and
entries with the other graphics on the canvas. For example, in Figure 4.1 we put an
entry widget on top of a blue oval.

Many of these items also have an option for theirstipple pattern, which controls how they
are filled in. By default, items are drawn with a solid color. But if you use a bitmap screen
like gray50 as a stipple pattern, you will get a stenciled effect. Where the bitmap is
black, the item will be drawn with its fill color, and where it is not, the item will be trans-
parent. One of the rectangles in Figure 4.1, for example, has the stipple patterngray50 .
Its interior is a red screen that lets the rectangle underneath it show through.

4.1.1 Scrolling

Each canvas has an unlimited drawing area, but the canvas widget itself has a certain size
on the screen. By default, the canvas will display as much as it can starting from the (0,0)
coordinate in the upper-left corner of the drawing area, as shown in Figure 4.2. The visi-
ble area of the canvas is called theviewport. You can add items outside of the viewport,
but you won’t see them unless you tell the canvas to change its view.

If your drawing extends beyond the viewport, you can attach scrollbars to control the
view. For example, we used the following code to create the display in Figure 4.2:

canvas .display -width 3i -height 2i -background black \

 -xscrollcommand {.xsbar set} -yscrollcommand {.ysbar set}

scrollbar .xsbar -orient horizontal -command {.display xview}

scrollbar .ysbar -orient vertical -command {.display yview}

.display create line 98.0 298.0 98.0 83.0 -fill green -width 2

.display create line 98.0 83.0 101.0 69.0 -fill green -width 2

.display create line 101.0 69.0 108.0 56.0 -fill green -width 2

...

This is the same code that we saw in Section 2.2.1. But at that point, we were only con-
cerned with how scrollbars are positioned next to a canvas. Here, we will explain how
scrollbars are attached to control a canvas.

Each scrollbar has a-command option with a command to control the canvas view. In
this example, when you adjust the horizontal scrollbar it executes the command

4.1 Understanding the Canvas Widget 4-5

.display xview , with a few extra arguments to shift the viewport left or right. And
when you use the vertical scrollbar, it executes the command.display yview , again
with suitable arguments, to shift the viewport up or down. Similarly, the canvas has
-xscrollcommand and-yscrollcommand options which it uses to control the scroll-
bars. In this example, whenever its view changes it executes the commands.xsbar set

or .ysbar set with suitable arguments, to reposition the bubble in the middle of the
each scrollbar.

These command options allow the canvas and the scrollbars to communicate with one
another and stay in sync, but they aren’t enough to make the canvas scroll properly. The
canvas also has a-scrollregion option that sets the boundaries of the scrolling region.
By default, the scrolling region corresponds to the viewport area. So even if your actual
drawing is much larger than the viewport, the canvas will think that there is no room for
scrolling. To make the canvas scroll properly, you must tell it the size of your drawing by
giving it some coordinates, like this:

.display configure -scrollregion {0 0 250 375}

This says that the upper-left corner of the scrolling region is (0,0), and the lower-right cor-
ner is (250,375). The canvas will let the viewport move within this region.

Quite often, you won’t know the overall size of your drawing, and guessing at the size
is prone to errors. If you make the scrolling region too small, you won’t be able to see part
of the drawing, and if you make it too big, you will see a lot of empty area. Instead, you
should use the following trick to set the scrolling region:

Figure 4.2. The canvas widget acts as a viewport, displaying part of the virtual drawing area that is
available. You can add scrollbars to change the view.

Viewport Area

Virtual Drawing Area

4-6 Using the Canvas Widget

.display configure -scrollregion [.display bbox all] \

 -xscrollincrement 0.1i -yscrollincrement 0.1i

The command.display bbox all automatically computes a bounding box around all
of the items currently on the canvas. We use this result to set the area for the scrolling
region. You must do thisafter you’ve created all of the items for your drawing. If you add
more items to the drawing, you should recompute the bounding box and set the scrolling
region accordingly.

The canvas also has-xscrollincrement and-yscrollincrement options. You
can set these to indicate how much the canvas should move when you press the arrows on
either end of a scrollbar. In this example, we have the drawing shift in increments of 0.1
inch.

4.1.2 Display List Model

The canvas remembers each item that you create. At any point, you can move, resize or
change the attributes of an item, and the drawing will be updated automatically. For
example, suppose we create a canvas with the following code:

canvas .c -width 100 -height 110

pack .c

.c create oval 10 10 90 90 -fill yellow -width 2

.c create arc 15 15 85 85 -start 60 -extent 60 -fill black

.c create arc 15 15 85 85 -start 180 -extent 60 -fill black

.c create arc 15 15 85 85 -start 300 -extent 60 -fill black

.c create oval 40 40 60 60 -outline "" -fill yellow

.c create oval 44 44 56 56 -outline "" -fill black

.c create text 50 95 -anchor n -text "Warning"

As each item is created on this canvas, it is added to an internal list called thedisplay list.
When the canvas needs to display itself, it simply draws each item on the display list. It
starts at the bottom and works its way toward the top, as shown in Figure 4.3.

Now, suppose we want to change one of the items. Suppose our nuclear reactor goes
critical and we want to change the message from “Warning” to “RED ALERT”. We need
a way of referring to the text item within the canvas.

When each item is created, the canvas assigns it a unique number called anitem iden-
tifier. You can capture the identifier whenever you create an item, like this:

set id [.c create text 50 95 -anchor n -text "Warning"]

Here, the variableid will contain an item number like7. We can use this later on to con-
figure the item:

.c itemconfigure $id -text "RED ALERT"

This tells the canvas to find item7 and change its-text option to “RED ALERT”.

4.1 Understanding the Canvas Widget 4-7

When any item changes, the canvas figures out what portion of the drawing is
affected, and it redraws that part of the display. It does so in a highly efficient manner, so
the changes appear to be instantaneous. In this example, the area near the text item is
regenerated, and the text changes immediately from “Warning” to “RED ALERT”.

The canvas also has search operations that help you find certain items in the display
list. For example, itsfind enclosed operation will search for items that are contained
within a bounding box. A command like:

.c find enclosed 20 20 80 110

will find all items in the rectangle from (20,20) to (80,110) and return a list of item identi-
fiers. We could use this in conjunction with theitemconfigure operation to highlight
these items in red:

foreach id [.c find enclosed 20 20 80 110] {

 .c itemconfigure $id -fill red

}

This gives the result shown in Figure 4.4.

Figure 4.3. (a) The canvas keeps a display list of all its internal items. (b) The resulting picture.

(b)

Drawn Last

Drawn First

(a)

4-8 Using the Canvas Widget

The canvas has a few more search operations. You can find an explanation of each
one on the canvas manual page. We mentioned thefind enclosed operation here sim-
ply to show how canvas operations build on one another, and how the item identifiers
come into play. We’ll see some examples later in this chapter that show the search opera-
tions in action.

4.1.3 Using Tags

Item identifiers are useful, but since they are just numbers, they are not very meaningful.
Your canvas programs will be much easier to understand if you tag important items with
symbolic names. An easy way to do this is to set the-tags option as each item is created.
For example, we could rewrite our code to tag some of the items in our radiation symbol
like this:

canvas .c -width 100 -height 110

pack .c

Figure 4.4. (a) The canvas can search its display list for certain items. (b) Items can be configured
to change their appearance.

(b)

Drawn Last

Drawn First

(a)

4.1 Understanding the Canvas Widget 4-9

.c create oval 10 10 90 90 -fill yellow -width 2

.c create arc 15 15 85 85 -start 60 -extent 60 \

 -fill black -tags sign

.c create arc 15 15 85 85 -start 180 -extent 60 \

 -fill black -tags sign

.c create arc 15 15 85 85 -start 300 -extent 60 \

 -fill black -tags sign

.c create oval 40 40 60 60 -outline "" -fill yellow

.c create oval 44 44 56 56 -outline "" \

 -fill black -tags sign

.c create text 50 95 -anchor n -text "Warning" -tags message

We tagged the “Warning” message with the symbolic namemessage . When we need to
change the message later on, we can use the tag namemessage as an item identifier:

.c itemconfigure message -text "RED ALERT" -fill red

That way, we don’t have to create extra variables to store item identifiers, and the code is
easier to follow.

You can also use tag names to identify a group of related items. For example, we
tagged all of the black parts of the radiation sign with the symbolic namesign . Having
done that, we can change the color of all four items at once with a single command:

.c itemconfigure sign -fill red

The canvas finds all items tagged with the namesign and changes their fill color to red, as
shown in Figure 4.5. We could have accomplished the same thing by looping through a
list of item identifiers and configuring each item individually. But this is more convenient,
and it is much more efficient. Remember, the canvas operations are handled in compiled
code, so they run much faster than a block of Tcl statements, which are all interpreted.

Each item can have lots of different tag names associated with it, so you can put the
same item in different groups. For example, suppose we want to create a group of items
calledhilite that will all light up red at some point. We might include themessage

Figure 4.5. Tag names are used to identify items on the canvas.

Tags:

message

sign

4-10 Using the Canvas Widget

item and thesign items in this group, so that we could configure them all with a single
command, like this:

.c itemconfigure hilite -fill red

We need to add the tag namehilite to all the items that we want to have in this
group. One way to accomplish this is to add the tag when each item is created, like this:

.c create text 50 95 -anchor n -text "Warning" \
 -tags {message hilite}

As you can see, the-tags option accepts a list of tag names. In this example, the ele-
mentsmessage andhilite are treated as separate names that both refer to the text item.

Another way is to add the tag name after the item has been created. The canvas
addtag operation supports many different ways of finding and tagging items. For exam-
ple, the command:

.c addtag "hilite" withtag "sign"

finds all of the items with the tag namesign and adds the taghilite to them.
At this point, we can use the namemessage to refer to the text item, the namesign

to refer to the four parts of the radiation sign, or the namehilite to refer to all of these
items.

4.1.4 Canvas Bindings

You can add new behaviors to a canvas using thebind command, just as you would for
any other Tk widget. For example, suppose we want the radiation symbol to light up red
whenever the mouse pointer enters the window, as shown in Figure 4.6. We simply bind to
the<Enter> and<Leave> events on the canvas, like this:

bind .c <Enter> {
 .c itemconfigure hilite -fill red
}

bind .c <Leave> {
 .c itemconfigure hilite -fill black
}

Here, we are leveraging the tag names described in the previous section. When the mouse
pointer enters or leaves the canvas, we simply change the fill color for all items tagged
with the namehilite .

But unlike the other widgets, the canvas also lets you bind to events on the items
within it. For example, suppose that we want the radiation sign to light up only when the
mouse pointer is touching one of thehilite items. Instead of detecting<Enter> and
<Leave> events on the canvas as a whole, we want to detect<Enter> and<Leave>

events on the individualhilite items, as shown in Figure 4.7. So instead of using the
usualbind command (which applies to an entire widget), we must use a specialbind

operation on the canvas (which provides access to items within the canvas). It looks like
this:

4.1 Understanding the Canvas Widget 4-11

.c bind hilite <Enter> {
 .c itemconfigure hilite -fill red
}

.c bind hilite <Leave> {
 .c itemconfigure hilite -fill black
}

These look like ordinarybind commands, but the.c prefix indicates that they apply only
to items within the canvas.c .

Bindings can be applied to individual items via their item identifier, or to groups of
items using their tag name. In this case, we added bindings to all items with the tag name
hilite .

Suppose we add another binding for themessage item. When you click on this item,
the text will toggle between “Warning” and “RED ALERT”:

Figure 4.6. Binding to the canvas as a whole. (a) The pointer is outside the canvas. (b) The pointer
moves inside the canvas and the items tagged ashilite change color.

Figure 4.7. Binding to canvas items. (a) The pointer is on the canvas. (b) The pointer moves onto
an item taggedhilite and all items with this name change color.

(a) (b)

(a) (b)

4-12 Using the Canvas Widget

.c bind message <ButtonPress-1> {
 if {[.c itemcget message -text] == "Warning"} {
 .c itemconfigure message -text "RED ALERT"
 } else {
 .c itemconfigure message -text "Warning"
 }

}

Again, if we had added this binding to the canvas as a whole, the text would change no
matter where you click on the canvas. But instead, we added the binding only to the
message item, so you must click directly on the item for the text to change.

The canvas has one other feature that comes in handy for bindings. Whenever the
mouse pointer touches an item, that item is temporarily tagged with the namecurrent .
This makes it easy to figure out which item is active at any point in time. For example,
suppose that we want parts of the radiation sign to light up individually as the mouse
pointer touches them, as shown in Figure 4.8. This technique is calledbrushing, and it
helps the user realize what parts of your diagram are active.

As before, we bind this behavior to all of the items tagged with the namehilite :
.c bind hilite <Enter> {
 .c itemconfigure current -fill red
}

.c bind hilite <Leave> {
 .c itemconfigure current -fill black
}

But this time, only one item tagged with the namecurrent will change color. In effect,
we have added the same binding to a group of items namedhilite , but we set up each
item to react individually.

In the examples that follow, we’ll see tags, bindings and other canvas techniques in
action. Although there are many different examples, there is really one underlying philos-
ophy for using the canvas: You must focus on the items within it. Decide how to tag items

Figure 4.8. Detecting the current item. (a) The pointer is on the canvas. (b) The pointer moves onto
an item with the tag namehilite , but this time only the current item changes color.

(a) (b)

4.2 Scrollable Form 4-13

so that you can refer to them later. Tag related items with the same name so you can han-
dle them as a group. In some cases, you may bind to events on the canvas as a whole. But
more often than not, you will bind to individual items or groups of items, creating active
areas on your display. If you have worked with other graphical toolkits, this may seem
like a paradigm shift, and it may take some getting used to. But once you have mastered
tags, you have mastered the canvas.

4.2 Scrollable Form

When the canvas is too small to display an entire drawing, you see only a small portion of
it, and you can use scrollbars to adjust the view. We saw how this works in Section 4.1.1.
But what if the canvas has widget items on it? As long as the canvas knows the size of its
scrolling region, we can scroll the widgets in and out of the view.

You can mix widgets and graphics on the canvas to create some fancy displays. But in
this example, we’ll do something much simpler. We’ll use the canvas to scroll through a
long form like the one shown in Figure 4.9. This technique is handy when you have a lot
of entries that won’t fit on the screen all at once.

Figure 4.9. You can use the canvas to scroll over a large collection of widgets, in effect creating a
scrollable form.

Viewport Area

Virtual Drawing Area

4-14 Using the Canvas Widget

To build a scrollable form, we simply pack (or grid) a large collection of widgets
together in a frame, and then position the frame on the canvas. We use its overall size to
set the limits on the scrolling region for the canvas. Once the scrollbars are attached, the
canvas handles the scrolling, and the scrollable form is complete.

