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Shortest Paths

EVERY PATH IN aweighted digraph has an associated pathweight,
the value of which is the sum of the weights of that path’s edges.

This essential measure allows us to formulate such problems as “find
the lowest-weight path between two given vertices.” These shortest-
paths problems are the topic of this chapter. Not only are shortest-
paths problems intuitive for many direct applications, but they also
take us into a powerful and general realm where we seek efficient
algorithms to solve general problems that can encompass a broad
variety of specific applications.

Several of the algorithms that we consider in this chapter re-
late directly to various algorithms that we examined in Chapters 17
through 20. Our basic graph-search paradigm applies immediately,
and several of the specific mechanisms that we used in Chapters 17
and 19 to address connectivity in graphs and digraphs provide the
basis for us to solve shortest-paths problems.

For economy, we refer to weighted digraphs as networks. Fig-
ure 21.1 shows a sample network, with standard representations. We
have already developed an ADT interface with adjacency-matrix and
adjacency-lists class implementations for networks in Section 20.1—
we just pass true as a second parameter when we call the constructor
so that the class keeps one representation of each edge, precisely as
we did when deriving digraph representations in Chapter 19 from the
undirected graph representations in Chapter 17 (see Programs 20.1
through 20.4).

As discussed at length in Chapter 20, we use references to ab-
stract edges for weighted digraphs to broaden the applicability of our
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Figure 21.1
Sample network and represen-

tations
This network (weighted digraph)
is shown in four representations:
list of edges, drawing, adjacency
matrix, and adjacency lists (left
to right). As we did for MST al-
gorithms, we show the weights in
matrix entries and in list nodes,
but use edge references in our pro-
grams. While we often use edge
weights that are proportional to
their lengths in the drawing (as
we did for MST algorithms), we
do not insist on this rule because
most shortest-paths algorithms han-
dle arbitrary nonnegative weights
(negative weights do present spe-
cial challenges). The adjacency
matrix is not symmetric, and the
adjacency lists contain one node
for each edge (as in unweighted
digraphs). Nonexistent edges are
represented by null references in
the matrix (blank in the figure) and
are not present at all in the lists.
Self-loops of length 0 are present
because they simplify our imple-
mentations of shortest-paths algo-
rithms. They are omitted from the
list of edges at left for economy
and to indicate the typical scenario
where we add them by conven-
tion when we create an adjacency-
matrix or adjacency-lists represen-
tation.

implementations. This approach has certain implications that are dif-
ferent for digraphs than the ones that we considered for undirected
graphs in Section 20.1 and are worth noting. First, since there is
only one representation of each edge, we do not need to use the from
method in the edge class (see Program 20.1) when using an iterator:
In a digraph, e.from(v) is true for every edge reference e returned by
an iterator for v. Second, as we saw in Chapter 19, it is often useful
when processing a digraph to be able to work with its reverse graph,
but we need a different approach than that taken by Program 19.1,
because that implementation creates edges to create the reverse, and
we assume that a graph ADT whose clients provide references to edges
should not create edges on its own (see Exercise 21.3).

In applications or systems for which we need all types of graphs,
it is a textbook exercise in software engineering to define a network
ADT fromwhich ADTs for the unweighted undirected graphs of Chap-
ters 17 and 18, the unweighted digraphs of Chapter 19, or theweighted
undirected graphs of Chapter 20 can be derived (see Exercise 21.10).

When we work with networks, it is generally convenient to keep
self-loops in all the representations. This convention allows algorithms
the flexibility to use a sentinel maximum-valueweight to indicate that a
vertex cannot be reached from itself. In our examples, we use self-loops
of weight 0, although positive-weight self-loops certainly make sense
in many applications. Many applications also call for parallel edges,
perhaps with differing weights. As we mentioned in Section 20.1,
various options for ignoring or combining such edges are appropriate
in various different applications. In this chapter, for simplicity, none of
our examples use parallel edges, and we do not allow parallel edges in
the adjacency-matrix representation; we also do not check for parallel
edges or remove them in adjacency lists.
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Figure 21.2
Shortest-path trees
A shortest-path tree (SPT) defines
shortest paths from the root to
other vertices (see Definition 21.2).
In general, different paths may
have the same length, so there
may be multiple SPTs defining the
shortest paths from a given vertex.
In the example network shown at
left, all shortest paths from 0 are
subgraphs of the DAG shown to
the right of the network. A tree
rooted at 0 spans this DAG if and
only if it is an SPT for 0. The two
trees at right are such trees.

All the connectivity properties of digraphs that we considered in
Chapter 19 are relevant in networks. In that chapter, we wished to
know whether it is possible to get from one vertex to another; in this
chapter, we take weights into consideration—we wish to find the best
way to get from one vertex to another.

Definition 21.1 A shortest path between two vertices s and t in a
network is a directed simple path from s to t with the property that
no other such path has a lower weight.

This definition is succinct, but its brevity masks points worth exam-
ining. First, if t is not reachable from s, there is no path at all, and
therefore there is no shortest path. For convenience, the algorithms
that we consider often treat this case as equivalent to one in which there
exists an infinite-weight path from s to t. Second, as we did for MST
algorithms, we use networks where edge weights are proportional to
edge lengths in examples, but the definition has no such requirement
and our algorithms (other than the one in Section 21.5) do not make
this assumption. Indeed, shortest-paths algorithms are at their best
when they discover counterintuitive shortcuts, such as a path between
two vertices that passes through several other vertices but has total
weight smaller than that of a direct edge connecting those vertices.
Third, there may be multiple paths of the same weight from one vertex
to another; we typically are content to find one of them. Figure 21.2
shows an example with general weights that illustrates these points.

