
Chapter 3
Finding Objects

oseph Albers could make colors dance or retreat: “I see
color as motion . . . To put two colors together side by side

really excites me. They breathe together. It’s like a pulse beat . . .
I like to take a very weak color and make it rich and beautiful
by working on its neighbors. I can kill the most brilliant red by
putting it with violet. I can make the dullest grey in the world
dance by setting it against black.” Albers, one of the great
graphics artists of the twentieth century, was a master at mak-
ing visual imagery emerge from form and color. By careful jux-
taposition of colors, textures, and shapes, the artist can make
images leap off the page. Albers calls this the “1 + 1 = 3” effect.
A good design is more than the sum of its parts. A bad design
muddles what should be emphasized. Chartjunk—misuse of
bold lines and color or addition of pretty stuff that adds no
value—shifts attention away from vital information. In graphic
design, composition, form, and focus are everything! An object
design poses similar challenges. It is strengthened by vivid
abstractions and well-formed objects that fit into an overall
structure. It can be weakened by glaring inconsistencies or
muddled concepts.

J

Wirfs.book  Page 77  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

78

The abstractions you choose greatly affect your overall design. At
the beginning, you have more options. As you look for candidate
objects, you create and invent. Each invention colors and constrains
your following choices. Initially, it’s good to seek important, vivid
abstractions—those that represent domain concepts, algorithms,
and software mechanisms. Highlight what’s important. If you invent
too many abstractions, your design can get overly complex. Not
enough abstraction, and you’ll end up with a sea of flat, lifeless
objects.

Your goal is to invent and arrange objects in a pleasing fashion. Your
application will be divided into neighborhoods where clusters of
objects work toward a common goal. Your design will be shaped by
the number and quality of abstractions and by how well they com-
plement one another. Composition, form, and focus are everything.

A DISCOVERY STRATEGY

So let’s get to it! Conceiving objects is a highly creative activity, but it
isn’t very mysterious. Finding good candidate objects isn’t a topic
that has received a lot of attention. Early object design books,
including Designing Object-Oriented Software, speak of finding objects
by identifying things (noun phrases) written about in a design speci-
fication. In hindsight, this approach seems naïve. Today, we don’t
advocate underlining nouns and simplistically modeling things in the
real world. It’s much more complicated than that. Finding good
objects means identifying abstractions that are part of your applica-
tion’s domain and its execution machinery. Their correspondence to
real-world things may be tenuous, at best. Even when modeling
domain concepts, you need to look carefully at how those objects fit
into your overall application design. 

Although software objects aren’t just waiting for you to find them,
you can identify them somewhat systematically. Although many dif-
ferent factors may be driving your design, there are standard places
to search for objects, and you’ll find many sources of inspiration.
You can use your knowledge of your application domain, your
notions about needed application machinery, lessons learned from
others, and your past design experience.

Our recipe for finding and assessing candidates has a number of steps:

■ Write a brief design story. In it, describe what is important
about your application.

■ Using this story, identify several major themes that define some
central concerns of your application.

A graphics designer 
enhances important 
information by layering and 
separating it, giving focus to 
the data rather than its 
container, and by using 
multiple signals to remove 
ambiguity.

Well-formed abstractions and 
careful attention to how they 
complement one another 
have a direct effect on the 
quality of an object design. 
This chapter discusses how 
to find and arrange software 
objects in an initial object 
design. The ultimate goal is to 
develop a practical solution 
that solves the problem. 
However, we find that such 
designs typically are also 
esthetically pleasing ones.

Wirfs.book  Page 78  Friday, October 11, 2002  11:44 AM



Looking for Objects and Roles, and Then Classes

79

■ Search for candidate objects that surround and support each
theme. Draw on existing resources for inspiration: descriptions
of your system’s behavior, architecture, performance, and
structure. 

■ Check that these candidates represent key concepts or things
that represent your software’s view of the world outside its
borders.

■ Look for candidates that represent additional mechanisms and
machinery.

■ Name, describe, and characterize each candidate.

■ Organize your candidates. Look for natural ways to divide your
application into neighborhoods—clusters of objects that are
working on a common problem.

■ Check for their appropriateness. Test whether they represent
reasonable abstractions.

■ Defend each candidate’s reasons for inclusion.

■ When discovery slows, move on to modeling responsibilities
and collaborations.

This chapter will cover each of these steps in greater detail. But be
aware that you don’t always complete each step before moving on to
the next. The process of discovery and invention is more fluid than
that. Sometimes you perform several steps at the same time. You
may discard some candidates and start over if they don’t seem to fit
in to your emerging design. But if you start by characterizing what is
vital to your application’s success in a design story, you can then
proceed with an organized search for objects that support this core.

At the end of your initial exploration, you will have several handfuls
of carefully chosen, justified candidates. Many more will be invented
as you proceed. These initial candidates are intentionally chosen to
support some key aspect of your system. They will seed the rest of
your design. Finding and inventing this first batch of candidates
takes careful thought.

LOOKING FOR OBJECTS AND ROLES, AND THEN CLASSES

The first candidates to look for should represent important things:
concepts, machinery, and mechanisms. Typically these kinds of can-
didates are smart—they do things. They may know things, too, but
they perform actions based on what they know. Initially, think very
concretely. Abstraction will come later, after you see more concrete

 Initially, we recommend you 
look for candidate roles and 
objects. Once you have an 
idea that they’ll stick around,  
make decisions on how they 
are realized as interfaces and 
classes.

Wirfs.book  Page 79  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

80

objects and understand their relationships to others. To start, iden-
tify distinct objects that have clear roles. Next, decide what candi-
dates should know and do (their responsibilities) and whom they
work with (their collaborators).

Then, thinking more abstractly, you can turn to identifying aspects
that are common to a number of candidates. Shift your focus from
thinking about objects and their individual roles to deciding what
objects have in common. Only after you’ve made decisions about
common responsibilities that are shared by different candidates can
you define common roles. We deem our objects and roles candidates
until their value has been proven. Only then do we decide how they
will be realized as classes and interfaces.

When you transition from candidates to classes and interfaces, you
have options. You can employ inheritance, abstraction, interfaces, and
collaborations to construct a well-factored, flexible design. You will
specify abstract and concrete classes as well as interfaces. An abstract
class provides a partial implementation of responsibilities. It leaves
subclasses with the obligation to implement specific responsibilities.
A concrete class provides a complete implementation. An interface
specifies responsibilities more precisely as method signatures but
leaves their implementation open. Any class can implement an inter-
face, regardless of its position in any class inheritance hierarchy.

WHY TELL A DESIGN STORY?

