Design Challenges, Middleware
Solutions, and ACE

CHAPTER SYNOPSIS

This chapter describes the paradigm shift that occurs when transitioning
from stand-alone application architectures to networked application archi-
tectures. This shift yields new challenges in two categories: those in the
problem space that are oriented to software architecture and design and
those in the solution space that are related to software tools and techniques
used to implement networked applications. This chapter first presents a
domain analysis of design dimensions affecting the former category, and
the middleware that is motivated by and applied to the latter category.
The chapter then introduces the ACE toolkit and the example networked
application that’s used to illustrate the solutions throughout this book.

0.1 Challenges of Networked Applications

Most software developers are familiar with stand-alone application archi-
tectures, in which a single computer contains all the software components
related to the graphical user interface (GUI), application service processing,
and persistent data resources. For example, the stand-alone application
architecture illustrated in Figure 0.1 consolidates the GUI, service process-
ing, and persistent data resources within a single computer, with all pe-
ripherals attached directly. The flow of control in a stand-alone application
resides solely on the computer where execution begins.

1

r o

2 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

PRINTER
)
COMPUTER
-

oo

° —_——

e | — -

II T) ui;|j iin—ll S\gLT[éM

Figure 0.1: A Stand-alone Application Architecture

In contrast, networked application architectures divide the application
system into services that can be shared and reused by multiple applica-
tions. To maximize effectiveness and usefulness, services are distributed
among multiple computing devices connected by a network, as shown in
Figure 0.2. Common network services provided to clients in such envi-
ronments include distributed naming, network file systems, routing table
management, logging, printing, e-mail, remote login, file transfer, Web-
based e-commerce services, payment processing, customer relationship
management, help desk systems, MP3 exchange, streaming media, instant
messaging, and community chat rooms.

The networked application architecture shown in Figure 0.2 partitions
the interactive GUI, instruction processing, and persistent data resources
among a number of independent hosts in a network. At run time, the
flow of control in a networked application resides on one or more of the
hosts. All the system components communicate cooperatively, transfer-
ring data and execution control between them as needed. Interoperabil-
ity between separate components can be achieved as long as compati-
ble communication protocols are used, even if the underlying networks,
operating systems, hardware, and programming languages are heteroge-
neous [HV99]. This delegation of networked application service responsi-
bilities across multiple hosts can yield the following benefits:

r o

| r o

Section 0.1 Challenges of Networked Applications 3

SERVICES
NAMING

NFS
> L ¢ LOGGING
PRINTING

E-COMMERCE
CHAT ROOMS

CLIENTS

REQUESTS

=t

Figure 0.2: A Common Networked Application Environment

REPLIES

1. Enhanced connectivity and collaboration disseminates informa-
tion rapidly to more potential users. This connectivity avoids the need
for manual information transfer and duplicate entry.

2. Improved performance and scalability allows system configurations
to be changed readily and robustly to align computing resources with
current and forecasted system demand.

3. Reduced costs by allowing users and applications to share expensive

peripherals and software, such as sophisticated database manage-
ment systems.

Your job as a developer of networked applications is to understand the ser-
vices that your applications will provide and the environment(s) available
to provide them, and then

1. Design mechanisms that services will use to communicate, both be-
tween themselves and with clients.

4 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

2. Decide which architectures and service arrangements will make the
most effective use of available environments.

3. Implement these solutions using techniques and tools that eliminate
complexity and yield correct, extensible, high-performance, low-main-
tenance software to achieve your business’s goals.

This book provides the information and tools you need to excel at these
tasks.

Your job will not be easy. Networked applications are often much harder
to design, implement, debug, optimize, and monitor than their stand-alone
counterparts. You must learn how to resolve the inherent and accidental
complexities [Bro87] associated with developing and configuring networked
applications. Inherent complexities arise from key domain challenges that
complicate networked application development, including

e Selecting suitable communication mechanisms and designing proto-

cols to use them effectively

e Designing network services that utilize the available computing re-

sources efficiently and reduce future maintenance costs

e Using concurrency effectively to achieve predictable, reliable, high per-

formance in your system

e Arranging and configuring services to maximize system availability

and flexibility.
Dealing with inherent complexity requires experience and a thorough un-
derstanding of the domain itself. There are many design tradeoffs related
to these inherent complexity issues that we will investigate in Chapters 1
and 5.

