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Shortest Paths

EVERY PATH IN a weighted digraph has an associated path weight,
the value of which is sum of the weights of that path’s edges. This

essential measure allows us to formulate such problems as “find the
lowest-weight path between two given vertices.” These shortest-paths
problems are the topic of this chapter. Not only are shortest-paths
problems intuitive for many direct applications, but they also take us
into a powerful and general realm where we seek efficient algorithms to
solve general problems that can encompass a broad variety of specific
applications.

Several of the algorithms that we consider in this chapter re-
late directly to various algorithms that we examined in Chapters 17
through 20. Our basic graph-search paradigm applies immediately,
and several of the specific mechanisms that we used in Chapters 17
and 19 to address connectivity in graphs and digraphs provide the
basis for us to solve shortest-paths problems.

For economy, we refer to weighted digraphs as networks. Fig-
ure 21.1 shows a sample network, with standard representations. It
is a simple matter to derive the basic ADT functions that we need
to process networks from corresponding functions for the undirected
representations that we considered in Section 20.1—we just keep one
representation of each edge, precisely as we did when deriving digraph
representations in Chapter 19 from the undirected graph representa-
tions in Chapter 17 (see Programs 20.1 and 20.2). In applications or
systems for which we need all types of graphs, it is a textbook exercise
in software engineering to define a network ADT from which ADTs
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Figure 21.1
Sample network and represen-

tations
This network (weighted digraph)
is shown in four representations:
list of edges, drawing, adjacency
matrix, and adjacency lists (left to
right). As we did for MST algo-
rithms, we often use edge weights
that are proportional to their
lengths in the drawing, but we
do not insist on this rule because
most shortest-paths algorithms han-
dle arbitrary nonnegative weights
(negative weights do present spe-
cial challenges). The adjacency-
matrix and adjacency-lists repre-
sentations include weights with
each edge representation, as in
weighted undirected graphs. The
adjacency matrix is not symmet-
ric, and the adjacency lists contain
one node for each edge (as in un-
weighted digraphs). Nonexistent
edges are represented by a sentinel
value in the matrix (blank in the
figure) and are not present at all
in the lists. Self-loops of length 0
are present because they simplify
our implementations of shortest-
paths algorithms. They are omit-
ted from the list of edges at left for
economy and to indicate the typ-
ical scenario where we add them
by convention when we create an
adjacency-matrix or adjacency-lists
representation.

for the unweighted undirected graphs of Chapters 17 and 18, the un-
weighted digraphs of Chapter 19, or the weighted undirected graphs
of Chapter 20 can be derived (see Exercise 21.9).

When we work with networks, it is generally convenient to keep
self-loops in all the representations. This convention allows algorithms
the flexibility to use a sentinel maximum-value weight to indicate that a
vertex cannot be reached from itself. In our examples, we use self-loops
of weight 0, although positive-weight self-loops certainly make sense
in many applications. Many applications also call for parallel edges,
perhaps with differing weights. As we mentioned in Section 20.1,
various options for ignoring or combining such edges are appropriate
in various different applications. In this chapter, for simplicity, none of
our examples use parallel edges, and we do not allow parallel edges in
the adjacency-matrix representation; we also do not check for parallel
edges or remove them in adjacency lists.

All the connectivity properties of digraphs that we considered in
Chapter 19 are relevant in networks. In that chapter, we wished to
know whether it is possible to get from one vertex to another; in this
chapter, we take weights into consideration—we wish to find the best
way to get from one vertex to another.

Definition 21.1 A shortest path between two vertices s and t in a
network is a directed simple path from s to t with the property that
no other such path has a lower weight.

This definition is succinct, but its brevity masks points worth
examining. First, if t is not reachable from s, there is no path at all,
and therefore there is no shortest path. For convenience, the algorithms
that we consider often treat this case as equivalent to one in which there
exists an infinite-weight path from s to t. Second, as we did for MST
algorithms, we use networks where edge weights are proportional to
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Figure 21.2
Shortest-path trees
A shortest-path tree (SPT) defines
shortest paths from the root to
other vertices (see Definition 21.2).
In general, different paths may
have the same length, so there
may be multiple SPTs defining the
shortest paths from a given vertex.
In the example network shown at
left, all shortest paths from 0 are
subgraphs of the DAG shown to
the right of the network. A tree
rooted at 0 spans this DAG if and
only if it is an SPT for 0. The two
trees at right are such trees.

edge lengths in examples, but the definition has no such requirement
and our algorithms (other than the one in Section 21.5) do not make
this assumption. Indeed, shortest-paths algorithms are at their best
when they discover counterintuitive shortcuts, such as a path between
two vertices that passes through several other vertices but has total
weight smaller than that of a direct edge connecting those vertices.
Third, there may be multiple paths of the same weight from one vertex
to another; we typically are content to find one of them. Figure 21.2
shows an example with general weights that illustrates these points.

The restriction in the definition to simple paths is unnecessary
in networks that contain edges that have nonnegative weight, because
any cycle in a path in such a network can be removed to give a path
that is no longer (and is shorter unless the cycle comprises zero-weight
edges). But when we consider networks with edges that could have
negative weight, the need for the restriction to simple paths is readily
apparent: Otherwise, the concept of a shortest path is meaningless if
there is a cycle in the network that has negative weight. For example,
suppose that the edge 3-5 in the network in Figure 21.1 were to have
weight -.38, and edge 5-1were to have weight -.31. Then, the weight
of the cycle 1-4-3-5-1 would be .32 + .36 - .38 - .31 = -.01,
and we could spin around that cycle to generate arbitrarily short paths.
Note carefully that, as is true in this example, it is not necessary for
all the edges on a negative-weight cycle to be of negative weight; what
counts is the sum of the edge weights. For brevity, we use the term
negative cycle to refer to directed cycles whose total weight is negative.

In the definition, suppose that some vertex on a path from s to t
is also on a negative cycle. In this case, the existence of a (nonsimple)
shortest path from s to t would be a contradiction, because we could
use the cycle to construct a path that had a weight lower than any
given value. To avoid this contradiction, we include in the definition
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the restriction to simple paths, so that the concept of a shortest path
is well defined in any network. However, we do not consider negative
cycles in networks until Section 21.7, because, as we see there, they
present a truly fundamental barrier to the solution of shortest-paths
problems.