We suggest you create a framework for searching for potential candi-
dates by writing a story about your application. After you’ve done
this, the candidates you identify should fall into place and support
various aspects of your story. When you state things in your own
words, you get to decide what’s important. Everybody may have
been talking about what your design should do and what will make it
great, but you should make a few bold statements of your own. In
this design story, identify the things about your application that you
know with certainty, as well as things you don’t yet know. Rather
than being driven by one particular view of your software—whether
it be use cases, requirements, architecture, users, or sponsors—pull
together all these factors and craft your own description.

Write a rough story—two paragraphs or less is ideal. Don’t take a lot
of time revising and polishing it. Be quick and to the point. What is
notable about your application? What is it supposed to do? How will
it support its users? Is it connected to a real-world example that you
can study? Have you done something similar? What will make your

 Abstract and concrete 
classes are the building 
blocks we use to specify an 
implementation. Declaring 
interfaces is one means to 
make it more flexible and 
extensible. A reusable role is 
best specified as an interface 
that can be implemented by 
one or more classes.

Wirfs.book  Page 80  Friday, October 11, 2002  11:44 AM



Why Tell a Design Story?

81

design a success? What are the most challenging things to work out?
What seems clear? What seems ill defined? You need not answer all
these questions. Simply write about the critical aspects of your
application. If it helps you make your point, draw a rough sketch or
two. Focus on the main ideas.

Here are two design stories that were written quickly. The first one
rambles. It tells of an online banking application:

This application provides Internet access to banking services. It 
should be easily configured to work for different banks. It should sup-
port fast access to banking services for potentially thousands of users 
at a time. There is a limited number of software resources, such as 
database connections and connections to backend banking software, 
that are available. A critical element in the design is the declaration of 
a common way to call in to different backend banking systems and a 
reliable means of sharing scarce resources. We will define a common 
set of banking transactions and a framework that will call into bank-
ing-specific code that “plugs into” the standard layer implementing 
the details. The rest of our software will only interface with the bank-
independent service layer.

We’ve developed a prototype implementation of this layer and have 
configured it to work for two different banks. Although it is still a pro-
totype, we understand how to write a common banking service layer. 
Lately, our bank has been busy acquiring other banks and integrating 
their software. We’ve been through three system conversions in the 
past year. We want to focus on making this service layer easy to 
implement and test. At the heart of our system is the ability to rapidly 
configure our application to work for different backends and to put a 
different pretty face on each. This includes customizing screen lay-
outs, messages, and banner text. The online banking functions are 
fairly simple: Customers register to use the online banking services 
and then log in and access their accounts to make payments, view 
account balances and transaction histories, and transfer funds. This 
is straightforward, easy to implement. There is added complexity. 
Customers record information and notes about each online transac-
tion. This extra information will be maintained by our application in 
its own database because preexisting bank software has no way to 
store it. We want a customer to view human-readable information, 
not ancient bank software detailed transaction records. When a cus-
tomer asks to view an account’s transaction history we’ll have to 
merge this data with records supplied from the backend software. 
Multiple users can access a customer’s accounts, each with poten-
tially different access rights. Certain users might have no access to 
sensitive accounts. A company executive might view only account 
balances, whereas a clerk in the accounts payable department could 
make payments and a comptroller might be able to transfer funds 
between accounts.

If you are a member of a 
larger design team, write your 
own story first and then share 
it with your team. See how 
your concerns differ from 
others’. The team can draft a 
single, unified story, but this 
isn’t necessary. More 
importantly, identify the 
important themes in these 
design stories. Then look for 
candidates that support these 
themes.

Wirfs.book  Page 81  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

82

This next, more focused, story is about a Web-based game. It
describes new design challenges as well as, to us, familiar territory:

Let’s contrast what we can glean from each story and then sketch
out our candidate search strategies. The underlying requirement for
the online banking system is flexibility. Functionality, implementation,

This game playing application supports an Internet variant of chess 
called Kriegspiel. Kriegspiel is a chess version of the popular game 
Battleship. The novelty is that players make moves not knowing 
where their opponent’s pieces are located. Our immediate concern is 
how to distribute responsibilities among major software compo-
nents. In this distributed application, we need to consider time lags 
and limited communication bandwidth between architectural compo-
nents. We also need to consider the unpredictability of Internet com-
munications. Each player interacts with our application via a Web 
browser. Hundreds of games can be played simultaneously. A user 
logs in and requests to play a game with another. If no one is avail-
able, the user can elect to play a game with the computer. We will 
need to design our software to play a credible game of Kriegspiel as 
well as referee games played by humans. A game can be suspended 
and resumed. From our computer gaming experience, we know that 
computerized games generally have player input directives, rules 
about legal actions, some representation of the current state of the 
game, and animations. In this application, our animations are simple 
and not a major concern. It is worth stating how Kriegspiel is played, 
although our application won’t mimic the real-world game. We will 
draw design ideas from this description.

In the game of Kriegspiel, three boards and sets of chessmen are 
used. There is a referee, whose chess set is in the center, with two 
players seated back-to-back, each at his own board. Each player 
moves his own chessmen, and the referee duplicates each move on 
his own board. The referee tells a player when his attempted move is 
impossible. Each player tries to guess what move his opponent is 
making. When a player completes a legal move, the referee 
announces, “Black (or White) has moved.” When a player tries an 
illegal move, the referee waves his hand to prevent it but does not let 
the opponent know. When a move results in a capture, the referee 
announces, “Black (or White) captures on (the rank, file, long or short 
diagonal)” and removes the captured piece from the board of the 
player who lost it. A player may ask, “Any?” and be told by the ref-
eree if he has a possible capture with a pawn. That’s the only ques-
tion he is permitted. Having asked the question he must try at least 
one pawn capture before making a different move. To summarize, 
players make moves, ask “Any?,” suspend or resume a game, claim 
a draw, or concede.

Wirfs.book  Page 82  Friday, October 11, 2002  11:44 AM



Why Tell a Design Story?

83

and information need to be configurable. The application will
maintain additional user-supplied information and construct account
history from online and other banking transactions.

