
C H A P T E R

1 COM as a
Better C++

1

template <class T, class Ex>

class list_t : virtual protected CPrivateAlloc {

list<T**> m_list;

mutable TWnd m_wnd;

virtual ~list_t(void);

protected:

explicit list_t(int nElems, ...);

inline operator unsigned int *(void) const

{ return reinterpret_cast<int*>(this); }

template <class X> void clear(X& rx) const throw(Ex);

};

Anonymous, 1996

C++ has been with us for some time now. The community of C++ programmers
is quite large, and much is known about the traps and pitfalls of the language.
From its inception, C++ has benefited from a highly literate team of developers
who, while working at Bell Laboratories, not only produced the first C++ de-
velopment product (CFRONT) but also published many of the seminal works
on C++. Most of the C++ canon was published in the late 1980s and early 1990s.
During this era, many C++ developers (including the authors of virtually every
important C++ book) worked on UNIX workstations and built fairly monolithic
applications using the compiler and linker technology of the day. The environ-
ment in which this generation of developers worked has understandably
shaped much of the mindset of the C++ community at large.

One of the principal goals for C++ was to allow programmers to build
user-defined types (UDTs) that could be reused outside their original imple-
mentation context. This principle underpins the idea of class libraries or
frameworks as we know them today. Since the introduction of C++, a market-
place for C++ class libraries emerged, albeit rather slowly. One reason that
this marketplace has not grown as fast as one might expect is related to the

NIH (not-invented-here) factor among C++ developers. Often the notion of
reusing another developer’s code seems like more effort than simply reimple-
menting from scratch. Sometimes this perception is due to sheer hubris on the
part of the developer. Other times, the resistance to reuse is based on the men-
tal overhead required to understand someone else’s design and programming
style. This is especially true for wrapper-style libraries, where one needs to un-
derstand not only the underlying technology being wrapped but also the addi-
tional abstractions added by the library itself.

To exacerbate the problem, many libraries are documented in a manner
that assumes the user of the library will refer to the library’s source code as
the ultimate reference. This sort of white box reuse often results in a tremen-
dous amount of coupling between the client application and class library,
adding to the fragility of the overall code base over time. The coupling effect
reduces the modularity of a class library and makes it more difficult to adapt
to changes in the underlying library implementation. This encourages clients
to treat the library as yet another part of the project’s source code base and not
as a modular reusable component. In fact, developers have actually been
known to modify commercial class library sources to fit their own needs, pro-
ducing a “private build” that is better suited to the programmer’s application
but no longer really the original library.

Reuse has always been one of the classic motivations for object orientation.
Despite this fact, writing C++ classes that are easily reused is fairly difficult.
Beyond the design-time and development-time obstacles to reuse that are part
of the C++ culture, there are also a fair number of runtime obstacles that
make the C++ object model a less than ideal substrate for building reusable
software components. Many of these obstacles stem from the compilation and
linkage model assumed by C++. This chapter will look at the technical chal-
lenges to treating C++ classes as reusable components. Each challenge will be
addressed by presenting programming techniques based on currently avail-
able off-the-shelf technology. Through disciplined application of these tech-
niques, this chapter presents an architecture for component reuse that allows
dynamic and efficient composition of systems from independently developed
binary components.

Software Distribution and C++

To understand the problems related to using C++ as a component substrate, it
helps to examine how C++ libraries were distributed in the late 1980s.
Consider a library vendor who has developed an algorithm that can perform
substring searches on O(1) time (i.e., the search time will be constant and not

2 C H A P T E R 1 : C O M A S A B E T T E R C + +

proportional to the length of the target string). This is a nontrivial task, ad-
mittedly. To make the algorithm as simple to use as possible, the vendor would
create a string class based on the algorithm that would represent fast text
strings in any client program. To do this, the vendor would prepare a header
file that contains a class definition:

// faststring.h /////////////////////////////

class FastString {

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

};

With the class definition in place, the vendor would implement the member
functions in a separate source file:

// faststring.cpp ///////////////////////////////////

#include "faststring.h"

#include <string.h>

FastString::FastString(const char *psz)

: m_psz(new char[strlen(psz) + 1]) {

strcpy(m_psz, psz);

}

FastString::~FastString(void) {

delete[] m_psz;

}

int FastString::Length(void) const {

return strlen(m_psz);

}

int FastString::Find(const char *psz) const {

// O(1) lookup code deleted for clarity1

}

3S O F T WA R E D I S T R I B U T I O N A N D C + +

1 At the time of this writing, the author did not have a working implementation of this algorithm
suitable for publication. The details of such an implementation are left as an exercise for the
reader.

Traditionally, C++ libraries have been distributed in source code form. The
users of a library would be expected to add the implementation source files to
their make system and recompile the library sources locally using their C++
compiler. Assuming that the library adhered to a commonly supported subset
of the C++ programming language, this was a perfectly workable approach.
The net effect of this procedure was that the executable code of the library
would be bundled as part of the overall client application.

Assume that for the FastString class just shown, the generated machine
code for the four methods occupied 16MB worth of space in the target exe-
cutable image (remember, to perform O(1) search, a lot of code might be
needed given the standard time versus space trade-off that binds most algo-
rithms). As shown in Figure 1.1, if three applications use the FastString li-
brary, each of the three executables will contain the 16MB worth of code. This
means that if an end-user installs all three client applications, the FastString
implementation occupies 48MB worth of disk space. Worse yet, if the end-user
runs the three client applications simultaneously, the FastString code occu-
pies 48MB worth of virtual memory, as the operating system cannot detect the
duplicate code that is present in each executable image.

One additional problem with this scenario is that once the library vendor
finds a defect in the FastString class, there is no way to field-replace the im-
plementation. Once the FastString code is linked into the client application,
one can no longer simply replace the FastString code directly at the end-
user’s machine. Instead, the library vendor must broadcast source code up-
dates to the developer of each client application and hope that they will rebuild
their applications to take advantage of the repairs that were made. Clearly,
the modularity of the FastString component is lost once the client runs the
linker and produces the final executable.

4 C H A P T E R 1 : C O M A S A B E T T E R C + +

Figure 1.1 Three FastString Clients

Application A

FastString.obj

Application B

FastString.obj

Application C

FastString.obj

Dynamic Linking and C++

One technique for solving the problems just stated is to package the
FastString class as a Dynamic Link Library (DLL). This can be done in a va-
riety of ways. The simplest technique is to use a class-level compiler directive
to force all of the methods of FastString to be exported from the DLL. The
Microsoft C++ compiler provides the __declspec(dllexport) keyword for just
this purpose:

class __declspec(dllexport) FastString {

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

};

When this technique is used, all of the methods of FastString will be
added to the exports list of the FastString DLL, allowing runtime resolution
of each method name to its address in memory. In addition, the linker will pro-
duce an import library that exposes the symbols for FastString’s methods.
Instead of containing the actual code, the import library simply contains ref-
erences to the file name of the DLL and the names of the exported symbols.
When the client links against the import library, stubs are added to the exe-
cutable that inform the loader at runtime to load the FastString DLL dy-
namically and resolve any imported symbols to their corresponding locations
in memory. This resolution happens transparently when the client program is
started by the operating system.