To find shortest paths in a weighted undirected graph, we build
a network with the same vertices and with two edges (one in each
direction) corresponding to each edge in the graph. There is a one-to-
one correspondence between simple paths in the network and simple
paths in the graph, and the costs of the paths are the same; so shortest-
paths problems are equivalent. Indeed, we build precisely such a net-
work when we build the standard adjacency-lists or adjacency-matrix
representation of a weighted undirected graph (see, for example, Fig-
ure 20.3). This construction is not helpful if weights can be negative,
because it gives negative cycles in the network, and we do not know
how to solve shortest-paths problems in networks that have negative
cycles (see Section 21.7). Otherwise, the algorithms for networks that
we consider in this chapter also work for weighted undirected graphs.

In certain applications, it is convenient to have weights on vertices
instead of, or in addition to, weights on edges; and we might also
consider more complicated problems where both the number of edges
on the path and the overall weight of the path play a role. We can
handle such problems by recasting them in terms of edge-weighted
networks (see, for example, Exercise 21.3) or by slightly extending the
basic algorithms (see, for example, Exercise 21.52).

Because the distinction is clear from the context, we do not in-
troduce special terminology to distinguish shortest paths in weighted
graphs from shortest paths in graphs that have no weights (where a
path’s weight is simply its number of edges (see Section 17.7)). The
usual nomenclature refers to (edge-weighted) networks, as used in this
chapter, since the special cases presented by undirected or unweighted
graphs are handled easily by algorithms that process networks (see,
for example, Exercise 21.9).

We are interested in the same basic problems that we defined for
undirected and unweighted graphs in Section 18.7. We restate them
here, noting that Definition 21.1 implicitly generalizes them to take
weights into account in networks.
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Figure 21.3
All shortest paths
This table gives all the shortest
paths in the network of Figure 21.1
and their lengths. This network is
strongly connected, so there ex-
ist paths connecting each pair of
vertices.

The goal of a source-sink
shortest-path algorithm is to com-
pute one of the entries in this ta-
ble; the goal of a single-source
shortest-paths algorithm is to com-
pute one of the rows in this ta-
ble; and the goal of an all-pairs
shortest-paths algorithm is to com-
pute the whole table. Generally,
we use more compact representa-
tions, which contain essentially the
same information and allow clients
to trace any path in time propor-
tional to its number of edges (see
Figure 21.8).

Source–sink shortest path Given a start vertex s and a finish
vertex t, find a shortest path in the graph from s to t. We refer to the
start vertex as the source and to the finish vertex as the sink, except
in contexts where this usage conflicts with the definition of sources
(vertices with no incoming edges) and sinks (vertices with no outgoing
edges) in digraphs.

Single-source shortest paths Given a start vertex s, find shortest
paths from s to each other vertex in the graph.

All-pairs shortest paths Find shortest paths connecting each
pair of vertices in the graph. For brevity, we sometimes use the term
all shortest paths to refer to this set of V 2 paths.

If there are multiple shortest paths connecting any given pair
of vertices, we are content to find any one of them. Since paths
have varying number of edges, our implementations provide ADT
functions that allow clients to trace paths in time proportional to the
paths’ lengths. Any shortest path also implicitly gives us the shortest-
path length, but our implementations explicitly provide lengths. In
summary, to be precise, when we say “find a shortest path” in the
problem statements just given, we mean “compute the shortest-path
length and a way to trace a specific path in time proportional to that
path’s length.”

Figure 21.3 illustrates shortest paths for the example network in
Figure 21.1. In networks with V vertices, we need to specify V paths
to solve the single-source problem, and to specify V 2 paths to solve
the all-pairs problem. In our implementations, we use a representation
more compact than these lists of paths; we first noted it in Section 18.7,
and we consider it in detail in Section 21.1.

In modern implementations, we build our algorithmic solutions
to these problems into ADT implementations that allow us to build
efficient client programs that can solve a variety of practical graph-
processing problems. For example, as we see in Section 21.3, an
attractive way to package a solution to the all-pairs shortest-paths
problem is as a preprocessing function in an ADT interface that pro-
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Distances and paths
Road maps typically contain dis-
tance tables like the one in the
center, for this tiny subset of French
cities connected by highways as
shown in the graph at the top.
Though rarely found in maps, a
table like the one at the bottom
would also be useful, as it tells
what signs to follow to execute
the shortest path. For example,
to decide how to get from Paris
to Nice, we can check the table,
which says to begin by following
signs to Lyon.

vides a constant-time shortest-path query implementation. We might
also provide a preprocessing function to solve single-source problems,
so that clients that need to compute shortest paths from a specific
vertex (or a small set of them) can avoid the expense of computing
shortest paths for other vertices. Careful consideration of these is-
sues and proper use of the algorithms that we examine can mean the
difference between an efficient solution to a practical problem and a
solution that is so costly that no client could afford to use it.

Shortest-paths problems arise in various guises in numerous ap-
plications. Many of the applications appeal immediately to geometric
intuition, but many others involve arbitrary cost structures. As we did
with minimum spanning trees (MSTs) in Chapter 20, we sometimes
take advantage of geometric intuition to help develop an understand-
ing of algorithms that solve the problems, but stay cognizant that our
algorithms operate properly in more general settings. In Section 21.5,
we do consider specialized algorithms for Euclidean networks. More
important, in Sections 21.6 and 21.7, we see that the basic algorithms
are effective for numerous applications where networks represent an
abstract model of the computation.

Road maps Tables that give distances between all pairs of
major cities are a prominent feature of many road maps. We presume
that the map maker took the trouble to be sure that the distances
are the shortest ones, but our assumption is not necessarily always
valid (see, for example, Exercise 21.10). Generally, such tables are for
undirected graphs that we should treat as networks with edges in both
directions corresponding to each road, though we might contemplate
handling one-way streets for city maps and some similar applications.
As we see in Section 21.3, it is not difficult to provide other useful
information, such as a table that tells how to execute the shortest
paths (see Figure 21.4). In modern applications, embedded systems
provide this kind of capability in cars and transportation systems.
Maps are Euclidean graphs; in Section 21.4, we examine shortest-
paths algorithms that take into account the vertex position when they
seek shortest paths.