Our strategy for identifying candidates for this application will be to
focus initially on modeling concepts that represent online banking
services, the common interface to backend banking systems, and
accounts. We should have objects that are responsible for performing
banking functions and storing application-specific information about
online transactions. Because we are building a multiuser online sys-
tem, we also need objects that are responsible for managing access to
limited resources such as the database and backend banking system
connections. The key themes in the banking story are

■ Modeling online banking services

■ Flexibly configuring behavior

■ Sharing scarce software resources among thousands of users

■ Supporting different views of accounts and access privileges

The Kriegspiel application, even though it too is an Internet applica-
tion, has fundamentally different drivers. As with any gaming appli-
cation, we need to take a step back from our vivid real-world
reference of the physical board game and ponder what mechanisms
and inventions are needed by a computerized game. This is always a
major design challenge with gaming applications. It is one we are
familiar with from past experience. Our goal in designing Internet
Kriegspiel isn’t to simulate the real world but instead to construct a
model that represents what is needed to run a computerized game.
Choosing the right abstractions to represent the game and moves
will be critical. We also need to consider how running over the Inter-
net will impact our design. This will affect how we divide the work
between application components. Finally, we’ll need to implement a
semi-intelligent computerized game player—something that is smart
enough to play a decent game against a human opponent. Our cen-
tral concerns for Internet Kriegspiel:

■ Game modeling

■ Computer playing a game

■ Partitioning responsibilities across distributed components

Wirfs.book  Page 83  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

84

SEARCH STRATEGIES

Once you have identified major themes, you can use them as sources
of inspiration. Make educated guesses about the kinds of inventions
that you will need based on the nature of your application and the
things that are critical to it. Candidates generally represent the
following:

■ The work your system performs

■ Things directly affected by or connected to the application
(other software, physical machinery, hardware devices)

■ Information that flows through your software

■ Decision making, control, and coordination activities

■ Structures and groups of objects 

■ Representations of real-world things the application needs to
know something about

We guide our search from these perspectives. The kinds of inven-
tions we seek are closely related to the role stereotypes.

If an application’s central mission boils down to computation, look
to populate it with objects playing the role of service providers that
calculate, compute, transform, and figure. You will likely invent
objects that represent algorithms or operations along with objects
that control work processes. If your application’s major activity is to
assemble and move information from one place to another, identify
candidates that model this information as objects along with others
to coordinate their movement. If your application connects with
other systems, invent external interfacers that form these connec-
tions. Most designs need objects that control or coordinate the work
of others. Depending on the complexity of the control, this design
decision may or may not be a prominent one. If your application
needs to sort through, organize, and make connections between
related objects, structurers need to be identified. There are relatively
direct links between the kinds of objects you look for and the nature
of the work your software carries out.

As you look for candidates one question to ask is, “How much does
our software need to know about things in the external and virtual
worlds it is connected to?” At the borders, model connections to
other systems as interfacer objects. You may include in your design
objects that represent these other software systems. These service
providers will be called upon by other parts of the application. But

The best way to evaluate 
potential candidates that 
represent external things is to 
shift perspective. Climb into 
your software and look out 
at the world. Take your 
application’s viewpoint. Ask 
what you need to know about 
your users, the systems you 
connect to, and things out 
there that you affect.

Wirfs.book  Page 84  Friday, October 11, 2002  11:44 AM



Search Strategies

85

when should you model things that are outside a computer, such as
your software’s users? If it is only their actions that matter and not
whom they are, leave them out of the design. Users’ actions can be
conveyed via user interface objects (objects charged with translat-
ing user requests and information to other parts of the system).
There is no need to know who is pushing your application’s buttons!
On the other hand, if whom users are makes your software behave
differently, include some representation of them as a candidate.
Some knowledge of its users (and objects to represent that knowl-
edge) is needed if your software bases any decisions on whom it
interacts with. For example, if different users have different access
rights to accounts or if the ability to resume a game requires knowl-
edge of whom the players are, then some representation of these
users should be part of the design.

Tables 3-1 and 3-2 outline our search strategies for our two applica-
tions. Although we consider each perspective, typically only one or
two are relevant to any particular theme. If we find that a particular
perspective does not yield any insights, we move on. For each
theme, we briefly summarize the perspectives that yielded insights
and the kinds of candidates we are looking for.

Table 3-1 The initial search for online banking application candidates is based 
on exploring four themes. 

Theme Perspective
Candidates That 
Specifically Support. . .

Online banking 
functions

The work our system 
performs

Performing financial transac-
tions, querying accounts

Things our software 
affects

Accounts, backend banking 
system transactions

Information that 
flows through our 
software

Information about transac-
tions, account balances, trans-
action amounts, account 
history, payments

Representations of 
real-world things

Customers, users, and the 
accounts they access

Continues

Wirfs.book  Page 85  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

86

Flexibly configuring 
behavior

Things our software 
affects

A common interface to back-
end systems

Information that 
flows through our 
software

Configurable display of Web 
page banners, text, messages, 
and account formats

Sharing scarce 
resources

Structures and 
groups of objects

Managing limited connections 
to backend systems and our 
online banking application 
database

Different views of and 
access to accounts

The work our system 
performs

Restricting users’ views of and 
ability to perform banking 
transactions that modify 
account balances

Decision making, 
coordination, and 
control

Prohibiting access to accounts 
unless user has specific 
privileges

Table 3-2 The initial search for Kriegspiel application candidates is based on 
the themes of game modeling, intelligent computerized game playing, and 
distributed games. 

Theme Perspective
Candidates That 
Specifically Support. . .

Game modeling The work our sys-
tem performs

Assigning players to games, 
refereeing, storing and 
resuming suspended games, 
playing a game, determining 
the legality of a move, deter-
mining the outcome of a 
move, displaying the state of 
each player’s board

Information that 
flows through our 
software

Information about moves and 
player requests

Table 3-1 The initial search for online banking application candidates is based 
on exploring four themes. (Cont.)

Theme Perspective
Candidates That 
Specifically Support. . .

Wirfs.book  Page 86  Friday, October 11, 2002  11:44 AM



Search Strategies

87

We will identify candidates that support the relevant perspectives.
Sometimes candidates leap right out of the page from our brief
descriptions; are Player and PlayerAction good candidates based on
the fact that we need to have candidates that support our game’s
real-world view of “players and their actions”? Highly likely. At other
times, we must speculate about exactly how our software might
work in order to come up with candidates; perhaps there should be a
BankingServicesConnectionManager that manages BankingService-
sConnections or a DatabaseConnectionManager to manage Data-
baseConnections that are scarce resources? Often, different themes
and perspectives reiterate and reinforce the need for certain kinds of
candidates. This is good. It builds confidence in the relevance a

Game modeling (Cont.) Representations of 
real-world things

Players and their actions

Structures and 
groups of objects

Managing saved games, the 
various games, game pieces, 
and their locations on a 
game board

Computer playing a game The work our sys-
tem performs

Playing a game with a user

Decision making, 
control, and 
coordination

Determining a reasonable 
move to make based on the 
current view of the game 
(which should be just as lim-
ited as any human player’s 
view)

Partitioning responsibilities 
across distributed compo-
nents

Decision making, 
control, and 
coordination

Communicating a player 
request to the referee and 
game state between players,
detecting whether a player is 
still connected

Information that 
flows through our 
software

Player moves, updated 
boards, and game state

Table 3-2 The initial search for Kriegspiel application candidates is based on 
the themes of game modeling, intelligent computerized game playing, and 
distributed games. (Cont.)

Theme Perspective
Candidates That 
Specifically Support. . .

Wirfs.book  Page 87  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

88

particular candidate has to our application. At other times, ideas do
not come so quickly, and we must think more deeply to come up
with potential candidates.