The following procedure makes it easy to create a scrollable form. It creates a canvas
and attaches a vertical scrollbar, and then positions an empty frame in the drawing area.
You simply pass in a widget name for the whole assembly:

proc scrollform_create {win} {
 frame $win -class Scrollform

 scrollbar $win.sbar -command "$win.vport yview"
 pack $win.sbar -side right -fill y

 canvas $win.vport -yscrollcommand "$win.sbar set"
 pack $win.vport -side left -fill both -expand true

 frame $win.vport.form
 $win.vport create window 0 0 -anchor nw -window $win.vport.form

 bind $win.vport.form <Configure> "scrollform_resize $win"

 return $win
}

We start by creating a frame to wrap up the canvas and its scrollbar. Inside this frame, we
create a canvas and a scrollbar, and we connect them together as discussed in Section
4.1.1.

Next, we create an empty frame that will eventually contain all of the widgets for the
form. Notice that the name of this frame ($win.vport.form) includes the canvas name
($win.vport) as a prefix. This is very important. It makes the frame sit inside the can-
vas, so that only part of it is visible in the viewport. If instead you use a name like
$win.form , the frame will sit on top of the canvas. It will hang over the edges of the can-
vas, and it may even obscure the scrollbar.

We position the empty frame on the canvas by creating a window item. This anchors
the northwest corner of the frame at the origin (0,0), which is the upper-left corner of the
drawing area.

For the form to scroll properly, we need to set the size of the scrolling region. But
there is one problem: We haven’t added anything in the form frame yet, and we’re not
sure how big it will eventually be. Instead of setting the scrolling region directly, we bind
to the<Configure> event on the form frame. The following procedure will be called
automatically to set the scrolling region whenever the form frame changes size:

proc scrollform_resize {win} {

 set bbox [$win.vport bbox all]

 set wid [winfo width $win.vport.form]

4.2 Scrollable Form 4-15

 $win.vport configure -width $wid \
 -scrollregion $bbox -yscrollincrement 0.1i

}

It uses the canvasbbox operation to compute the overall size of the drawing. This auto-
matically takes into account the overall size of the frame. We simply set the scrolling
region to cover this area, and we set the-yscrollincrement option to scroll in incre-
ments of 0.1 inch.

You may have noticed that this scrollable form doesn’t have a horizontal scrollbar.
We could have added one, but instead we assumed that the entire width of the form would
be visible. After all, the user will probably want to see both the label and the entry when
he is entering data into the form. We want to make sure that the canvas is just wide
enough to display the entire form. So we use thewinfo width command to determine
the overall width of the form, and we use this result to set the-width option for the can-
vas.

At this point, the scrollable form is ready to use. We just need to pack some widgets
into the form frame$win.vport.form . But instead of documenting this name as part of
our scrollform library, we should wrap it up in a procedure. That way, we can make
changes to the library later on, without breaking any code that uses the library.

So when you create a scrollable form, you can use the following procedure to get the
name of the form frame:

proc scrollform_interior {win} {
 return "$win.vport.form"
}

We can use our new scrollform procedures to create the example shown in Figure 4.9.
First, we create a title with a scrollable form beneath it:

label .title -text "Enter Information in the form below:"
pack .title -anchor w

scrollform_create .sform
pack .sform -expand yes -fill both

Next, we get the name of the form frame:
set form [scrollform_interior .sform]

Finally, we pack some widgets into the form frame. We could use a long series of com-
mands to create the entries and their labels and pack them all together. But for a long
form, it is much easier create the widgets in a loop like this:

set counter 0

foreach field {
 "Name:" "Address:" "City, State:"
 "Phone:" "FAX:" "E-mail:"
 "-"

 "SSN:" "Birthdate:" "Marital Status:"
 "-"

4-16 Using the Canvas Widget

 "Employer:" "Occupation:" "Annual Income:"
 "-"

 "Emergency Contact:" "Phone:"
} {

 set line "$form.line[incr counter]"

 if {$field == "-"} {
 frame $line -height 2 -borderwidth 1 -relief sunken
 pack $line -fill x -padx 4 -pady 4
 } else {

 frame $line
 label $line.label -text $field -width 20 -anchor e
 pack $line.label -side left

 entry $line.info
 pack $line.info -fill x
 pack $line -side top -fill x
 }

}

Theforeach command iterates through a list of names. Each name represents one line in
the form. Normally, each line has an entry widget and its associated label. But if the
name is “- ” we create a separator line instead.

In either case, we need a unique widget name for each line. We want these widgets to
sit inside the form frame, so the names must start with$form , which in this example
expands to.sform.vport.form . We use thecounter variable to generate a unique
number for each line. During each pass through the loop, therefore, theline variable will
have values like.sform.vport.form.line1 , .sform.vport.form.line2 , etc. We
use these names to create a frame for a separator line, or a frame containing a label and an
entry.

When all of the widgets are packed in position, the form frame will shrink-wrap itself
around its contents. Its size change will trigger a<Configure> event, and the
scrollform_resize procedure will be called to adjust the scrolling region. If at some
point we add some more lines, the form frame will change size again, triggering another
<Configure> event and another call toscrollform_resize . So we can change the
size of the form on the fly, and the scrollbars will adjust automatically.

At this point, our scrollable form is complete. As you adjust the scrollbars, the canvas
will shift its view up and down, and the form will scroll.

4.3 Progress Gauge

You can use the canvas to display the status of something like the factory floor that we
mentioned earlier. But what if something changes? You don’t have to erase the drawing
and start over. You can change certain items on the canvas, and leave the rest of the draw-
ing intact. We’ll see how this works in the following example.

4.3 Progress Gauge 4-17

Suppose you need to read a large data file, or download a web page, or change the
contrast of an image. Each of these tasks may a while to perform, and while they are run-
ning, the user will want to know how much progress has been made. Many applications
handle this by displaying a progress gauge like the one shown in Figure 4.10. It displays
the status of a task from 0% to 100% complete. As the numbers change in the foreground,
a bar creeps from left to right in the background, giving a pictorial view of the progress.

Tk doesn’t have a progress gauge widget, but it is easy to build something like this
with the canvas. We simply create a small canvas with two items: a text item for the per-
centage value, and a rectangle for the bar in the background. We’ll tag the text item with
the namevalue , and the rectangle with the namebar . That will make it easy to refer to
these items later on. Whenever our progress changes, we’ll update the percentage value in
thevalue item, and we’ll update the coordinates for thebar item.

The following procedure makes it easy to create a progress gauge. You give it a wid-
get name for the whole assembly and an optional color for the bar:

proc gauge_create {win {color ""}} {
 frame $win -class Gauge

 set len [option get $win length Length]

 canvas $win.display -borderwidth 0 -background white \
 -highlightthickness 0 -width $len -height 20

 pack $win.display -expand yes

 if {$color == ""} {
 set color [option get $win color Color]
 }

 $win.display create rectangle 0 0 0 20 \
 -outline "" -fill $color -tags bar

 $win.display create text [expr 0.5*$len] 10 \
 -anchor c -text "0%" -tags value

Figure 4.10. A progress gauge built using the canvas.

Tags:

value
bar

4-18 Using the Canvas Widget

 return $win
}

We start off by creating a frame for the whole assembly that we’ll call thehull. We give it
the class nameGauge, so that you can add settings to the resource database to customize
the gauges in your application. For example, we include the following resources with the
gauge code:

option add *Gauge.borderWidth 2 widgetDefault

option add *Gauge.relief sunken widgetDefault

option add *Gauge.length 200 widgetDefault

option add *Gauge.color gray widgetDefault

By default, all gauges will have a gray bar and an overall sunken appearance. We were
careful to give these settings the lowest prioritywidgetDefault . You can override them
in applications that use the gauge, and users can override them for their own desktop. On
Unix platforms, for example, users can add their own settings to a.Xdefaults or
.Xresources file.

TheborderWidth andrelief settings apply directly to the hull frame. All frames
recognize these resources and handle them automatically. But we invented the resources
length andcolor expressly for the gauge. These settings will not have any effect unless
we query their values and handle them explicitly.

Returning to thegauge_create procedure, you can see that we query thelength

resource for the hull frame with anoption get command. We use the result to set the
width of the canvas, and we hard-code the height of the canvas to a reasonable size. This
gives us some control over the initial size of a gauge.1 Also, if the optional bar color was
not passed into this procedure, we use the defaultcolor resource, again determined from
theoption get command.

Finally, we create the two items on the canvas. The rectangle for the bar sits in the
background, so we create it first. Rectangles have a black outline by default, but we dis-
able this by setting the outline color to the null string. We set the fill color to the bar color
that we determined a moment ago. And of course, we tag the rectangle with the name
bar , so we can refer to it later.

We place the text item in the middle of the canvas and have it display “0%” as an ini-
tial value. We tag it with the namevalue , so we can refer to it later.

As your program works its way through a task, you can call the following procedure
to update the gauge:

proc gauge_value {win val} {

1. To keep things simple, we will ignore any size changes that might occur, say, when the user
expands a window and stretches out a progress gauge. In Section 4.6, we’ll see how to make a can-
vas react to size changes.

4.3 Progress Gauge 4-19

 if {$val < 0 || $val > 100} {
 error "bad value \"$val\": should be 0-100"
 }

 set msg [format "%3.0f%%" $val]
 $win.display itemconfigure value -text $msg

 set w [expr 0.01*$val*[winfo width $win.display]]
 set h [winfo height $win.display]
 $win.display coords bar 0 0 $w $h

 update

}

You pass in the name of the gauge, and the percentage value for the gauge to display. If
the value is out of range, we immediately flag an error. Otherwise, we use theformat

command to neatly format the value, and we display the result in thevalue item.
The%3.0f part of the format string prints the floating point value as an integer,

rounding it if necessary. The3 says that the number should take up 3 spaces, and the0

says that there should be no digits after the decimal point. The extra%% at the end of the
format string becomes a literal% in the display string. So a value like 82.41 would be dis-
played as “82%”.2

Next, we adjust the length of the bar so that it reflects the new value. We use
winfo width andwinfo height to get the overall size of the canvas, and we scale the
width down according to the percentage value. Once we have computed the size, we use
the canvascoords operation to change the coordinates of thebar rectangle.

Finally, we use theupdate command to flush changes out to the display. The
update command is very important. The canvas will avoid redrawing itself until the
application is idle and has nothing better to do. You won’t see the bar move or the text
change unless we useupdate and force the canvas to redraw itself for each new value.

We can use our new gauge library to create the display shown in Figure 4.10. First,
we create a gauge and pack it into the main window:

gauge_create .g PaleGreen

pack .g -expand yes -fill both -padx 10 -pady 10

Instead of relying on the default bar color, we used the valuePaleGreen in this example.
Now, we perform our long-running task:

for {set i 0} {$i <= 100} {incr i} {
 after 100
 gauge_value .g $i
}

2. Notice that this string has a leading space, since our field width is 3 digits.

4-20 Using the Canvas Widget

On each pass through the loop, we simply wait 100ms, then callgauge_value with the
current status and continue on through the loop. But in real applications you would
replace theafter command with some real code. You might read in a file, handle some
input on a socket, or process part of a list. As long as you callgauge_value from time to
time with a progress value, you’ll see your progress in the gauge.

4.4 HSB Color Editor

You can use the canvas to build interactive control panels. Certain items can act as knobs
or handles that the user can drag around on the screen. We’ll see how the canvasbind

operation supports this in the following example.

Many drawing programs let you dial up your own colors using a color wheel like the
one shown in Figure 4.11. You position the dot on the wheel to select a particular color,
and you adjust the bar on the right-hand side to make it lighter or darker. In the center of
the wheel, the colors are said to beunsaturated—they are some shade of gray. As you
move outward toward the edge of the wheel, they becomesaturated, or full of color. As
you move around the edge of the wheel, the color changes from red to green to blue, and
back to red. The position around the rim determines the overallhue of the color. And as
you adjust the bar on the right-hand side, you control thebrightness of the color. So as
you move all of these controls, you are really adjusting the three components that deter-
mine a color: its hue, its saturation, and its brightness. This kind of color selector is
referred to as a Hue-Saturation-Brightness (HSB) color editor.

An HSB color editor is not included as part of Tk, but it is easy to build one using the
canvas. We could draw the various parts of the editor by adding items to the canvas. We
could add a text item for theColor: label, a rectangle for the current color sample, some

Figure 4.11. An HSB color editor built using the canvas.

4.4 HSB Color Editor 4-21

arcs for the color wheel, and so on. But for this example, we will use a few tricks to sim-
plify things.

First, we will use the canvas only for the color wheel and the brightness controls.
We’ll create a separate label widget for theColor: label, and a separate frame widget for
the color sample, as shown in Figure 4.12. That way, we won’t need any tricky canvas
code to compute the size of the label and align it with the color sample. We’ll see how to
align things in the next section. For now, we’ll simply use thepack command to align the
three major elements.

Also, we’ll use the predefined image shown in Figure 4.13 as the background of the
color wheel and brightness controls. We could draw something similar by creating arc and
rectangle items, but the result would look chunky. If we created lots of small arcs and
rectangles, the picture would look better, but the controls might be sluggish. The canvas
performs quite well with tens or hundreds of items, but as the number of items increases,
the performance degrades. Quite often, you can use predefined images like this to add
detail to a drawing without incurring a performance penalty.

So the color editor boils down to a canvas with three items: an image for the back-
ground, an oval tagged with the namehsval to mark the current hue-saturation value, and
a line tagged with the namebval to mark the current brightness value. We’ll add bind-
ings to thehsval andbval items so that you can move them around to adjust the color
value.

The following procedure creates a color editor. You simply give it a widget name for
the whole assembly:

proc colordial_create {win} {
 global env cdInfo

 frame $win -class Colordial

Figure 4.12. The HSB color editor has a label, a frame and a canvas. Two items on the canvas act
as markers for the current hue-saturation and brightness values.

Items:

hsval

bval

label

frame

canvas

4-22 Using the Canvas Widget

 canvas $win.dial
 pack $win.dial -side bottom

 label $win.label -text "Color:"
 pack $win.label -side left

 frame $win.sample -width 15 -height 15
 pack $win.sample -expand yes -fill both -padx 4 -pady 4

 set fname "$env(EFFTCL_LIBRARY)/images/colors.gif"
 set imh [image create photo -file $fname]
 $win.dial create image 0 0 -anchor nw -image $imh
 $win.dial create oval 0 0 0 0 -fill black -tags hsval
 $win.dial create line 0 0 0 0 -width 4 -fill black -tags bval

 $win.dial configure -width [image width $imh] \
 -height [image height $imh]

 $win.dial bind hsval <B1-Motion> \
 "colordial_set_hs $win %x %y"

 $win.dial bind bval <B1-Motion> \
 "colordial_set_b $win %y"

 set cdInfo($win-hue) 0
 set cdInfo($win-saturation) 0
 set cdInfo($win-brightness) 1

Figure 4.13. The background of the HSB color editor is a color image with fixed dimensions.

75

75

155

175

145

5

70

4.4 HSB Color Editor 4-23

 colordial_refresh $win
 return $win
}

As usual, we start by creating the hull frame which contains the other components. We
give it the class nameColordial , so you can add resources to the option database to cus-
tomize all of the colordials in your application.