Airline routes Route maps and schedules for airlines or other
transportation systems can be represented as networks for which var-
ious shortest-paths problems are of direct importance. For example,
we might wish to minimize the time that it takes to fly between two
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cities, or to minimize the cost of the trip. Costs in such networks might
involve functions of time, of money, or of other complicated resources.
For example, flights between two cities typically take more time in one
direction than the other, because of prevailing winds. Air travelers also
know that the fare is not necessarily a simple function of the distance
between the cities—situations where it is cheaper to use a circuitous
route (or endure a stopover) than to take a direct flight are all too
common. Such complications can be handled by the basic shortest-
paths algorithms that we consider in this chapter; these algorithms are
designed to handle any positive costs.

The fundamental shortest-paths computations suggested by these
applications only scratch the surface of the applicability of shortest-
paths algorithms. In Section 21.6, we consider problems from applica-
tions areas that appear unrelated to these natural ones, in the context
of a discussion of reduction, a formal mechanism for proving relation-
ships among problems. We solve problems for these applications by
transforming them into abstract shortest-paths problems that do not
have the intuitive geometric feel of the problems just described. In-
deed, some applications lead us to consider shortest-paths problems in
networks with negative weights. Such problems can be far more diffi-
cult to solve than are problems where negative weights cannot occur.
Shortest-paths problems for such applications not only bridge a gap
between elementary algorithms and unsolved algorithmic challenges,
but also lead us to powerful and general problem-solving mechanisms.

As we did with MST algorithms in Chapter 20, we often mix
the weight, cost, and distance metaphors. Again, we normally ex-
ploit the natural appeal of geometric intuition even when working in
more general settings with arbitrary edge weights; thus we refer to
the “length” of paths and edges when we should say “weight” and to
one path as “shorter” than another when we should say that it “has
lower weight.” We also might say that v is “closer” to s than w when
we should say that “the lowest-weight directed path from s to v has
weight lower than that of the lowest-weight directed path s to w,”
and so forth. This usage is inherent in the standard use of the term
“shortest paths” and is natural even when weights are not related to
distances (see Figure 21.2); however, when we expand our algorithms
to handle negative weights in Section 21.6, we must abandon such
usage.
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This chapter is organized as follows. After introducing the basic
underlying principles in Section 21.1, we introduce basic algorithms for
the single-source and all-pairs shortest-paths problems in Sections 21.2
and 21.3. Then, we consider acyclic networks (or, in a clash of short-
hand terms, weighted DAGs) in Section 21.4 and ways of exploiting
geometric properties for the source–sink problem in Euclidean graphs
in Section 21.5. We then cast off in the other direction to look at
more general problems in Sections 21.6 and 21.7, where we explore
shortest-paths algorithms, perhaps involving networks with negative
weights, as a high-level problem-solving tools.

Exercises

.21.1 Label the following points in the plane 0 through 5, respectively:

(1, 3) (2, 1) (6, 5) (3, 4) (3, 7) (5, 3).

Taking edge lengths to be weights, consider the network defined by the edges

1-0 3-5 5-2 3-4 5-1 0-3 0-4 4-2 2-3.

Draw the network and give the adjacency-lists structure that is built by Pro-
gram 17.8, modified as appropriate to process networks.

21.2 Show, in the style of Figure 21.3, all shortest paths in the network
defined in Exercise 21.1.

◦21.3 Show that shortest-paths computations in networks with nonnegative
weights on both vertices and edges (where the weight of a path is defined to
be the sum of the weights of the vertices and the edges on the path) can be
handled by building a network ADT that has weights on only the edges.

21.4 Find a large network online—perhaps a geographic database with en-
tries for roads that connect cities or an airline or railroad schedule that contains
distances or costs.

21.5 Implement a network ADT for sparse networks with weights between
0 and 1, based on Program 17.6. Include a random-network generator based
on Program 17.7. Use a separate ADT to generate edge weights, and write
two implementations: one that generates uniformly distributed weights and
another that generates weights according to a Gaussian distribution. Write
client programs to generate random networks for both weight distributions
with a well-chosen set of values of V and E, so that you can use them to run
empirical tests on graphs drawn from various distributions of edge weights.

◦21.6 Implement a network ADT for dense graphs with weights between 0
and 1, based on Program 17.3. Include a random-network generator based on
Program 17.8 and edge-weight generators as described in Exercise 21.5. Write
client programs to generate random networks for both weight distributions
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with a well-chosen set of values of V and E, so that you can use them to run
empirical tests on graphs drawn from these models.

21.7 Implement a representation-independent network ADT function that
builds a network by taking edges with weights (pairs of integers between 0
and V − 1 with weights between 0 and 1) from standard input.

• 21.8 Write a program that generates V random points in the plane, then
builds a network with edges (in both directions) connecting all pairs of points
within a given distance d of one another (see Exercise 17.72), setting each
edge’s weight to the distance between the two points that that edge connects.
Determine how to set d so that the expected number of edges is E.

◦21.9 Write functions that use a network ADT to implement ADTs for undi-
rected graphs (weighted and unweighted) and for unweighted digraphs.

.21.10 The following table from a published road map purports to give the
length of the shortest routes connecting the cities. It contains an error. Correct
the table. Also, add a table that shows how to execute the shortest routes, in
the style of Figure 21.4.

Providence Westerly New London Norwich
Providence – 53 54 48
Westerly 53 – 18 101

New London 54 18 – 12
Norwich 48 101 12 –

21.1 Underlying Principles

Our shortest-paths algorithms are based on a simple operation known
as relaxation. We start a shortest-paths algorithm knowing only the
network’s edges and weights. As we proceed, we gather information
about the shortest paths that connect various pairs of vertices. Our
algorithms all update this information incrementally, making new in-
ferences about shortest paths from the knowledge gained so far. At
each step, we test whether we can find a path that is shorter than some
known path. The term “relaxation” is commonly used to describe this
step, which relaxes constraints on the shortest path. We can think of
a rubber band stretched tight on a path connecting two vertices: A
successful relaxation operation allows us to relax the tension on the
rubber band along a shorter path.