We won’t find all the key candidates in this first pass; nor will our ini-
tial ideas about our candidates remain fixed. Our notions change as
we give candidates further definition. The initial candidates that we
come up with will seed our design. So it is particularly important to
give each candidate a strong name that suggests its role and pur-
pose. So before we continue searching for candidates, let’s explore
what it takes to find useful names.

WHAT’S IN A NAME?

Good names increase design energy and momentum. You can build
on a good name. When the name of a software object is spoken,
designers infer something about an object’s role and responsibilities.
That’s why grizzled object designers say, “Choose names carefully.”
A well-formed name creates a link to past experience and common
practice. Meaning comes along with any name, whether we like it or
not. Our brains are wired to find connections to things we already
know. So the key to giving an object a good name is to make its name
fit with what you already know while giving a spin on what it should
be doing. Most names fit into a system of names. Different naming
schemes coexist, even within a single application. There isn’t one
universal naming system. 

Qualify generic names. One scheme for naming things that are
special cases of a more generic concept is to tack on to the generic
name a description of that special case.

Include only the most revealing and salient facts in a
name. The downside of any descriptive scheme is that names can
become lengthy. Don’t name every distinguishing characteristic of

A Calendar represents a system of dates and time at a particular loca-
tion. GregorianCalendar extends the Calendar class. Following con-
vention, we could invent JulianCalendar or ChineseCalendar classes. 
Others familiar with this scheme could make educated guesses about 
how their implementations would differ from GregorianCalendar.

“. . . the relation of thought to 
word is not a thing but a 
process . . . Thought is not 
merely expressed in words; it 
comes into existence through 
them. Every thought tends to 
connect something with 
something else, to establish a 
relationship between things. 
Every thought moves, grows 
and develops, fulfills a 
function, solves a problem.” 

—Lev Vygotsky

Wirfs.book  Page 88  Friday, October 11, 2002  11:44 AM



What’s in a Name?

89

an object; hide details that might change or should not be known by
other objects.

Consider the Singleton pattern described in the Design Patterns
book. This pattern ensures that a class has only one instance with a
global point of access. We could name every concept that applies
this pattern a MumbleMumbleSingleton. Following our guideline, we
recommend against this. Singleton is a distinction that is more
important to a class implementer than to a client who uses a single-
ton. Give names that will be meaningful to those who will be using
the candidate, not those who will be implementing it. If someone
using your candidate must know the details of its implementation,
you have likely missed an opportunity to do a better job of abstrac-
tion. One possible exception to this rule is to append Singleton to a
class name when it is crucial for its users to know this.

Give service providers “worker” names. Another English lan-
guage naming convention is to end job titles with “er.” Service pro-
vider objects are “workers,” “doers,” “movers,” and “shakers.” If you
can find a “worker name,” it can be a powerful clue to the object’s
role.

If a worker-type name doesn’t sound right, another convention is to
append Service to a name. In the CORBA framework, this is a com-
mon convention—for example, TransactionService, NamingService,
and so on.

Look for additional objects to complement an object
whose name implies broad responsibilities. Sometimes a can-
didate represents a broad concern; sometimes its focus is more

Should people really have to care that they are using a Millisecond-
TimerAccurateWithinPlusOrMinusTwoMilliseconds, or will Timer suf-
fice? Detailed design decisions should not be revealed unless they 
are unlikely to change and they have a known impact on the object’s 
users. Exposing implementation details makes them hard to change.

Many Java service providers follow this “worker” naming scheme. 
Some examples are StringTokenizer, SystemClassLoader, and Applet-
Viewer.

Wirfs.book  Page 89  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

90

narrow. If you come across a name that implies a large set of respon-
sibilities, check whether you’ve misnamed a candidate. It could be
that your candidate should have a narrower focus. Or it might mean
that you have uncovered a broad concept that needs to be
expanded. Looking for objects that round out or complement a
broad name can lead to a family of related concepts—and a family of
related candidates. Many times we need both specific and general
concepts in our design. The more generic named thing will define
responsibilities that each specific candidate has in common.

Highlight a general concept with more specific candidates. If you can
think of at least three different special cases, keep both the general
concept and specific ones. If later on, you find that these more spe-
cific candidates don’t share any responsibilities in common, the
more abstract concept can always be discarded. However, if you
have simply assigned a candidate a name that is too generic, by all
means rename it.

Therein lies the art of naming: choosing names that convey enough
meaning while not being overly restrictive. Leave open possibilities
for giving a candidate as much responsibility as it can handle, and
for using it in different situations with minor tweaks. It certainly is a
more powerful design when a candidate can fit into several different
situations. The alternative—having a different kind of object for each
different case—is workable, but not nearly so elegant.

An object named AccountingService likely performs some account-
ing function. The name AccountingService isn’t specific. We cannot 
infer information about the kinds of accounting services it performs 
by looking only at its name. Either AccountingService is responsible 
for performing every type of accounting function in our application, 
or it represents an abstraction that other concrete accounting service 
objects will expand upon. If this is so, we’d expect additional candi-
dates, each with a more specific name such as BalanceInquirySer-
vice, PaymentService, or FundsTransferService. These more 
specifically named candidates would support specific accounting 
activities.

If your candidate could represent historical records of many other 
things, better to leave it with a more generic name, History, instead. If 
you intend to model transaction history, rename your candidate 
TransactionHistory. You decide how specific you want to be.

Forming an abstraction 
by looking at two specific 
cases might work, 
but comparing and 
contrasting three or four 
cases is even better. The 
more closely related 
concepts you can compare 
and contrast in order to 
identify what they have in 
common, the better.

Wirfs.book  Page 90  Friday, October 11, 2002  11:44 AM



What’s in a Name?

91

Choose a name that does not limit behavior. Don’t limit a
candidate’s potential by choosing a name that implies too narrow a
range of actions. Given the choice, pick a name that lets an object
take on more responsibility.

Choose a name that lasts for a candidate’s lifetime. Just as
it seems funny to hear a 90-year old called “Junior,” it’s a mistake to
name a candidate for its earliest responsibilities, ignoring what else
it may do later on. And don’t be content to stay with the first name
you give a candidate if its work changes.

Choose a name that fits your current design context. When
you choose names, select ones that fit your current design surround-
ings. Otherwise, your candidates’ names may sound strange. What
sounds reasonable in an accounting application may seem jarring in
an engineering application.

Consider two alternatives for a candidate: Account or AccountRecord. 
Each could name an object that maintains customer information. 
From common knowledge we know one meaning of record is “infor-
mation or facts set down in writing.” An AccountRecord isn’t likely to 
have more than information holding responsibilities if we fit its role 
to conventional usage of this name. The name Account, however, 
leaves open the possibility for more responsibilities. An Account 
object could make informed decisions on the information it repre-
sents. It sounds livelier and more active than AccountRecord.