The restriction in the definition to simple paths is unnecessary
in networks that contain edges that have nonnegative weight, because
any cycle in a path in such a network can be removed to give a path
that is no longer (and is shorter unless the cycle comprises zero-weight
edges). But when we consider networks with edges that could have
negative weight, the need for the restriction to simple paths is readily
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apparent: Otherwise, the concept of a shortest path is meaningless if
there is a cycle in the network that has negative weight. For example,
suppose that the edge 3-5 in the network in Figure 21.1 were to have
weight -.38, and edge 5-1were to have weight -.31. Then, the weight
of the cycle 1-4-3-5-1 would be .32 + .36 - .38 - .31 = -.01,
and we could spin around that cycle to generate arbitrarily short paths.
Note carefully that, as is true in this example, it is not necessary for
all the edges on a negative-weight cycle to be of negative weight; what
counts is the sum of the edge weights. For brevity, we use the term
negative cycle to refer to directed cycles whose total weight is negative.

In the definition, suppose that some vertex on a path from s to t

is also on a negative cycle. In this case, the existence of a (nonsimple)
shortest path from s to t would be a contradiction, because we could
use the cycle to construct a path that had a weight lower than any
given value. To avoid this contradiction, we restrict to simple paths
in the definition so that the concept of a shortest path is well defined
in any network. However, we do not consider negative cycles in
networks until Section 21.7, because, as we see there, they present a
truly fundamental barrier to the solution of shortest-paths problems.

To find shortest paths in a weighted undirected graph, we build
a network with the same vertices and with two edges (one in each
direction) corresponding to each edge in the graph. There is a one-to-
one correspondence between simple paths in the network and simple
paths in the graph, and the costs of the paths are the same; so shortest-
paths problems are equivalent. Indeed, we build precisely such a net-
work when we build the standard adjacency-lists or adjacency-matrix
representation of a weighted undirected graph (see, for example, Fig-
ure 20.3). This construction is not helpful if weights can be negative,
because it gives negative cycles in the network, and we do not know
how to solve shortest-paths problems in networks that have negative
cycles (see Section 21.7). Otherwise, the algorithms for networks that
we consider in this chapter also work for weighted undirected graphs.

In certain applications, it is convenient to haveweights on vertices
instead of, or in addition to, weights on edges; and we might also
consider more complicated problems where both the number of edges
on the path and the overall weight of the path play a role. We can
handle such problems by recasting them in terms of edge-weighted
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Figure 21.3
All shortest paths
This table gives all the shortest
paths in the network of Figure 21.1
and their lengths. This network is
strongly connected, so there ex-
ist paths connecting each pair of
vertices.

The goal of a source-sink
shortest-path algorithm is to com-
pute one of the entries in this ta-
ble; the goal of a single-source
shortest-paths algorithm is to com-
pute one of the rows in this ta-
ble; and the goal of an all-pairs
shortest-paths algorithm is to com-
pute the whole table. Generally,
we use more compact representa-
tions, which contain essentially the
same information and allow clients
to trace any path in time propor-
tional to its number of edges (see
Figure 21.8).

networks (see, for example, Exercise 21.4) or by slightly extending the
basic algorithms (see, for example, Exercise 21.52).

Because the distinction is clear from the context, we do not in-
troduce special terminology to distinguish shortest paths in weighted
graphs from shortest paths in graphs that have no weights (where a
path’s weight is simply its number of edges—see Section 17.7). The
usual nomenclature refers to (edge-weighted) networks, as used in this
chapter, since the special cases presented by undirected or unweighted
graphs are handled easily by algorithms that process networks.

We are interested in the same basic problems that we defined for
undirected and unweighted graphs in Section 18.7. We restate them
here, noting that Definition 21.1 implicitly generalizes them to take
weights into account in networks.

Source–sink shortest path Given a start vertex s and a finish
vertex t, find a shortest path in the graph from s to t. We refer to the
start vertex as the source and to the finish vertex as the sink, except
in contexts where this usage conflicts with the definition of sources
(vertices with no incoming edges) and sinks (vertices with no outgoing
edges) in digraphs.

Single-source shortest paths Given a start vertex s, find shortest
paths from s to each other vertex in the graph.

All-pairs shortest paths Find shortest paths connecting each
pair of vertices in the graph. For brevity, we sometimes use the term
all shortest paths to refer to this set of V 2 paths.

If there are multiple shortest paths connecting any given pair of
vertices, we are content to find any one of them. Since paths have
varying number of edges, our implementations provide methods that
allow clients to trace paths in time proportional to the paths’ lengths.
Any shortest path also implicitly gives us the shortest-path length, but
our implementations explicitly provide lengths. In summary, to be
precise, when we say “find a shortest path” in the problem statements
just given, we mean “compute the shortest-path length and a way to
trace a specific path in time proportional to that path’s length.”
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Figure 21.3 illustrates shortest paths for the example network in
Figure 21.1. In networks with V vertices, we need to specify V paths to
solve the single-source problem and to specify V 2 paths to solve the all-
pairs problem. In our implementations, we use a representation more
compact than these lists of paths; we first noted it in Section 18.7, and
we consider it in detail in Section 21.1.

In Java implementations, we build our algorithmic solutions to
these problems into ADT implementations that allow us to build ef-
ficient client programs that can solve a variety of practical graph-
processing problems. For example, as we see in Section 21.3, we
implement solutions to the all-pairs shortest-paths classes as construc-
tors within classes that support constant-time shortest-path queries.
We also build classes to solve single-source problems so that clients
who need to compute shortest paths from a specific vertex (or a small
set of them) can avoid the expense of computing shortest paths for
other vertices. Careful consideration of such issues and proper use of
the algorithms that we examine can mean the difference between an
efficient solution to a practical problem and a solution that is so costly
that no client could afford to use it.

Shortest-paths problems arise in various guises in numerous ap-
plications. Many of the applications appeal immediately to geometric
intuition, but many others involve arbitrary cost structures. As we did
with minimum spanning trees (MSTs) in Chapter 20, we sometimes
take advantage of geometric intuition to help develop an understand-
ing of algorithms that solve the problems but stay cognizant that our
algorithms operate properly in more general settings. In Section 21.5,
we do consider specialized algorithms for Euclidean networks. More
important, in Sections 21.6 and 21.7, we see that the basic algorithms
are effective for numerous applications where networks represent an
abstract model of the computation.