Next, we create the separate canvas, label and frame widgets, and pack them into the
hull. By default, an empty frame has a width and height of 0 pixels, so we must do some-
thing to fix its size. We set its requested size to 15× 15 pixels (so the frame will ask to be
at least this big), and we pack it to expand and fill. Since it is packed after the other two
widgets, it fills the area to the right of the label, in the upper-right corner of the hull.

Next, we create the three items on the canvas. The image is positioned with its north-
west corner at the origin of the canvas. Thehsval andbval items are created with
dummy coordinates. We update them later using thecolordial_refresh command so
that they have the right coordinates for the initial color value.

We use theimage create photo command to load the color wheel image from a
file calledcolors.gif. This file must be distributed along with the script file containing the
code for our colordial. These files will be installed in some directory like/usr/local/efftcl.
But instead of hard-coding the directory name, we use an environment variable
EFFTCL_LIBRARY to point to the proper directory. We can write an installation program
which sets up this variable when a program is installed, as we’ll see in Chapter 8.

The canvas should be just big enough to display the color wheel image. We use the
image width andimage height commands to query the overall size of the image, and
we configure the canvas to this size.

Next, we add the bindings which allow thehsval andbval items to be moved
around on the canvas. We use the event specification<B1-Motion> , which triggers when
you hold down the mouse button #1 and drag the pointer around. We added the bindings
to the individualhsval andbval items—not to the canvas as a whole. So you will only
get these events when you click directly on one of the two items, and then drag the mouse.
Notice that we are careful to enclose the commands for the bindings in"" so that the value
of $win is substituted in this context, while it is known. In effect, we are building custom
bindings for each colordial that we create.

Next, we set the initial color value. The globalcdInfo array acts as a data structure,
as we described in Section 1.3.2. Each colordial has three slots in this array for the hue,
saturation and brightness components of its current color. The slots are parameterized by
the name$win , so each colordial has its own set of slots. Once the color is set, we call
colordial_refresh to update the display. This sets the background of the color sam-
ple and moves thehsval andbval items into the appropriate position. We’ll see how this
is implemented in a moment.

Finally, we return the name of the new colordial as the result of this procedure.

4-24 Using the Canvas Widget

When you click and drag onbval , it will trigger a series of calls to
colordial_set_b , with the y-coordinate for each motion point. This procedure is
implemented as follows:

proc colordial_set_b {win y} {
 global cdInfo

 set bright [expr (145-$y)/140.0]

 if {$bright < 0} {
 set bright 0
 } elseif {$bright > 1} {
 set bright 1
 }

 set cdInfo($win-brightness) $bright
 colordial_refresh $win
}

First, we convert the y-coordinate to the appropriate brightness level. The y-coordinates in
the brightness area range from 5 to 145, as you can see in Figure 4.13. We scale the y-
coordinate, and then limit the brightness value so that it falls in the range from 0 to 1.
Finally, we update the brightness component of the data structure for this colordial, and
then usecolordial_refresh to update the display.

Likewise, when you click and drag onhsval , it will trigger a series of calls to
colordial_set_hs with the x- and y-coordinates for each motion point. This procedure
is implemented as follows:

proc colordial_set_hs {win x y} {
 global cdInfo

 set hs [colordial_xy2hs $x $y]
 set hue [lindex $hs 0]
 set sat [lindex $hs 1]

 if {$sat > 1} {
 set sat 1
 }

 set cdInfo($win-hue) $hue
 set cdInfo($win-saturation) $sat

 colordial_refresh $win
}

Again, we convert the (x,y) coordinate to the appropriate hue and saturation values on the
color wheel. This is straightforward, though a bit messy, so we have encapsulated the
details in a procedure calledcolordial_xy2hs . It takes an (x,y) coordinate and returns
a list containing the corresponding hue and saturation values. We won’t show this proce-
dure here, but you can find it in the fileefftcl/clrdial.tcl in the source code that accompa-
nies this book.

4.4 HSB Color Editor 4-25

Again, we limit the saturation to the range from 0 to 1, so that it cannot be pulled
beyond the color wheel. We update the hue and saturation components of the data struc-
ture, and then usecolordial_refresh to update the display.

Thecolordial_refresh procedure is implemented like this:
proc colordial_refresh {win} {
 global cdInfo

 set angle $cdInfo($win-hue)
 set length $cdInfo($win-saturation)
 set x0 [expr 75 + cos($angle)*$length*70]
 set y0 [expr 75 - sin($angle)*$length*70]

 $win.dial coords hsval \
 [expr $x0-4] [expr $y0-4] \
 [expr $x0+4] [expr $y0+4]

 set bright $cdInfo($win-brightness)
 set y0 [expr 145-$bright*140]

 $win.dial coords bval 154 $y0 176 $y0

 $win.sample configure -background [colordial_get $win]
}

We save the current hue and saturation values in theangle andlength variables. This
makes the two lines of code that follow a bit easier to read. They are simply the formula
for converting a polar coordinate like (length,angle) to a rectangular coordinate like (x,y).
An angle of 0˚ and a length of 1 corresponds to the canvas coordinate (145, 75). As you
can see in Figure 4.13, this is the position for pure red, on the right-hand side of the wheel.
An angle of 90˚ and a length of 1 corresponds to (75,5), which is the yellow-green color at
the top of the wheel.

Once we have computed the coordinate (x0 ,y0), we change the coordinates for the
hsval marker to center it on this point. Remember, an oval is characterized by the two
corners of its bounding box. We set one corner 4 pixels to the left and 4 pixels above the
coordinate, and we set the other corner 4 pixels to the right and 4 pixels down. This makes
thehsval marker a circle 8× 8 pixels in size.

In a similar manner, we scale the brightness value back to a y-coordinate in the range
from 5 to 145, and we update the coordinates of thebval line. The brightness scale
extends from 155 to 175 along the x-axis, but we have stretched the line from 154 to 176.
This makes it overhang by one pixel on each end, so it stands out from the background.

Finally, we change the background of the color sample frame to display the current
color. We use the procedurecolordial_get to convert the current color to a string that
Tk can understand.

4-26 Using the Canvas Widget

When you use a colordial in your own applications, you can use the same
colordial_get procedure to query the current color on the dial. It is implemented like
this:

proc colordial_get {win} {
 global cdInfo

 set h $cdInfo($win-hue)
 set s $cdInfo($win-saturation)
 set v $cdInfo($win-brightness)

 return [colordial_hsb2rgb $h $s $v]
}

We simply pass the current hue, saturation and brightness components to a procedure
calledcolordial_hsb2rgb . This converts the color to equivalent red-green-blue (RGB)
components. Exactly how this procedure works is outside the scope of this discussion.3

However we will include its implementation here so that we can show one important trick:
proc colordial_hsb2rgb {h s v} {
 if {$s == 0} {

 set v [expr round(65535*$v)]
 set r $v
 set g $v
 set b $v
 } else {

 if {$h >= 6.28318} {set h [expr $h-6.28318]}
 set h [expr $h/1.0472]
 set f [expr $h-floor($h)]
 set p [expr round(65535*$v*(1.0-$s))]
 set q [expr round(65535*$v*(1.0-$s*$f))]
 set t [expr round(65535*$v*(1.0-$s*(1.0-$f)))]
 set v [expr round(65535*$v)]

 switch [expr int($h)] {
 0 {set r $v; set g $t; set b $p}
 1 {set r $q; set g $v; set b $p}
 2 {set r $p; set g $v; set b $t}
 3 {set r $p; set g $q; set b $v}
 4 {set r $t; set g $p; set b $v}
 5 {set r $v; set g $p; set b $q}
 }

 }

 return [format "#%.4x%.4x%.4x" $r $g $b]

}

3. For more details, see J. D. Foley and A. Van Dam,Fundamentals of Interactive Computer
Graphics, Addison-Wesley, 1982.

4.5 Tabbed Notebook 4-27

Once we have computed the properr , g andb values, we use theformat command to
convert them to a hexadecimal representation. The “#” sign appears literally in the final
string. Each “%.4x ” tells how to print the$r , $g and$b components. The “x” says that
they should be printed as hexadecimal numbers, and the “.4 ” says that they should be 4
digits wide, with leading zeros if need be. So overall, this handy statement will produce
color values like “#ffff00000000 ” for red, “#0000ffff0000 ” for green,etc.

Now that you have these procedures, it is easy to add colordials to your applications.
You can create a colordial like this:

colordial_create .cd
pack .cd

and spend some time adjusting the color. At any point, you can get the current color
choice like this:

set cval [colordial_get .cd]

and then use that value to configure other widgets in your application.

4.5 Tabbed Notebook

The coordinates in a drawing are not always fixed. Sometimes the size of one item
depends on another. If you’re drawing a bit of text, for instance, you may want to fit a
rectangle around it. In this example, we’ll see how you can build a display that adjusts its
layout according to its contents.

In Section 2.1.7, we built a simple notebook that lets you browse through various
pages of widgets. At the time, we used a radiobox to dial up a particular page. Now, we’ll
use a canvas to decorate the top of each page with a tab, as shown in Figure 4.14. The
result looks like the kind of notebook that you might find in an office supply store. We’ll
call this assembly a tabnotebook.

We’ll design the tabnotebook so that you can use it just like the notebook described in
Section 2.1.7. You create a tabnotebook like this:

tabnotebook_create .tn
pack .tn

You use thetabnotebook_page procedure to create a new page:
set p1 [tabnotebook_page .tn "Colors"]

This creates an empty frame within the notebook and returns its window name. You can
put widgets on this page by creating them as children of the frame. For example,

label $p1.mesg -text "Something on Colors page"

pack $p1.mesg -side left -expand yes -pady 8

You can select a particular page in the notebook by clicking on its tab, or by calling the
tabnotebook_display procedure, like this:

4-28 Using the Canvas Widget

tabnotebook_display .tn "Colors"

Now that we understand how the tabnotebook works, let’s see how it is implemented.
The tabnotebook_create procedure looks like this:

proc tabnotebook_create {win} {
 global tnInfo

 frame $win -class Tabnotebook
 canvas $win.tabs -highlightthickness 0
 pack $win.tabs -fill x

 notebook_create $win.notebook
 pack $win.notebook -expand yes -fill both

 set tnInfo($win-tabs) ""
 set tnInfo($win-current) ""
 set tnInfo($win-pending) ""

 return $win
}

As usual, we start by creating the hull frame which contains the other components. Inside
the hull, we create a canvas and a notebook, and we pack them into position. We pack the
canvas to fill across the top, so it will get wider as the window gets bigger. We pack the
notebook to expand and fill, so it will get wider and taller as the window gets bigger.

We set the-highlightthickness option on the canvas to0. This removes the
focus highlight ring that normally appears around the canvas. The focus highlight ring
changes color whenever you type onto the canvas. Since we won’t be letting the user type
directly onto the tabs, we don’t need this ring, and we don’t want the extra padding.

Figure 4.14. The tabs in a tabnotebook are drawn on a canvas.

canvas

notebook

4.5 Tabbed Notebook 4-29

We give the hull the class nameTabnotebook , so you can add resources to the
option database to customize all of the tabnotebooks in your application. For example, we
include the following resources as defaults for the tabnotebook:

option add *Tabnotebook.tabs.background #666666 widgetDefault

option add *Tabnotebook.margin 6 widgetDefault

option add *Tabnotebook.tabColor #a6a6a6 widgetDefault

option add *Tabnotebook.activeTabColor #d9d9d9 widgetDefault

option add *Tabnotebook.tabFont \
 -*-helvetica-bold-r-normal--*-120-* widgetDefault

The first resource sets the background color for the canvas (namedtabs) within our
tabnotebook (classTabnotebook). This is a standard option for the canvas, so Tk will
handle it automatically. However, the other resources are names that we invented for the
tabnotebook. We’ll use theoption get command to query their values as we draw the
tabs.

We use the globaltnInfo array as a data structure. Each tabnotebook has three slots
in this array parameterized by$win , the name of the tabnotebook. The slot$win-tabs

stores the list of tab names. The slot$win-current stores the tab name for the page that
is being displayed. And we’ll see in a moment how the$win-pending slot is used.

Once a tabnotebook has been created, you can add pages by calling the
tabnotebook_page procedure:

proc tabnotebook_page {win name} {
 global tnInfo

 set page [notebook_page $win.notebook $name]
 lappend tnInfo($win-tabs) $name

 if {$tnInfo($win-pending) == ""} {
 set id [after idle [list tabnotebook_refresh $win]]
 set tnInfo($win-pending) $id
 }

 return $page
}

You pass in the name of the tabnotebook and the name of the new page. We call the
notebook_page procedure defined in Section 2.1.7 to create the actual page, and we
return this as the result of the procedure.

We also add the page name to the list of tabs, and we set things up so that the new tab
will appear on the canvas. We will use a procedure calledtabnotebook_refresh to
clear the canvas and draw a new set of tabs. But if we call this procedure directly in
tabnotebook_page , the canvas will be redrawn again and again as each new tab is
added. That wouldn’t be very efficient.

You may encounter this “refresh” problem when you build other canvas applications.
You can handle it as follows. Instead of callingtabnotebook_refresh immediately,
we use theafter idle command to defer the call. When the application is idle and has

4-30 Using the Canvas Widget

nothing better to do, it will draw the set of tabs. Each call toafter idle returns a
unique identifier likeafter#12 . We save this identifier in the$win-pending slot for the
tabnotebook. So the next time we add a page, we will know that one refresh call is pend-
ing, and we won’t generate another.

All of the interesting canvas code appears in thetabnotebook_refresh procedure
that draws the tab set. It looks like this:

proc tabnotebook_refresh {win} {
 global tnInfo

 $win.tabs delete all

 set margin [option get $win margin Margin]
 set color [option get $win tabColor Color]
 set font [option get $win tabFont Font]

 set x 2
 set maxh 0

 foreach name $tnInfo($win-tabs) {

 set id [$win.tabs create text \
 [expr $x+$margin+2] [expr -0.5*$margin] \
 -anchor sw -text $name -font $font -tags [list $name]]

 set bbox [$win.tabs bbox $id]
 set wd [expr [lindex $bbox 2]-[lindex $bbox 0]]
 set ht [expr [lindex $bbox 3]-[lindex $bbox 1]]
 if {$ht > $maxh} {
 set maxh $ht
 }

 $win.tabs create polygon 0 0 $x 0 \
 [expr $x+$margin] [expr -$ht-$margin] \
 [expr $x+$margin+$wd] [expr -$ht-$margin] \
 [expr $x+$wd+2*$margin] 0 \
 2000 0 2000 10 0 10 \
 -outline black -fill $color \
 -tags [list $name tab tab-$name]

 $win.tabs raise $id

 $win.tabs bind $name <ButtonPress-1> \
 [list tabnotebook_display $win $name]

 set x [expr $x+$wd+2*$margin]
 }

 set height [expr $maxh+2*$margin]

4.5 Tabbed Notebook 4-31

 $win.tabs move all 0 $height

 $win.tabs configure -width $x -height [expr $height+4]

 if {$tnInfo($win-current) != ""} {
 tabnotebook_display $win $tnInfo($win-current)
 } else {
 tabnotebook_display $win [lindex $tnInfo($win-tabs) 0]
 }

 set tnInfo($win-pending) ""
}

There’s a lot of code here, but the end result is quite simple: It clears the canvas and draws
a tab for each page in the notebook. The position of each tab depends on the tabs before it,
so we have to draw the tabs in order from left to right. We know what each tab should
look like—it’s just a polygon item for the tab, and a text item for the label. But we don’t
know the exact coordinates for the polygon until we’ve drawn the text. After all, the tab
name can be any length, and the text font can be any size. So we create the text item, draw
a polygon around it, create the next text item, draw a polygon around it, and so on.