Accidental complexities arise from limitations with tools and techniques
used to develop networked application software, including

e The lack of type-safe, portable, and extensible native OS APIs

e The widespread use of algorithmic decomposition, which makes it un-
necessarily hard to maintain and extend networked applications

e The continual rediscovery and reinvention of core networked applica-
tion concepts and capabilities, which keeps software life-cycle costs
unnecessarily high

Networked application developers must understand these challenges and
apply techniques to deal with them effectively. Throughout this book we
illustrate by example how ACE uses object-oriented techniques and C++
language features to address the accidental complexities outlined above.

r o

Section 0.2 Networked Application Design Dimensions 5

0.2 Networked Application Design Dimensions

It’s possible to learn programming APIs and interfaces without appreciat-
ing the key design dimensions in a domain. In our experience, however,
developers with deeper knowledge of networked application domain fun-
damentals are much better prepared to solve key design, implementation,
and performance challenges effectively. We therefore explore the core ar-
chitectural design dimensions for networked application development first.
We focus on servers that support multiple services, or multiple instances
of a service, and that collaborate with many clients simultaneously, similar
to the networked application environment shown in Figure 0.2.

The design dimensions discussed in this book were identified by a thor-
ough domain analysis based on hands-on design and implementation ex-
perience with hundreds of production networked applications and sys-
tems developed over the past decade. A domain analysis is an inductive,
feedback-driven process that examines an application domain systemati-
cally to identify its core challenges and design dimensions in order to map
them onto effective solution techniques. This process yields the following
benefits:

¢ It defines a common vocabulary of domain abstractions, which en-
ables developers to communicate more effectively with each other [Fow97].
In turn, clarifying the vocabulary of the problem space simplifies the map-
ping onto a suitable set of patterns and software abstractions in the solu-
tion space. For example, a common understanding of network protocols,
event demultiplexing strategies, and concurrency architectures allows us
to apply these concepts to our discussions of wrapper facades, as well as
to our discussions of ACE frameworks in [SH].

¢ It enhances reuse by separating design considerations into two cat-
egories:
1. Those that are specific to particular types of applications and
2. Those that are common to all applications in the domain.

By focusing on common design concerns in a domain, application and
middleware developers can recognize opportunities for adapting or build-
ing reusable software class libraries. When the canonical control flows
between these class libraries are factored out and reintegrated, they can
form middleware frameworks, such as those in ACE, that can reduce sub-
sequent application development effort significantly. In a mature domain,

r o

6 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

COMMUNICATION
SERVICE SERVICE
CONCURRENCY B

CONFIGURATION

Figure 0.3: Networked Application Design Dimensions

application-specific design considerations can be addressed systematically
by extending and customizing existing middleware frameworks via object-
oriented language features, such as inheritance, dynamic binding, param-
eterized types, and exceptions.

Within the domain of networked applications, developers are faced with
design decisions in each of the four dimensions depicted in Figure 0.3.
These design dimensions are concerned mainly with managing inherent
complexities. They are therefore largely independent of particular life-cycle
processes, design methods and notations, programming languages, oper-
ating system platforms, and networking hardware. Each of these design
dimensions is composed of a set of relatively independent alternatives. Al-
though mostly orthogonal to each other, changes to one or more dimen-
sions of your networked application can change its “shape” accordingly.
Design changes therefore don’t occur in isolation. Keep this in mind as
you consider the following design dimensions:

1. Communication dimensions address the rules, form, and level of
abstraction that networked applications use to interact.

2. Concurrency dimensions address the policies and mechanisms gov-
erning the proper use of processes and threads to represent multiple
service instances, as well as how each service instance may use mul-
tiple threads internally.

3. Service dimensions address key properties of a networked applica-
tion service, such as the duration and structure of each service in-
stance.

r o

Section 0.3 Object-Oriented Middleware Solutions 7

4. Configuration dimensions address how networked services are iden-
tified and the time at which they are bound together to form complete
applications. Configuration dimensions often affect more than one
service, as well as the relationships between services.