Figure 1.2 illustrates the runtime model of FastString when exposed from
a DLL. Note that the import library is fairly small (roughly twice the combined
size of exported symbol text). When the class is exported from a DLL, the
FastString machine code needs to exist only once on the user’s hard disk.
When multiple clients access the code for the library, the operating system’s
loader is smart enough to share the physical memory pages containing
FastString’s read-only executable code between all client programs. In addi-
tion, if the library vendor finds a defect in the source code, it is theoretically
possible to ship a new DLL to the end-user, repairing the defective implemen-
tation for all client applications en masse. Clearly, moving the FastString li-
brary into a DLL is an important step toward turning the original C++ class
into a field-replaceable and efficient reusable component.

5D Y N A M I C L I N K I N G A N D C + +

C++ and Portability

Once the decision is made to distribute a C++ class as a DLL, one is faced with
one of the fundamental weaknesses of C++, that is, lack of standardization at
the binary level. Although the ISO/ANSI C++ Draft Working Paper attempts
to codify which programs will compile and what the semantic effects of run-
ning them will be, it makes no attempt to standardize the binary runtime
model of C++. The first time this problem will become evident is when a client
tries to link against the FastString DLL’s import library from a C++ develop-
ment environment other than the one used to build the FastString DLL.

To allow operator and function overloading, C++ compilers typically man-
gle the symbolic name of each entry point to allow many uses of the same
name (either with different argument types or in different scopes) without
breaking existing C-based linkers. This technique is often referred to as name
mangling. Despite the fact that the C++ Annotated Reference Manual (ARM)
documented the encoding scheme used by CFRONT, many compiler vendors
have elected to invent their own proprietary mangling scheme. Because the
FastString import library and DLL export symbols using the mangling
scheme of the compiler that built the DLL (e.g., GNU C++), clients that are
compiled using a different compiler (e.g., Borland C++) will not be able to link
successfully with the import library. The classic technique of using extern "C"
to disable symbolic mangling would not help in this case, as the DLL is ex-
porting member functions, not global functions.

One technique that could alleviate this problem is to play tricks on the
client’s linker by using a Module Definition File (commonly known as a DEF

6 C H A P T E R 1 : C O M A S A B E T T E R C + +

Figure 1.2 FastString as a DLL

Application A

FastString.dll

Application B

Application C

FastStr ing Import I ibrary

file). One feature of DEF files is that they allow exported symbols to be aliased
to different imported symbols. Given enough time and information about each
compiler’s mangling scheme, the library vendor can produce a custom import
library for each compiler. While tedious, this allows any compiler to gain link-
level compatibility with the DLL, provided the library vendor has anticipated
its use ahead of time and has provided a proper DEF file.

Once one overcomes the issues related to linking, one now has to deal with
the far more problematic area of incompatibilities related to the generated
code. For all but the simplest language constructs, compiler vendors often elect
to implement language features in proprietary ways that render objects “un-
touchable” by code generated by any other compiler. Exceptions are a classic
example of such a language feature. A C++ exception thrown from a function
compiled with the Microsoft compiler cannot be caught reliably by a client pro-
gram compiled with the Watcom compiler. This is because the DWP does not
mandate what a language feature must look like at runtime, so it is perfectly
legal for each compiler vendor to implement a language feature in a unique
and innovative manner. For building a stand-alone single-binary executable,
this is a nonissue, as all of the code will be compiled and linked using a com-
mon development environment. For building multibinary component-based
executables this is a tremendous issue, as each component could conceivably
be built using a different compiler and linker. The lack of a C++ binary stan-
dard limits what language features can be used across DLL boundaries. This
means that simply exporting C++ member functions from DLLs is not enough
to create a vendor-independent component substrate.

Encapsulation and C++

Assuming that one could overcome the compiler and linker issues outlined in
the previous section, the next obstacle to building binary components in C++
is related to encapsulation. Consider what would happen if an organization
that was using FastString in an application managed to accomplish the un-
accomplishable: finishing development and testing two months prior to a
product’s ship date. Assume that during this two-month period, some of the
more skeptical developers decide to test FastString’s O(1) search algorithm
by running a profiler on their application. Much to their surprise,
FastString::Find would in fact execute extremely quickly irrespective of the
presented string length. The Length operation, however, would not fare as
well. FastString::Length uses the C runtime library strlen routine, which
performs a linear search through the string’s data looking for a null termina-
tor. This is an O(n) algorithm that runs slower as the string data gets larger.

7E N C A P S U L AT I O N A N D C + +

Given the fact that the client application may call the Length operation many
times, the library vendor will probably be contacted by the once-skeptical de-
veloper and asked to increase the speed of Length to operate in constant time
as well. There is one catch. The developer has completed development and
may not be willing to change one line of source code to take advantage of the
newly enhanced Length method. Also, several other vendors may already have
shipped products based on the current version of FastString, so the library
vendor is morally bound not to break these applications along the way.

At this point, one simply needs to look at the class definition for
FastString and decide what can change and what must remain constant in
order to keep the installed base happy. Fortunately, FastString was designed
with encapsulation in mind, and all of its data members are private. This
should afford a great deal of flexibility, as no client programs can write code
that directly accesses FastString data members. Provided that no changes
are made to the four public members of the class, no changes will be required
in any client application. Armed with this belief, the library vendor sets off to
implement version 2.0 of FastString.

The obvious enhancement is to cache the length of the string in the con-
structor and return the cached length in a new version of the Length method.
As the string cannot be modified after construction, there is no need to worry
about recalculating the length multiple times. In fact, the length is already cal-
culated once in the constructor to allocate the buffer, so only a handful of addi-
tional machine instructions will be needed. Here is the modified class definition:

// faststring.h version 2.0

class __declspec(dllexport) FastString {

const int m_cch; // count of characters

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

};

Note that the only modification is the addition of a private data member.
To initialize this member properly, the constructor would need to be modified
as follows:

FastString::FastString(const char *psz)

: m_cch(strlen(psz)), m_psz(new char[m_cch + 1]) {

8 C H A P T E R 1 : C O M A S A B E T T E R C + +

strcpy(m_psz, psz);

}

Given this cached length, the Length method now becomes trivial:

int FastString::Length(void) const {

return m_cch; // return cached length

}

With these three modifications in place, the library vendor can now rebuild
the FastString DLL and the corresponding test harness that fully exercises
every aspect of the FastString class. The vendor would be pleasantly sur-
prised that the principle of encapsulation payed off and that no source-level
modifications were required in the test harness. Once the new DLL has been
verified to work properly, the library vendor ships version 2.0 of FastString to
the client, confident that all work is finished.