Let’s go through the procedure step by step. Keep in mind that thewin parameter
refers to the entire tabnotebook assembly, so the canvas widget inside is$win.tabs .

We start off by telling the canvas to delete all of its items. This clears any tabs that we
may have drawn the last time the tabs were refreshed.

Next, we initialize some variables that control the drawing process. We use the vari-
ablex to keep track of our position from left to right as we draw each tab. We use the vari-
ablemaxh to store the height of the tallest tab.

The variablemargin controls the padding around the label on each tab. The variable
color controls the background color for each tab. The variablefont controls the font
used for the label. Instead of hard-wiring these values into the script, we query them from
the option database. That way, you can customize the look of the tabnotebook for differ-
ent applications.

Next, we iterate through the list of tab names and draw each tab, as shown in Figure
4.15. We can simplify the coordinates a bit if we draw each tab with its baseline at y=0.
Of course, if we left the tabs at this position, they would be outside of the normal viewing
area. So before we finish, we’ll move them back down where they belong. But for now,
we’ll think of (0,0) as the lower-left corner of the tab set.

As we said earlier, we create the text item for each tab first. We position its south-
west corner a little to the right of$x and a little above the baseline, as shown in Figure
4.15(a). Remember, the canvas returns a unique number for each item that we create.
We’ll need this number to refer to the text item, so we save it in a variable calledid .

We use the canvasbbox operation to query the bounding box for the text. It returns a
list of four numbers representing the (x,y) coordinate for the upper-left corner, and the
(x,y) coordinate for the lower-right corner. We subtract the two x-coordinates to compute
the overall width, and we subtract the two y-coordinates for the overall height.

4-32 Using the Canvas Widget

Next, we create a polygon for the tab, as shown in Figure 4.15(b). This requires a
long list of coordinates. The first point is (0,0), the next point is ($x ,0), and so on. We
extend the tab’s baseline out to2000 along the x-axis, which for all practical purposes is
infinity. We draw the bottom of the tab down to10 along the y-axis. When we shift all of
the tabs down, this will be low enough that it will disappear off the bottom of the canvas.

Figure 4.15. A series of commands builds the tab display on the canvas.

set bbox [$win.tabs bbox $id]
set wd [expr [lindex $bbox 2]-[lindex $bbox 0]]
set ht [expr [lindex $bbox 3]-[lindex $bbox 1]]

x

y

x
y

x
y

$wd

$margin $ht+$margin

10

(0,0)
$wd

$ht

$win.tabs create polygon 0 0 $x 0 \
 [expr $x+$margin] [expr -$ht-$margin] \
 [expr $x+$margin+$wd] [expr -$ht-$margin] \
 [expr $x+$wd+2*$margin] 0 \
 2000 0 2000 10 0 10 \
 -outline black -fill $color \
 -tags [list $name tab tab-$name]

set height [expr $maxh+2*$margin]
$win.tabs move all 0 $height

(a)

(b)

(c)

$x

4.5 Tabbed Notebook 4-33

As we create each polygon, we tag it with three names. The nametab applies to all
of the tab polygons. We’ll use this later to reset the background color for the tabs that are
not selected. The nametab-$name applies to the polygon for a particular tab. We’ll use
this to set the background of the selected tab. The name$name applies to both the text and
the polygon for each tab. We’ll use this whenever we want to refer to the tab as a whole.

Since the polygon is created after the text item, it would normally obscure the text.
We fix this by using the canvasraise operation to raise the text item back to the top.

Finally, we bind to the<ButtonPress-1> event so that clicking on a tab will invoke
tabnotebook_display , and display its associated page. Notice that we bind to the tag
name$name, which applies to both the text and the polygon. So you can click anywhere
on a tab, and it will respond. Had we added the binding to only the polygon, you would
have to click directly on the polygon to actuate the tab. If you clicked on the text by acci-
dent, it would do nothing.

Also, notice that we use thelist command to wrap up the call to
tabnotebook_display . This keeps$name together as a single argument, even if it has
spaces embedded within it. Had we used"" 's, names like “Colors” would work, but
names like “Employment History” would generate an error.

We repeat this process for each tab in the display, shifting the position$x toward the
right as we go. When all of the tabs are drawn, we compute the overall height of the tab
set, and move the tabs down into position, as shown in Figure 4.15(c).

The canvas should be just big enough to display the final tab set, so we configure its
width and height accordingly. We expose a few pixels below the baseline, but not the bot-
tom of the tab polygon. This adds a little margin, but still makes it look like the tab is con-
nected to the notebook below it.

If a page has already been selected, it is displayed again. As we’ll see in a moment,
this raises the tab for that page and changes its color. If there is no current page, then we
select the first tab as the current page.

At long last, the refresh operation is done. We must be careful to reset the
$win-pending slot in the tabnotebook data structure. If we add another page later on,
this will allow us to start the cycle all over. Another call totabnotebook_refresh will
be pending, and when the application is idle, the tab set will be regenerated.

We need one more procedure for the tabnotebook. Clicking on a tab invokes
tabnotebook_display , which is implemented like this:

proc tabnotebook_display {win name} {
 global tnInfo

 notebook_display $win.notebook $name

 set normal [option get $win tabColor Color]
 $win.tabs itemconfigure tab -fill $normal

4-34 Using the Canvas Widget

 set active [option get $win activeTabColor Color]
 $win.tabs itemconfigure tab-$name -fill $active
 $win.tabs raise $name

 set tnInfo($win-current) $name
}

It usesnotebook_display to bring up the actual notebook page, and then highlights the
current tab and raises it to the foreground.

Having good tag names makes this easy. We can use the nametab to refer to all of
the tab polygons, so we can reset them all back to their normal color with a single com-
mand. We can use the nametab-$name to refer to a particular tab polygon, so we can
highlight that tab with the active color. And we can use the name$name to refer to both
the text and the polygon for the tab, so we can raise both items to the foreground as a
group.

4.6 Calendar

The drawing on a canvas has a fixed size. So when you resize a canvas, you’ll see more or
less of its drawing, and you can use scrollbars to adjust the view. But you may want a
drawing to scale with the size of a canvas. For example, suppose the drawing shows the
status of the factory floor that we mentioned earlier. When you expand the window, you
should see a larger view of the factory—not a larger window with lots of empty space. In
the this example, we’ll see how you can make a drawing react to size changes in the can-
vas. We’ll also see some new techniques for handling selections and for updating complex
displays.

Many business applications require a calendar like the one shown in Figure 4.16. Tk
doesn’t have a calendar widget, but as you probably know by now, it is easy to build one
using the canvas. We’ll draw each day as a rectangle item with a text item for the day
number. We’ll even add an image item in the lower-right corner of each day so that we
can add decorations for holidays. We’ll use a text item at the top to display the current
month, and we’ll use window items to position some buttons on either side, so you can
move back and forth through the months.

4.6.1 Handling Size Changes

As usual, we’ll write a procedure calledcalendar_create to create the calendar. You
can call the procedure like this:

calendar_create .cal 7/4/97
pack .cal -expand yes -fill both

4.6 Calendar 4-35

This creates a calendar named.cal and packs it into the main window. When the calen-
dar appears, it will display July 1997, but you’ll be able to change the month by pressing
the arrow buttons.

Notice that we packed the calendar to expand and fill. So if you expand the window,
the canvas will expand too. Whenever it changes size like this, we’ll redraw the calendar
to cover the new size.

You can see the basic size-handling code in thecalendar_create procedure, which
is implemented like this:

proc calendar_create {win {date "now"}} {
 global calInfo env

 if {$date == "now"} {
 set time [clock seconds]
 } else {
 set time [clock scan $date]
 }

 set calInfo($win-time) $time
 set calInfo($win-selected) ""
 set calInfo($win-selectCmd) ""
 set calInfo($win-decorateVar) ""

 frame $win -class Calendar
 canvas $win.cal -width 3i -height 2i
 pack $win.cal -expand yes -fill both

 button $win.cal.back \
 -bitmap @$env(EFFTCL_LIBRARY)/images/back.xbm \
 -command "calendar_change $win -1"

Figure 4.16. The canvas is used to create an interactive calendar.

4-36 Using the Canvas Widget

 button $win.cal.fwd \
 -bitmap @$env(EFFTCL_LIBRARY)/images/fwd.xbm \
 -command "calendar_change $win +1"

 bind $win.cal <Configure> "calendar_redraw $win"

 return $win
}

Much of this code follows the recipe that we use for creating an assembly of widgets. We
use the global variablecalInfo as a data structure for all calendars. Each calendar has
four slots in this array, parameterized by the calendar name$win . We’ll explain the slots
$win-selected , $win-selectCmd and$win-decorateVar later, when we need
them. For now, we simply initialize them to the null string.

The slot$win-time stores an integer value from the system clock. It measures time
as the number of seconds that have elapsed since January 1, 1970. When you call
calendar_create with a date like7/4/97 , we use theclock scan command to con-
vert this to a time value, and we store it in the array. But the date is optional; if you don’t
specify a value, it gets the default valuenow, and we use theclock seconds command
to query the current system time. One way or the other, we get a time value, and we store
it away so that when we draw the calendar later on, we’ll display the month that contains
that time.

We create a hull frame with the class nameCalendar to act as a container for the
assembly. That way, we can add resource settings to the options database, to customize all
of the calendars in an application. We create a canvas for the calendar and pack it to
expand and fill in the hull. And we create the two buttons that let you page forward and
backward through the months. Both of these buttons have bitmap labels with names like
@fileName, so the bitmaps are loaded from files. But notice that neither of these buttons
are packed into the hull. Instead, we’ll position them on the canvas by creating window
items when we draw the calendar.

All of the size-handling code boils down to a singlebind command. Whenever a
widget changes size, it receives a<Configure> event. So we bind to this event on the
canvas. Whenever the canvas changes size, we callcalendar_redraw to erase the can-
vas and draw the calendar at the new size. We enclose thecalendar_redraw command
in "" ’s instead of{} ’s so that the value of$win is substituted now while it is known,
instead of later when the event occurs.

Notice that we don’t have to callcalendar_redraw explicitly to draw the first
month. Instead, when the canvas window appears on the desktop, it will get a finite size,
so it will get a<Configure> event, andcalendar_redraw will be called automatically
to handle the size change.

Having a “redraw” procedure like this is useful for other reasons too. Suppose you
click on one of the arrow buttons to change the month. We simply adjust the calendar’s

4.6 Calendar 4-37

$win-time slot forward or backward by a month, and then callcalendar_redraw to
display the new month. So thecalendar_change procedure is implemented like this:

proc calendar_change {win delta} {
 global calInfo

 set dir [expr ($delta > 0) ? 1 : -1]
 set month [clock format $calInfo($win-time) -format "%m"]
 set month [string trimleft $month 0]

 set year [clock format $calInfo($win-time) -format "%Y"]

 for {set i 0} {$i < abs($delta)} {incr i} {

 incr month $dir

 if {$month < 1} {
 set month 12
 incr year -1
 } elseif {$month > 12} {
 set month 1
 incr year 1
 }
 }

 set calInfo($win-time) [clock scan "$month/1/$year"]

 calendar_redraw $win
}

We use theclock format command to extract the month and the year from the time
value. The%m field is replaced with the month number. We usestring trimleft to
remove any leading0’s from this number, so it is not misinterpreted as an octal value when
we change it later on. The%Y field is replaced with a year like1997 . It won’t have lead-
ing 0’s, so it doesn’t require thestring trimleft step.

You would normally call this procedure with adelta value of±1 to move forward or
backward by one month. But you can use a largerdelta value to skip over several
months at a time. We simply step forward or backward one month at a time, looking for
changes to the year. When the month is decremented below January, we wrap around to
Decemeber of the previous year. Or when the month is incremented beyond December,
we wrap around to January of the next year. When we have arrived at a new month and
year, we use theclock scan command to convert that date back into a time value for the
calendar. We store it in the$win-time slot for the calendar, and then use
calendar_redraw to display the month containing that time.

Thecalendar_redraw procedure erases the canvas, and then creates the items to
draw a particular month. It is fairly long, so we have simplified it here by removing some
code. We’ll show the missing code later, as we continue to develop the example, and you
can find a complete listing in the fileefftcl/calendar.tcl in the source code that accompa-
nies this book. But the simplified version looks like this:

4-38 Using the Canvas Widget

proc calendar_redraw {win} {

 global calInfo

 ...

 $win.cal delete all

 set time $calInfo($win-time)
 set wmax [winfo width $win.cal]
 set hmax [winfo height $win.cal]

 $win.cal create window 3 3 -anchor nw \
 -window $win.cal.back

 $win.cal create window [expr $wmax-3] 3 -anchor ne \
 -window $win.cal.fwd

 set bottom [lindex [$win.cal bbox all] 3]

 set font [option get $win titleFont Font]
 set title [clock format $time -format "%B %Y"]

 $win.cal create text [expr $wmax/2] $bottom -anchor s \
 -text $title -font $font

 incr bottom 3

 $win.cal create line 0 $bottom $wmax $bottom -width 2

 incr bottom 3

 set font [option get $win dateFont Font]
 set bg [option get $win dateBackground Background]
 set fg [option get $win dateForeground Foreground]

 ...

 set layout [calendar_layout $time]
 set weeks [expr [lindex $layout end]+1]

 foreach {day date dcol wrow} $layout {

 set x0 [expr $dcol*($wmax-7)/7+3]
 set y0 [expr $wrow*($hmax-$bottom-4)/$weeks+$bottom]
 set x1 [expr ($dcol+1)*($wmax-7)/7+3]
 set y1 [expr ($wrow+1)*($hmax-$bottom-4)/$weeks+$bottom]
 ...

 $win.cal create rectangle $x0 $y0 $x1 $y1 \
 -outline $fg -fill $bg

 $win.cal create text [expr $x0+4] [expr $y0+2] \
 -anchor nw -text "$day" -fill $fg -font $font

4.6 Calendar 4-39

 $win.cal create image [expr $x1-2] [expr $y1-2] \
 -anchor se -tags [list $date-image]

 ...

 }

 ...