Our algorithms are based on applying repeatedly one of two
types of relaxation operations:
• Edge relaxation: Test whether traveling along a given edge gives

a new shortest path to its destination vertex.
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Edge relaxation
These diagrams illustrate the relax-
ation operation that underlies our
single-source shortest-paths algo-
rithms. We keep track of the short-
est known path from the source s
to each vertex and ask whether an
edge v-w gives us a shorter path to
w. In the top example, it does not;
so we would ignore it. In the bot-
tom example, it does; so we would
update our data structures to in-
dicate that the best known way to
get to w from s is to go to v, then
take v-w.

• Path relaxation: Test whether traveling through a given vertex
gives a new shortest path connecting two other given vertices.

Edge relaxation is a special case of path relaxation; we consider the
operations separately, however, because we use them separately (the
former in single-source algorithms; the latter in all-pairs algorithms).
In both cases, the prime requirement that we impose on the data
structures that we use to represent the current state of our knowledge
about a network’s shortest paths is that we can update them easily to
reflect changes implied by a relaxation operation.

First, we consider edge relaxation, which is illustrated in Fig-
ure 21.5. All the single-source shortest-paths algorithms that we con-
sider are based on this step: Does a given edge lead us to consider a
shorter path to its destination from the source?

The data structures that we need to support this operation are
straightforward. First, we have the basic requirement that we need
to compute the shortest-paths lengths from the source to each of the
other vertices. Our convention will be to store in a vertex-indexed
array wt the lengths of the shortest known paths from the source
to each vertex. Second, to record the paths themselves as we move
from vertex to vertex, our convention will be the same as the one
that we used for other graph-search algorithms that we examined in
Chapters 18 through 20: We use a vertex-indexed array st to record
the previous vertex on a shortest path from the source to each vertex.
This array is the parent-link representation of a tree.

With these data structures, implementing edge relaxation is a
straightforward task. In our single-source shortest-paths code, we use
the following code to relax along an edge e from v to w:

if (wt[w] > wt[v] + e.wt)

{ wt[w] = wt[v] + e.wt; st[w] = v; }

This code fragment is both simple and descriptive; we include it in
this form in our implementations, rather than defining relaxation as a
higher-level abstract operation.

Definition 21.2 Given a network and a designated vertex s, a
shortest-paths tree (SPT) for s is a subnetwork containing s and all
the vertices reachable from s that forms a directed tree rooted at s
such that every tree path is a shortest path in the network.
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Shortest paths trees
The shortest paths from 0 to the
other nodes in this network are
0-1, 0-5-4-2, 0-5-4-3, 0-5-4,
and 0-5, respectively. These paths
define a spanning tree, which is
depicted in three representations
(gray edges in the network draw-
ing, oriented tree, and parent links
with weights) in the center. Links
in the parent-link representation
(the one that we typically com-
pute) run in the opposite direction
than links in the digraph, so we
sometimes work with the reverse
digraph. The spanning tree defined
by shortest paths from 3 to each
of the other nodes in the reverse is
depicted on the right. The parent-
link representation of this tree gives
the shortest paths from each of the
other nodes to 2 in the original
graph. For example, we can find
the shortest path 0-5-4-3 from 0
to 3 by following the links st[0] =
5, st[5] = 4, and st[4] = 3.

There may be multiple paths of the same length connecting a
given pair of nodes, so SPTs are not necessarily unique. In general, as
illustrated in Figure 21.2, if we take shortest paths from a vertex s to
every vertex reachable from s in a network and from the subnetwork
induced by the edges in the paths, we may get a DAG. Different shortest
paths connecting pairs of nodes, may each appear as a subpath in
some longer path containing both nodes. Because of such effects, we
generally are content to compute any SPT for a given digraph and start
vertex.

Our algorithms generally initialize the entries in the wt array
with the sentinel value maxWT. That value needs to be sufficiently small
that the addition in the relaxation test does not cause overflow and
sufficiently large that no simple path has a larger weight. For example,
if edge weights are between 0 and 1, we can use the value V. Note
that we have to take extra care to check our assumptions when using
sentinels in networks that could have negative weights. For example,
if both vertices have the sentinel value, the relaxation code just given
takes no action if e.wt is nonnegative (which is probably what we
intend in most implementations), but it will change wt[w] and st[w]

if the weight is negative.
The st array is a parent-link representation of the shortest-paths

tree, with the links pointing in the direction opposite from that of the
links in the network, as illustrated in Figure 21.6. We can compute
the shortest path from s to t by traveling up the tree from t to s,
visiting the vertices on the path in reverse order (t, st[t], st[st[t]],
and so forth). In some situations, reverse order is precisely what we
want. For example, if we are to return a linked-list representation of
the path, we can (adhering to our usual conventions for linked lists,
where NEW is a function that allocates memory for a node, fills in the
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Path relaxation
These diagrams illustrate the relax-
ation operation that underlies our
all-pairs shortest-paths algorithms.
We keep track of the best known
path between all pairs of vertices
and ask whether a vertex i is evi-
dence that the shortest known path
from s to t could be improved. In
the top example, it is not; in the
bottom example, it is. Whenever
we encounter a vertex i such that
the length of the shortest known
path from s to i plus the length
of the shortest known path from i
to t is smaller than the length of
the shortest known path from s to
t, then we update our data struc-
tures to indicate that we now know
a shorter path from s to t (head
towards i first).

node’s fields from its arguments, and returns a link to the node) use
code like the following:

p = NEW(t, null);

while (t != s)

{ t = st[t]; p = NEW(t, p); }

return p;

Another option is to use similar code to push the vertices on the path
onto a stack—then the client program can visit the vertices on the path
in order by popping them from the stack.

On the other hand, if we simply want to print or otherwise
process the vertices on the path, reverse order is inconvenient because
we have to go all the way through the path in reverse order to get to
the first vertex, then go back through the path to process the vertices.
One approach to get around this difficulty is to work with the reverse
graph, as illustrated in Figure 21.6.