An object that defines responsibilities for initializing an application 
and then monitoring for external events signaling shutdown or 
re-initialization, is better named ApplicationCoordinator than 
ApplicationInitializer. ApplicationInitializer doesn’t imply having 
ongoing responsibilities after the application is up and running. 
ApplicationCoordinator is a better name because its more general 
meaning encompasses more responsibilities.

A seasoned Smalltalker tried hard to set aside his biases when he 
started working with Java. Although he expected Java classes to 
have totally different responsibilities, he was surprised to find the 
Java Dictionary class to be abstract. In Smalltalk, Dictionary objects 
are created and used frequently.

Our thoughts shape our 
words, and our words 
influence our thoughts. 
Names subtly shape our ideas 
about our candidate’s 
expected behaviors.

Wirfs.book  Page 91  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

92

Shed your past biases when they don’t fit your current situation.

Do not overload names. Unlike spoken language, where words
often have multiple meanings, object names should have only one
meaning. It isn’t good form to have two different types of Account
objects with radically different roles that coexist in the same applica-
tion. Some object-oriented programming languages let you assign
the same name to different classes but then force you to uniquely
qualify a name when you reference a particular class in code. In Java,
for example, classes from different packages can have the same
name. In order to uniquely designate a specific one, its name must be
qualified by the name of the package where it is defined. 

Names of things that can simultaneously coexist within a single
application should be given different names. Don’t overload a name.
Programmers have only one context—the running application—in
which to interpret names. They already have enough to think about
without adding yet another source of confusion. Compilers are good
at automatically applying the correct qualification to a name.
Humans aren’t!

Eliminate name conflicts by adding an adjective. Some-
times the best names are already chosen. Still, you need to name
your candidate. By adding a descriptive phrase to a name, you can
come up with a unique name.

A word of caution: If your candidate has a radically different mean-
ing, don’t co-opt a familiar name. Follow convention. Designers famil-
iar with existing names will expect your candidate to fit in and work
similarly.

Eliminate conflicts by choosing a name with a similar
meaning. Sometimes, your best bet is to look for a synonym. Each
synonym has a slightly different shade of meaning, so finding a satis-
factory name may be hard.

The candidate TransactionProperties might be a reasonable name for 
a candidate whose preferred name conflicts with the preexisting Java 
class named Properties.

The synonyms for Property, a class defined in the Java libraries, 
include these words: characteristic, attribute, quality, feature, and 
trait. Although “attribute” or “feature” might work, “characteristic” 
seems stuffy, and “quality” seems strained.

A Java designer can define 
classes with the same name, 
each residing in a different 
package. You should do 
so only if one package is 
designed as a replacement 
for another.

Wirfs.book  Page 92  Friday, October 11, 2002  11:44 AM



Describing Candidates

93

Choose names that are readily understood. A name shouldn’t
be too terse. Don’t encode meaning or cut corners to save key-
strokes. If you want others to get a sense of an object’s role without
having to dig into how it works, give it a descriptive name. A name
can be descriptive without being overly long.

DESCRIBING CANDIDATES 

We judge an object by how well its name suits its role and how well
its role suits its situation. Stereotyping a candidate’s role provides a
handy means for quickly creating an image about an object’s
intended use. When you find a candidate, name it and then charac-
terize it as fitting one or more stereotypes. Each candidate could be
a service provider, controller, coordinator, structurer, information
holder, or interfacer. To be even more specific, you may want to dis-
tinguish between three different types of interfacers: user interfacers
(objects that interface with users), external interfacers (objects that
interface between your application and others) or intersystem inter-
facers (objects that bridge different parts of an application). 

To be more explicit with your intentions, you can distinguish
whether an object is designed to be passive and just hold on to
related information (an information holder), or whether you expect
it take a more active role in managing and maintaining that informa-
tion (an information provider). If these finer distinctions seem too
subtle, don’t fret about them. Don’t worry about giving an object the
“right” stereotype. If your application is populated with objects that
don’t seem to fit these predefined stereotypes, come up with your
own stereotypes. Stereotyping is intended to help get you started
thinking about your candidates, not to bog you down.

If you aren’t sure about the role your candidate will play, make an
educated guess. Use its stereotype as a guide to build a simple defini-
tion. In that definition, explain what your candidate might do and list
any traits that distinguish it from others. Write this brief definition
on the unlined side of a CRC card (see Figure 3-1). 

“Acct” is too cryptic. “Account” is better.

If your problem domain has 
well-known and understood 
abbreviations—such as USD 
in banking, or Mhz or Gbyte in 
technology—it is reasonable 
to include these in a 
candidate’s name.

Wirfs.book  Page 93  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

94

More generally, a pattern to follow when describing an object is as
follows:

Service providers, controllers, and coordinators are distinguished
by what they do. Here’s a simple way to describe these stereotypes:

If you are working on your own, you may feel less of an urge to write
down these thoughts. After all, you know what you mean! Even so, it
still can be helpful to jot down an abbreviated thought. You don’t
want to forget what was so important about that darned Razzma-
Frazzer by next Friday. Similarly, if you are working in a team, others

An object is a type of thing that does and knows certain things. 
Briefly, say what those things are. Then mention one or more inter-
esting facts about the object, perhaps a detail about what it does or 
knows or who it works with, just to provide more context.

A service provider (or controller or coordinator) is some kind of thing 
that does some kind of work. Briefly, describe this work. Then men-
tion something about what is important or interesting about the work 
it performs or whom it interacts with.

RazzmaFrazzer
Purpose: A RazzmaFrazzer is a converter
that accurately and speedily translates Razzma
objects into Frazz objects. As it translates,
it logs statistics on how accurately it translates
and whether any information is lost in the
translation.

Stereotypes: Service Provider

Figure 3-1
The unlined side of a CRC card is used to describe an object’s purpose and 
stereotypes. In this case, a RazzmaFrazzer has only one stereotype.

Wirfs.book  Page 94  Friday, October 11, 2002  11:44 AM



Describing Candidates

95

likely won’t know what’s important about a candidate unless you tell
them. Any description you can write about a candidate’s purpose
and what you expect it to do will help.

Consider this definition:

Contrast it with this slightly abbreviated definition:

The two definitions are nearly identical. The first adds that a com-
piler is a software program. This seems nit-picky—as software
designers, we all know that compilers are programs. But the first def-
inition provides just enough context so that someone not on our
same wavelength can relate a compiler to other computer programs.
Whenever you can relate something to a widely understood concept
(such as a computer program), its meaning will be clearer to all.

If you and your fellow designers eat, sleep, and breathe design 24
hours a day, a lot may remain unspoken and unwritten. You under-
stand one another because you think alike. However, if there’s ever a
question or disagreement about what a candidate is, it could be that
you are making different assumptions. To make intentions clear, add
enough detail to remove any doubt; then expect to have a discussion
about whose ideas are better. Describe both what a candidate is and
what it is not. Relate it to what’s familiar.