}

We start by deleting all items on the canvas. That will erase any drawing that might exist
from the last time we called this procedure. We usewinfo width andwinfo height

to determine the overall size of the canvas. Our x-coordinates will run from0 to $wmax,
and y-coordinates, from0 to $hmax.

We position the arrow buttons by creating window items on the canvas, as shown in
Figure 4.17(a). We place one button anchored on its northwest corner in the upper-left
corner of the canvas, and the other, anchored on its northeast corner in the upper-right cor-
ner of the canvas. These window items are merely placeholders for the actual buttons that
we created incalendar_create . So we can delete the window items and make the but-
tons disappear without actually destroying the buttons themselves. Deleting a window
item is analogous to thepack forget operation described in Section 2.1.7.

Next, we use the canvasbbox operation to get the y-coordinate for the bottom of the
buttons. We use this as a baseline for the title that displays the current month, as shown in
Figure 4.17(b). We use theclock format command to extract the title from the calen-
dar’s time value. The%B field gets replaced with a full month name likeJuly , and the%Y

field gets replaced with the full year like1997 . We create a text item centered on the
width, anchored with its south side on the baseline.

Instead of hard-coding the title font, we query thetitleFont resource from the
option database. We query some other resources too, including thedateBackground ,
dateForeground anddateFont . That way, you can customize the look of the calendar
for different applications. For example, we include the following resources as defaults for
the calendar:

option add *Calendar.dateBackground white widgetDefault

option add *Calendar.dateForeground black widgetDefault

option add *Calendar.selectColor red widgetDefault

option add *Calendar.selectThickness 3 widgetDefault

option add *Calendar.titleFont \
 -*-helvetica-bold-o-normal--*-180-* widgetDefault

option add *Calendar.dateFont \
 -*-helvetica-medium-r-normal--*-100-* widgetDefault

Once we have created the title, we move down 3 pixels, add a line item, and move
down another 3 pixels. The variablebottom contains our final position. We’ll fit the date
squares into the remaining height.

We use another procedure calledcalendar_layout to determine where the date
squares fall on the calendar. We won’t show you how this is implemented. If you’re curi-

4-40 Using the Canvas Widget

ous, you can look at the fileefftcl/calendar.tcl. But it returns a list of values that looks like
this:

1 07/01/1997 2 0 2 07/02/1997 3 0 3 07/03/1997 4 0 ...

The first four elements represent the first day on the calendar; the next four elements, the
next day, and so on. Of the four elements, the first is the number of the day, the second is
the actual date (including the month and the year), the third is the column for the day of
the week, and the last element is the row for the week. The last group of four elements
represents the last day on the calendar. So the very last element in the list is the index for
the very last row of weeks. We use this to determine the total number of weeks, so we can
divide up the remaining space on the canvas.

Figure 4.17. A calendar is drawn by creating items on the canvas.

(a)

(b)

(c)

3 pixels
3 pixels

$bottom

4.6 Calendar 4-41

Normally, you use a simpleforeach command to iterate through the values in a list.
But what do you do when the values have a sequence that repeats itself like this? You give
theforeach command a list of variables that represents your sequence. For example, we
can iterate through our list with a command like:

 set layout [calendar_layout $time]
 foreach {day date dcol wrow} $layout {
 ...
 }

Theforeach command extracts the first four values from the list$layout , assigns them
to the variablesday , date , dcol andwrow, and then executes the body of the loop. On
the next pass, it extracts the next four values, and again executes the body of the loop. So
you can use theforeach command not only to iterate through a list, but also to dissect it.

As we scan through our list of layout information, we create the items to represent
each date square, as shown in Figure 4.17(c). We use the row and column numbers for
each date to compute the coordinates (x0 ,y0) and (x1 ,y1) for its background rectangle.
We create the rectangle, and add a text item in its upper-left corner to display the day num-
ber. We also add a blank image in the lower-right corner. We’ll use this later to add deco-
rations for important holidays.

At this point, the calendar is complete. When it appears on the desktop, the canvas
will get a<Configure> event, triggering a call tocalendar_redraw to draw the calen-
dar. If you expand the window, the canvas will get another<Configure> event, trigger-
ing another call tocalendar_redraw . All items from the last calendar will be deleted,
and new items will be created to fill the canvas at its new size.

4.6.2 Sensors and Callbacks

Suppose you use this calendar as part of an application for handling appointments. When
you click on a particular day, we could highlight that day and bring up a list of appoint-
ments. Many canvas drawings have “hot spots” or items within them that can be selected.
In this section, we’ll see how you can support selections in a generic way. We’ll add sup-
port for a selection command that lets you customize how the calendar will react in differ-
ent applications.

By now you probably know that if we want an item to respond when you click on it,
we simply bind to its<ButtonPress-1> event. Each date square on the calendar is com-
posed of three items: the background rectangle, the day number, and an image that might
be used for decorations. So if we want the date square to respond when you click on it, we
could simply bind to<ButtonPress-1> on all three items. Or, if we tag all three items
with the same group name, we could simply bind to the group as a whole. This is how we
handled the tabs in the tabnotebook described in Section 4.5.

4-42 Using the Canvas Widget

But there is another technique for handling selections that is sometimes easier to use.
Instead of binding to all three items in each date square, we simply cover the square with
an invisible rectangle, and bind to it. The canvas will let you use"" as a color name, so
you have a way of suppressing the outline color or the fill color of an item. If you suppress
both colors, you will get an invisible item. But the item will still react to events on the
canvas, as if it were filled with a solid color. We’ll call this kind of item asensor.

We can add some code tocalendar_redraw to create a sensor over each date
square, like this:

proc calendar_redraw {win} {

 ...

 foreach {day date dcol wrow} $layout {

 ...

 $win.cal create rectangle $x0 $y0 $x1 $y1 \
 -outline $fg -fill $bg

 $win.cal create text [expr $x0+4] [expr $y0+2] \
 -anchor nw -text "$day" -fill $fg -font $font

 $win.cal create image [expr $x1-2] [expr $y1-2] \
 -anchor se -tags [list $date-image]

 ...

 $win.cal create rectangle $x0 $y0 $x1 $y1 \
 -outline "" -fill "" \
 -tags [list $date-sensor all-sensor]

 $win.cal bind $date-sensor <ButtonPress-1> \
 "calendar_select $win $date"
 }

 ...

}

Again, we’ve left out some code to avoid repeating what was shown in the last section.
Notice that we create the sensor after the other three items, so it will cover them on

the canvas. Had we done it the other way around, the sensor itself would be covered, and
it would not get any events. If for some reason we had to create the sensor earlier in the
procedure, we could fix this problem by using the canvasraise or lower operations to
achieve the proper stacking order.

We tag each sensor with the name$date-sensor , so the sensor for July 1, 1997 has
the tag07/01/1997-sensor . Also, we tag all sensors with the nameall-sensor , so
we can handle them as a group.

Finally, we bind to the<ButtonPress-1> event on each sensor, so clicking on it
triggers a call tocalendar_select to select that date. Again, we enclose the

4.6 Calendar 4-43

calendar_select command in"" ’s instead of{} ’s so that the values for$win and
$date are substituted in. In effect, each sensor has its own custom binding that tells the
calendar to select its date.

Thecalendar_select procedure highlights a particular date on the calendar. It is
implemented like this:

proc calendar_select {win date} {
 global calInfo

 set time [clock scan $date]
 set date [clock format $time -format "%m/%d/%Y"]

 set calInfo($win-selected) $date

 set current [clock format $calInfo($win-time) \
 -format "%m %Y"]

 set selected [clock format $time -format "%m %Y"]

 if {$current == $selected} {
 set fg [option get $win dateForeground Foreground]

 $win.cal itemconfigure all-sensor \
 -outline "" -width 1

 set color [option get $win selectColor Foreground]
 set width [option get $win selectThickness Thickness]

 $win.cal itemconfigure $date-sensor \
 -outline $color -width $width

 $win.cal raise $date-sensor

 } else {
 set calInfo($win-time) $time
 calendar_redraw $win
 }

 if {[string trim $calInfo($win-selectCmd)] != ""} {
 set cmd $calInfo($win-selectCmd)
 set cmd [percent_subst %d $cmd $date]
 uplevel #0 $cmd
 }
}

The first twoset commands look a bit strange, but they do something important. They
normalize thedate argument to a standard format by converting the date to a system time
value, and then back again. So you can use a command like:

calendar_select .cal "July 1, 1997"

and thedate argument will be normalized to07/01/1997 . As long as the date is in this
format, we can access the sensor using the tag name$date-sensor .

4-44 Using the Canvas Widget

Next, we save the selected date in the$win-selected slot of the calendar data struc-
ture. Later on, if you need to know what date is currently selected, you can call the fol-
lowing procedure:

proc calendar_get {win} {
 global calInfo
 return $calInfo($win-selected)
}

It simply looks into the data structure and returns the selected date.
Getting back to thecalendar_select procedure, we need to determine whether or

not the selected date is displayed on the current calendar. Normally, we will enter this pro-
cedure when you click on a date. So normally, the selected date is indeed displayed. But
you could call this procedure from elsewhere in an application, and in that case, you could
select any date. To check for this, we use theclock format command to build two
strings. One represents the month and year that is currently displayed on the calendar.
The other represents the month and year of the selected date. If the two are different, then
we redraw the calendar to display the selected date.

Otherwise, we highlight the selected date by changing the outline of the sensor rect-
angle, making it visible. We also raise the sensor so that its outline is not obscured by any
other items on the canvas. Instead of hard-coding the color and thickness of the selection
highlight, we query them from the option database using theoption get command.

Notice how our tag names simplify this operation. We remove the highlight from all
sensors using the tag nameall-sensor . Then we add the highlight to the selected date
using the tag name$date-sensor .

Finally, we want the canvas to react to the date selection by bringing up a list of
appointments, or inserting the date in an entry widget, or something like that. Instead of
hard-coding the behavior in this procedure, we set things up so you can customize the cal-
endar with your own callback command. So just as you would configure the-command

option of each button, you can add a command to each calendar. You can add this same
feature to other libraries that you create, if you follow the recipe shown here.

 We use the$win-selectCmd slot of the calendar data structure to store the selection
callback for each calendar. If there is any string in this slot, we invoke it as a command.
First, we substitute the selected date into any%d field in the command, using the
percent_subst procedure described in Section 7.6.7.3. So you can have a callback
command like this:

puts "selected: %d"
.entry delete 0 end
.entry insert 0 "%d"

and when you select the date07/01/1997 , it would execute this:
puts "selected: 07/01/1997"
.entry delete 0 end
.entry insert 0 "07/01/1997"

This mimics the way that thebind command works.

4.6 Calendar 4-45

When all the substitutions are in place, we invoke the callback command using
uplevel #0 . This forces it to execute outside of our procedure, in the global scope. So
if the callback sets any variables, they will be treated as global variables.

You can use the following procedure to set the callback command for a calendar:
proc calendar_select_cmd {win cmd} {
 global calInfo

 if {![info exists calInfo($win-selectCmd)]} {
 error "bad calendar name \"$win\""
 }

 set calInfo($win-selectCmd) $cmd
}

It simply checks to make sure that the slot$win-selectCmd exists, and then assigns a
code fragment to it.

Putting all of this together, we can create a simple application like the one shown in
Figure 4.18. When you select any date on the calendar, it is automatically typed into the
entry widget below the calendar. You might use this as part of a dialog box for selecting
dates. That way, the user can either browse through the calendar, or enter a date by hand.

This requires just a few lines of code:
calendar_create .cal 7/4/1997
pack .cal -expand yes -fill both

entry .entry
pack .entry -fill x -padx 4 -pady 4

Figure 4.18. Selecting a date on the calendar fills in the entry below it.

4-46 Using the Canvas Widget

calendar_select_cmd .cal {
 puts "selected: %d"
 .entry delete 0 end
 .entry insert 0 "%d"
}

By adding a selection callback, we’ve added a great deal of power to our simple cal-
endar library. It now provides a convenient way of selecting dates for many different
applications.

4.6.3 Monitoring Variables

Suppose we use the canvas to display the status of something, like the factory floor exam-
ple that we mentioned earlier. We might use global variables to keep track of things like
the output of the production line, the inventory at each station, and so on. But we need to
know when something changes, so we can update the canvas. In this example, we’ll see
how you can monitor global variables in your application. When a variable changes, you
can have the canvas update itself automatically to display the change.

Returning to our calendar example, we want to mark holidays and other important
dates with an image in the lower-right corner, like the flag shown in Figure 4.16. Each
date already has a blank image in the lower-right corner, so we can simply configure the
image item on a certain date to display a particular image.

But how do we know which dates to decorate, and what images to use? We can use
an array variable to store all of the important dates for the calendar. We might initialize
the array like this:

set holidays(07/04/1997) [image create photo -file flag.gif]
set holidays(12/25/1997) [image create photo -file bell.gif]
...

The image in the fileflag.gif is associated with the Fourth of July holiday; the image in
bell.gif is associated with Christmas, and so on.

We need to make the calendar aware of this array, so it will consult the array as it
draws each month. When you call a procedure like this, for example:

calendar_decorate_with .cal holidays

it will tell a calendar named.cal to use an array namedholidays for decorations. This
procedure is implemented as follows:

proc calendar_decorate_with {win decorateVar} {
 global calInfo

 if {![info exists calInfo($win-decorateVar)]} {
 error "bad calendar name \"$win\""
 }

 set calInfo($win-decorateVar) $decorateVar
 calendar_redraw $win

4.6 Calendar 4-47

 global $decorateVar
 trace variable $decorateVar wu "calendar_decorate $win"
}

First, we check to make sure that$win refers to a calendar. We look for the
$win-decorateVar slot in the calendar data structure, and if it doesn’t exist, we report
an error. Otherwise, we store the array name—something likeholidays —in the
$win-decorateVar slot, so we can refer to it later. With the new information in place,
we callcalendar_redraw to update the calendar. As it draws each date, it will look for
an entry in the array of decorations, and display the appropriate image.

We add the following code tocalendar_redraw , to handle the decorations:
proc calendar_redraw {win} {
 global calInfo

 if {$calInfo($win-decorateVar) != ""} {
 upvar #0 $calInfo($win-decorateVar) decorate
 }

 ...

 foreach {day date dcol wrow} $layout {
 ...

 $win.cal create image [expr $x1-2] [expr $y1-2] \
 -anchor se -tags [list $date-image]

 if {[info exists decorate($date)]} {
 $win.cal itemconfigure $date-image \
 -image $decorate($date)
 }

 ...

 }

 ...

}

Again, we’ve left out some code to avoid repeating what was shown in previous sections.
The slotcalInfo($win-decorateVar) contains a name likeholidays , which is

the variable that we will consult for decorations. So we have one variable acting like a
pointer to another variable. We can access the other variable quite easily if we connect to
it usingupvar . Theupvar command says that we have a variable named
$calInfo($win-decorateVar) (e.g.,holidays) in another context, but in this proce-
dure we’ll call itdecorate . Normally,upvar looks up to the calling procedure for the
variable that you’re trying to access. But in this case, we included the#0 argument, telling
upvar to look for a global variable (at level #0 in the call stack). From this point on, the
namedecorate is an alias for the variable that we’re trying to access. When we query
decorate , for example, we are really queryingholidays . If we setdecorate , we are
really settingholidays .