When the clients who contracted the changes receive the updated
FastString, they integrate the new class definition and DLL into their source
code control system and fire off a build to test the new and improved
FastString. Like the library vendor, they too are pleasantly surprised, as no
source code modifications are required to take advantage of the new version of
Length. Encouraged by this experience, the development team convinces man-
agement to add the new DLL to the final “golden master” CD that is about to
go to press. In a rare occurrence, management caves in to the wishes of the en-
thusiastic developers and adds the new DLL to the final product. Like most in-
stallation programs, the setup script for the client’s product is designed to
silently overwrite any older versions of the FastString DLL that may be pre-
sent on the end-user’s machine. This seems innocent enough, as the modifica-
tions did not affect the public interface of the class, so the silent machine-wide
upgrading to FastString version 2.0 should only enhance any existing client
applications that had been previously installed.

Imagine the following scenario: End-users finally receive their copies of the
client’s highly anticipated product. Each end-user immediately drops every-
thing and installs the new application on their machine to try it out. After the
thrill of being able to perform extremely fast text searches wears off, the end-
user goes back to his or her normal life and launches a previously installed ap-
plication that also happens to use the FastString DLL. For the first few min-
utes all is well. Then, suddenly, a dialog appears indicating that an exception
has occurred and that all of the end user’s work has been lost. The end-user
tries to launch the application again and this time gets the exception dialog
almost immediately. The end-user, accustomed to using modern commercial

9E N C A P S U L AT I O N A N D C + +

software, reinstalls the operating system and all applications, but even this
does not keep the exception from reoccurring. What happened?

What happened was that the library vendor was lulled into believing that
C++ supported encapsulation. Whereas C++ does support syntactic encapsulation
via its private and protected keywords, the C++ draft standard has no notion of
binary encapsulation. This is because the compilation model of C++ requires
the client’s compiler to have access to all information regarding object layout
in order to instantiate an instance of a class or to make nonvirtual method
calls. This includes information about the size and order of the object’s private
and protected data members. Consider the scenario shown in Figure 1.3.
Version 1.0 of FastString required four bytes per instance (assuming
sizeof(char *) == 4). Clients written to version 1.0 of the class definition al-
locate four bytes of memory to pass to the class’s constructor. Version 2.0 of the
constructor, destructor, and methods (which are the versions present in the
DLL on the end-user’s machine) all assume that the client has allocated eight
bytes per instance (assuming sizeof(int) == 4) and have no reservations
about writing to all eight bytes. Unfortunately, in version 1.0 clients, the sec-
ond four bytes of the object really belong to someone else and writing a pointer
to a text string at this location is considered rude, as the exception dialog in-
dicates.

One common solution to the versioning problem is to rename the DLL each
time a new version is produced. This is the strategy taken by the Microsoft
Foundation Classes (MFC). When the version number is encoded into the
DLL’s file name (e.g., FastString10.DLL, FastString20.DLL), clients always
load the version of the DLL that they were built against, irrespective of what

10 C H A P T E R 1 : C O M A S A B E T T E R C + +

Figure 1.3 C++ and Encapsulation

s izeo f (Fas tS t r ing) == 4

s izeo f (Fas tS t r ing) == 8

s izeo f (Fas tSt r ing) == 8

s izeo f (Fas tS t r ing) == 4

Application A
Version 2.0

FastString.dll
Version 2.0

Application B
Version 1.0

Application C
Version 1.0

other versions may be present on the system. Unfortunately, over time, the
number of versioned DLLs present on the end-user’s system could conceivably
exceed the number of actual client applications due to poor software configu-
ration practices. Simply examining the system directory of any computer that
has been in use for more than six months would reinforce this.

Ultimately, this versioning problem is rooted in the compilation model of
C++, which was not designed to support independent binary components. By
requiring client knowledge of object layout, C++ introduces a tight binary cou-
pling between the client and object executables. Normally, binary coupling
works to C++’s favor, as it allows compilers to produce extremely efficient code.
Unfortunately, this tight binary coupling prevents class implementations from
being replaced without client recompilation. Because of this coupling and the
compiler and linker incompatibilities mentioned in the previous section, sim-
ply exporting C++ class definitions from DLLs does not provide a reasonable
binary component architecture.

Separating Interface from Implementation

The concept of encapsulation is based on separating what an object looks like
(its interface) from how it actually works (its implementation). The problem
with C++ is that this principle does not apply at a binary level, as a C++ class
is both interface and implementation simultaneously. This weakness can be
addressed by modeling the two abstractions as two distinct entities and C++
classes. By defining one C++ class to represent the interface to a data type
and another C++ class as the data type’s actual implementation, the object
implementor can theoretically modify the implementation class’s details while
holding the interface class constant. All that is needed is a way to associate the
interface with its implementation without revealing any implementation details
to the client.

The interface class should describe only what the implementor wants the
client to think the underlying data type looks like. Since the interface should
not betray any implementation details, the C++ interface class should not con-
tain any of the data members that will be used in the implementation of the
object. Instead, the interface class should contain only method declarations for
each public operation of the object. The C++ implementation class will contain
the actual data members required to implement the object’s functionality. One
simple approach would be to use a handle class as the interface. The handle
class would simply contain an opaque pointer whose type would never be fully
defined in the client’s scope. The following class definition demonstrates this
technique:

11S E PA R AT I N G I N T E R FA C E F R O M I M P L E M E N TAT I O N

// faststringitf.h

class __declspec(dllexport) FastStringItf {

class FastString; // introduce name of impl. class

FastString *m_pThis; // opaque pointer

// (size remains constant)

public:

FastStringItf(const char *psz);

~FastStringItf(void);

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

};

Note that the binary layout of this interface class does not change as data
members are added to or removed from the implementation class, FastString.
Also, the use of forward declaration means that the class definition for
FastString is not needed for this header file to compile. This effectively hides
all details of FastString’s implementation from the client’s compiler. When
using this technique, the machine code for the interface methods becomes the
only entry point into the object’s DLL and their binary signatures will never
change. The implementations of the interface class’s methods simply forward
the method calls on to the actual implementation class:

// faststringitf.cpp/// (part of DLL, not client) //

#include "faststring.h"

#include "faststringitf.h"

FastStringItf::FastStringItf(const char *psz)

: m_pThis(new FastString(psz)) {

assert(m_pThis != 0);

}

FastStringItf::~FastStringItf(void) {

delete m_pThis;

}

int FastStringItf::LengthItf(void) const {

return m_pThis->Length();

}

int FastStringItf::Find(const char *psz) const {

return m_pThis->Find(psz);

}

12 C H A P T E R 1 : C O M A S A B E T T E R C + +

These forwarding methods would be compiled as part of the FastString
DLL, so as the layout of the C++ implementation class FastString changes,
the call to the new operator in FastStringItf’s constructor will be recompiled
simultaneously, ensuring that enough memory is always allocated. Again, the
client never includes the class definition of the C++ implementation class
FastString. This affords the FastString implementor the flexibility to evolve
the implementation over time without breaking existing clients.