We provide even more context by giving examples of how a candi-
date will be used and a general discussion of its duties. This is partic-
ularly important when you are describing a role that can be assumed
and extended by several different objects.

A compiler is “a program that translates source code into machine 
language.”

“A compiler translates source code into machine language.”

A FinancialTransaction represents a single accounting transaction 
performed by our online banking application. Successful trans-
actions result in updates to a customer’s accounts. Specific 
FinancialTransactions communicate with the banking systems to 
perform the actual work. Examples are FundsTransferTransaction and 
MakePaymentTransaction.

Wirfs.book  Page 95  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

96

If a common meaning suits a candidate, use it to form a
basic definition. Don’t invent jargon for invention’s sake. In the
case of alternative definitions, choose one that most closely matches
your application’s themes. Start with a standard meaning, if it fits.
Then describe what makes that object unique within your application.

The American Heritage Dictionary has six definitions for account:

1. A narrative or record of events

2. A reason given for a particular action

3. A formal banking, brokerage, or business relationship estab-
lished to provide for regular services, dealings, and other finan-
cial transactions

4. A precise list or enumeration of financial transactions

5. Money deposited for checking, savings, or brokerage use

6. A customer having a business or credit relationship with a firm

It isn’t too much of a stretch to conceive of different candidates that
reflect each of these definitions. In our online banking application,
accounts most likely represent money (definition 5). Rules that gov-
ern access to and use of funds are important. Different types of
accounts have different rules. Although it is conceivable that an
account could also be “a precise list of financial transactions” (defi-
nition 4), we reject that usage as being too far off the mark. People in
the banking business think about accounts as money, assets, or lia-
bilities and not as a list of transactions. In the same fashion, we
reject definition 6. It doesn’t specifically mention assets. We easily
reject definitions 1 and 2 as describing something very different from
our notion of accounts in banking. In banking, accounts represent
money. We choose definition 5 because it is the most central concept
to the world of banking:

Add application-specific facts to generic definitions. The
preceding definition is OK, but it is too general for online banking. In
the online banking application, users can perform certain transac-
tions and view their balances and transaction histories. We add
these application specifics to our original description:

An account is a record of money deposited at the bank for checking, 
savings, or other purposes.

Wirfs.book  Page 96  Friday, October 11, 2002  11:44 AM



Describing Candidates

97

The more focused a candidate is, the better. Of course, a candidate
may be suited to more than one use. Objects can be designed to fit
into more than one application. A framework operates in many dif-
ferent contexts. A utilitarian object can be used in many cases. If you
want your candidate to have a broader use, make this intent clear by
writing the expected usage on the CRC card.

Distinguish candidates by how they behave in your appli-
cation. If distinctions seem blurry in the world outside your soft-
ware, it is especially important to clarify your software objects’
roles. Even if you can distinguish between a customer and an
account, you still need to decide whether it is worth having two can-
didates or to have one merged idea. (Don’t expect the business
experts to help make this decision. It is a purely “technical” model-
ing one.) A candidate that reflects something meaningful in the world
outside your application’s borders may not be valuable to your
design.

Let’s look at the sixth definition of account: 

What is the difference between a customer and an account? Are they
the same? If we had chosen this definition, would we need both cus-
tomer and account objects in our banking application?

When you discover overlapping candidates, refine their roles and
make distinctions. Discard a candidate or merge it with another
when its purpose seems too narrow (and could easily be subsumed
by another candidate). When in doubt, keep both.

An account is a record of money deposited at the bank for checking, 
savings, or other purposes. In the online banking system customers 
can access accounts to transfer funds, view account balances and 
transaction historical data, or make payments. A customer may have 
several bank accounts.

“An account is a customer having a business or credit relationship 
with a firm.” 

Wirfs.book  Page 97  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

98

During exploratory design, expect a certain degree of ambiguity. You
can always weed out undistinguished candidates when you find they
don’t add any value. Put question marks by candidates that need
more definition. A candidate is just that—a potential contributor. 

CHARACTERIZING CANDIDATES

Before eliminating any possibility, consider how a candidate might
work and how it relates to others. It is best to consider a candidate
in a larger context. We can characterize candidates according to
their

■ Work habits

■ Relationships with others

■ Common obligations

■ Location within an application architecture

■ Abstraction level

To explore a candidate’s work habits, ask, “What does it do, and how
does it fit in?” Take one point of view—from the outside looking in.
This is the same view a peer or client would take. Speculate about
what services it might offer or how it might affect others. Think
about these things, but don’t assign responsibilities just yet. Ask
whether the object is self-contained, working on its own initiative, or
directed by others. Will it be constantly busy? Or will it need to be
prodded into action? Is it an important, central character, or is it
somewhere on the periphery? Ask what each candidate might do

For both Customer and Account to survive candidacy and stick in a 
design, their roles must be distinct and add value to the application. 
We could conceive of a Customer as a structurer that manages one or 
more Account objects. And, in the online banking application, one or 
more users can be associated with a Customer. For example, the cus-
tomer “Joe’s Trucking” might have four authorized users, each with 
different privileges and access rights to different accounts. Another 
option would be to give an Account responsibility for knowing the 
customer and users. We could then eliminate Customer. We decide to 
include both Customer and Account in our design because giving 
those responsibilities to Account objects doesn’t seem appropriate—
we can envision customers and users sticking around even when 
their accounts are closed (and perhaps new accounts are opened). So 
customers are somewhat independent of accounts.

Wirfs.book  Page 98  Friday, October 11, 2002  11:44 AM



Connecting Candidates

99

and be. If you haven’t any idea, dig in and look for its potential value.
If you are undecided, spend a few minutes speculating how it might
fit into its neighborhood and about the nature of its role:

CONNECTING CANDIDATES

Given its limited space, what you can say on a CRC card will be brief.
But CRC cards are much more than a compact space to record
design ideas. They are real and tangible. You can pick up a card and
talk about it as if it were the object itself, forgetting that the card
“stands in” for a “real” object. You can use CRC cards to explore what
candidates are and how they relate to others. You can move a card
closer to any collaborators. You can poke at them, making as many
connections and distinctions as you can. You can pick them up and
lay out a new arrangement that amplifies a fresh insight, looking for
patterns and similarities and differences. Which objects do similar
things? Put them in a pile. Which objects are part of a neighborhood
working on part of the problem? Move them closer. Get a sense of
how your candidates fit and relate. Some useful ways to cluster can-
didates are as follows:

■ By application layer

■ By use case

■ By stereotype role

■ By neighborhood

■ By abstraction level

■ By application theme

We think of an Account as an information holder. So we do not think 
of it adjusting its balance on its own—it is probably changed by out-
side requests (both online banking transactions and other account 
activity). An Account knows its balance and transaction history. An 
account doesn’t manage its customer, so it doesn’t have much of a 
structuring role, but it is associated with its customers (does it need 
to know its customer, or does its customer know about it?). It isn’t 
obvious how backend banking transactions that affect an account’s 
status will be controlled (will an Account be involved in delegating 
this work or not?) —so we are uncertain how much work it will actu-
ally do. We’ll defer thinking through these issues until we develop a 
more detailed blueprint for our application’s control architecture.