Next, we consider path relaxation, which is the basis of some of
our all-pairs algorithms: Does going through a given vertex lead us to
a shorter path that connects two other given vertices? For example,
suppose that, for three vertices s, x, and t, we wish to know whether
it is better to go from s to x and then from x to t or to go from s to t
without going through x. For straight-line connections in a Euclidean
space, the triangle inequality tells us that the route through x cannot
be shorter than the direct route from s to t, but for paths in a network,
it could be (see Figure 21.7). To determine which, we need to know
the lengths of paths from s to x, x to t, and of those from s to t (that do
not include x). Then, we simply test whether or not the sum of the first
two is less than the third; if it is, we update our records accordingly.

Path relaxation is appropriate for all-pairs solutions where we
maintain the lengths of the shortest paths that we have encountered
between all pairs of vertices. Specifically, in all-pairs–shortest-paths
code of this kind, we maintain an array d such that d[s][t] is the
shortest-path length from s to t, and we also maintain an array p such
that p[s][t] is the next vertex on a shortest path from s to t. We
refer to the former as the distances matrix and the latter as the paths
matrix. Figure 21.8 shows the two matrices for our example network.
The distances matrix is a prime objective of the computation, and
we use the paths matrix because it is clearly more compact than, but
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Figure 21.8
All shortest paths
The two matrices on the right are
compact representations of all the
shortest paths in the sample net-
work on the left, containing the
same information in the exhaus-
tive list in Figure 21.3. The dis-
tances matrix on the left contains
the shortest-path length: the en-
try in row s and column t is the
length of the shortest path from s
to t. The paths matrix on the right
contains the information needed to
execute the path: the entry in row
s and column t is the next vertex
on the path from s to t.

carries the same information as, the full list of paths that is illustrated
in Figure 21.3.

In terms of these data structures, path relaxation amounts to the
following code:

if (d[s][t] > d[s][x] + d[x][t])
{ d[s][t] = d[s][x] + d[x][t]; p[s][t] = p[s][x]; }

Like edge relaxation, this code reads as a restatement of the informal
description that we have given, so we use it directly in our implemen-
tations. More formally, path relaxation reflects the following:

Property 21.1 If a vertex x is on a shortest path from s to t, then
that path consists of a shortest path from s to x followed by a shortest
path from x to t.

Proof : By contradiction. We could use any shorter path from s to x
or from x to t to build a shorter path from s to t.

We encountered the path-relaxation operation when we dis-
cussed transitive-closure algorithms, in Section 19.3. If the edge and
path weights are either 1 or infinite (that is, a path’s weight is 1 only
if all that path’s edges have weight 1), then path relaxation is the op-
eration that we used in Warshall’s algorithm (if we have a path from
s to x and a path from x to t, then we have a path from s to t). If
we define a path’s weight to be the number of edges on that path, then
Warshall’s algorithm generalizes to Floyd’s algorithm for finding all
shortest paths in unweighted digraphs; it further generalizes to apply
to networks, as we see in Section 21.3.

From a mathematician’s perspective, it is important to note that
these algorithms all can be cast in a general algebraic setting that unifies
and helps us to understand them. From a programmer’s perspective,
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Figure 21.9
All shortest paths in a net-

work
These diagrams depict the SPTs
for each vertex in the reverse of
the network in Figure 21.8 (0 to
5, top to bottom), as network sub-
trees (left), oriented trees (center),
and parent-link representation in-
cluding a vertex-indexed array for
path length (right). Putting the ar-
rays together to form path and dis-
tance matrices (where each array
becomes a column) gives the solu-
tion to the all-pairs shortest-paths
problem illustrated in Figure 21.8.
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it is important to note that we can implement each of these algorithms
using an abstract + operator (to compute path weights from edge
weights) and an abstract < operator (to compute the minimum value
in a set of path weights), both solely in the context of the relaxation
operation (see Exercises 19.53 and 19.54).

Property 21.1 implies that a shortest path from s to t contains
shortest paths from s to every other vertex along the path to t. Most
shortest-paths algorithms also compute shortest paths from s to every
vertex that is closer to s than to t (whether or not the vertex is on
the path from s to t), although that is not a requirement (see Exer-
cise 21.16). Solving the source–sink shortest-paths problem with such
an algorithm when t is the vertex that is farthest from s is equivalent to
solving the single-source shortest-paths problem for s. Conversely, we
could use a solution to the single-source shortest-paths problem from
s as a method for finding the vertex that is farthest from s.

The paths array that we use in our implementations for the all-
pairs problem is a representation of the shortest-paths trees for each of
the vertices. We defined p[s][t] to be the vertex that follows s on a
shortest path from s to t. It is thus the same as the vertex that precedes
s on the shortest path from t to s in the reverse network. In other
words, column t in the paths matrix of a network is a vertex-indexed
array that represents the SPT for vertex t in its reverse. Conversely, we
can build the paths matrix for a network by filling each column with
the vertex-indexed array representation of the SPT for the appropriate
vertex in the reverse. This correspondence is illustrated in Figure 21.9.

We defer to Section 21.4 detailed consideration of ADT design,
where we see it in the context of solutions to the all-pairs problem.
In Section 21.2, we consider the single-source problem and use edge
relaxation to compute the parent-link representation of the SPT for
any given source.

Exercises

.21.11 Draw the SPT from 0 for the network defined in Exercise 21.1 and for
its reverse. Give the parent-link representation of both trees.

21.12 Consider the edges in the network defined in Exercise 21.1 to be undi-
rected edges, such that each edge corresponds to equal-weight edges in both
directions in the network. Answer Exercise 21.11 for this corresponding
network.
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.21.13 Change the direction of edge 0-2 in Figure 21.2. Draw two different
SPTs that are rooted at 2 for this modified network.

.21.14 Write a code fragment that, using a parent-link representation of an
SPT, prints out each of the paths to the root.

.21.15 Write a code fragment that, using a paths-matrix representation of
all shortest paths in a network, prints out all of those paths, in the style of
Figure 21.3.

21.16 Give an example that shows how we could know that a path from s
to t is shortest without knowing the length of a shorter path from s to x for
some x.