Road maps Tables that give distances between all pairs of
major cities are a prominent feature of many road maps. We presume
that the map maker took the trouble to be sure that the distances
are the shortest ones, but our assumption is not necessarily always
valid (see, for example, Exercise 21.11). Generally, such tables are for
undirected graphs that we should treat as networks with edges in both
directions corresponding to each road, though we might contemplate
handling one-way streets for city maps and some similar applications.
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Distances and paths
Road maps typically contain dis-
tance tables like the one in the
center for this tiny subset of French
cities connected by highways as
shown in the graph at the top.
Though rarely found in maps, a
table like the one at the bottom
would also be useful, as it tells
what signs to follow to execute
the shortest path. For example,
to decide how to get from Paris
to Nice, we can check the table,
which says to begin by following
signs to Lyon.

As we see in Section 21.3, it is not difficult to provide other useful
information, such as a table that tells how to execute the shortest
paths (see Figure 21.4). In modern applications, embedded systems
provide this kind of capability in cars and transportation systems.
Maps are Euclidean graphs; in Section 21.4, we examine shortest-
paths algorithms that take into account the vertex position when they
seek shortest paths.

Airline routes Route maps and schedules for airlines or other
transportation systems can be represented as networks for which var-
ious shortest-paths problems are of direct importance. For example,
we might wish to minimize the time that it takes to fly between two
cities or to minimize the cost of the trip. Costs in such networks might
involve functions of time, of money, or of other complicated resources.
For example, flights between two cities typically take more time in one
direction than the other because of prevailing winds. Air travelers also
know that the fare is not necessarily a simple function of the distance
between the cities—situations where it is cheaper to use a circuitous
route (or endure a stopover) than to take a direct flight are all too
common. Such complications can be handled by the basic shortest-
paths algorithms that we consider in this chapter; these algorithms are
designed to handle any positive costs.

The fundamental shortest-paths computations suggested by these
applications only scratch the surface of the applicability of shortest-
paths algorithms. In Section 21.6, we consider problems from applica-
tions areas that appear unrelated to these natural ones, in the context
of a discussion of reduction, a formal mechanism for proving relation-
ships among problems. We solve problems for these applications by
transforming them into abstract shortest-paths problems that do not
have the intuitive geometric feel of the problems just described. In-
deed, some applications lead us to consider shortest-paths problems in
networks with negative weights. Such problems can be far more diffi-
cult to solve than are problems where negative weights cannot occur.
Shortest-paths problems for such applications not only bridge a gap
between elementary algorithms and unsolved algorithmic challenges
but also lead us to powerful and general problem-solving mechanisms.

As withMST algorithms in Chapter 20, we often mix the weight,
cost, and distance metaphors. Again, we normally exploit the natural
appeal of geometric intuition even when working in more general
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settings with arbitrary edge weights; thus we refer to the “length”
of paths and edges when we should say “weight” and to one path as
“shorter” than another whenwe should say that it “has lower weight.”
We also might say that v is “closer” to s than w when we should say
that “the lowest-weight directed path from s to v has weight lower
than that of the lowest-weight directed path s to w,” and so forth.
This usage is inherent in the standard use of the term “shortest paths”
and is natural even when weights are not related to distances (see
Figure 21.2); however, when we expand our algorithms to handle
negative weights in Section 21.6, we must abandon such usage.

This chapter is organized as follows: After introducing the basic
underlying principles in Section 21.1, we introduce basic algorithms for
the single-source and all-pairs shortest-paths problems in Sections 21.2
and 21.3. Then, we consider acyclic networks (or, in a clash of short-
hand terms, weighted DAGs) in Section 21.4 and ways of exploiting
geometric properties for the source–sink problem in Euclidean graphs
in Section 21.5. We then cast off in the other direction to look at
more general problems in Sections 21.6 and 21.7, where we explore
shortest-paths algorithms, perhaps involving networks with negative
weights, as a high-level problem-solving tool.

Exercises

�21.1 Label the following points in the plane 0 through 5, respectively:

(1, 3) (2, 1) (6, 5) (3, 4) (3, 7) (5, 3).

Taking edge lengths to be weights, consider the network defined by the edges

1-0 3-5 5-2 3-4 5-1 0-3 0-4 4-2 2-3.

Draw the network and give the adjacency-lists structure that is built by Pro-
gram 20.5.

21.2 Show, in the style of Figure 21.3, all shortest paths in the network
defined in Exercise 21.1.

◦21.3 Develop a network class implementation that represents the reverse of
the weighted digraph defined by the edges inserted. Include a “reverse copy”
constructor that takes a graph as parameter and inserts all that graph’s edges
to build its reverse.

◦21.4 Show that shortest-paths computations in networks with nonnegative
weights on both vertices and edges (where the weight of a path is defined to
be the sum of the weights of the vertices and the edges on the path) can be
handled by building a network ADT that has weights on only the edges.
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21.5 Find a large network online—perhaps a geographic database with en-
tries for roads that connect cities or an airline or railroad schedule that contains
distances or costs.

21.6 Write a random-network generator for sparse networks based on Pro-
gram 17.12. To assign edge weights, define a random-edge–weight ADT and
write two implementations: one that generates uniformly distributed weights,
another that generates weights according to a Gaussian distribution. Write
client programs to generate sparse random networks for both weight distribu-
tions with a well-chosen set of values of V and E so that you can use them
to run empirical tests on graphs drawn from various distributions of edge
weights.

◦21.7 Write a random-network generator for dense networks based on Pro-
gram 17.13 and edge-weight generators as described in Exercise 21.6. Write
client programs to generate random networks for both weight distributions
with a well-chosen set of values of V and E so that you can use them to run
empirical tests on graphs drawn from these models.