Figure 1.4 shows the runtime model of using handle classes to separate
interface from implementation. Note that the level of indirection introduced
by the interface class imposes a binary firewall between the client and the
object implementation. This binary firewall is a very precise contract describing
how the client can communicate with the implementation. All client-object
communications take place through the interface class, which imposes a
very simple binary protocol for entering the domain of the object’s imple-
mentation. This protocol does not rely on any details of the C++ implemen-
tation class.

Although the approach of using handle classes has its merits and certainly
brings us closer to being able to safely expose a class from a DLL, it also has
its weaknesses. Note that the interface class needs to forward each method
call to the implementation class explicitly. For a simple class like FastString
with only two public operations, a constructor and a destructor, this is not a
burden. For a large class library with hundreds or thousands of methods, writ-
ing these forwarding routines would become quite tedious and potentially
error prone. Also, for performance-critical domains, the cost of making two
function calls for each method (one call to the interface, one nested call to the
implementation) is less than ideal. Finally, the handle class technique does
not completely address the problems of compiler/linker compatibility, which
ultimately must be solved if we are to have a truly usable substrate for
reusable components.

13S E PA R AT I N G I N T E R FA C E F R O M I M P L E M E N TAT I O N

Figure 1.4 Handle Classes as Interfaces

FastStringItf FastString

m_pThis m_cch

m_psz

String Data

Abstract Bases as Binary Interfaces

It turns out that applying the technique of separation of interface from imple-
mentation can solve C++’s compiler/linker compatibility problems as well;
however, the definition of the interface class must take a somewhat different
form. As noted previously, the compatibility problems stem from various com-
pilers having different ideas of (1) how to represent language features at run-
time and (2) how symbolic names will be represented at link time. If one were
to devise a technique for hiding compiler/linker implementation details behind
some sort of binary interface, this would make a C++-based DLL usable by a
much larger audience.

Ensuring that the binary firewall imposed by the C++ interface class uses
no compiler-variant language features can solve the problem of compiler/linker
dependence. To accomplish this independence, one must first identify the as-
pects of the language that have uniform implementations across compilers.
Certainly, the runtime representation of composite types such as C-style
structs can be held invariant across compilers. This is a basic assumption that
any C-based system-call interface must make, and it is sometimes achieved by
using conditionally compiled type definitions, pragmas, or other compiler di-
rectives. The second assumption that can be made is that all compilers can be
coerced to pass function parameters in the same order (right to left, left to
right) and that stack cleanup can be done in a uniform manner. Like struct
compatibility, this is also a solved problem that often requires conditionally
compiled compiler directives to enforce a uniform stack discipline. The
WINAPI/WINBASEAPI macros from the Win32 API are an example of this
technique. Each function exposed from the system DLLs is defined with these
macros:

WINBASEAPI void WINAPI Sleep(DWORD dwMsecs);

Each compiler vendor defines these preprocessor symbols to produce com-
pliant stack frames. Although in a production environment one would want to
use a similar technique for all method definitions, the code fragments in this
chapter do not use this technique for the sake of exposition.

The third assumption of compiler invariance is the most critical assump-
tion of all, as it enables the definition of a binary interface: All C++ compilers
on a given platform implement the virtual function call mechanism equiva-
lently. In fact, this assumption of uniformity needs to apply only to classes that
have no data members and at most one base class that also has no data mem-
bers. This assumption implies that for the following simple class definition:

14 C H A P T E R 1 : C O M A S A B E T T E R C + +

class calculator {

public:

virtual void add1(short x);

virtual void add2(short x, short y);

};

all compilers on a given platform must produce equivalent machine code se-
quences for the following client code fragment:

extern calculator *pcalc;

pcalc->add1(1);

pcalc->add2(1, 2);

Although the generated machine code does not need to be identical for all com-
pilers, it needs to be equivalent. This means that each compiler must make the
same assumptions about how an object of such a class will be represented in
memory and how its virtual functions are dynamically invoked at runtime.

It turns out that this is not the tremendous leap of faith that it may seem
to be. The runtime implementation of virtual functions in C++ takes the form
of vptrs and vtbls in virtually all production compilers. This technique is based
on the compiler silently generating a static array of function pointers for each
class that contains virtual functions. This array is called the virtual function
table (or vtbl) and contains one function pointer for each virtual function de-
fined in the class or its base class. Each instance of the class contains a single
invisible data member called the virtual function pointer (or vptr) that is au-
tomatically initialized by the constructor to point to the class’s vtbl. When a
client calls a virtual function, the compiler generates the code to dereference
the vptr, index into the vtbl, and call through the function pointer found at the
designated location. This is how polymorphism and dynamic call dispatching
are implemented in C++. Figure 1.5 shows the runtime representation of the
vptr/vtbl layout for the class calculator shown above.

15A B S T R A C T B A S E S A S B I N A R Y I N T E R FA C E S

Figure 1.5 vptr/vtbl Layout

calculator

vptr calculator::add1

calculator::add2

Virtually every production-quality C++ compiler currently in use uses the
basic concepts of vptrs and vtbls. There are two basic techniques for laying out
vtbls: the CFRONT technique and the adjustor thunk technique. Each of these
two techniques has its own way of dealing with the subtleties of multiple in-
heritance. Fortunately, on any given platform, one technique tends to dominate
(Win32 compilers use adjustor thunks, Solaris compilers use CFRONT-style
vtbls). Fortunately, neither vtbl format affects the C++ source code that one
must write but rather is an artifact of the generated code. Consult Stan
Lippman’s most excellent Inside the C++ Object Model for a great discussion of
both techniques.

Based on the assumptions made so far, it is now possible to solve the prob-
lem of compiler dependence. Assuming that all compilers on a given platform
implement the virtual function call mechanism in the same manner, the C++
interface class can be defined to expose the public operations of the data type
as virtual functions, confident that all compilers will generate equivalent ma-
chine code for client-side method invocations. This assumption of uniformity
requires that no interface class can have data members and no interface class
can derive directly from more than one other interface class. Because there are
no data members in the interface class, one cannot implement these methods
in any sensible manner.

To reinforce this, it is useful to define the interface members as pure vir-
tual functions, indicating that the interface class defines only the potential to
call the methods, not their actual implementations:

// ifaststring.h ///////////

class IFastString {

public:

virtual int Length(void) const = 0;

virtual int Find(const char *psz) const = 0;

};

Defining the methods as pure virtual also informs the compiler that no imple-
mentation of these methods is required from the interface class. When the
compiler generates the vtbl for the interface class, the entry for each pure vir-
tual function will either be null or point to a C runtime routine (_purecall
under Microsoft C++) that fires an assertion when called. Had the method def-
inition not been declared as pure virtual, the compiler would have attempted
to populate the corresponding vtbl entry with the interface class’s method im-
plementation, which of course does not exist. This would result in a link error.