21.2 Dijkstra’s Algorithm

In Section 20.3, we discussed Prim’s algorithm for finding the minimum
spanning tree (MST) of a weighted undirected graph: We build it one
edge at a time, always taking next the shortest edge that connects a
vertex on the MST to a vertex not yet on the MST. We can use a nearly
identical scheme to compute an SPT. We begin by putting the source
on the SPT; then, we build the SPT one edge at a time, always taking
next the edge that gives a shortest path from the source to a vertex not
on the SPT. In other words, we add vertices to the SPT in order of their
distance (through the SPT) to the start vertex. This method is known
as Dijkstra’s algorithm.

As usual, we need to make a distinction between the algorithm
at the level of abstraction in this informal description and various
concrete implementations (such as Program 21.1) that differ primar-
ily in graph representation and priority-queue implementations, even
though such a distinction is not always made in the literature. We
shall consider other implementations and discuss their relationships
with Program 21.1 after establishing that Dijkstra’s algorithm cor-
rectly performs the single-source shortest-paths computation.

Property 21.2 Dijkstra’s algorithm solves the single-source shortest-
paths problem in networks that have nonnegative weights.

Proof : Given a source vertex s, we have to establish that the tree path
from the root s to each vertex x in the tree computed by Dijkstra’s
algorithm corresponds to a shortest path in the graph from s to x. This
fact follows by induction. Assuming that the subtree so far computed
has the property, we need only to prove that adding a new vertex x
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adds a shortest path to that vertex. But all other paths to x must begin
with a tree path followed by an edge to a vertex not on the tree. By
construction, all such paths are longer than the one from s to x that is
under consideration.

The same argument shows that Dijkstra’s algorithm solves the
source–sink shortest-paths problem, if we start at the source and stop
when the sink comes off the priority queue.

The proof breaks down if the edge weights could be negative,
because it assumes that a path’s length does not decrease when we add
more edges to the path. In a network with negative edge weights, this
assumption is not valid because any edge that we encounter might lead
to some tree vertex and might have a sufficiently large negative weight
to give a path to that vertex shorter than the tree path. We consider
this defect in Section 21.7 (see Figure 21.28).

Figure 21.10 shows the evolution of an SPT for a sample graph
when computed with Dijkstra’s algorithm; Figure 21.11 shows an
oriented drawing of a larger SPT tree. Although Dijkstra’s algorithm
differs from Prim’s MST algorithm in only the choice of priority, SPT
trees are different in character from MSTs. They are rooted at the
start vertex and all edges are directed away from the root, whereas
MSTs are unrooted and undirected. We represent MSTs as directed,
rooted trees when we use Prim’s algorithm, but such structures are
still different in character from SPTs (compare the oriented drawing in
Figure 20.9 with the drawing in Figure 21.11). Indeed, the nature of
the SPT somewhat depends on the choice of start vertex, as well, as
depicted in Figure 21.12.

Dijkstra’s original implementation, which is suitable for dense
graphs, is precisely like Prim’s MST algorithm. Specifically, we simply
change the definition of P in Program 20.3 from

#define P G->adj[v][w]

(the edge weight) to

#define P wt[v] + G->adj[v][w]

(the distance from the source to the edge’s destination). This change
gives the classical implementation of Dijkstra’s algorithm: we grow an
SPT one edge at a time, each time checking all the nontree vertices to
find an edge to move to the tree whose destination vertex is a nontree
vertex of minimal distance from the source.
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Figure 21.10
Dijkstra’s algorithm
This sequence depicts the construc-
tion of a shortest-paths spanning
tree rooted at vertex 0 by Dijkstra’s
algorithm for a sample network.
Thick black edges in the network
diagrams are tree edges, and thick
gray edges are fringe edges. Ori-
ented drawings of the tree as it
grows are shown in the center, and
a list of fringe edges is given on
the right.

The first step is to add 0 to
the tree and the edges leaving it,
0-1 and 0-5, to the fringe (top).
Second, we move the shortest of
those edges, 0-5, from the fringe
to the tree and check the edges
leaving it: the edge 5-4 is added
to the fringe and the edge 5-1 is
discarded because it is not part of
a shorter path from 0 to 1 than the
known path 0-1 (second from top).
The priority of 5-4 on the fringe is
the length of the path from 0 that it
represents, 0-5-4. Third, we move
0-1 from the fringe to the tree, add
1-2 to the fringe, and discard 1-4
(third from top). Fourth, we move
5-4 from the fringe to the tree, add
4-3 to the fringe, and replace 1-2
with 4-2 because 0-5-4-2 is a
shorter path than 0-1-2 (fourth
from top). We keep at most one
edge to any vertex on the fringe,
choosing the one on the shortest
path from 0. We complete the
computation by moving 4-2 and
then 4-3 from the fringe to the tree
(bottom).
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Figure 21.11
Shortest-paths spanning tree
This figure illustrates the progress
of Dijkstra’s algorithm in solving
the single-source shortest-paths
problem in a random Euclidean
near-neighbor digraph (with di-
rected edges in both directions cor-
responding to each line drawn), in
the same style as Figures 18.13,
18.24, and 20.9. The search tree is
similar in character to BFS because
vertices tend to be connected to
one another by short paths, but it
is slightly deeper and less broad
because distances lead to slightly
longer paths than path lengths.

Property 21.3 With Dijkstra’s algorithm, we can find any SPT in a
dense network in linear time.

Proof : As for Prim’s MST algorithm, it is immediately clear, from
inspection of the code of Program 20.3, that the running time is pro-
portional to V 2, which is linear for dense graphs.

For sparse graphs, we can do better, by viewing Dijkstra’s al-
gorithm as a generalized graph-searching method that differs from
depth-first search (DFS), from breadth-first search (BFS), and from
Prim’s MST algorithm in only the rule used to add edges to the tree.
As in Chapter 20, we keep edges that connect tree vertices to nontree
vertices on a generalized queue called the fringe, use a priority queue to
implement the generalized queue, and provide for updating priorities
so as to encompass DFS, BFS, and Prim’s algorithm in a single imple-
mentation (see Section 20.3). This priority-first search (PFS) scheme
also encompasses Dijkstra’s algorithm. That is, changing the definition
of P in Program 20.4 to

#define P wt[v] + t->wt

(the distance from the source to the edge’s destination) gives an imple-
mentation of Dijkstra’s algorithm that is suitable for sparse graphs.