21.8 Implement a representation-independent network client that builds a
network by taking edges with weights (pairs of integers between 0 and V − 1
with weights between 0 and 1) from standard input.

• 21.9 Write a program that generates V random points in the plane, then
builds a network with edges (in both directions) connecting all pairs of points
within a given distance d of one another (see Exercise 17.74), setting each
edge’s weight to the distance between the two points that that edge connects.
Determine how to set d so that the expected number of edges is E.

◦21.10 Write a base class and derived classes that implement ADTs for graphs
that may be undirected or directed graphs, weighted or unweighted, and dense
or sparse.

�21.11 The following table from a published road map purports to give the
length of the shortest routes connecting the cities. It contains an error. Correct
the table. Also, add a table that shows how to execute the shortest routes, in
the style of Figure 21.4.

Providence Westerly New London Norwich
Providence – 53 54 48
Westerly 53 – 18 101

New London 54 18 – 12
Norwich 48 101 12 –

21.1 Underlying Principles

Our shortest-paths algorithms are based on a simple operation known
as relaxation. We start a shortest-paths algorithm knowing only the
network’s edges and weights. As we proceed, we gather information
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Edge relaxation
These diagrams illustrate the relax-
ation operation that underlies our
single-source shortest-paths algo-
rithms. We keep track of the short-
est known path from the source s
to each vertex and ask whether an
edge v-w gives us a shorter path to
w. In the top example, it does not;
so we would ignore it. In the bot-
tom example, it does; so we would
update our data structures to in-
dicate that the best known way to
get to w from s is to go to v, then
take v-w.

about the shortest paths that connect various pairs of vertices. Our
algorithms all update this information incrementally, making new in-
ferences about shortest paths from the knowledge gained so far. At
each step, we test whether we can find a path that is shorter than some
known path. The term “relaxation” is commonly used to describe this
step, which relaxes constraints on the shortest path. We can think of
a rubber band stretched tight on a path connecting two vertices: A
successful relaxation operation allows us to relax the tension on the
rubber band along a shorter path.

Our algorithms are based on applying repeatedly one of two
types of relaxation operations:

• Edge relaxation: Test whether traveling along a given edge gives
a new shortest path to its destination vertex.

• Path relaxation: Test whether traveling through a given vertex
gives a new shortest path connecting two other given vertices.

Edge relaxation is a special case of path relaxation; we consider the
operations separately, however, because we use them separately (the
former in single-source algorithms; the latter in all-pairs algorithms).
In both cases, the prime requirement that we impose on the data
structures that we use to represent the current state of our knowledge
about a network’s shortest paths is that we can update them easily to
reflect changes implied by a relaxation operation.

First, we consider edge relaxation, which is illustrated in Fig-
ure 21.5. All the single-source shortest-paths algorithms that we con-
sider are based on this step: Does a given edge lead us to consider a
shorter path to its destination from the source?

The data structures that we need to support this operation are
straightforward. First, we have the basic requirement that we need
to compute the shortest-paths lengths from the source to each of the
other vertices. Our convention will be to store in a vertex-indexed
array wt the lengths of the shortest known paths from the source
to each vertex. Second, to record the paths themselves as we move
from vertex to vertex, our convention will be the same as the one
that we used for other graph-search algorithms that we examined in
Chapters 18 through 20: We use a vertex-indexed array spt to record
the last edge on a shortest path from the source to the indexed vertex.
These edges constitute a tree.
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With these data structures, implementing edge relaxation is a
straightforward task. In our single-source shortest-paths code, we use
the following code to relax along an edge e from v to w:

if (wt[w] > wt[v] + e.wt())
{ wt[w] = wt[v] + e.wt(); spt[w] = e; }

This code fragment is both simple and descriptive; we include it in
this form in our implementations, rather than defining relaxation as a
higher-level abstract operation.

Definition 21.2 Given a network and a designated vertex s, a
shortest-paths tree (SPT) for s is a subnetwork containing s and all
the vertices reachable from s that forms a directed tree rooted at s

such that every tree path is a shortest path in the network.

There may be multiple paths of the same length connecting a given pair
of nodes, so SPTs are not necessarily unique. In general, as illustrated
in Figure 21.2, if we take shortest paths from a vertex s to every vertex
reachable from s in a network and from the subnetwork induced by
the edges in the paths, we may get a DAG. Different shortest paths
connecting pairs of nodes may each appear as a subpath in some longer
path containing both nodes. Because of such effects, we generally are
content to compute any SPT for a given digraph and start vertex.

Our algorithms generally initialize the entries in the wt array
with a sentinel value. That value needs to be sufficiently small that the
addition in the relaxation test does not cause overflow and sufficiently
large that no simple path has a larger weight. For example, if edge
weights are between 0 and 1, we can use the value V. Note that we
have to take extra care to check our assumptions when using sentinels
in networks that could have negative weights. For example, if both
vertices have the sentinel value, the relaxation code just given takes
no action if e.wt is nonnegative (which is probably what we intend
in most implementations), but it will change wt[w] and spt[w] if the
weight is negative.

Our code always uses the destination vertex as the index to save
the SPT edges (spt[w].w() == w). For economy and consistency with
Chapters 17 through 19, we use the notation st[w] to refer to the
vertex spt[w].v() (in the text and particularly in the figures) to em-
phasize that the spt array is actually a parent-link representation of
the shortest-paths tree, as illustrated in Figure 21.6. We can compute
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Shortest-paths trees
The shortest paths from 0 to the
other nodes in this network are
0-1, 0-5-4-2, 0-5-4-3, 0-5-4,
and 0-5, respectively. These paths
define a spanning tree, which is
depicted in three representations
(gray edges in the network draw-
ing, oriented tree, and parent links
with weights) in the center. Links
in the parent-link representation
(the one that we typically com-
pute) run in the opposite direction
than links in the digraph, so we
sometimes work with the reverse
digraph. The spanning tree defined
by shortest paths from 3 to each
of the other nodes in the reverse is
depicted on the right. The parent-
link representation of this tree gives
the shortest paths from each of the
other nodes to 2 in the original
graph. For example, we can find
the shortest path 0-5-4-3 from 0
to 3 by following the links st[0] =
5, st[5] = 4, and st[4] = 3.

the shortest path from s to t by traveling up the tree from t to s; when
we do so, we are traversing edges in the direction opposite from their
direction in the network and are visiting the vertices on the path in
reverse order (t, st[t], st[st[t]], and so forth).