The interface class just defined is an abstract base class. The correspond-
ing C++ implementation class must derive from the interface class and over-

16 C H A P T E R 1 : C O M A S A B E T T E R C + +

ride each of the pure virtual functions with meaningful implementations. This
inheritance relationship will result in objects that have an object layout that
is a binary superset of the layout of the interface class (which ultimately is just
a vptr/vtbl). This is because the “is-a” relationship between derived and base
class applies at the binary level in C++ just as it applies at the modeling level
in object-oriented design:

class FastString : public IFastString {

const int m_cch; // count of characters

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

};

Because FastString derives from IFastString, the binary layout of FastString
objects must be a superset of the binary layout of IFastString. This means
that FastString objects will contain a vptr that points to an IFastString-
compatible vtbl. Since FastString is a concrete instantiable data type, its vtbl
will contain pointers to actual implementations of the Length and Find methods.
This relationship is illustrated in Figure 1.6.

Even though the public operations of the data type have been hoisted to
become pure virtual functions in an interface class, the client cannot instanti-
ate FastString objects without having the class definition of the implementa-
tion class. Revealing the implementation class definition to the client would
bypass the binary encapsulation of the interface, which would defeat the pur-
pose of using an interface class. One reasonable technique for allowing clients
to instantiate FastString objects would be to export a global function from the

17A B S T R A C T B A S E S A S B I N A R Y I N T E R FA C E S

Figure 1.6 Interface/Implementation Classes in Binary

IFastString

vptr Length (null)

Find (null)

FastString

vptr FastString::Length

FastString::Findm_cch

m_psz

DLL that would call the new operator on behalf of the client. Provided that
this routine is exported using extern "C", it would still be accessible from any
C++ compiler.

// ifaststring.h ///////////

class IFastString {

public:

virtual int Length(void) const = 0;

virtual int Find(const char *psz) const = 0;

};

extern "C"

IFastString *CreateFastString(const char *psz);

// faststring.cpp (part of DLL) ///////////

IFastString *CreateFastString (const char *psz) {

return new FastString(psz);

}

As was the case in the handle class approach, the new operator is called ex-
clusively from within the confines of the FastString DLL, which means that
the size and layout of the object will be established using the same compiler
that compiles all of the implementation’s methods.

The last remaining barrier to overcome is related to object destruction.
The following client code will compile, but the results are unexpected:

int f(void) {

IFastString *pfs = CreateFastString("Deface me");

int n = pfs->Find("ace me");

delete pfs;

return n;

}

The unexpected behavior stems from the fact that the destructor for the in-
terface class is not virtual. This means that the call to the delete operator will
not dynamically find the most derived destructor and recursively destroy the
object from the outermost type to the base type. Because the FastString de-
structor is never called, the preceding example leaks the buffer memory used
to hold the string "Deface me".

One obvious solution to this problem is to make the destructor virtual in
the interface class. Unfortunately, this pollutes the compiler independence of

18 C H A P T E R 1 : C O M A S A B E T T E R C + +

the interface class, as the position of the virtual destructor in the vtbl can vary
from compiler to compiler. One workable solution to this problem is to add an
explicit Delete method to the interface as another pure virtual function and
have the derived class delete itself in its implementation of this method. This
results in the correct destructor being executed. The updated version of the in-
terface header file looks like this:

// ifaststring.h ///////////

class IFastString {

public:

virtual void Delete(void) = 0;

virtual int Length(void) const = 0;

virtual int Find(const char *psz) const = 0;

};

extern "C"

IFastString *CreateFastString (const char *psz);

which implies the corresponding implementation class definition:

// faststring.h ///////////////////////////////////

#include "ifaststring.h"

class FastString : public IFastString {

const int m_cch; // count of characters

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

void Delete(void); // deletes this instance

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

};

// faststring.cpp ///////////////////////////////////

#include <string.h>

#include "faststring.h"

IFastString* CreateFastString (const char *psz) {

return new FastString(psz);

}

FastString::FastString(const char *psz)

: m_cch(strlen(psz)), m_psz(new char[m_cch + 1]) {

strcpy(m_psz, psz);

}

19A B S T R A C T B A S E S A S B I N A R Y I N T E R FA C E S

void FastString::Delete(void) {

delete this;

}

FastString::~FastString(void) {

delete[] m_psz;

}

int FastString::Length(void) const {

return m_cch;

}

int FastString::Find(const char *psz) const {

// O(1) lookup code deleted for clarity

}

Figure 1.7 shows the runtime layout of FastString.
To use the FastString data type, clients simply need to include the inter-

face definition file and call CreateFastString to begin working:

#include "ifaststring.h"

int f(void) {

int n = -1;

IFastString *pfs = CreateFastString("Hi Bob!");

if (pfs) {

n = pfs->Find("ob");

pfs->Delete();

}

return n;

}

20 C H A P T E R 1 : C O M A S A B E T T E R C + +

Figure 1.7 FastString Using Abstract Bases as Interfaces

IFastString

vptr

Length (null)

Find (null)

FastString

vptr

FastString::Length

FastString::Find

m_cch

m_psz

Delete (null) FastString::Delete

Note that all but one of the entry points into the FastString DLL are vir-
tual functions. The virtual functions of the interface class are always called in-
directly via a function pointer stored in a vtbl, without requiring the client to
link against their symbolic names at development time. This means that the
interface methods are immune to symbolic mangling differences between com-
pilers. The only entry point that is explicitly linked against by name is
CreateFastString, the global function that bootstraps the client into the
world of FastString. Note, however, that this function was exported using ex-
tern "C", which suppresses symbolic mangling. This implies that all C++
compilers expect the import library and DLL to export the same symbol. The
net result of using this technique is that one can safely expose a class from a
DLL using one C++ environment and access the class from any other C++
development environment. This capability is critical for building a vendor-
neutral substrate for reusable components.

Runtime Polymorphism

Deploying class implementations using abstract base classes as interfaces
opens up a new world of possibilities in terms of what can happen at runtime.
Note that the FastString DLL exports only one symbol, CreateFastString.
This makes it fairly trivial for the client to load the DLL dynamically on demand
using LoadLibrary and resolve that one entry point using GetProcAddress:

IFastString *CallCreateFastString(const char *psz) {

static IFastString * (*pfn)(const char *) = 0;

if (!pfn) { // init ptr 1st time through

const TCHAR szDll[] = __TEXT("FastString.DLL");

const char szFn[] = "CreateFastString";

HINSTANCE h = LoadLibrary(szDll);

if (h)

(FARPROC)&pfn = GetProcAddress(h, szFn);

}

return pfn ? pfn(psz) : 0;

}

This technique has several possible applications. One motivation for using
the technique is to avoid having operating system (OS)–generated errors when
the client program is run on a machine that does not have the object imple-
mentation installed. Applications that use optional system components such

21R U N T I M E P O LY M O R P H I S M

as WinSock or MAPI use a similar technique to allow an application to run on
minimally configured machines. Because the client never needs to link against
the DLL’s import library, the client has no load dependences on the DLL and
can execute on machines that do not have the DLL installed. Another motiva-
tion for using this technique might be lazy initialization of the process’s address
space. Again, because the DLL is not automatically loaded at process initial-
ization time, if the object implementation is never actually used, the DLL is
never loaded. Other benefits of using this technique include faster start-up in
the client and conservation of address space for long-lived processes that may
never actually use the DLL.