Program 21.1 is an alternative PFS implementation for sparse
graphs that is slightly simpler than Program 20.4 and that directly
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Program 21.1 Dijkstra’s algorithm (adjacency lists)

This implementation of Dijkstra’s algorithm uses a priority queue of
vertices (in order of their distance from the source) to compute an SPT.
We initialize the queue with priority 0 for the source and priority maxWT
for the other vertices, then enter a loop where we move a lowest-priority
vertex from the queue to the SPT and relax along its incident edges.

The indirect priority-queue interface code is the same as in Pro-
gram 20.4 and is omitted. It defines a static variable priority and a
function less, which allow the priority-queue functions to manipulate
vertex names (indices) and to use less to compare the priorities that are
maintained by this code in the wt array.

This code is a generalized graph search, a PFS implementation.
The definition of P implements Dijkstra’s algorithm; other definitions
implement other PFS algorithms (see text).

#define GRAPHpfs GRAPHspt

#define P (wt[v] + t->wt)

void GRAPHpfs(Graph G, int s, int st[], double wt[])

{ int v, w; link t;

PQinit(); priority = wt;
for (v = 0; v < G->V; v++)

{ st[v] = -1; wt[v] = maxWT; PQinsert(v); }

wt[s] = 0.0; PQdec(s);

while (!PQempty())

if (wt[v = PQdelmin()] != maxWT)

for (t = G->adj[v]; t != NULL; t = t->next)

if (P < wt[w = t->v])

{ wt[w] = P; PQdec(w); st[w] = v; }

}

matches the informal description of Dijkstra’s algorithm given at the
beginning of this section. It differs from Program 20.4 in that it
initializes the priority queue with all the vertices in the network and
maintains the queue with the aid of a sentinel value for those vertices
that are neither on the tree nor on the fringe (unseen vertices with
sentinel values); in contrast, Program 20.4 keeps on the priority queue
only those vertices that are reachable by a single edge from the tree.
Keeping all the vertices on the queue simplifies the code but can incur
a small performance penalty for some graphs (see Exercise 21.31).
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Figure 21.12
SPT examples
These three examples show grow-
ing SPTs for three different source
locations: left edge (top), upper left
corner (center), and center (bot-
tom).

The general results that we considered concerning the perfor-
mance of priority-first search (PFS) in Chapter 20 give us specific
information about the performance of these implementations of Di-
jkstra’s algorithm for sparse graphs (Program 21.1 and Program 20.4,
suitably modified). For reference, we restate those results in the present
context. Since the proofs do not depend on the priority function, they
apply without modification. They are worst-case results that apply
to both programs, although Program 20.4 may be more efficient for
many classes of graphs because it maintains a smaller fringe.

Property 21.4 For all networks and all priority functions, we can
compute a spanning tree with PFS in time proportional to the time
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Table 21.1 Priority-first search algorithms

These four classical graph-processing algorithms all can be implemented
with PFS, a generalized priority-queue–based graph search that builds
graph spanning trees one edge at a time. Details of search dynamics
depend upon graph representation, priority-queue implementation, and
PFS implementation; but the search trees generally characterize the var-
ious algorithms, as illustrated in the figures referenced in the fourth
column.

algorithm priority result Figure

DFS reverse preorder recursion tree 18.13

BFS preorder SPT (edges) 18.24

Prim edge weight MST 20.8

Dijkstra path weight SPT 21.9

required for V insert, V delete the minimum, and E decrease key
operations in a priority queue of size at most V .

Proof : This fact is immediate from the priority-queue–based imple-
mentations in Program 20.4 or Program 21.1. It represents a conser-
vative upper bound because the size of the priority queue is often much
smaller than V , particularly for Program 20.4.

Property 21.5 With a PFS implementation of Dijkstra’s algorithm
that uses a heap for the priority-queue implementation, we can com-
pute any SPT in time proportional to E lg V .

Proof : This result is a direct consequence of Property 21.4.

Property 21.6 Given a graph with V vertices and E edges, let d
denote the density E/V . If d < 2, then the running time of Dijkstra’s
algorithm is proportional to V lgV . Otherwise, we can use a dE/V e-
ary heap for the priority queue to improve the worst-case running time
by a factor of lg(E/V ), to O(E lgd V ), which is linear if E is at least
V 1+ε.

Proof : This result directly mirrors Property 20.12 and the multiway-
heap priority-queue implementation discussed directly thereafter.
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Table 21.1 summarizes pertinent information about the four ma-
jor PFS algorithms that we have considered. They differ in only the
priority function used, but this difference leads to spanning trees that
are entirely different from one another in character (as required). For
the example in the figures referred to in the table (and for many other
graphs), the DFS tree is tall and thin, the BFS tree is short and fat, the
SPT is like the BFS tree but neither quite as short nor quite as fat, and
the MST is neither short and fat nor tall and thin.

We have also considered four different implementations of PFS.
The first is the classical dense-graph implementation that encompasses
Dijkstra’s algorithm and Prim’s MST algorithm (Program 20.3); the
other three are sparse-graph implementations that differ in priority-
queue contents:
• Fringe edges (Program 18.10)
• Fringe vertices (Program 20.4)
• All vertices (Program 21.1)

Of these, the first is primarily of pedagogical value; the second is
the most refined of the three; the third is perhaps the simplest. This
framework already describes 16 different implementations of classical
graph-search algorithms—when we factor in different priority-queue
implementations, the possibilities multiply further. This proliferation
of networks, algorithms, and implementations underscores the util-
ity of the general statements about performance in Properties 21.4
through 21.6, which are also summarized in Table 21.2.

As is true of MST algorithms, actual running times of shortest-
paths algorithms are likely to be lower than these worst-case time
bounds suggest, primarily because most edges do not necessitate de-
crease key operations. In practice, except for the sparsest of graphs,
we regard the running time as being linear.