One way to get the edges on the path in order from source to
sink from an SPT is to use a stack. For example, the following code
prints a path from the source to a given vertex w:

EdgeStack P = new EdgeStack(G.V()); Edge e = st[v];
while (e != null) { P.push(e); e = st[e.()]); }
if (P.empty()) Out.print(P.top().v());
while (!P.empty())

{ Out.print("-" + P.top().w()); P.pop(); }

In a class implementation, we could use code similar to this to provide
clients with a array that contains the edges of the path.

If we simply want to print or otherwise process the edges on the
path, going all the way through the path in reverse order to get to
the first edge in this way may be undesirable. One approach to get
around this difficulty is to work with the reverse network, as illustrated
in Figure 21.6. We use reverse order and edge relaxation in single-
source problems because the SPT gives a compact representation of
the shortest paths from the source to all the other vertices, in an array
with just V entries.

Next, we consider path relaxation, which is the basis of some of
our all-pairs algorithms: Does going through a given vertex lead us to
a shorter path that connects two other given vertices? For example,
suppose that, for three vertices s, x, and t, we wish to know whether
it is better to go from s to x and then from x to t or to go from s to t

without going through x. For straight-line connections in a Euclidean
space, the triangle inequality tells us that the route through x cannot
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Figure 21.7
Path relaxation
These diagrams illustrate the relax-
ation operation that underlies our
all-pairs shortest-paths algorithms.
We keep track of the best known
path between all pairs of vertices
and ask whether a vertex i is evi-
dence that the shortest known path
from s to t could be improved. In
the top example, it is not; in the
bottom example, it is. Whenever
we encounter a vertex i such that
the length of the shortest known
path from s to i plus the length
of the shortest known path from i
to t is smaller than the length of
the shortest known path from s to
t, then we update our data struc-
tures to indicate that we now know
a shorter path from s to t (head
towards i first).

be shorter than the direct route from s to t, but for paths in a network,
it could be (see Figure 21.7). To determine which, we need to know
the lengths of paths from s to x, x to t, and of those from s to t (that do
not include x). Then, we simply test whether or not the sum of the first
two is less than the third; if it is, we update our records accordingly.

Path relaxation is appropriate for all-pairs solutions where we
maintain the lengths of the shortest paths that we have encountered
between all pairs of vertices. Specifically, in all-pairs shortest-paths
code of this kind, we maintain an array of arrays d such that d[s][t]
is the shortest-path length from s to t, and we also maintain an array
of arrays p such that p[s][t] is the next vertex on a shortest path
from s to t. We refer to the former as the distances matrix and the
latter as the paths matrix. Figure 21.8 shows the two matrices for our
example network. The distances matrix is a prime objective of the
computation, and we use the paths matrix because it is clearly more
compact than, but carries the same information as, the full list of paths
that is illustrated in Figure 21.3.

In terms of these data structures, path relaxation amounts to the
following code:

if (d[s][t] > d[s][x] + d[x][t])
{ d[s][t] = d[s][x] + d[x][t]; p[s][t] = p[s][x]; }

Like edge relaxation, this code reads as a restatement of the informal
description that we have given, so we use it directly in our implemen-
tations. More formally, path relaxation reflects the following:

Property 21.1 If a vertex x is on a shortest path from s to t, then
that path consists of a shortest path from s to x followed by a shortest
path from x to t.

Proof : By contradiction. We could use any shorter path from s to x

or from x to t to build a shorter path from s to t.

We encountered the path-relaxation operation when we dis-
cussed transitive-closure algorithms, in Section 19.3. If the edge and
path weights are either 1 or infinite (that is, a path’s weight is 1 only
if all that path’s edges have weight 1), then path relaxation is the op-
eration that we used in Warshall’s algorithm (if we have a path from
s to x and a path from x to t, then we have a path from s to t). If
we define a path’s weight to be the number of edges on that path, then
Warshall’s algorithm generalizes to Floyd’s algorithm for finding all
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Figure 21.8
All shortest paths
The two matrices on the right are
compact representations of all the
shortest paths in the sample net-
work on the left, containing the
same information in the exhaus-
tive list in Figure 21.3. The dis-
tances matrix on the left contains
the shortest-path length: The en-
try in row s and column t is the
length of the shortest path from s
to t. The paths matrix on the right
contains the information needed to
execute the path: The entry in row
s and column t is the next vertex
on the path from s to t.

shortest paths in unweighted digraphs; it further generalizes to apply
to networks, as we see in Section 21.3.

From a mathematician’s perspective, it is important to note that
these algorithms all can be cast in a general algebraic setting that unifies
and helps us to understand them. From a programmer’s perspective,
it is important to note that we can implement each of these algorithms
using an abstract + operator (to compute path weights from edge
weights) and an abstract < operator (to compute the minimum value
in a set of path weights), both solely in the context of the relaxation
operation (see Exercises 19.55 and 19.56).

Property 21.1 implies that a shortest path from s to t contains
shortest paths from s to every other vertex along the path to t. Most
shortest-paths algorithms also compute shortest paths from s to every
vertex that is closer to s than to t (whether or not the vertex is on
the path from s to t), although that is not a requirement (see Exer-
cise 21.18). Solving the source–sink shortest-paths problem with such
an algorithmwhen t is the vertex that is farthest from s is equivalent to
solving the single-source shortest-paths problem for s. Conversely, we
could use a solution to the single-source shortest-paths problem from
s as a method for finding the vertex that is farthest from s.