We examine the first two dimensions in more depth in Chapters 1 and 5,
respectively, while the third and fourth are discussed in [SH]. We illustrate
the key vocabulary, design trade-offs, and solution abstractions first, fol-
lowed by the platform capabilities related to each dimension, its associated
accidental complexities, and the solutions provided by ACE, which evolved
over the past decade in response to these design dimensions. As you'll see,
the ACE toolkit uses time-proven object-oriented partitioning, interface de-
sign, data encapsulation patterns, and C++ features to enable the design
dimensions of your networked applications to vary as independently and
portably as possible.

0.3 Object-Oriented Middleware Solutions

Some of the most successful techniques and tools devised to address acci-
dental and inherent complexities of networked applications have centered
on object-oriented middleware, which helps manage the complexity and
heterogeneity in networked applications. Object-oriented middleware pro-
vides reusable service/protocol component and framework software that
functionally bridges the gap between

1. End-to-end application functional requirements and
2. The lower-level operating systems, networking protocol stacks, and
hardware devices.

Object-oriented middleware provides capabilities whose qualities are crit-
ical to help simplify and coordinate how networked applications are con-
nected and how they interoperate.

0.3.1 Object-Oriented Middleware Layers

Networking protocol stacks, such as TCP/IP [Ste93], can be decomposed
into multiple layers, such as the physical, data-link, network, transport,
session, presentation, and application layers defined in the OSI reference
model [Bla91]. Likewise, object-oriented middleware can be decomposed

r o

8 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

APPLICATIONS

(D S — AVIONICS

DOMAIN-SPECIFIC MIDDLEWARE SERVICES (WTS) €—— REPLICATION

k < SERVICE)

COMMON MIDDLEWARE SERVICES

DISTRIBUTION MIDDLEWARE

HOST INFRASTRUCTURE MIDDLEWARE [

e @
HARDWARE DEVICES [!ﬁ !ﬁ !ﬁ !ﬁ]

Figure 0.4: Object-Oriented Middleware Layers in Context

into multiple layers [SSO1], as shown in Figure 0.4. A common hierarchy
of object-oriented middleware includes the layers described below:

Host infrastructure middleware encapsulates OS concurrency and inter-
process communication (IPC) mechanisms to create object-oriented net-
work programming capabilities. These capabilities eliminate many tedious,
error-prone, and nonportable activities associated with developing net-
worked applications via native OS APIs, such as Sockets or POSIX threads
(Pthreads). Widely used examples of host infrastructure middleware in-
clude Java Packages [AGHOO] and ACE.

Distribution middleware uses and extends host infrastructure middleware
in order to automate common network programming tasks, such as con-

Section 0.3 Object-Oriented Middleware Solutions 9

nection and memory management, marshaling and demarshaling, end-
point and request demultiplexing, synchronization, and multithreading.
Developers who use distribution middleware can program distributed ap-
plications much like stand-alone applications, that is, by invoking oper-
ations on target objects without concern for their location, language, OS,
or hardware [HV99]. At the heart of distribution middleware are Object
Request Brokers (ORBs), such as COM+ [Box97], Java RMI [Sun98], and
CORBA [0Obj01].

Common middleware services augment distribution middleware by defin-
ing higher-level domain-independent services, such as event notification,
logging, persistence, security, and recoverable transactions. Whereas dis-
tribution middleware focuses largely on managing end-system resources
in support of an object-oriented distributed programming model, common
middleware services focus on allocating, scheduling, and coordinating var-
ious resources throughout a distributed system. Without common middle-
ware services, these end-to-end capabilities would have to be implemented
ad hoc by each networked application.

Domain-specific middleware services satisfy specific requirements of par-
ticular domains, such as telecommunications, e-commerce, health care,
process automation, or avionics. Whereas the other object-oriented mid-
dleware layers provide broadly reusable “horizontal” mechanisms and ser-
vices, domain-specific services target vertical markets. From a “commer-
cial off-the-shelf” (COTS) perspective, domain-specific services are the least
mature of the middleware layers today. This is due in part to the historical
lack of middleware standards needed to provide a stable base upon which
to create domain-specific services.