The name Dijkstra’s algorithm is commonly used to refer both
to the abstract method of building an SPT by adding edges to vertices
in order of their distance from the source and to its implementation
as the V 2 algorithm for the adjacency-matrix representation, because
Dijkstra presented both in his 1959 paper (and also showed that the
same approach could compute the MST). Performance improvements
for sparse graphs are dependent on later improvements in ADT tech-
nology and priority-queue implementations that are not specific to
the shortest-paths problem. Improved performance of Dijkstra’s al-
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Table 21.2 Cost of implementations of Dijkstra’s algorithm

This table summarizes the cost (worst-case running time) of various im-
plementations of Dijkstra’s algorithm. With appropriate priority-queue
implementations, the algorithm runs in linear time (time proportional to
V 2 for dense networks, E for sparse networks) except for networks that
are extremely sparse.

algorithm worst-case cost comment

classical V 2 optimal for dense graphs

PFS, full heap E lg V simplest ADT code

PFS, fringe heap E lg V conservative upper bound

PFS, d-heap E lgd V linear unless extremely sparse

gorithm is one of the most important applications of that technology
(see reference section). As we do for MSTs, we use terminology such
as the “PFS implementation of Dijkstra’s algorithm using d-heaps” to
identify specific combinations.

We saw in Section 18.8 that, in unweighted undirected graphs,
using preorder numbering for priorities causes the priority queue to
operate as a FIFO queue and leads to a BFS. Dijkstra’s algorithm gives
us another realization of BFS: When all edge weights are 1, it visits
vertices in order of the number of edges on the shortest path to the
start vertex. The priority queue does not operate precisely as a FIFO
queue would in this case, because items with equal priority do not
necessarily come out in the order in which they went in.

Each of these implementations builds a parent-link representa-
tion of the SPT from vertex 0 in the vertex-indexed argument array st,
with the shortest-path length to each vertex in the SPT in the vertex-
indexed argument array wt. As usual, we can build various conve-
nient ADT functions around this general scheme (see Exercises 21.19
through 21.28).

Exercises

.21.17 Show, in the style of Figure 21.10, the result of using Dijkstra’s algo-
rithm to compute the SPT of the network defined in Exercise 21.1 with start
vertex 0.
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◦21.18 How would you find a second shortest path from s to t in a network?

.21.19 Add a function to a standard network ADT that uses GRAPHspt to
compute the length of a shortest path connecting two given vertices s and t.

21.20 Add a function to a standard network ADT that uses GRAPHspt to find
the most distant vertex from a given vertex s (the vertex whose shortest path
from s is the longest).

21.21 Add a function to a standard network ADT that uses GRAPHspt to
compute the average of the lengths of the shortest paths from a given vertex
to each of the vertices reachable from it.

◦21.22 Add a function to a standard adjacency-lists network ADT that solves
the source–sink shortest-paths problem by using GRAPHspt to compute a
linked-list representation of a shortest path connecting two given vertices s
and t.

◦21.23 Add a function to a standard network ADT that solves the source–sink
shortest-paths problem by using GRAPHspt to fill the initial entries in a given
argument array with the successive vertex indices on a shortest path connecting
two given vertices s and t.

21.24 Develop an interface and implementation based on Program 21.1 to
push a shortest path connecting two given vertices s and t onto a user-supplied
stack.

21.25 Add a function to a standard adjacency-lists network ADT that finds
all vertices within a given distance d of a given vertex in a given network.
The running time of your function should be proportional to the size of the
subgraph induced by those vertices and the vertices incident on them.

21.26 Develop an algorithm for finding an edge whose removal causes maxi-
mal increase in the shortest-path length from one given vertex to another given
vertex in a given network.

• 21.27 Add a function to a standard adjacency-matrix network ADT that
performs a sensitivity analysis on the network’s edges with respect to a given
pair of vertices s and t: Compute a V-by-V array such that, for every u and v,
the entry in row u and column v is 1 if u-v is an edge in the network whose
weight can be increased without the shortest-path length from s to t being
increased and is 0 otherwise.

◦21.28 Add a function to a standard adjacency-lists network ADT that finds
a shortest path connecting one given set of vertices with another given set of
vertices in a given network.

21.29 Use your solution from Exercise 21.28 to implement a function that
finds a shortest path from the left edge to the right edge in a random grid
network (see Exercise 20.7).

21.30 Show that an MST of an undirected graph is equivalent to a bottleneck
SPT of the graph: For every pair of vertices v andw, it gives the path connecting
them whose longest edge is as short as possible.
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21.31 Run empirical studies to compare the performance of the two versions
of Dijkstra’s algorithm for the sparse graphs that are described in this sec-
tion (Program 21.1 and Program 20.4, with suitable priority definition), for
various networks (see Exercises 21.4–8). Use a standard-heap priority-queue
implementation.

21.32 Run empirical studies to learn the best value of d when using a d-heap
priority-queue implementation (see Program 20.7) for each of the three PFS
implementations that we have discussed (Program 18.10, Program 20.4 and
Program 21.1), for various networks (see Exercises 21.4–8).

• 21.33 Run empirical studies to determine the effect of using an index-
heap-tournament priority-queue implementation (see Exercise 9.53) in Pro-
gram 21.1, for various networks (see Exercises 21.4–8).

◦21.34 Run empirical studies to analyze height and average path length in
SPTs, for various networks (see Exercises 21.4–8).

21.35 Develop an implementation for the source–sink shortest-paths problem
that is based on initializing the priority queue with both the source and the
sink. Doing so leads to the growth of an SPT from each vertex; your main
task is to decide precisely what to do when the two SPTs collide.

• 21.36 Describe a family of graphs with V vertices and E edges for which the
worst-case running time of Dijkstra’s algorithm is achieved.

•• 21.37 Develop a reasonable generator for random graphs with V vertices and
E edges for which the running time of the heap-based PFS implementation of
Dijkstra’s algorithm is superlinear.

• 21.38 Write a client program that does dynamic graphical animations of Dijk-
stra’s algorithm. Your program should produce images like Figure 21.11 (see
Exercises 17.55 through 17.59). Test your program on random Euclidean
networks (see Exercise 21.8).