The paths matrix that we use in our implementations for the
all-pairs problem is also a representation of the shortest-paths trees
for each of the vertices. We defined p[s][t] to be the vertex that
follows s on a shortest path from s to t. It is thus the same as the
vertex that precedes s on the shortest path from t to s in the reverse
network. In other words, column t in the paths matrix of a network
is a vertex-indexed array that represents the SPT for vertex t in its
reverse. Conversely, we can build the paths matrix for a network by
filling each column with the vertex-indexed array representation of the
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Figure 21.9
All shortest paths in a net-

work
These diagrams depict the SPTs
for each vertex in the reverse of
the network in Figure 21.8 (0 to
5, top to bottom), as network sub-
trees (left), oriented trees (center),
and parent-link representation in-
cluding a vertex-indexed array for
path length (right). Putting the ar-
rays together to form path and dis-
tance matrices (where each array
becomes a column) gives the solu-
tion to the all-pairs shortest-paths
problem illustrated in Figure 21.8.
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SPT for the appropriate vertex in the reverse. This correspondence is
illustrated in Figure 21.9.

In summary, relaxation gives us the basic abstract operations
that we need to build our shortest paths algorithms. The primary
complication is the choice of whether to provide the first or final edge
on the shortest path. For example, single-source algorithms are more
naturally expressed by providing the final edge on the path so that
we need only a single vertex-indexed array to reconstruct the path,
since all paths lead back to the source. This choice does not present a
fundamental difficulty because we can either use the reverse graph as
warranted or provide methods that hide this difference from clients.
For example, we could specify amethod in the interface that returns the
edges on the shortest path in an array (see Exercises 21.15 and 21.16).

Accordingly, for simplicity, all of our implementations in this
chapter include a method dist that returns a shortest-path length and
either a method path that returns the first edge on a shortest path or
a method pathR that returns the final edge on a shortest path. For
example, our single-source implementations that use edge relaxation
typically implement these methods as follows:

Edge pathR(int w) { return spt[w]; }
double dist(int v) { return wt[v]; }

Similarly, our all-paths implementations that use path relaxation typi-
cally implement these methods as follows:

Edge path(int s, int t) { return p[s][t]; }
double dist(int s, int t) { return d[s][t]; }

In some situations, it might be worthwhile to build interfaces that
standardize on one or the other or both of these options; we choose
the most natural one for the algorithm at hand.

Exercises

�21.12 Draw the SPT from 0 for the network defined in Exercise 21.1 and for
its reverse. Give the parent-link representation of both trees.

21.13 Consider the edges in the network defined in Exercise 21.1 to be undi-
rected edges such that each edge corresponds to equal-weight edges in both
directions in the network. Answer Exercise 21.12 for this corresponding
network.

�21.14 Change the direction of edge 0-2 in Figure 21.2. Draw two different
SPTs that are rooted at 2 for this modified network.
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21.15 Write a method that uses the pathR method from a single-source im-
plementation to put references to the edges on the path from the source v to a
given vertex w in a Java Vector.

21.16 Write a method that uses the path method from an all-paths imple-
mentation to put references to the edges on the path from a given vertex v to
another given vertex w in a Java Vector.

21.17 Write a program that uses your method from Exercise 21.16 to print
out all of the paths, in the style of Figure 21.3.

21.18 Give an example that shows how we could know that a path from s
to t is shortest without knowing the length of a shorter path from s to x for
some x.

21.2 Dijkstra’s Algorithm

In Section 20.3, we discussed Prim’s algorithm for finding theminimum
spanning tree (MST) of a weighted undirected graph: We build it one
edge at a time, always taking next the shortest edge that connects a
vertex on the MST to a vertex not yet on the MST. We can use a nearly
identical scheme to compute an SPT. We begin by putting the source
on the SPT; then, we build the SPT one edge at a time, always taking
next the edge that gives a shortest path from the source to a vertex not
on the SPT. In other words, we add vertices to the SPT in order of their
distance (through the SPT) to the start vertex. This method is known
as Dijkstra’s algorithm.

As usual, we need to make a distinction between the algorithm
at the level of abstraction in this informal description and various
concrete implementations (such as Program 21.1) that differ primar-
ily in graph representation and priority-queue implementations, even
though such a distinction is not always made in the literature. We
shall consider other implementations and discuss their relationships
with Program 21.1 after establishing that Dijkstra’s algorithm cor-
rectly performs the single-source shortest-paths computation.

Property 21.2 Dijkstra’s algorithm solves the single-source shortest-
paths problem in networks that have nonnegative weights.

Proof : Given a source vertex s, we have to establish that the tree path
from the root s to each vertex x in the tree computed by Dijkstra’s
algorithm corresponds to a shortest path in the graph from s to x. This
fact follows by induction. Assuming that the subtree so far computed
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has the property, we need only to prove that adding a new vertex x

adds a shortest path to that vertex. But all other paths to x must begin
with a tree path followed by an edge to a vertex not on the tree. By
construction, all such paths are longer than the one from s to x that is
under consideration.

The same argument shows that Dijkstra’s algorithm solves the
source–sink shortest-paths problem, if we start at the source and stop
when the sink comes off the priority queue.

The proof breaks down if the edge weights could be negative,
because it assumes that a path’s length does not decrease when we add
more edges to the path. In a network with negative edge weights, this
assumption is not valid because any edge that we encounter might lead
to some tree vertex and might have a sufficiently large negative weight
to give a path to that vertex shorter than the tree path. We consider
this defect in Section 21.7 (see Figure 21.28).