4-48 Using the Canvas Widget

As we draw each day on the calendar, we create a blank image tagged with the name
$date-image . This will make it easy to refer to the image later on. The image item for a
date like July 20, 1997, will have the name07/20/1997-image . After we create each
image, we useinfo exists to look for an entry in the decorations array. If we find one,
then we modify the image item to display the image for that date.

Now suppose that sometime later in the application, we add an entry to theholidays

array. For example, we might let the user enter birthdays in a dialog. If one of those birth-
days falls on the current calendar, its image should change immediately. A birthday cake
icon should appear in the lower-right corner to mark the holiday.

We could say that whenever you update theholidays array like this, you must call
calendar_redraw to see the changes. But there might be lots of places in the applica-
tion where we modify the holidays array. If we forget to redraw after any one of them,
users will report it as a bug.

There is a better way to handle this. We can monitor changes to any variable by put-
ting a trace on it. In the last two lines of thecalendar_decorate_with procedure, we
put a trace on the decorations array. First, we declare it as a global variable. Otherwise, it
would be treated as a local variable, and the trace would be forgotten when we exit the
procedure. Next, we use thetrace variable command to add the trace. The argument
wu says that we want to be notified when the variable is written to (w) or unset (u). When
this happens, it will trigger a call tocalendar_decorate , to update the calendar.

Notice that in these two lines of code, we refer to the decorations array as
$decorateVar . If we had used the namedecorateVar , we would have attached the
trace to thedecorateVar variable in this procedure. Again, the variabledecorateVar

contains a name of another variable likeholidays , which is the variable that we really
want to trace. SodecorateVar is acting like a pointer to another variable. When we use
$decorateVar as a variable name, it is like dereferencing the pointer.

When we add a holiday, like this:
set holidays(07/20/1997) [image create photo -file birthday.gif]

or remove a holiday, like this:
unset holidays(07/20/1997)

it will trigger a call to the trace procedure,calendar_decorate . It is implemented as
follows:

proc calendar_decorate {win name1 name2 op} {
 upvar #0 $name1 decorate

 if {[info exists decorate($name2)]} {
 set imh $decorate($name2)
 } else {
 set imh ""
 }

 $win.cal itemconfigure $name2-image -image $imh
}

4.7 Simple Drawing Package 4-49

Notice that it takes four arguments. We included thewin argument when we added
the trace incalendar_decorate_with . The other three arguments are added automati-
cally on each call by the trace facility. The variablename1 contains the name of the vari-
able that is being traced. So in our case,name1 will contain the nameholidays . If this
variable is an array, then the variablename2 indicates what slot is being modified. In our
case, it will have a value like07/20/1997 . And the variableop contains the operation (w

or u) that is currently being traced.
Once again, the variablename1 is acting like a pointer to another variable. So once

again, we useupvar #0 to connect to it. We’ll refer to the global variable called$name1

using a local variable calleddecorate .
We use theinfo exists command to look for a decoration in the slot

decorate($name2) . If it exists, then the trace is telling us that it was just modified, so
we look up the new image value. If it doesn’t, then the trace is saying that it was just
deleted, so we clear out the image. In either case, we tell the canvas to look for an item
named$name2-image and change its image. So when you modify a slot like
holidays(07/20/1997) , the canvas will look for an item called07/20/1997-image .
If it finds that item, then it updates the item. Otherwise, it ignores the request.

You can see the power of the trace facility in the following simple example:
image create photo flag -file $env(EFFTCL_LIBRARY)/images/flag.gif

calendar_create .cal
calendar_decorate_with .cal flags
calendar_select_cmd .cal {set flags(%d) flag}

pack .cal -expand yes -fill both

We create a calendar and tell it to use an array calledflags for decorations. Then,
we tell it to set theflags array whenever you select a date. If you click on a date like
December 22, 1992, it will store the nameflag in the slotflags(12/22/92) . This will
trigger a call tocalendar_decorate , and a flag will appear on that day. In fact, a flag
will appear on each day that you select. As application programmers, we never worry
about redrawing the calendar. When we add dates to theflags array, the calendar reacts
automatically.

4.7 Simple Drawing Package

The canvas lets you create items, change their colors, raise them, lower them, move them,
resize them, and so on. This may seem familiar. Many commercial drawing packages
work in almost the same way. In fact, you can use the canvas to build a commercial draw-
ing package. In this section, we’ll build the simple drawing program shown in Figure

4-50 Using the Canvas Widget

4.19. Along the way, we’ll see some new techniques, such as editing text on the canvas,
saving the contents of a canvas, and generating PostScript output for a printer.

We can create most of the drawing program using components that we developed in
other chapters. Figure 4.20 shows the interface broken down into its major components:

Figure 4.19. The canvas is used to create an interactive drawing program.

Figure 4.20. Major components in the drawing program.

.mbar

.tools.tbar

.tools.line

.tools.fill

.drawing

4.7 Simple Drawing Package 4-51

• Along the top, we have a menu bar named.mbar . This is simply a frame with a few
menubuttons packed inside it.

• Along the side, we have a toolbar named.tools.tbar . This is created with the tool-
bar library that we developed in Section 3.4.3. It includes the following tools, shown in
order from top to botom: the selection tool, the rectangle tool, the circle tool, the spline
tool, and the text tool. When you select a tool, it activates the appropriate set of bind-
ings for the canvas. For example, if the rectangle tool is selected, the canvas has a set of
bindings for the click, drag and release operations used to create a rectangle. We use
bind tags to switch between the different bindings for each tool, as described in Section
3.5.4.

• Under the toolbar, we have the color selectors.tools.line and.tools.fill . They
set the outline color and the fill color for new items. When you click on them, you get a
short menu of color choices, as we saw earlier in Section 1.3.3.

• Most of the window is covered by the drawing canvas named.drawing . It is packed
to expand and fill, so if you stretch out the window, the canvas will get bigger.

The code that creates these components is not particularly interesting. Similar code
appears in the chapters that we’ve just mentioned. If you would like to see the details,
you’ll find the code in the fileapps/draw, in the source code that accompanies this book.
In the rest of this section, we’ll assume that all of these components exist, and we’ll focus
on the canvas and its drawing operations.

4.7.1 Drawing Items

In Section 3.4.2, we saw how you can bind to the click, drag, and release events to create
ovals on a canvas. We’ll repeat this briefly here, so we can emphasize the role of the can-
vas.

When you select the rectangle tool, it activates the following bindings on the canvas:
bind rect <ButtonPress-1> {
 canvas_shape_create %W rectangle %x %y
}

bind rect <B1-Motion> {
 canvas_shape_drag %W %x %y
}

bind rect <ButtonRelease-1> {
 canvas_shape_end %W %x %y
}

Remember, thebind command automatically substitutes values into the% fields. The%W

field will contain the name of the canvas, which in our program is.drawing . The%x and
%y fields will contain the coordinates of the mouse pointer (relative to the upper-left corner
of the canvas) at the time of the event.

4-52 Using the Canvas Widget

When you click on the canvas, thecanvas_shape_create procedure creates a new
rectangle item with both corners at the click point. It is implemented like this:

proc canvas_shape_create {win shape x y} {
 $win create $shape \
 $x $y $x $y -outline black -width 2 \
 -tags "rubbershape"
}

We simply create an item of type$shape , which in this case isrectangle , and we tag it
with the namerubbershape . This makes it easy to change the item in the following
steps.

As you hold down the mouse button and drag the pointer, thecanvas_shape_drag

procedure moves the lower-right corner of the rectangle. It is implemented like this:
proc canvas_shape_drag {win x y} {

 set coords [$win coords "rubbershape"]

 set coords [lreplace $coords 2 3 $x $y]

 eval $win coords "rubbershape" $coords
}

We use the canvascoords operation to get the coordinates of the item called
rubbershape . This returns a list of four numbers, representing the upper-left and lower-
right corners of the rectangle. We substitute the current drag point into the list using
lreplace , then assign the new coordinates back to the item. Notice that we use theeval

command in this last step. The canvascoords operation requires individual coordinate
numbers like this:

$win coords "rubbershape" 12 42 36 54

If we give it a list of coordinates like this:
$win coords "rubbershape" $coords ;# error!

then it will see only one argument that it will interpret as a rather strange looking number,
and it will report an error. Theeval command joins its arguments together, and then
interprets the result. In doing so, it strips off the quotes that normally delimit arguments,
like this:

eval .drawing coords "rubbershape" {12 42 36 54}

➥ .drawing coords rubbershape 12 42 36 54

So theeval command causes the numbers in$coords to be treated as separate argu-
ments on the command line.

When you release the mouse button, thecanvas_shape_end drops the rectangle and
applies the colors from.tools.line and.tools.fill . It is implemented like this:

proc canvas_shape_end {win x y} {
 global canvInfo

 canvas_shape_drag $win $x $y

4.7 Simple Drawing Package 4-53

 $win itemconfigure "rubbershape" \
 -outline $canvInfo($win-penColor) \
 -fill $canvInfo($win-fillColor)

 $win dtag "rubbershape"
}

We callcanvas_shape_drag to update the coordinates for this last point, and then set
the proper outline and fill colors. The colormenus store their values in the
$win-penColor and$win-fillColor slots of the canvas data structure. We’ll see how
this works later in this section, but for now we simply use these colors. At this point, we
“drop” the rectangle by using the canvasdtag operation to delete therubbershape tag.
The rectangle will remain, but we won’t be able to refer to it using the name
rubbershape . So the next time we create an item calledrubbershape and drag its cor-
ner around, this rectangle won’t be affected.

4.7.2 Selecting Items

When the selection tool is active, you can select items and change their characteristics.
First, you drag out aselection rectangle as shown in Figure 4.21(a). When you release the
mouse button, the selection rectangle disappears, and the selected items are enclosed in a
dashed rectangle that we’ll call themarker rectangle, as shown in Figure 4.21(b). We’ll
animate the dashes on this rectangle, so that they move orshimmer as a function of time.
This makes it obvious that the marker rectangle is part of the selection process, and not a
new item in the drawing.

When you enter the selection mode, we add the following bindings to the canvas:
bind select <ButtonPress-1> {
 canvas_shape_create %W rectangle %x %y
}

bind select <B1-Motion> {
 canvas_shape_drag %W %x %y
}

bind select <ButtonRelease-1> {
 canvas_select_end %W %x %y
}

bind select <Shift-ButtonRelease-1> {
 canvas_select_end %W %x %y add
}

We handle the click and drag events just as we described in the last section. So when
you click on the canvas, we create a rectangle, and as you drag the mouse pointer, we
stretch out the rectangle. But we handle the release event differently. Instead of leaving
the rectangle as a new item on the canvas, we callcanvas_select_end to handle the
selection process. We look for items within the rectangle, mark them as “selected”, and
then delete the selection rectangle.

4-54 Using the Canvas Widget

There are two flavors of the release event. Normally, the items within the selection
rectangle become selected, and any items that were previously selected are forgotten. But
if you hold down theShift key while making the selection, the items in the selection rect-
angle areadded to the items that were previously selected. So you can build up a selection
by holding down theShift key as you select more and more items.

Thecanvas_select_end procedure is implemented like this:
proc canvas_select_end {win x y {op "clear"}} {
 global env canvInfo

 canvas_shape_drag $win $x $y

 set coords [$win coords "rubbershape"]
 foreach {x0 y0 x1 y1} $coords {}
 $win delete "rubbershape"

 canvas_select_done $win $op

 if {abs($x1-$x0) < 2 && abs($y1-$y0) < 2} {
 set items [$win find overlapping $x0 $y0 $x0 $y0]
 $win addtag "selected" withtag [lindex $items end]

 } else {
 eval $win addtag "selected" enclosed $coords
 }

Figure 4.21. (a) You select items by dragging out a selection rectangle. (b) Selected items are
highlighted by a marker rectangle with a shimmering pattern.

(a) (b)

4.7 Simple Drawing Package 4-55

 set coords [$win bbox "selected"]
 if {$coords != ""} {
 foreach {x0 y0 x1 y1} $coords {}

 $win create line \
 $x0 $y0 $x1 $y0 $x1 $y1 $x0 $y1 $x0 $y0 \
 -fill black -width 2 -tags "marker"

 set imagedir $env(EFFTCL_LIBRARY)/images
 set images {
 stripes.xbm stripes2.xbm stripes3.xbm stripes4.xbm
 }

 set cmd "$win itemconfigure marker -stipple @$imagedir/%v"
 set canvInfo($win-shimmer) [animate_start 200 $images $cmd]
 }
}

We start off by callingcanvas_shape_drag to stretch the rectangle to its final posi-
tion, and we use the canvascoords operation to query its final coordinates. This returns a
list of four numbers defining the upper-left and lower-right corners of the selection rectan-
gle. We could use thelindex command to pick apart the list like this:

set x0 [lindex $coords 0]
set y0 [lindex $coords 1]
set x1 [lindex $coords 2]
set y1 [lindex $coords 3]

But we can accomplish the same thing more compactly with aforeach command, like
this:

foreach {x0 y0 x1 y1} $coords {}

This picks out the first four elements of the$coords list, assigns them to the four vari-
ables, and then executes the body, which does nothing. Since there are only four elements
in the$coords list, the loop terminates immediately. As you can see, theforeach com-
mand provides a handy way of dissecting lists.

At this point, we know the coordinates of the selection rectangle, and we are done
with the rectangle itself, so we delete it.

We are about to find the items within the selection rectangle and select them some-
how. But what do we do with the items that are currently selected? If theop argument has
the default valueclear , we’ll clear the current selection. But if it has the valueadd , we’ll
add the items to the current selection. In either case, we need to delete the marker rectan-
gle that marks the current selection. We handle all of this by calling
canvas_select_done . We’ll see how this is implemented in a moment.

But first, we’ll finish the select operation. We can keep track of selected items by tag-
ging them with the nameselected . The following command adds this tag to all of the
items within the current selection rectangle:

eval $win addtag "selected" enclosed $coords

4-56 Using the Canvas Widget

Theenclosed $coords part says that the tag should be added only to the items that are
completely enclosed in the rectangle defined by$coords . Once again, the four numbers
within $coords must appear as separate arguments on the command line, so we use the
eval command to break them out.