Object-oriented middleware is an important tool for developing net-
worked applications. It provides the following three broad areas of im-
provement for developing and evolving networked applications:

1. Strategic focus, which elevates application developer focus beyond
a preoccupation with low-level OS concurrency and networking APIs.
A solid grasp of the concepts and capabilities underlying these APIs
is foundational to all networked application development. However,
middleware helps abstract the details away into higher-level, more
easily used artifacts. Without needing to worry as much about low-

r o

10 CHAPTER O Design Challenges, Middleware Solutions, and ACE

level details, developers can focus on more strategic, application-
centric concerns.

2. Effective reuse, which amortizes software life-cycle effort by lever-
aging previous development expertise and reifying implementations
of key patterns [SSRB0OO, GHJV95] into reusable middleware frame-
works. In the future, most networked applications will be assembled
by integrating and scripting domain-specific and common “pluggable”
middleware service components, rather than being programmed en-
tirely from scratch [Joh97].

3. Open standards, which provide a portable and interoperable set of
software artifacts. These artifacts help to direct the focus of develop-
ers toward higher-level software application architecture and design
concerns, such as interoperable security, layered distributed resource
management, and fault tolerance services. An increasingly important
role is being played by open and/or standard COTS object-oriented
middleware, such as CORBA, Java virtual machines, and ACE, which
can be purchased or acquired via open-source means. COTS middle-
ware is particularly important for organizations facing time-to-market
pressures and limited software development resources.

Although distribution middleware, common middleware services, and
domain-specific middleware services are important topics, they are not
treated further in this book for the reasons we explore in the next sec-
tion. For further coverage of these topics, please see either http://ace.
ece.uci.edu/middleware.html or Advanced CORBA Programming with
C++ [HV99].

0.3.2 The Benefits of Host Infrastructure Middleware

Host infrastructure middleware is preferred over the higher middleware
layers when developers are driven by stringent quality of service (QoS) re-
quirements and/or cost containment. It's also a foundational area for ad-
vancing the state-of-the-art of middleware. These areas and their rationale
are discussed below.

Meeting stringent QoS requirements. Certain types of applications
need access to native OS IPC mechanisms and protocols to meet stringent
efficiency and predictability QoS requirements. For example, multimedia

r o

Section 0.3 Object-Oriented Middleware Solutions 11

applications that require long-duration, bidirectional bytestream commu-
nication services are poorly suited to the synchronous request/response
paradigm provided by some distribution middleware [NGSYO0O]. Despite
major advances [GS99, POS*00] in optimization technology, many con-
ventional distribution middleware implementations still incur significant
throughput and latency overhead and lack sufficient hooks to manipulate
other QoS-related properties, such as jitter and dependability.

In contrast, host infrastructure middleware is often better suited to en-
sure end-to-end QoS because it allows applications to

e Omit functionality that may not be necessary, such as omitting mar-
shaling and demarshaling in homogeneous environments

e Exert fine-grained control over communication behavior, such as sup-
porting IP multicast transmission and asynchronous I/O and

e Customize networking protocols to optimize network bandwidth us-
age or to substitute shared memory communication in place of loop-
back network communication

By the end of the decade, we expect research and development (R&D)
on distribution middleware and common services will reach a point where
its QoS levels rival or exceed that of handwritten host infrastructure mid-
dleware and networked applications. In the meantime, however, much
production software must be written and deployed. It's within this con-
text that host infrastructure middleware plays such an important role by
elevating the level of abstraction at which networked applications are de-
veloped without unduly affecting their QoS.

Cost containment. To survive in a globally competitive environment,
many organizations are transitioning to object-oriented development pro-
cesses and methods. In this context, host infrastructure middleware offers
powerful and time-proven solutions to help contain the costs of the inher-
ent and accidental complexities outlined in Section 0.1, page 4.