CRC cards, as invented by 
Ward Cunningham and Kent 
Beck, were originally used to 
teach object-oriented 
concepts. They have far 
broader applicability than as 
teaching aids. They can help 
you think about and link 
candidates.

Wirfs.book  Page 99  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

100

There is no standard way to fill out or use CRC cards. Several books
have been written on the “art” and “practice” of CRC card modeling.
David Bellin and Susan Suchman Simone’s The CRC Card Book (Addi-
son-Wesley, 1997) talks much about the process and people aspects
of CRC cards. In Nancy Wilkinson’s Using CRC Cards: An Informal
Approach to Object-Oriented Development (SIGS, 1995), a CRC model
for a library application is worked out and its translation to a C++
implementation is described.

Figure out what works best for you. Use CRC cards to express your
ideas. Jot down initial ideas on the unlined side: At the very mini-
mum, record a candidate’s name, a brief description, and its role ste-
reotypes (see Figure 3-2). That’s mainly what you’re initially looking
for. Later you’ll get more specific.

But you can also note things of interest: Does a candidate play a role
in a well-known design pattern? Name that pattern and the candi-
date’s role in it. Is it intended to fit into a narrow context, or, if care-
fully designed, might it be used in different applications? Note
anything unusual and worth remembering. Is it an important
abstraction? Put a big star by its name. As shown in Figure 3-3, use
CRC cards to express what you think is important to know about a
candidate.

Destination
Purpose: A Destination represents any of
several locations where a message can be sent.
It also knows the objects that are responsible
for handling the actual delivery to the
destination that it represents.

Stereotypes: Structurer, Service Provider

Figure 3-2
The purpose of a candidate is recorded on the unlined side of a CRC card.

Wirfs.book  Page 100  Friday, October 11, 2002  11:44 AM



Looking for Common Ground

101

LOOKING FOR COMMON GROUND

Earlier, we suggested that you make sharp distinctions between can-
didates. If you couldn’t find enough differences, we recommended
that you merge candidates that have overlapping roles. Now we sug-
gest that you take another, closer look at your candidates. This time
you want to see what your candidates have in common. You should
always be on the lookout for common roles and responsibilities that
candidates share. If you can identify what candidates have in com-
mon, you can consciously make your design more consistent by rec-
ognizing these common aspects and making them evident. You can
identify a common category that objects fit into. You can define a
common role that all objects in a category play. Shared responsibili-
ties can be defined and unified in interfaces. Objects that collaborate
with them can ignore any differences and treat them alike. Further-
more, a class can be defined to implement shared responsibilities
that make up a shared role, guaranteeing that the implementation
of classes that inherit these implemented responsibilities works
consistently.

Destination
Purpose: A Destination represents any of
several locations where a message can be sent.
It also knows the objects that are responsible
for handling the actual delivery to the
destination that it represents.

How involved does it
get in sending the message?

check on
 third-par

ty produc
ts....

who should handle
errors in delivery?

Patterns: Composite-component
Stereotypes: Structurer, Service Provider

Figure 3-3
You can add scribbles, questions, and comments to a CRC card to help you 
remember key points.

Wirfs.book  Page 101  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

102

You are likely to find several ways to organize your candidates. Some
will be more meaningful than others. Each one that seems useful will
likely contribute to your design’s clarity. The more you can identify
what objects have in common, the more opportunities you have to
make things consistent. Eventually you may define several new roles
that describe commonly shared responsibilities. Your initial cut at
this won’t be your last. Keep looking for what objects have in com-
mon and for ways to exploit commonalities to simplify your design.

Look for powerful abstractions and common roles.  Things
in the real world do not directly translate to good software objects!
Form candidates with an eye toward gaining some economy of
expression. Carefully consider which abstractions belong in your
object design.

Look for the right level of abstraction to include in your
design.  Finding the right level of abstraction for candidates takes
practice and experimentation. You may have made too many distinc-
tions and created too many candidates—a dull design that works but
is tedious. At the end of the day, discard candidates that add no
value, whether they are too abstract or too concrete. Having too
many candidates with only very minor variations doesn’t make a
good design. Identify candidates that potentially can be used in mul-
tiple scenarios.

In our Kriegspiel game, there are various actions that a player can 
perform: “propose a move,” “ask whether a pawn can capture in a 
move,” “suspend a game,” and so on. It’s a pretty safe bet that we 
have a different candidate for each action: ProposeAMove, Suspend-
AGame, and so on. Proposing a move seems quite distinct from sus-
pending a game. A harder question is whether we should define 
PlayerAction as a common role shared by each of these action-
oriented candidates. If we can write a good definition for Player-
Action, we should do so and define a role that is shared by all player 
action candidates. There seem to be several things common to all 
actions (such as who is making the request and how long it is active). 
Eventually, if we find enough common behavior for PlayerAction, it 
will be realized in our detailed design as a common interface sup-
ported by different kinds of PlayerAction objects. We may define a 
superclass that defines responsibilities common to specific player 
action subclasses. Or common behavior might imply the need for 
another candidate that is the supplier of that shared behavior.

Common behavior could also 
imply the need for another 
candidate that is the supplier 
of that shared behavior.

Wirfs.book  Page 102  Friday, October 11, 2002  11:44 AM



Looking for Common Ground

103

Discard candidates if they can be replaced by a shared
role. To find common ground, you need to let go of the little details
that make objects different in order to find more powerful concepts
that can simplify your design.

Purely and simply, you gloss over minor differences. You don’t need
to include different candidates for each category of thing. In fact,
those distinctions may not be as important to your software as they
are to those who buy and use the items.

Certain actions affect the position of pieces on a board. Should we 
have different candidates for each piece’s potential types of moves? 
Not likely. This solution is tedious and offers no design economy. If 
you can cover more ground with a more abstract representation of 
something, do so. A single candidate can always be configured to 
behave differently under different situations. Objects encapsulate 
information that they can use to decide how to behave. The Propose-
AMove candidate can easily represent all moves suggested by any 
chess piece. This single candidate will know what piece is being 
moved and its proposed position.

What do books, CDs, and calendars have in common? If you are a 
business selling these items over the Internet, they have a lot in com-
mon. Sure, they are different, too. Books likely belong to their own 
category of items that can be searched and browsed. But all these 
kind of things share much in common. They all have a description 
(both visual and text), a set of classifications or search categories 
they belong to, an author, an availability, a price, and a discounted 
price. It sounds as if their common aspects are more important, from 
the Web application’s perspective, than their differences. This sug-
gests that all these different kinds of things could be represented by a 
single candidate, InventoryItem, that knows what kind of thing it is 
and the categories it belongs to.