If you click and release on the same point, it will look as though you’ve drawn a tiny
selection rectangle. We can detect this by checking for a small difference in the x- and y-
coordinates. When we see this, we’ll assume that you were clicking on a particular item,
and we’ll select that one item. We can use the following command to get a list of all items
under the click point:

set items [$win find overlapping $x0 $y0 $x0 $y0]

This tells the canvas to find all of the items that touch a tiny rectangle from (x0 ,y0) to
(x0 ,y0). The item number for the top-most item will be at the end of this list. We can tag
that one item with the nameselected , like this:

$win addtag "selected" withtag [lindex $items end]

Near the bottom ofcanvas_select_end , we create the marker rectangle that sur-
rounds the selected items. We use the canvasbbox operation to get the coordinates of a
bounding box that contains the selected items. If we get back a null string, then no items
are selected, and we don’t need the marker. This would occur, for example, when you
select a blank area of the canvas.

Otherwise, we use theforeach command to pick apart the coordinate list, and we
create a line item tagged with the namemarker to represent the marker rectangle. We use
a line item instead of a rectangle item so that we can add the dash pattern to the boundary.
We set the dash pattern like this:

$win itemconfigure marker -stipple @$imagedir/stripes.xbm

This tells the canvas to draw the line using a bitmap pattern in the filestripes.xbm, which
is a pattern of diagonal stripes. Where the bits are set, the line will be drawn in black, and
where they are not, the line will be invisible.

We add the shimmering effect by changing the pattern as a function of time. The four
files in theimages list form a sequence of stripe patterns, each shifted by one pixel from
the one before it. We use theanimate_start procedure developed in Section 3.8.2 to
cycle through the patterns. Every 200ms, a new pattern name is substituted into the%v

field of thecmd string, and the command is executed, assigning a new stipple pattern to the
marker. We save the result fromanimate_start in the$win-shimmer slot of the can-
vas data structure, so that we can stop the animation later on, when we delete the marker
rectangle.

At this point, the selection operation is complete. The selected items are tagged with
the nameselected , and we can manipulate them with commands like:

.drawing raise "selected"

and
.drawing lower "selected"

4.7 Simple Drawing Package 4-57

These commands handle theBring to Front andSend to Back operations found in many
commercial drawing packages. We can add them to theEdit menu with some code like
this:

.mbar.edit.m add command -label "Bring to Front" -command {
 .drawing raise "selected"
}

.mbar.edit.m add command -label "Send to Back" -command {
 .drawing lower "selected"
}

In the remaining sections, we’ll see how to implement other operations like move, delete,
resize, and so on.

But what happens when you choose a new tool from the toolbar? The selection mode
ends, so we need to forget about the selected items. The toolbar takes care of this by call-
ing canvas_select_done , which is implemented as follows:

proc canvas_select_done {win {op clear}} {
 global canvInfo

 $win delete "marker"

 if {[info exists canvInfo($win-shimmer)]} {
 animate_stop $canvInfo($win-shimmer)
 unset canvInfo($win-shimmer)
 }

 if {$op == "clear"} {
 $win dtag "selected"
 }
}

First, we delete the shimmering marker rectangle. We delete the rectangle itself with
a simple canvasdelete operation, but we must do something more to stop the shimmer-
ing. If we find a$win-shimmer slot in the canvas data structure, then it contains an iden-
tifier for the shimmer animation. We callanimate_stop to stop the animation cycle, and
we delete the$win-shimmer slot from the data structure.

Next, we remove theselected tag using the canvasdtag operation. This removes
the tag from all items on the canvas, but leaves the items themselves intact. In effect, this
clears the current selection.

Notice that we remove the tag only when theop argument has the valueclear , which
it gets by default. If we pass in a value likeadd , the selected items will remain selected.
So we can use this procedure incanvas_select_end to clear the previous selection
before defining a new one. When you hold down theShift key, you’ll get theadd argu-
ment, and the new items will be added to the previous selection.

4-58 Using the Canvas Widget

4.7.3 Moving and Deleting Items

Once you’ve selected some items, it is trivial to move them and delete them. We can add
the following keyboard bindings to handle these operations:

bind select <KeyPress-BackSpace> {
 canvas_select_delete %W
}

bind select <KeyPress-Delete> {
 canvas_select_delete %W
}

bind select <KeyPress-Up> {
 canvas_select_move %W 0 -2
}

bind select <KeyPress-Down> {
 canvas_select_move %W 0 2
}

bind select <KeyPress-Left> {
 canvas_select_move %W -2 0
}

bind select <KeyPress-Right> {
 canvas_select_move %W 2 0
}

Notice that these bindings belong to theselect bind tag. So like the bindings in the last
section, they are active when the selection tool is active.

You can delete the selected items by pressing theBackSpace or Delete keys. This
triggers a call tocanvas_select_delete , which is implemented like this:

proc canvas_select_delete {win} {
 $win delete "selected"
 canvas_select_done $win
}

We simply delete all items tagged with the nameselected , and then call
canvas_select_done to clear the marker rectangle.

You can move the selected items by pressing the arrow keys on the keyboard. Many
drawing packages call this thenudge operation. Each key press triggers a call to
canvas_select_move with a 2-pixel offset in either the x- or the y-direction. The move
operation is handled like this:

proc canvas_select_move {win dx dy} {
 $win move "selected" $dx $dy
 $win move "marker" $dx $dy
}

We simply move all of the items tagged asselected by an amount$dx in the x-direc-
tion, and an amount$dy in the y-direction. Of course, we update the marker rectangle by
the same amount, so that it follows the selected items.

4.7 Simple Drawing Package 4-59

4.7.4 Configuring Items

At any point, you can change the drawing colors using the.tools.line and
.tools.fill color menus. We can detect the color change by assigning a callback to
each menu, like this:

colormenu_action .tools.line {canvas_pen .drawing "%c"}

colormenu_action .tools.fill {canvas_fill .drawing "%c"}

Whenever you choose a new color, the colormenu substitutes the color name in the%c

field, and executes its command. So if you choose red as the line color, it will trigger a
command like:

canvas_pen .drawing "red"

Thecanvas_pen procedure changes the line color of any items that are currently
selected, and then makes note of the new line color. It is implemented like this:

proc canvas_pen {win color} {
 global canvInfo

 foreach item [$win find withtag "selected"] {

 switch [$win type $item] {
 rectangle - polygon - oval - arc {
 $win itemconfigure $item -outline $color
 }

 line - text {
 $win itemconfigure $item -fill $color
 }

 bitmap {
 $win itemconfigure $item -foreground $color
 }
 }
 }

 set canvInfo($win-penColor) $color
}

The canvasitemconfigure operation lets you change the characteristics of one or more
items. If the selected items were all rectangles, for example, we could change their line
color with a single command, like this:

$win itemconfigure $item -outline $color

But not all items have a-outline option. For example, the color of a line item or a text
item is determined by its-fill option.

So we need to scan through the list of selected items and handle each one according to
its type. We use theforeach command to iterate through a list of items tagged with the
nameselected , and we use the canvastype operation to determine the type of each
item. The- character between labels in theswitch statement acts as an “or” operator. So
if an item is a rectangle, a polygon, an oval or an arc, we set its-outline color. If it’s a
line or a text item, we set its-fill color. And if it’s a bitmap, we set its-foreground

color.

4-60 Using the Canvas Widget

Finally, we save the new line color in the slot$win-penColor in the canvas data
structure. We use this color whenever we create an item, as we saw earlier in Section
4.7.1.

A similar thing happens when you choose a new fill color. If you choose green as the
fill color, for example, it will trigger a command like:

canvas_fill .drawing "green"

Thecanvas_fill procedure looks a lot like thecanvas_pen procedure, but it sets the
fill color instead of the line color. It is implemented like this:

proc canvas_fill {win color} {
 global canvInfo

 foreach item [$win find withtag "selected"] {

 switch [$win type $item] {
 rectangle - polygon - oval - arc {
 $win itemconfigure $item -fill $color
 }

 bitmap {
 $win itemconfigure $item -background $color
 }
 }
 }

 set canvInfo($win-fillColor) $color
}

Again, we useforeach to scan through the items tagged with the nameselected ,
and we check the type of each item. If an item is a rectangle, a polygon, an oval or an arc,
we sets its-fill color. If it’s a bitmap, we set its-background color. Otherwise, it has
no fill color and we simply ignore it.

And again, we save the new fill color in the slot$win-fillColor in the canvas data
structure. Any new items will automatically be filled with this color.

4.7.5 Resizing Items

Many drawing packages add little, black squares calledhandles around the edges of the
marker rectangle. You can click and drag on the handles to adjust the size of the item. We
could add handles to our drawing program as well, but it would complicate the code quite
a bit. Instead, we’ll provide a simple-minded way4 to resize items that illustrates the core
of the resize operation.

We’ll add two items to theEdit menu, like this:

4. Translation: brain-dead scheme

4.7 Simple Drawing Package 4-61

.mbar.edit.m add command -label "Enlarge" -command {
 canvas_select_scale .drawing 1.1 1.1
}

.mbar.edit.m add command -label "Reduce" -command {
 canvas_select_scale .drawing 0.9 0.9
}

When you select theEnlarge operation, it will enlarge the selected items by 10%, making
them 1.1 times their current size. When you selectReduce, it will reduce them by 10%,
making them 0.9 times their current size.

In either case, we callcanvas_select_scale , which is implemented as follows:
proc canvas_select_scale {win sx sy} {
 foreach {x0 y0 x1 y1} [$win bbox "selected"] {}

 set xm [expr 0.5*($x0+$x1)]
 set ym [expr 0.5*($y0+$y1)]

 $win scale "selected" $xm $ym $sx $sy
 $win scale "marker" $xm $ym $sx $sy

}

The canvasscale operation scales the coordinates of one or more items by a certain
amount in the x- and y-directions. For example, you can scale all of the items on a canvas
to 1.5 times their current size, like this:

.drawing scale "all" 0 0 1.5 1.5

The0 0 arguments give an (x,y) coordinate for the center of the scaling operation. So in
this case, we enlarged the items around the origin in the upper-left corner of the canvas.
All of the items spread out toward the right and toward the bottom, making the overall
drawing larger.

In thecanvas_select_scale procedure, we don’t want the items to move as they
spread out, so we scale them around their midpoint. That way, they get larger, but they
stay in the same place on the drawing. We use the canvasbbox operation to get a bound-
ing box for the selected items. We need to do some arithmetic on these coordinates, so we
use theforeach command break up the list. It assigns the values to the variablesx0 , y0 ,
x1 andy1 , and then does nothing in the body of the loop. This is a handy trick. It is more
compact and convenient than an equivalent series oflindex commands.

Once we have the coordinates, we compute the midpoint by averaging the x and y val-
ues. We use thescale operation to scale the selected items by$sx in the x-direction, and
by $sy in the y-direction. Of course, we scale the marker rectangle by the same amount,
so that it follows the selected items.

4.7.6 Entering Text

The canvas will support text entry just like an entry widget or a text widget, but it is not
automatically turned on. You have to add the right bindings to the canvas to enable this
feature. In this section, we’ll see how to do this in the context of our drawing program.

4-62 Using the Canvas Widget

The text tool lets you add text annotations to the drawing. You simply click on the
canvas to get a text insertion cursor, and type in the appropriate text. If you click on an
existing text item, you’ll edit that item. Otherwise, you’ll get a new text item.

We can handle the click event with a binding like this:
bind text <ButtonPress-1> {
 canvas_text_select %W %x %y
}

Since this binding belongs to thetext bind tag, the toolbar adds it to the canvas whenever
the text tool is active.

When you click on the canvas, it triggers a call tocanvas_text_select with the
name of the canvas and the coordinates of the click point. This procedure is implemented
as follows:

proc canvas_text_select {win x y} {
 global canvInfo

 canvas_text_done $win

 if {[$win type current] == "text"} {
 $win addtag "editText" withtag current

 } else {
 $win create text $x $y \
 -fill $canvInfo($win-penColor) \
 -anchor w -justify left -tags "editText"
 }

 focus $win
 $win focus "editText"
 $win icursor "editText" @$x,$y
}

First, we callcanvas_text_done to close the editing mode for any other text item that
we might be editing. We’ll see how this procedure is implemented in a moment.

Next, we look for an existing text item at the click point. Remember, the canvas rec-
ognizes the namecurrent as the item under the mouse pointer. So we can look for a text
item by querying the type of thecurrent item. If we find a text item, we tag it with the
nameeditText . Otherwise, we create a new text item at the click point ($x ,$y), and tag
it with the nameeditText . As you type characters at the keyboard, we’ll simply add
them to the item callededitText .

Now that we’ve selected a text item, we must direct the keyboard input to it. We do
this by setting the keyboard focus, as described in Section 3.2.3. We use one command to
set the widget focus for the program:

focus $win

4.7 Simple Drawing Package 4-63

This directs all keyboard events to the canvas widget$win , so they will trigger any
<KeyPress> bindings that we have on the canvas. We use another command to set the
focus to a particular item within the canvas widget:

$win focus "editText"

This directs all keyboard events on the canvas to the item callededitText , so they will
trigger any additional<KeyPress> bindings that we have added to that item. This also
enables the insertion cursor for theeditText item, so we can edit the text interactively.

The insertion cursor appears as a blinking line on the canvas. Exactly where it
appears depends on its current position. We set its position using the command:

$win icursor "editText" @$x,$y

This tells the canvas to put the cursor for theeditText item near the click point ($x ,$y)
on the canvas. So if you click in the middle of a text item, the insertion cursor will appear
at that point.

Now that the text is selected, we need some bindings to handle key press events. We
could use thebind command to add these bindings to the canvas as a whole. Or we could
use the canvasbind operation to add the bindings to individual items within the canvas.
Or we could use a mixture of bindings. In this example, we can handle all key press
events in exactly the same way—by applying them to the item callededitText . So in
this example, we will bind to the canvas as a whole.

We add the following bindings to handle key press events:
bind text <KeyPress> {
 canvas_text_edit_add %W %A
}

bind text <KeyPress-Return> {
 canvas_text_edit_add %W "\n"
}

bind text <KeyPress-BackSpace> {
 canvas_text_edit_backsp %W
}

bind text <KeyPress-Delete> {
 canvas_text_edit_backsp %W
}

Most of the keys that you type are handled by the generic<KeyPress> binding.
After each key stroke, the bind facility replaces%W with the name of the canvas, and%A

with the ASCII code for the key, and then callscanvas_text_edit_add . This proce-
dure adds the new character at the position of the insertion cursor, like this:

proc canvas_text_edit_add {win str} {
 $win insert "editText" insert $str
}

The firstinsert keyword tells the canvas to insert some text into one or more text items.
The next wordeditText is the tag name indicating what text items to modify. The next
word tells the canvas what character position to use when inserting the text. In this case,
the keywordinsert says that the text should be added just before the insertion cursor.

4-64 Using the Canvas Widget

Finally, we give the canvas the character$str to insert. When the character is added, the
insertion cursor shifts over automatically to make room for it.

The more specific key press bindings handle some special cases. We bind to
<KeyPress-Return> to handle theReturn key properly. The ASCII code for theReturn
key is the carriage return character “\r ”. But we want the Return key to add a newline
character “\n ” so that we can force text entry onto another line.