For example, adopting new compilers, development environments, de-
buggers, and toolkits can be expensive. Training software engineers can be
even more expensive due to steep learning curves needed to become profi-
cient with new technologies. Containing these costs is important when em-
barking on software projects in which new technologies are being evaluated
or employed. Host infrastructure middleware can be an effective tool for
leveraging existing OS and networking experience, knowledge, and skills

r o

12 CHAPTER O Design Challenges, Middleware Solutions, and ACE

while expanding development to new platforms and climbing the learning
curve toward more advanced, cost-saving software technologies.

Advancing the state-of-the-practice by improving core knowledge. A
solid understanding of host infrastructure middleware helps developers
identify higher-level patterns and services so they can become more pro-
ductive in their own application domains. There are many new technology
challenges to be conquered beyond today’s method- and message-oriented
middleware technologies. Infrastructure middleware provides an impor-
tant building block for future R&D for the following reasons:

e Developers with a solid grasp of the design challenges and patterns
underlying host infrastructure middleware can become proficient with
software technology advances more rapidly. They can then catalyze
the adoption of more sophisticated middleware capabilities within a
team or organization.

e Developers with a thorough understanding of what happens “under
the covers” of middleware are better suited to identify new ways of
improving their networked applications.

0.4 An Overview of the ACE Toolkit

The ADAPTIVE Communication Environment (ACE) is a widely used exam-
ple of host infrastructure middleware. The ACE library contains ~240,000
lines of C++ code and ~500 classes. The ACE software distribution also
contains hundreds of automated regression tests and example applica-
tions. ACE is freely available as open-source software and can be down-
loaded from http://ace.ece.uci.edu/ or http://www.riverace.com.

To separate concerns, reduce complexity, and permit functional sub-
setting, ACE is designed using a layered architecture [BMR"96], shown
in Figure 0.5. The foundation of the ACE toolkit is its combination of OS
adaptation layer and C++ wrapper facades [SSRBOO], which encapsulate
core OS concurrent network programming mechanisms. The higher layers
of ACE build upon this foundation to provide reusable frameworks, net-
worked service components, and standards-based middleware. Together,
these middleware layers simplify the creation, composition, configuration,
and porting of networked applications without incurring significant perfor-
mance overhead.

r o

| r o

Section 0.4 An Overview of the ACE ToolKit 13

NETWORKED
JAWS ADAPTIVE
SERVICE WEB SERVER
COMPONENTS T J STANDARDS-BASED MIDDLEWARE

| J
LAYER THE ACE ORB
) b —mme——
TOKEN GATEWAY TN T
e OCJ80
eanel) (e {) (e {) DS @ DLV

SERVER SERVER SERVER

FRAMEWORK =
LAYER ANDLER A3l e R AND

C++ PROCESS/

WRAPPER | THREAD REA LOG _ SHARED
FACADE JMANAGERS MSG - ahis MALLOC

LAYER | svncn SPIPE | [socksap/| | FIFO PROACTOR MEM FILE
WRAPPERS SAP TLI SAP SAP MAP SAP

OS ADAPTATION LAYER
APIs processes | | WNSZRAMER] | SOCKETS/ UNIX SELECT/ | |DYNAMIC| | SHARED | |FILE SYS
THREADS A TLI FIFOS 10 COMP LINKING MEMORY APIS

PRO READ O ATIO R A ORY &

GENERAL OPERATING SYSTEM SERVICES
Figure 0.5: The Layered Architecture of ACE

This book focuses on the ACE wrapper facades for native OS IPC and
concurrency mechanisms. The additional benefits of frameworks and a
comprehensive description of the ACE frameworks are described in the
second volume of C++ Network Programming [SH]. The remainder of this
chapter outlines the structure and functionality of the various layers in
ACE. Section B.1.4 on page 263 describes the standards-based middleware
(TAO [SLM98] and JAWS [HS99]) that’s based upon and bundled with ACE.

0.4.1 The ACE OS Adaptation Layer

The ACE OS adaptation layer constitutes approximately 10 percent of ACE
(about 27,000 lines of code). It consists of a class called ACE_0S that con-
tains over 500 C++ static methods. These methods encapsulate the native,
C-oriented OS APIs that hide platform-specific details and expose a uni-

14 CHAPTER O Design Challenges, Middleware Solutions, and ACE

form interface to OS mechanisms used by higher ACE layers. The ACE_0S
adaptation layer simplifies the portability and maintainability of ACE and
ensures that only ACE developers—not applications developers—must un-
derstand the arcane platform-specific knowledge underlying the ACE wrap-
per facades. The abstraction provided by the ACE_0s class enables the use
of a single source tree for all the OS platforms shown in Sidebar 1.