When you are shopping for items, you may be thinking of how 
they are used—books are read, calendars hung on a wall, and CDs 
played—but those distinctions are not important if you are designing 
software to sell them. Sure, you want to allow for your software to 
recognize what category something belongs to. You want to list all 
books together. But you probably want to categorize things in the 
same subcategory, whether or not they are the same kind of thing. 
Books about jazz and jazz CDs are in the “jazz items” category.

Wirfs.book  Page 103  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

104

Only if objects in different categories behave differently in your soft-
ware do you need to keep different categories as distinct candidates.
The real test of whether a category adds value to a design is whether
it can define common responsibilities for things that belong to it.

Blur distinctions. There are times when both concrete candi-
dates and their shared role add value to a design. There are times
when they do not. If you clearly see that candidates that share a
common role have significantly different behavior, then keep them.
Test whether the distinctions you have made are really necessary.

DEFEND CANDIDATES AND LOOK FOR OTHERS

For a candidate to stay in the running, you should be able to state
why it is worth keeping, along with any ideas you want to explore:

By taking short side excursions to look for more candidates, you will
come back with a better sense of whether you are on target. You can
find more candidates by looking for ways to support and comple-
ment the ones you’ve already found:

What value is there in including different kinds of bank accounts, 
such as checking or savings accounts in our online banking applica-
tion? Checking accounts, savings accounts, and money market 
accounts have different rates of interest, account numbering 
schemes, and daily account draw limits. But these distinctions aren’t 
important to our online banking application. We pass transactions to 
the banking software to handle and let them adjust account balances. 
In fact, because our application is designed to support different 
banks, each with its own account numbering scheme, a distinction 
made on account type (checking or savings) isn’t meaningful. Our 
application doesn’t calculate interest. So we choose to include only 
BankAccount as a candidate. If we were designing backend banking 
software that calculated interest, our decision would be different.

“A user accesses accounts to transfer funds, make payments, or view 
transaction history.” In the next breath you can add, “Accounts con-
tain information that enables a customer to perform financial transac-
tions. Accounts know how to describe themselves; they know and 
adjust their balance; they are affected by different financial transac-
tions; they know their transaction history. Are there any other candi-
dates we should be identifying to support accounts in their role?”

Marvin Minsky theorizes 
about the many agents 
working at different levels 
during problem solving. Most 
people don’t forget that they 
are packing a suitcase to go 
on a trip when they stop to fill 
a toiletry bag. Side excursions 
are a normal part of problem 
solving.

Wirfs.book  Page 104  Friday, October 11, 2002  11:44 AM



Defend Candidates and Look for Others

105

Searching can go on for quite a while if you are full of ideas. Stop
when you feel you are looking too far afield. You need enough candi-
dates so that you can compare and contrast them and to seed your
further design work. There isn’t any magic number. The more you
know about a problem, the more candidates you are likely to invent
in a first pass. Fifty candidates may seem like a lot, but it’s not an
unreasonable number. Twenty is OK, too. You find candidates in
bursts as you consider your design’s themes. It’s pretty common for
candidates to support more than one theme. All this means is that
your objects fit into and support more than one central concern.

Stop brainstorming candidates when you run out of energy. Then
review how these candidates might collectively support the respon-
sibilities implied by a theme. When you think you have enough can-
didates, review them once more for their merit. 

Keep any candidate and put it on the “A” list, for acceptable, when
you can

■ Give it a good name

■ Define it

■ Stereotype it

■ See that it might be used in support of a particular use case

■ See that it is an important architectural element

■ Assign it one or two initial responsibilities

■ Understand how other objects view it

■ See that it is important

■ Differentiate it from similar candidates

Potential candidates that complement and support Account:

AccountHistory—A record of transactions against an account

FinancialTransaction—An operation applied to one or more accounts. 
A service provider could represent each type of transaction that 
affects an account. There are multiple types of transactions that we 
support with our online banking application. What’s the difference 
between a transaction that affects an account’s balance, and an 
inquiry into some aspect of an account such as its balance, history, or 
activation status? How should we model each inquiry?

You are always free to decide 
all your candidates stink, toss 
them, and start over. At the 
beginning this is cheap and 
relatively painless. Defend 
candidates on their merits, 
and don’t protect them from 
close scrutiny.

Wirfs.book  Page 105  Friday, October 11, 2002  11:44 AM



Chapter 3 Finding Objects

106

Discard a candidate when it

■ Has responsibilities that overlap with those of other candidates
that you like better

■ Seems vague

■ Appears to be outside your system’s boundaries

■ Doesn’t add value

■ Seems insignificant or too clever or too much for what you
need to accomplish

You may still be uncertain about some candidates. Put these on the
“D,” or deferred, list to revisit later. For now, keep them in the run-
ning. The best way to make more progress is to design how these
objects will work together. The very next step we’ll take is to assign
each candidate specific responsibilities. And during that activity, we
will come up with more candidates and reshape those we’ve already
found.

SUMMARY

You can approach the finding of objects somewhat systematically.
Establish a framework for searching for candidates by writing a story
about your application. In this story, write about the important
aspects of your application. The candidates you identify should sup-
port various aspects of your story. You can use CRC cards to record
your preliminary ideas about these candidates. CRC stands for can-
didates, responsibilities, collaborators.

Candidates generally represent work performed by your software,
things your software affects, information, control and decision mak-
ing, ways to structure and arrange groups of objects, and representa-
tions of things in the world that your software needs to know
something about.

Good names for candidates are important. Choose them with care.
Choose names that fit within a consistent naming scheme and aren’t
too limiting or overly specific. Once you’ve named and described
each candidate’s purpose, you can compare and contrast the candi-
dates. For a candidate to stay in the running, you should be able to
defend why it is worth keeping.

But your initial ideas are just educated guesses about the kinds of
objects that you will need based on the nature of our application and
the things that are critical to it. The real test of each candidate’s

Wirfs.book  Page 106  Friday, October 11, 2002  11:44 AM



Further Reading

107

worth will be when you can assign it specific responsibilities and
design it to collaborate with others.

FURTHER READING

Timothy Budd, in An Introduction to Object-Oriented Programming
(Addison-Wesley, 2002), presents a thoughtful discussion of abstrac-
tion and object-oriented design. Another source of inspiration is
Martin Fowler’s Analysis Patterns: Reusable Object Models (Addison-
Wesley, 1996). This book reveals how a good modeler and analyst
thinks through issues and comes up with useful abstractions.

Wirfs.book  Page 107  Friday, October 11, 2002  11:44 AM