Perhaps one of the most interesting applications of this technique is to allow
the client to select dynamically between various implementations of the same
interface. Given the publicly available definition of the IFastString interface,
nothing is stopping FastString’s original implementor or other third-party
implementors from deriving additional implementation classes from the same
interface. Like the original implementation class FastString, these new imple-
mentations will have layouts that are binary compatible with the original
interface class. To access these “plug-compatible” implementations, all the client
must do is specify the correct filename for the desired implementation’s DLL.

To understand how this technique could be applied, assume that the orig-
inal implementation of IFastString performed searches in left-to-right order.
This behavior is perfect for languages that parse from left to right (e.g.,
English, French, German). For languages that parse from right to left, a sec-
ond implementation of IFastString that performs searches using right-to-left
order would be more appropriate. This alternative implementation could be
built as a second DLL with a distinguished name (e.g., FastStringRL.DLL).
Assuming both DLLs are installed on an end-user’s machine, the client can dy-
namically select the desired implementation of IFastString simply by loading
the appropriate DLL at runtime:

IFastString *

CallCreateFastString(const char *psz,

bool bLeftToRight = true) {

static IFastString * (*pfnlr)(const char *) = 0;

static IFastString * (*pfnrl)(const char *) = 0;

IFastString *(**ppfn)(const char *) = &pfnlr;

const TCHAR *pszDll = __TEXT("FastString.DLL");

if (!bLeftToRight) {

pszDll = __TEXT("FastStringRL.DLL");

22 C H A P T E R 1 : C O M A S A B E T T E R C + +

ppfn = &pfnrl;

}

if (!(*ppfn)) { // init ptr 1st time through

const char szFn[] = "CreateFastString";

HINSTANCE h = LoadLibrary(pszDll);

if (h)

(FARPROC)ppfn = GetProcAddress(h, szFn);

}

return (*ppfn) ? (*ppfn)(psz) : 0;

}

When the client calls the function with no second parameter

pfs = CallCreateFastString("Hi Bob!");

n = pfs->Find("ob");

the original FastString DLL is loaded and the search is performed from left
to right. If the client indicates that the string is in a spoken language that
parses from right to left

pfs = CallCreateFastString("Hi Bob!", false);

n = pfs->Find("ob");

the alternative version of the DLL (FastStringRL.DLL) is loaded and the
search will be performed starting at the rightmost position of the string. The
key observation is that callers of CallCreateFastString do not care which
DLL is used to implement the object’s methods. All that matters is that a
pointer to an IFastString-compatible vptr is returned by the function and
that the vptr provides useful and semantically correct functionality. This form
of runtime polymorphism is extremely useful for building a dynamically com-
posed system from binary components.

Object Extensibility

The techniques presented so far allow clients to select and load binary compo-
nents dynamically that can evolve their implementation layout over time
without requiring client recompilation. This by itself is extremely useful for
building dynamically composable systems. However, one aspect of the object
that cannot evolve over time is its interface. This is because the client compiles

23O B J E C T E X T E N S I B I L I T Y

against the precise signature of the interface class, and any changes to the in-
terface definition require that the client recompile to take advantage of the
change. Worse yet, changing the interface definition completely violates the
encapsulation of the object (its public interface has changed) and would break
all existing clients. Even the most innocuous change, such as changing the se-
mantics of a method while holding its signature constant, renders the in-
stalled client base useless. This implies that interfaces are immutable binary
and semantic contracts that must never change. This immutability is required
to have a stable, predictable runtime environment.

Despite the immutability of interfaces, it is often necessary to expose ad-
ditional functionality that may not have been anticipated when an interface
was initially designed. It is tempting to take advantage of the knowledge of
vtbl layout and simply append new methods to the end of an existing interface
definition. Consider the initial version of IFastString:

class IFastString {

public:

virtual void Delete(void) = 0;

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

};

Simply modifying the interface class to have additional virtual function decla-
rations after the existing method declarations would result in a binary vtbl for-
mat that is a superset of the original version, as any new vtbl entries would
appear after those that correspond to the original methods. Object implemen-
tations that compile against the new interface definition would have any ad-
ditional method entries appended to the original vtbl layout:

class IFastString {

public:

// faux version 1.0

virtual void Delete(void) = 0;

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

// faux version 2.0

virtual int FindN(const char *psz, int n) = 0;

};

This solution almost works. Clients compiled against the original version
of the interface are blissfully ignorant of any vtbl entries beyond the first
three. When older clients get newer objects that have the vtbl entry for FindN,

24 C H A P T E R 1 : C O M A S A B E T T E R C + +

they continue to work properly. The problem arises when new clients that ex-
pect IFastString to have four methods happen to use older objects that do not
implement this method. When the client calls the FindN method on an object
compiled against the original interface definition, the results are very well de-
fined. The program crashes.

The problem with this technique is that it breaks the encapsulation of the
object by modifying the public interface. Just as changing the public interface
to a C++ class can cause compile-time errors when the client code is rebuilt,
changing the binary interface definition will cause runtime errors when the
client code is reexecuted. This implies that interfaces must be immutable and
cannot change once published. The solution to this problem is to allow an im-
plementation class to expose more than one interface. This can be achieved ei-
ther by designing an interface to derive from another related interface or by
allowing an implementation class to inherit from several unrelated interface
classes. In either case, the client could use C++’s Runtime Type Identification
(RTTI) feature to interrogate the object at runtime to ensure that the re-
quested functionality is indeed supported by the object currently in use.

Consider the simple case of an interface extending another interface. To
add a FindN operation to IFastString that allows finding the nth occurrence
of a substring, one would derive a second interface from IFastString and add
the new method definition there:

class IFastString2 : public IFastString {

public:

// real version 2.0

virtual int FindN(const char *psz, int n) = 0;

};

Clients can interrogate the object reliably at runtime to discover whether or
not the object is IFastString2 compatible by using C++’s dynamic_cast oper-
ator:

int Find10thBob(IFastString *pfs) {

IFastString2 *pfs2=dynamic_cast<IFastString2*>(pfs);

if (pfs2) // the object derives from IFastString2

return pfs2->FindN("Bob", 10);

else { // object doesn’t derive from IFastString2

error("Cannot find 10th occurrence of Bob");

return –1;

}

}

25O B J E C T E X T E N S I B I L I T Y

If the object derives from the extended interface, then the dynamic_cast
operator returns a pointer to the IFastString2-compliant aspect of the object
and the client can call the object’s extended method. If the object does not de-
rive from the extended interface, then the dynamic_cast operator will return
a null pointer and the client can either choose another implementation tech-
nique, log an error message, or just silently continue without the extended op-
eration. This capability of client-defined graceful degradation is critical for
building robust dynamic systems that can provide extended functionality over
time.