We bind to both<KeyPress-BackSpace> and<KeyPress-Delete> , so hitting
either of these keys triggers a call tocanvas_text_edit_backsp to erase a character.
This is implemented as follows:

proc canvas_text_edit_backsp {win} {
 set pos [expr [$win index "editText" insert] - 1]

 if {$pos >= 0} {
 $win dchars "editText" $pos
 }
}

We use the canvasdchars operation to delete a character in the text item called
_editText . But we have to tell it which character to delete. The insertion cursor identi-
fies the character to the right of it. So if we tolddchar to delete at the insertion cursor,
like this:

$win dchars "editText" insert

then it would delete the character after the insertion cursor, instead of the one before it.
Instead, we use the canvasindex operation to find the position of the insertion cursor

in theeditText item. This returns a number, representing the character position. Char-
acters are numbered from 0, so a number like 5 refers to the 6th character in the string. We
subtract 1 to get the character before the insertion cursor, and then we delete that character.

If you change tools, or if you select another text item, we need to end the current edit-
ing operation. We handle this incanvas_text_done :

proc canvas_text_done {win} {

 set mesg [$win itemcget "editText" -text]

 if {[string length [string trim $mesg]] == 0} {
 $win delete "editText"
 }

 $win dtag "editText"
 $win focus ""
}

 The first part eliminates any blank items. This might happen, for example, if you
erase all of the text in an item, or if you click to create a text item, then change your mind
and select another tool. We use theitemcget operation to get the contents of the
editText item, and if it is blank, we delete it.

Next, we remove theeditText tag from the current text item. If we didn’t do this,
you would notice a problem when you edit another text item—both items would be tagged
with the nameeditText , so each key stroke would apply to both items!5

4.7 Simple Drawing Package 4-65

Finally, we reset the focus within the canvas so that no specific item has focus. This
hides the text insertion cursor, indicating that the editing operation is done.

4.7.7 Printing a Drawing

Adding aPrint feature to our drawing program is remarkably simple. The canvas has a
postscript operation that you can use to generate PostScript output for the current
drawing. For example, the canvas in our drawing program is named.drawing , so the
command:

.drawing postscript

returns a very long string containing a PostScript representation of the canvas.
By default, the canvas will generate PostScript for only the portion of the drawing that

is visible. Normally, the entire drawing is visible in our drawing program. But suppose
that we compress the window to a smaller size, and then try to print. Or suppose that at
some point we add scrollbars to the drawing program. In either case, we want to print the
entire drawing—not just the part that is showing on the screen.

We need to pass the overall size of the drawing to thepostscript operation, so we
write a short procedure to handle this:

proc draw_print {} {
 foreach {x0 y0 x1 y1} [.drawing bbox all] {}

 set w [expr $x1-$x0]
 set h [expr $y1-$y0]

 return [.drawing postscript -x $x0 -y $y0 -width $w -height $h]

}

We use the canvasbbox operation to get a bounding box that surrounds all of the items,
and we pick out the coordinate numbersx0 , y0 , x1 andy1 . We compute the overall width
by subtracting the x-coordinates, and the overall height by subtracting the y-coordinates.
Then, we tell the canvas to generate PostScript for a region of width$w and height$h,
with its upper-left corner at the coordinate ($x0 ,$y0). We return the PostScript as the
result ofdraw_print .

Most Unix systems have a command calledlpr that routes output to a printer. We
can use this command to print the canvas, like this:

exec lpr << [draw_print]

Theexec command executeslpr as another process, feeding the PostScript output to its
standard input. This queues up a print request, and a moment later, the printer produces
the drawing.

Of course, that simplelpr command sends output to a default printer. In a real appli-
cation, you should be able to send output to different printers, or perhaps save it in a file.

5. Actually, this could be a bug or a feature, depending on how you write the user’s guide.

4-66 Using the Canvas Widget

We’ll develop a printer dialog to handle all of this in Section 6.6.3. Let’s assume that
we’ve done the work and use it here.

We can create a printer dialog like this:
printer_create .print

and add aPrint... entry to theFile menu to handle printing:
.mbar.file.m add command -label "Print..." -command {
 printer_print .print draw_print
}

When you select thePrint... option, the printer dialog will appear, as shown in Figure
4.22. You can change the printer command to send output to a specific printer, or you can
specify a file name for the output. When you press thePrint button, the dialog uses the
command argumentdraw_print to generate output, and then it routes the output accord-
ingly.

4.7.8 Saving a Drawing

Our drawing program should be able to save a drawing in a file, so you can load it again
later to make changes. To accomplish this, we simply ask the canvas for a list of its items,
and then examine each item and write a description of it out to a file.

There are many different ways to format the output file. Depending on what format
you choose, your job of loading the file can be easy or hard. For example, suppose we use
one line to represent each item on the canvas. The first thing on the line could be a number
representing the item type—1 for rectangle,2 for oval, and so on. The next thing could be

Figure 4.22. The printer dialog routes PostScript output to a printer.

4.7 Simple Drawing Package 4-67

a list of coordinates. The rest of the line might depend on the type of the item. The
description of a rectangle would have its outline color, its fill color, and its line width,
while the description of a text item would have the text message, its fill color, and its
anchor point. After we settle a few more details, we might end up with a drawing file that
looks something like this:

1 {79.0 24.0 256.0 196.0} #da18d6efdd41 black 2

3 {78.0 212.0} {HAZARDOUS ATOMIC WASTE} #23b397c5291d w

2 {145.4 87.45 188.6 129.75} black #23b397c5291d 2

2 {152.6 92.85 171.5 112.65} "" green 2

There are a few problems with this format. For one thing, we need to write a lot of code to
load this data back into our application. Handling the various item types and their special-
ized argument lists is rather tedious and error prone. Also, it’s not obvious what the vari-
ous fields in this format represent. Which is first, the outline color or the fill color? What
exactly is item type3? What does thew represent at the end of that line? If you try to
maintain this code over a period of several months, you may find yourself asking these
same questions again and again.

Instead, let’s write out the same information, but format it to look like a series of Tcl
commands. For example:

.drawing create rectangle 79.0 24.0 256.0 196.0 \
 -outline #da18d6efdd41 -fill black -width 2

.drawing create text 78.0 212.0 \
 -text {HAZARDOUS ATOMIC WASTE} -fill #23b397c5291d -anchor w

.drawing create oval 145.4 87.45 188.6 129.75 \
 -outline black -fill #23b397c5291d -width 2

.drawing create oval 152.6 92.85 171.5 112.65 \
 -outline {} -fill green -width 2

This format is quite expressive—it is obvious which is the outline color and which is
the fill color. And this format is already well documented. If you forget what a parameter
like -anchor means, you can always look it up in the manual page for thecanvas com-
mand. But more importantly, this format is extremely easy to load. You can simply exe-
cute the drawing file using something like thesource command, as we’ll see in the next
section.

We can improve this format a bit by removing the reference to a specific widget like
.drawing . After all, if we ever decided to rename the.drawing widget, all of the draw-
ing files would be useless. Let’s replace.drawing create with a generic command
calleddraw , as shown in Figure 4.23. This decouples the format from our current pro-
gram, so we could use it for lots of different applications.

This example teaches an important lesson:

Tcl is not just a command language, it
is also a data language.

4-68 Using the Canvas Widget

Whenever you find yourself inventing a text-based file format, think about saving the
information as a series of Tcl commands. You can load the data simply by executing it in
a Tcl interpreter where the commands are defined.6

Now, let’s look at the code needed to save a canvas to a drawing file. First, we’ll write
a procedure calledcanvas_save that takes the name of a canvas, and returns a script full
of draw commands. This procedure might be useful for many different canvas applica-
tions. It is implemented like this:

6. Note that this same idea has revolutionized the output format for most printers. Today, almost all
documents are formatted as a series of commands in the PostScript language. A PostScript printer
simply treats each job as a program, and executes it to draw the pages in the document.

Figure 4.23. The contents of a drawing canvas can be saved as a series of Tcl commands.

contents of .drawing

draw rectangle 79.0 24.0 256.0 196.0 -fill black -outline #da18d6efdd41 -width 2

draw oval 145.4 87.45 188.6 129.75 -fill #23b397c5291d -width 2

draw line 130.1 111.75 166.1 14.55 203.9 102.75 171.5 204.45 130.1 111.75 -fill green -smooth 1 -width 2

draw line 149.0 78.45 249.8 56.85 185.0 144.15 79.7 150.45 149.0 78.45 -fill green -smooth 1 -width 2

draw line 189.5 79.35 89.6 49.65 144.5 139.65 254.3 153.15 189.5 79.35 -fill green -smooth 1 -width 2

draw oval 152.6 92.85 171.5 112.65 -fill green -outline {} -width 2

draw oval 157.1 96.45 165.2 107.25 -fill white -outline {} -width 2

draw text 78.0 212.0 -anchor w -fill #23b397c5291d -text {HAZARDOUS ATOMIC WASTE}

4.7 Simple Drawing Package 4-69

proc canvas_save {win} {

 set script "# contents of $win\n"

 foreach item [$win find all] {
 set tags [$win gettags $item]

 if {[lsearch $tags "canvas_save_ignore"] < 0} {

 set type [$win type $item]
 set coords [$win coords $item]

 set opts ""

 foreach desc [$win itemconfigure $item] {
 set name [lindex $desc 0]
 set init [lindex $desc 3]
 set val [lindex $desc 4]

 if {$val != $init} {
 lappend opts $name $val
 }
 }

 append script "draw $type $coords $opts\n"
 }
 }

 return $script
}

We start by initializing thescript variable to contain a comment line, describing the
lines that follow. Notice that this line, and every other line that we add to the script, is ter-
minated by “\n ”, the newline character.

We use the command$win find all to query a list of all items on the canvas. We
build a description of each item, including its type, its coordinates, and its configuration
options, and then append adraw command for it onto the script.

We query the information for each item directly from the canvas. The command
$win type $item returns the item type—rectangle , oval , text , etc. The command
$win coords $item returns the coordinates for each item. Unfortunately, there is no
simple command that returns the configuration options for each item in the format that we
need, so we loop through the options and build our own. The command
$win itemconfigure $item returns a list of all configuration options. Each element
in this list has five values: the option name, two null strings (which we ignore), the initial
value, and the current value. We pick out the initial value and the current value, and then
check to see if they’re the same. If not, then we append the option name and its current
value onto a list of option settings in theopts variable. When we’re done, this variable
will contain only the options that differ from their default value.

Notice that we skip any items tagged with the namecanvas_save_ignore . This is
a handy feature. Suppose you have just selected some items in the drawing, so the canvas
contains a selection rectangle, as shown in Figure 4.21(b). This rectangle isn’t really part
of the drawing, so we don’t want it to be included in the output fromcanvas_save .
Before we call this procedure, we can simply tag transient items like this with the name
canvas_save_ignore , and they won’t be saved.

4-70 Using the Canvas Widget

Now that we have thecanvas_save procedure, we can use it to save a drawing in a
file. We’ll add aSave As... command to theFile menu, like this:

.mbar.file.m add command -label "Save As..." -command draw_save

When you select theSave As... command, it calls the following procedure to save the
drawing:

proc draw_save {} {

 global env

 set file [tk_getSaveFile]

 if {$file != ""} {
 .drawing addtag "canvas_save_ignore" withtag "marker"
 set selected [.drawing find withtag "selected"]
 .drawing dtag "selected"

 set cmd {
 set fid [open $file w]
 puts $fid [canvas_save .drawing]
 close $fid
 }

 if {[catch $cmd err] != 0} {
 notice_show "Cannot save drawing:\n$err" error
 }

 .drawing dtag "canvas_save_ignore"
 foreach item $selected {
 .drawing addtag "selected" withtag $item
 }

 }

}

This procedure usestk_getSaveFile to get the name of the output file. This pops
up a file selection dialog, letting you navigate the file system and select a file. If you press
theCancel button, thentk_getSaveFile returns a null string, and thedraw_save pro-
cedure does nothing. Otherwise,tk_getSaveFile returns the name that you selected for
the save file.

To save the drawing, we need to open the file, write out the script from
canvas_save , and close the file. Any of these operations could fail, so we wrap them all
up as a small script, and execute that script via thecatch command. If we catch any
error, we use thenotice_show procedure developed in Section 6.4 to display the error
message in a notice dialog.

Before we callcanvas_save , we do two important things:

• We add the tagcanvas_save_ignore to all of the items tagged with the name
marker . This prevents the selection rectangle and other transient items from being
included in the output.

4.7 Simple Drawing Package 4-71

• We remove the tagselected from any selected items. We do this by deleting the tag
via the command.drawing dtag "selected" . If we didn’t do this, theselected

tag would appear in the drawing output. It would be listed in the-tags option for
selected items, and this would lead to a subtle bug. The next time the drawing was
loaded, these items would act as though they were selected—you could use the arrow
keys to shift them about—but no selection rectangle would be visible.

After we callcanvas_save , we put things back the way they were:

• We remove the tagcanvas_save_ignore from the marker items by deleting the tag.

• We add the tagselected to all of the selected items.

4.7.9 Loading a Drawing

In the last section, we saved a drawing as a series of Tcl commands. We can load the
drawing simply by executing it as a Tcl program. In our drawing program, for example,
we might load a drawing by adding some code like this:

proc draw {args} {
 eval .drawing create $args
}

source $file

First, we define adraw procedure to handle all of thedraw commands in the drawing file.
Then we use thesource command to execute a particular drawing file, whose name is
stored in thefile variable. As this file is executed, each of thedraw commands adds an
item to the canvas called.drawing .

Thedraw procedure uses the specialargs argument, so it will take any number of
arguments. It simply passes these arguments on to the.drawing create command,
which actually creates the item on the canvas. For example, suppose the drawing file con-
tains a command like this:

draw rectangle 79.0 24.0 256.0 196.0 -fill red

When it is executed, this command will pass its arguments on to the canvas, like this:
.drawing create rectangle 79.0 24.0 256.0 196.0 -fill red

Theeval command in thedraw procedure is needed to make this work properly. It
treats the elements within$args as separate words on the command line. Without the
eval command,$args would be treated as a single word, like this:

.drawing create {rectangle 79.0 24.0 256.0 196.0 -fill red}

The canvas widget would think we’re trying to create an item with a strange type name
" rectangle 79.0 24.0 256.0 196.0 -fill red " , and it would complain that this is an
invalid type. Adding theeval command avoids this error.

There is a problem with the way that we have loaded this drawing. Suppose some
nefarious user gives you a drawing file that looks like this:

draw rectangle 79.0 24.0 256.0 196.0 -fill red

4-72 Using the Canvas Widget

exec rm -rf *

When you source in this file, the first command will create a rectangle on the canvas, and
the second will erase all of the files on your file system! Using Tcl as a data language is
extremely powerful, but it is also extremely dangerous.

Fortunately, there is a simple solution for this problem. Whenever you want to exe-
cute commands from an untrusted source, you must do so in a protected context called a
safe interpreter. We’ll talk about safe interpreters and show you exactly how to use them
when we look at client/server applications in Section 7.6.6.