Figure 21.10 shows the evolution of an SPT for a sample graph
when computed with Dijkstra’s algorithm; Figure 21.11 shows an
oriented drawing of a larger SPT tree. Although Dijkstra’s algorithm
differs from Prim’s MST algorithm in only the choice of priority, SPT
trees are different in character fromMSTs. They are rooted at the start
vertex and all edges are directed away from the root, whereasMSTs are
unrooted and undirected. We sometimes represent MSTs as directed,
rooted trees when we use Prim’s algorithm, but such structures are
still different in character from SPTs (compare the oriented drawing
in Figure 20.9 with the drawing in Figure 21.11). Indeed, the nature
of the SPT somewhat depends on the choice of start vertex as well, as
depicted in Figure 21.12.

Dijkstra’s original implementation, which is suitable for dense
graphs, is precisely like Prim’s MST algorithm. Specifically, we simply
change the assignment of the priority P in Program 20.6 from

P = e.wt()

(the edge weight) to

P = wt[v] + e.wt()

(the distance from the source to the edge’s destination). This change
gives the classical implementation of Dijkstra’s algorithm: We grow
an SPT one edge at a time, each time updating the distance to the
tree of all vertices adjacent to its destination while at the same time
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Figure 21.10
Dijkstra’s algorithm
This sequence depicts the construc-
tion of a shortest-paths spanning
tree rooted at vertex 0 by Dijkstra’s
algorithm for a sample network.
Thick black edges in the network
diagrams are tree edges, and thick
gray edges are fringe edges. Ori-
ented drawings of the tree as it
grows are shown in the center, and
a list of fringe edges is given on
the right.

The first step is to add 0 to
the tree and the edges leaving it,
0-1 and 0-5, to the fringe (top).
Second, we move the shortest of
those edges, 0-5, from the fringe
to the tree and check the edges
leaving it: The edge 5-4 is added
to the fringe and the edge 5-1 is
discarded because it is not part of
a shorter path from 0 to 1 than the
known path 0-1 (second from top).
The priority of 5-4 on the fringe is
the length of the path from 0 that it
represents, 0-5-4. Third, we move
0-1 from the fringe to the tree, add
1-2 to the fringe, and discard 1-4
(third from top). Fourth, we move
5-4 from the fringe to the tree, add
4-3 to the fringe, and replace 1-2
with 4-2 because 0-5-4-2 is a
shorter path than 0-1-2 (fourth
from top). We keep at most one
edge to any vertex on the fringe,
choosing the one on the shortest
path from 0. We complete the
computation by moving 4-2 and
then 4-3 from the fringe to the tree
(bottom).
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Figure 21.11
Shortest-paths spanning tree
This figure illustrates the progress
of Dijkstra’s algorithm in solving
the single-source shortest-paths
problem in a random Euclidean
near-neighbor digraph (with di-
rected edges in both directions cor-
responding to each line drawn), in
the same style as Figures 18.13,
18.24, and 20.9. The search tree is
similar in character to BFS because
vertices tend to be connected to
one another by short paths, but it
is slightly deeper and less broad
because distances lead to slightly
longer paths than path lengths.

checking all the nontree vertices to find an edge to move to the tree
whose destination vertex is a nontree vertex of minimal distance from
the source.

Property 21.3 With Dijkstra’s algorithm, we can find any SPT in a
dense network in linear time.

Proof : As for Prim’s MST algorithm, it is immediately clear, from
inspection of the code of Program 20.6, that the nested loops mean
that the running time is proportional to V 2, which is linear for dense
graphs.

For sparse graphs, we can do better by using a linked-list rep-
resentation and a priority queue. Implementing this approach sim-
ply amounts to viewing Dijkstra’s algorithm as a generalized graph-
searching method that differs from depth-first search (DFS), from
breadth-first search (BFS), and from Prim’s MST algorithm in only
the rule used to add edges to the tree. As in Chapter 20, we keep
edges that connect tree vertices to nontree vertices on a generalized
queue called the fringe, use a priority queue to implement the gener-
alized queue, and provide for updating priorities so as to encompass
DFS, BFS, and Prim’s algorithm in a single implementation (see Sec-
tion 20.3). This priority-first search (PFS) scheme also encompasses
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Dijkstra’s algorithm. That is, changing the assignment of P in Pro-
gram 20.7 to

P = wt[v] + e.wt()

(the distance from the source to the edge’s destination) gives an imple-
mentation of Dijkstra’s algorithm that is suitable for sparse graphs.

Program 21.1 is an alternative PFS implementation for sparse
graphs that is slightly simpler than Program 20.7 and that directly
matches the informal description of Dijkstra’s algorithm given at the
beginning of this section. It differs from Program 20.7 in that it
initializes the priority queue with all the vertices in the network and
maintains the queue with the aid of a sentinel value for those vertices
that are neither on the tree nor on the fringe (unseen vertices with
sentinel values); in contrast, Program 20.7 keeps on the priority queue
only those vertices that are reachable by a single edge from the tree.
Keeping all the vertices on the queue simplifies the code but can incur
a small performance penalty for some graphs (see Exercise 21.31).

The general results that we considered concerning the perfor-
mance of priority-first search (PFS) in Chapter20 give us specific infor-
mation about the performance of these implementations of Dijkstra’s
algorithm for sparse graphs (Program 21.1 and Program 20.7, suit-
ably modified). For reference, we restate those results in the present
context. Since the proofs do not depend on the priority function, they
apply without modification. They are worst-case results that apply
to both programs, although Program 20.7 may be more efficient for
many classes of graphs because it maintains a smaller fringe.

Property 21.4 For all networks and all priority functions, we can
compute a spanning tree with PFS in time proportional to the time
required for V insert, V delete the minimum, and E decrease key
operations in a priority queue of size at most V .

Proof : This fact is immediate from the priority-queue–based imple-
mentations in Program 20.7 or Program 21.1. It represents a conser-
vative upper bound because the size of the priority queue is often much
smaller than V , particularly for Program 20.7.