A more interesting scenario arises when new orthogonal functionality
needs to be exposed from the object. Consider what it would take to add per-
sistence to the FastString implementation class. Although one could con-
ceivably add Load and Save methods to an extended version of IFastString,
it is likely that other types of objects that are not IFastString compatible
can also be persistent. Simply creating a new interface that extends
IFastString:

class IPersistentObject : public IFastString {

public:

virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};

requires all persistent objects to support the Length and Find operations as
well. For some very small subset of objects, this might make sense. However,
to make the IPersistentObject interface as generic as possible, it should re-
ally be its own interface and not derive from IFastString:

class IPersistentObject {

public:

virtual void Delete(void) = 0;

virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};

This does not prohibit the FastString implementation from becoming persis-
tent; it simply means that the persistent version of FastString must imple-
ment both the IFastString and IPersistentObject interfaces:

class FastString : public IFastString,

public IPersistentObject {

26 C H A P T E R 1 : C O M A S A B E T T E R C + +

int m_cch; // count of characters

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

// Common methods

void Delete(void); // deletes this instance

// IFastString methods

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

// IPersistentObject methods

bool Load(const char *pszFileName);

bool Save(const char *pszFileName);

};

To save a FastString to disk, clients can simply use RTTI to bind a pointer to
the IPersistentObject interface that is exposed by the object:

bool SaveString(IFastString *pfs, const char *pszFN){

bool bResult = false;

IPersistentObject *ppo =

dynamic_cast<IPersistentObject*>(pfs);

if (ppo)

bResult = ppo->Save(pszFN);

return bResult;

}

This technique works because the compiler has enough knowledge about the
layout and type hierarchy of the implementation class to examine an object at
runtime to determine whether it in fact derives from IPersistentObject.
Therein lies the problem.

RTTI is a very compiler-dependent feature. Again, the DWP mandates the
syntax and semantics for RTTI, but each compiler vendor’s implementation of
RTTI is unique and proprietary. This effectively destroys the compiler inde-
pendence that has been achieved by using abstract base classes as interfaces.
This is unacceptable for a vendor-neutral component architecture. One very
tractable solution to the problem is to leverage the semantics of dynamic_cast
without using the actual compiler-dependent language feature. Exposing a
well-known method explicitly from each interface that will perform the se-
mantic equivalent of dynamic_cast can achieve the desired effect without re-
quiring all entities to use the same C++ compiler:

27O B J E C T E X T E N S I B I L I T Y

class IPersistentObject {

public:

virtual void *Dynamic_Cast(const char *pszType) =0;

virtual void Delete(void) = 0;

virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};

class IFastString {

public:

virtual void *Dynamic_Cast(const char *pszType) =0;

virtual void Delete(void) = 0;

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

};

As all interfaces need to expose this method in addition to the Delete method
already present, it makes a great deal of sense to hoist the common subset of
methods to a base interface that all subsequent interfaces could then derive
from:

class IExtensibleObject {

public:

virtual void *Dynamic_Cast(const char* pszType) =0;

virtual void Delete(void) = 0;

};

class IPersistentObject : public IExtensibleObject {

public:

virtual bool Load(const char *pszFileName) = 0;

virtual bool Save(const char *pszFileName) = 0;

};

class IFastString : public IExtensibleObject {

public:

virtual int Length(void) = 0;

virtual int Find(const char *psz) = 0;

};

With this type hierarchy in place, the client is able to query an object dynam-
ically for a given interface using a compiler-independent construct:

28 C H A P T E R 1 : C O M A S A B E T T E R C + +

bool SaveString(IFastString *pfs, const char *pszFN){

bool bResult = false;

IPersistentObject *ppo = (IPersistentObject*)

pfs->Dynamic_Cast("IPersistentObject");

if (ppo)

bResult = ppo->Save(pszFN);

return bResult;

}

Assuming the client usage just shown, the required semantics and mechanism
for type discovery are in place, but each implementation class must implement
this functionality by hand:

class FastString : public IFastString,

public IPersistentObject {

int m_cch; // count of characters

char *m_psz;

public:

FastString(const char *psz);

~FastString(void);

// IExtensibleObject methods

void *Dynamic_Cast(const char *pszType);

void Delete(void); // deletes this instance

// IFastString methods

int Length(void) const; // returns # of characters

int Find(const char *psz) const; // returns offset

// IPersistentObject methods

bool Load(const char *pszFileName);

bool Save(const char *pszFileName);

};

The implementation of Dynamic_Cast needs to simulate the effects of
RTTI by navigating the type hierarchy of the object. Figure 1.8 illustrates
the type hierarchy for the FastString class just shown. Because the imple-
mentation class derives from each interface that it exposes, FastString’s
implementation of Dynamic_Cast can simply use explicit static casts to
limit the scope of the this pointer based on the subtype requested by the
client:

void *FastString::Dynamic_Cast(const char *pszType) {

if (strcmp(pszType, "IFastString") == 0)

29O B J E C T E X T E N S I B I L I T Y

return static_cast<IFastString*>(this);

else if (strcmp(pszType, "IPersistentObject") == 0)

return static_cast<IPersistentObject*>(this);

else if (strcmp(pszType, "IExtensibleObject") == 0)

return static_cast<IFastString*>(this);

else

return 0; // request for unsupported interface

}

Because the object derives from the type used in the cast, the compiled ver-
sions of the cast statements simply add a fixed offset to the object’s this
pointer to find the beginning of the base class’s layout.

Note that when asked for the common base interface IExtensibleObject,
the implementation statically casts itself to IFastString. This is because the in-
tuitive version of the statement

return static_cast<IExtensibleObject*>(this);

is ambiguous because IFastString and IPersistentObject both derive from
IExtensibleObject. If IExtensibleObject was a virtual base class of both
IFastString and IPersistentObject, then this cast would not be ambiguous
and the statement would compile. However, introducing virtual base classes
adds needless runtime complexity to the resultant object and also introduces
compiler dependences. This is because virtual bases are yet another C++ lan-
guage feature that has several proprietary implementations.