Sidebar 1: OS Platforms Supported by ACE

ACE runs on a wide range of operating systems, including:

e PCs, for example, Windows (all 32/64-bit versions), WinCE; Redhat,
Debian, and SuSE Linux; and Macintosh OS X;

e Most versions of UNIX, for example, SUnOS 4.x and Solaris, SGI IRIX,
HP-UX, Digital UNIX (Compagq Trué4), AlX, DG/UX, SCO OpenServer,
UnixWare, NetBSD, and FreeBSD;

e Real-time operating systems, for example, VxWorks, OS/9, Chorus,
LynxOS, Pharlap TNT, QNX Neutrino and RTR RTEMS, and pSosS;

e Large enterprise systems, for example, OpenVMS, MVS OpenEdi-
fion, Tandem NonStop-UX, and Cray UNICOS.

ACE can be used with all of the major C++ compilers on these platforms.
The ACE Web site at http://ace.ece.uci.edu contains a complete,
up-to-date list of platforms, along with instructions for downloading and
building ACE.

0.4.2 The ACE C++ Wrapper Facade Layer

A wrapper facade consists of one or more classes that encapsulate func-
tions and data within a type-safe object-oriented interface [SSRB0OO]. The
ACE C++ wrapper facade layer resides atop its OS adaptation layer and
provides largely the same functionality, as shown in Figure 0.5. Packaging
this functionality as C++ classes, rather than stand-alone C functions, sig-
nificantly reduces the effort required to learn and use ACE correctly. The
ACE wrapper facades are designed carefully to minimize or eliminate per-
formance overhead resulting from its increased usability and safety. The
principles that guide ACE’s design are discussed in Appendix A.

r o

Section 0.4 An Overview of the ACE ToolKit 15

ACE provides an extensive set of wrapper facades, constituting nearly
50 percent of its total source base. Applications combine and refine these
wrapper facades by selectively inheriting, aggregating, and/or instantiat-
ing them. In this book we show how the socket, file, concurrency, and
synchronization wrapper facades are used to develop efficient, portable
networked applications.

0.4.3 The ACE Framework Layer

The remaining ~40 percent of ACE consists of object-oriented frameworks,
which are integrated sets of classes that collaborate to provide a reusable
software architecture for a family of related applications [FS97]. Object-
oriented frameworks are a key to successful systematic reuse because they
complement and amplify other reuse techniques, such as class libraries,
components, and patterns [Joh97]. By emphasizing the integration and
collaboration of application-specific and application-independent classes,
for example, the ACE frameworks enable larger-scale reuse of software
than is possible by reusing individual classes or stand-alone functions.
The frameworks in ACE integrate and augment its C++ wrapper facade
classes by applying advanced concurrency and network programming pat-
terns [BMR"96, SSRBO0O] to reify the canonical control flow and collabora-
tion among families of related classes in ACE.

The following ACE frameworks support the efficient, robust, and flexible
development and configuration of concurrent networked applications and
services:

Event demultiplexing and dispatching frameworks. The ACE Reac-
tor and Proactor frameworks implement the Reactor and Proactor pat-
terns [SSRBOO], respectively. The Reactor and Proactor frameworks auto-
mate the demultiplexing and dispatching of application-specific handlers
in response to various types of I/O-based, timer-based, signal-based, and
synchronization-based events.

Connection establishment and service initialization framework. The
ACE Acceptor-Connector framework implements the Acceptor-Connector
pattern [SSRBO0O]. This framework decouples the active and passive ini-
tialization roles from application processing performed by communicating
peer services after initialization is complete.

r o

16 CHAPTER O Design Challenges, Middleware Solutions, and ACE

Concurrency framework. ACE provides the Task framework that can be
used to implement key concurrency patterns [SSRBOO, Lea99], such as
Active Object and Half-Sync/Half-Async, which simplify concurrent pro-
gramming by decoupling method execution from method invocation and
decoupling asynchronous and synchronous processing, respectively.