Property 21.5 With a PFS implementation of Dijkstra’s algorithm
that uses a heap for the priority-queue implementation, we can com-
pute any SPT in time proportional to E lg V .
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Program 21.1 Dijkstra’s algorithm (priority-first search)

This class implements a single-source shortest-paths ADT with linear-
time preprocessing, private data that takes space proportional to V , and
constant-time member methods that give the length of the shortest path
and the final vertex on the path from the source to any given vertex.
The constructor is an implementation of Dijkstra’s algorithm that uses
a priority queue of vertices (in order of their distance from the source)
to compute an SPT. The priority-queue interface is the same one used in
Program 20.7 and implemented in Program 20.10.

The constructor is also a generalized graph search that implements
other PFS algorithms with other assignments to the priority P (see text).
The statement to reassign the weight of tree vertices to 0 is needed for a
general PFS implementation but not for Dijkstra’s algorithm, since the
priorities of the vertices added to the SPT are nondecreasing.

class GraphSPT

{ private double[] wt;

private Edge[] spt;

GraphSPT(Graph G, int s)

{ int V = G.V();
wt = new double[V]; spt = new Edge[V];

for (int v = 0; v < V; v++) wt[v] = maxWT;

doublePQi pQ = new doublePQi(V, wt);

for (int v = 0; v < V; v++) pQ.insert(v);

wt[s] = 0.0; pQ.lower(s);

while (!pQ.empty())

{ int v = pQ.getmin(); // wt[v] = 0.0;

if (v != s && spt[v] == null) return;

AdjList A = G.getAdjList(v);

for (Edge e = A.beg(); !A.end(); e = A.nxt())

{ int w = e.other(v);

double P = wt[v] + e.wt();

if (P < wt[w])

{ wt[w] = P; pQ.lower(w); spt[w] = e; }
}

}

}

Edge pathR(int v) { return spt[v]; }

double dist(int v) { return wt[v]; }

}
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Figure 21.12
SPT examples
These three examples show grow-
ing SPTs for three different source
locations: left edge (top), upper left
corner (center), and center (bot-
tom).

Proof : This result is a direct consequence of Property 21.4.

Property 21.6 Given a graph with V vertices and E edges, let d

denote the density E/V . If d < 2, then the running time of Dijkstra’s
algorithm is proportional to V lg V . Otherwise, we can improve the
worst-case running time by a factor of lg(E/V ), to O(E lgd V ) (which
is linear if E is at least V 1+ε) by using a �E/V �-ary heap for the priority
queue.

Proof : This result directly mirrors Property 20.12 and the multiway-
heap priority-queue implementation discussed directly thereafter.
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Table 21.1 Priority-first search algorithms

These four classical graph-processing algorithms all can be implemented
with PFS, a generalized priority-queue–based graph search that builds
graph spanning trees one edge at a time. Details of search dynamics
depend upon graph representation, priority-queue implementation, and
PFS implementation; but the search trees generally characterize the var-
ious algorithms, as illustrated in the figures referenced in the fourth
column.

algorithm priority result Figure

DFS reverse preorder recursion tree 18.13

BFS preorder SPT (edges) 18.24

Prim edge weight MST 20.8

Dijkstra path weight SPT 21.9

Table 21.1 summarizes pertinent information about the four ma-
jor PFS algorithms that we have considered. They differ in only the
priority function used, but this difference leads to spanning trees that
are entirely different from one another in character (as required). For
the example in the figures referred to in the table (and for many other
graphs), the DFS tree is tall and thin, the BFS tree is short and fat, the
SPT is like the BFS tree but neither quite as short nor quite as fat, and
the MST is neither short and fat nor tall and thin.

We have also considered four different implementations of PFS.
The first is the classical dense-graph implementation that encompasses
Dijkstra’s algorithm and Prim’s MST algorithm (Program 20.6); the
other three are sparse-graph implementations that differ in priority-
queue contents:

• Fringe edges (Program 18.10)
• Fringe vertices (Program 20.7)
• All vertices (Program 21.1)

Of these, the first is primarily of pedagogical value, the second is the
most refined of the three, and the third is perhaps the simplest. This
framework already describes 16 different implementations of classical
graph-search algorithms—when we factor in different priority-queue
implementations, the possibilities multiply further. This proliferation
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Table 21.2 Cost of implementations of Dijkstra’s algorithm

This table summarizes the cost (worst-case running time) of various im-
plementations of Dijkstra’s algorithm. With appropriate priority-queue
implementations, the algorithm runs in linear time (time proportional to
V 2 for dense networks, E for sparse networks), except for networks that
are extremely sparse.

algorithm worst-case cost comment

classical V 2 optimal for dense graphs

PFS, full heap E lg V simplest implementation

PFS, fringe heap E lg V conservative upper bound

PFS, d-heap E lgd V linear unless extremely sparse

of networks, algorithms, and implementations underscores the util-
ity of the general statements about performance in Properties 21.4
through 21.6, which are also summarized in Table 21.2.

As is true of MST algorithms, actual running times of shortest-
paths algorithms are likely to be lower than these worst-case time
bounds suggest, primarily because most edges do not necessitate de-
crease key operations. In practice, except for the sparsest of graphs,
we regard the running time as being linear.

The name Dijkstra’s algorithm is commonly used to refer both
to the abstract method of building an SPT by adding vertices in or-
der of their distance from the source and to its implementation as
the V 2 algorithm for the adjacency-matrix representation, because Di-
jkstra presented both in his 1959 paper (and also showed that the
same approach could compute the MST). Performance improvements
for sparse graphs are dependent on later improvements in ADT tech-
nology and priority-queue implementations that are not specific to
the shortest-paths problem. Improved performance of Dijkstra’s al-
gorithm is one of the most important applications of that technology
(see reference section). As with MSTs, we use terminology such as
the “PFS implementation of Dijkstra’s algorithm using d-heaps” to
identify specific combinations.