30 C H A P T E R 1 : C O M A S A B E T T E R C + +

Figure 1.8 FastString Type Hierarchy

IExtensibleObject

IFastString

IExtensibleObject

IPersistentObject

FastString

vptr

FastString::Length

FastString::Find

m_cch

m_psz

FastString::Dynamic_Cast

FastString::Deletevptr

FastString::Load

FastString::Save

FastString::Dynamic_Cast

FastString::Delete

Type Hierarchy Binary Layout

Resource Management

One remaining problem with supporting multiple interfaces from a single object
becomes clear when examining the client usage pattern of the Dynamic_Cast
method. Consider the following client code:

void f(void) {

IFastString *pfs = 0;

IPersistentObject *ppo = 0;

pfs = CreateFastString("Feed B0B");

if (pfs) {

ppo = (IPersistentObject *)

pfs->Dynamic_Cast("IPersistentObject");

if (!ppo)

pfs->Delete();

else {

ppo->Save("C:\\autoexec.bat");

ppo->Delete();

}

}

}

Although the object was initially bound via its IFastString interface, the
client code is calling the Delete method through the IPersistentObject in-
terface. Given the behavior of multiple inheritance in C++, this is not an issue,
as all of the class’s IExtensibleObject-derived vtbls will point to the single
implementation of the Delete method. However, the client now has to keep
track of which pointers are associated with which objects and call Delete only
once per object. For the simple code just shown, this is not a tremendous bur-
den. In more complex client code, managing these relationships becomes quite
complex and error prone. One way to simplify the client’s task is to push the
responsibility for managing the lifetime of the object down to the implemen-
tation. After all, allowing the client to delete an object explicitly betrays yet
another implementation detail: the fact that the object is allocated on the
heap.

One simple solution to this problem is to have each object maintain a ref-
erence count that is incremented when an interface pointer is duplicated and
decremented when an interface pointer is destroyed. This means changing the
definition of IExtensibleObject from:

31R E S O U R C E M A N A G E M E N T

class IExtensibleObject {

public:

virtual void *Dynamic_Cast(const char* pszType) =0;

virtual void Delete(void) = 0;

};

to

class IExtensibleObject {

public:

virtual void *Dynamic_Cast(const char* pszType) =0;

virtual void DuplicatePointer(void) = 0;

virtual void DestroyPointer(void) = 0;

};

With these methods in place, all users of IExtensibleObject must now
adhere to the following two mandates: (1) When an interface pointer is dupli-
cated, a call to DuplicatePointer is required. (2) When an interface pointer is
no longer in use, a call to DestroyPointer is required.

These methods could be implemented in each object simply by noting the
number of live pointers and destroying the object when no outstanding point-
ers remain:

class FastString : public IFastString,

public IPersistentObject {

int m_cPtrs; // count of outstanding ptrs

: :

public:

// initialize pointer count to zero

FastString(const char *psz) : m_cPtrs(0) {}

void DuplicatePointer(void) {

// note duplication of pointer

++m_cPtrs;

}

void DestroyPointer(void) {

// destroy object when last pointer destroyed

if (--m_cPtrs == 0)

delete this;

}

:

:

};

32 C H A P T E R 1 : C O M A S A B E T T E R C + +

This extremely boilerplate code could easily be put into a base class or C pre-
processor macro for all implementations to use.

To support these methods, all code that manipulates or manages interface
pointers must adhere to the two simple rules of DuplicatePointer/
DestroyPointer. For the implementation of FastString, this means modify-
ing two functions. The CreateFastString function takes the initial pointer
that is returned by the C++ new operator and duplicates it onto the stack to re-
turn to the client. This implies that a call to DuplicatePointer is required:

IFastString* CreateFastString(const char *psz) {

IFastString *pfsResult = new FastString(psz);

if (pfsResult)

pfsResult->DuplicatePointer();

return pfsResult;

}

The other location where the implementation duplicates a pointer is in the
Dynamic_Cast method:

void *FastString::Dynamic_Cast(const char *pszType) {

void *pvResult = 0;

if (strcmp(pszType, "IFastString") == 0)

pvResult = static_cast<IFastString*>(this);

else if (strcmp(pszType, "IPersistentObject") == 0)

pvResult = static_cast<IPersistentObject*>(this);

else if (strcmp(pszType, "IExtensibleObject") == 0)

pvResult = static_cast<IFastString*>(this);

else

return 0; // request for unsupported interface

// pvResult now contains a duplicated pointer, so

// we must call DuplicatePointer prior to returning

((IExtensibleObject*)pvResult)->DuplicatePointer();

return pvResult;

}

With these two modifications in place, the corresponding client code now
becomes much more uniform and unambiguous:

void f(void) {

IFastString *pfs = 0;

IPersistentObject *ppo = 0;

33R E S O U R C E M A N A G E M E N T

pfs = CreateFastString("Feed B0B");

if (pfs) {

ppo = (IPersistentObject *)

pfs->Dynamic_Cast("IPersistentObject");

if (ppo) {

ppo->Save("C:\\autoexec.bat");

ppo->DestroyPointer();

}

pfs->DestroyPointer();

}

}

Because each pointer is now treated as an autonomous entity with respect to
lifetime, the client does not need to be concerned with which pointer refers to
which object. Instead, the client simply follows the two simple rules and allows
the object to manage its own lifetime. If desired, the idiom of calling
DuplicatePointer and DestroyPointer could easily be hidden behind a C++
smart pointer.

Using this reference counting scheme allows an object to expose multiple
interfaces in an extremely uniform manner. The capability to expose multiple
interfaces from a single implementation class allows a data type to participate
in a variety of contexts. For example, a new persistence subsystem could de-
fine its own custom interface for telling objects to load and save themselves to
some customized storage medium. The FastString class could add support for
this functionality simply by deriving from the subsystem’s persistence inter-
face. Adding this support does not in any way affect the installed base of
clients that may be using the prior persistence interface to save and load a
string to disk. Having a mechanism for runtime interface negotiation can act
as a cornerstone for building a dynamic system from components that can
evolve over time.

Where Are We?

This chapter started with a simple C++ class and examined the issues related
to exposing the class as a reusable binary component. The first step was to
deploy the class as a Dynamic Link Library (DLL) to decouple the physical
package of the class from the packaging of its clients. We then used the no-
tion of interfaces and implementations to encapsulate the implementation de-
tails of the data type behind a binary firewall, allowing the object’s layout to

34 C H A P T E R 1 : C O M A S A B E T T E R C + +

evolve without requiring client recompilation. When using the abstract base
class approach to define interfaces, this firewall took the form of a vptr and
vtbl. We then examined techniques for dynamically selecting different poly-
morphic implementations of a given interface at runtime using LoadLibrary
and GetProcAddress. Finally, we used an RTTI-like construct for dynamically
interrogating an object to discover whether it in fact implements a desired in-
terface. This construct gave us a technique for extending existing versions of
an interface as well as exposing multiple unrelated interfaces from a single
object.

In short, we have just engineered the Component Object Model.

35W H E R E A R E W E ?