Service configurator framework. This framework implements the Com-
ponent Configurator pattern [SSRBO0O] to support the configuration of appli-
cations whose services can be assembled dynamically late in their design
cycle, for example, at installation time. It also supports the dynamic re-
configuration of services in an application at run time.

Streams framework. This framework implements the Pipes and Filters
pattern [BMR196], wherein each processing step is encapsulated in a fil-
tering module that can access and manipulate data flowing through the
stream of modules. The ACE Streams framework simplifies the develop-
ment of hierarchically layered services that can be composed flexibly to
create certain types of networked applications, such as user-level protocol
stacks and network management agents [SS94].

An in-depth discussion of the motivation, design, and use of the frame-
works in ACE appears in C++ Network Programming: Systematic Reuse
with ACE and Frameworks [SH]. Additional information on the ACE wrap-
per facades and frameworks is also available in The ACE Programmer’s
Guide [HJS].

0.4.4 The ACE Networked Service Components Layer

In addition to its host infrastructure middleware wrapper facades and
frameworks previously described, ACE also provides a library of networked
services that are packaged as components. A component is an encapsu-
lated part of a software system that implements a specific service or set of
services [Szy98]. Although these components aren’t included in the ACE li-
brary itself, they are bundled with the ACE software distribution to provide
the following capabilities:

e Demonstrate common uses of ACE capabilities—The components
demonstrate how key ACE frameworks and classes can be used to
develop flexible, efficient, and robust networked services.

r o

Section 0.5 Example: A Networked Logging Service 17

e Factor out reusable networked application building blocks—These
components provide reusable implementations of common networked
application services, such as naming, event routing [SchO00], logging,
time synchronization [SSRBOO], and network locking.

0.5 Example: A Networked Logging Service

Throughout this book we use a running example of a networked logging
service to help illustrate key points and ACE capabilities. This service
collects and records diagnostic information sent from one or more client
applications. It's a departure from the usual way of logging to a Windows
NT/2000 event log, which is not available on Windows 95 or 98. If you're
an experienced UNIX programmer, however, you may be thinking this is a
waste of time since SYSLOGD provides this type of service already. Yet this
underscores a key benefit of the logging service: it’s portable, so applica-
tions can log messages on all platforms that ACE supports.

The logging service example is a microcosm of the actual Logging Ser-
vice in ACE. ACE’s logging service can be configured dynamically via the
Component Configurator pattern [SSRB0O] and ACE Service Configurator
framework [SH]. By applying the Adapter pattern [GHJV95], records can
be redirected to a UNIX SYSLOGD or to the Windows NT/2000 event log,
or both—even if the initiating application is on another type of OS plat-
form. This book’s logging service example is purposely scaled back so we
can focus on mastering complexity. Figure 0.6 illustrates the application
processes and server in our networked logging service. Below, we outline
the key entities shown in Figure 0.6.

Client application processes run on client hosts and generate log records
ranging from debugging messages to critical error messages. The logging
information sent by a client application indicates the following:

1. The time the log record was created

2. The process identifier of the application
3. The priority level of the log record and
4

. A string containing the logging message text, which can vary in size
from O to a configurable maximum length, such as 4K bytes.

r o

18 CHAPTER O Design Challenges, Middleware Solutions, and ACE

Oct 31 14:48:13 200l1@tango.ece.uci.edu@38491@7@client: :unable to fork in function spawn
Oct 31 14:50:28 200l1@mambo.cs.wustl.edu@l8352@2@drwho: :sending request to server tango

N ——
==

CONSOLE STORAGE DEVICE

if (Options::instance ()->debug())
ACE_DEBUG ((LM_DEBUG,
“sending request to server %s",

server_host)) ;

Logging
CLIENT Client

TCP
CONNECTION

Logging
Client

Logging

>
TCP CONNECTION Server

int spawn (void) {
if (ACE_OS::fork () ==-1)
ACE_ERROR (LM_ERROR,
"unable to fork in function spawn");

NETWORK

SERVER

Figure 0.6: Participants in the Networked Logging Service

Logging servers collect and output log records received from client ap-
plications. A logging server can determine which client host sent each
message by using addressing information it obtains from the Socket API.
There’s generally one logging server per system configuration, though they
can be replicated to enhance fault tolerance.

Throughout the book, we refer to the networked logging service to make
our discussion of domain analysis dimensions for networked applications
more concrete. The architecture of our logging service is driven by this
domain analysis. Just as real products change in scope as they progress
through their life cycles, the logging service’s design, functionality, scal-
ability, and robustness will evolve as we progress through this book and
[SH]. We'll continue developing this service incrementally to show solu-

r o

| r o

Section 0.6 Summary 19

tions to common design challenges using many key patterns implemented
by classes in ACE. Sidebar 2 describes how to build the ACE library so that
you can experiment with the examples we present in this book.

Sidebar 2: Building ACE and Programs that Use ACE

ACE is open-source software, so you can download it from http://
ace.ece.uci.edu and build it yourself. Here are some tips o help you
understand the source examples we show, and how to build ACE, the
examples, and your own applications:

e Install ACE in an empty directory. The top-level directory in the dis-
fribution is named ACE_wrappers. We refer 1o this top-level direc-
fory as SACE_ROOT. Create an environment variable by that name
containing the full path to the top-level ACE directory.

e The ACE source and header files reside in $ACE_ROOT/ace.

e The source and header files for this book’s networked logging ser-
vice examples reside in SACE_ROOT/examples/C++NPv1l.

e When compiling your programs, the $ACE_ROOT directory must be
added to your compiler’s file include path, which is often desig-
nated by the -1 or /I compiler option.

e The SACE ROOT/ACE-INSTALL.html file contains complete in-
structions on building and installing ACE and programs that use
ACE.

You can also purchase a prebuilt version of ACE from Riverace at a
nominal cost. A list of the prebuilt compiler and OS platforms supported
by Riverace is available at http: //www.riverace.com.

0.6 Summary

This chapter described the challenges of developing networked applications
and middleware that can run effectively in distributed computing environ-
ments. We introduced the inherent and accidental complexities encoun-
tered when developing software ranging from tightly constrained real-time
and embedded systems [SLM98] to newly evolving middleware abstrac-
tions [MSKSO0O0] and next-generation networked applications [SKKKO0O] with

20 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

stringent QoS requirements. We presented a taxonomy of middleware lay-
ering, emphasizing the benefits of host infrastructure middleware, which
is the focus of this book.

This chapter also introduced the results of a domain analysis of the key
design dimensions for networked application architectures. These were
grouped into four categories:

1. Communication protocols and mechanisms
2. Concurrency architectures

3. Service architectures and

4. Service configuration strategies.

This domain analysis has been refined while developing hundreds of net-
worked applications and middleware components during the past decade.
This analysis also guided the development of the ACE concurrent network
programming toolkit. ACE exemplifies the principles and benefits gained
through refactoring [FBBT99] the recurring structure and behavior of net-
worked applications into host infrastructure middleware. ACE’s pattern-
oriented software architecture constitutes an industrial-strength example
of how proper object-oriented design and C++ usage can yield significant
improvements in your development schedules and the quality, flexibility,
and performance of your networked applications and middleware.

Finally, we introduced the networked logging service, which stores di-
agnostic information sent from one or more client applications. We use
this example throughout the book to illustrate common design problems
and their effective solutions using ACE. The next two parts of the book are
organized as follows:

e Part I—Chapters 1 through 4 outline communication design alter-
natives and describe the object-oriented techniques used in ACE to
programming OS IPC mechanisms effectively.

e Part II—Chapters 5 through 10 outline concurrency design alterna-
tives and describe the object-oriented techniques used in ACE to pro-
gram OS concurrency mechanisms effectively.

Throughout both parts of the book, we illustrate common problems that
arise when developers design networked applications and when they pro-
gram them using native OS IPC and concurrency APIs directly. We also
show how ACE applies object-oriented design techniques, C++ features,
and patterns to resolve these problems.

r o

