
Chapter 3

Design with Interfaces

This chapter explores Java-style interfaces: what they are, why they
are important, and how and when to use them.

3.1 What Are Interfaces?

Interfaces are the key to pluggability, the ability to remove one
component and replace it with another. Consider the electrical
outlets in your home: The interface is well-defined (plug shape,
receptacle shape, voltage level, polarity for each prong); you can
readily unplug a toaster and plug in a java-maker, and continue on
your merry way.

Design with interfaces? Yes!

An interface is a collection of method signatures that you define
for use again and again in your application. It’s a listing of method

81

03.coad2ed.81-172 11/24/98 10:20 AM Page 81

signatures alone. There is neither a common description, nor any
source code behind these method signatures.*

An interface describes a standard protocol, a standard way of inter-
acting with objects in classes that implement the interface.

Working with interfaces requires that you (1) specify the interface
and (2) specify which classes implement that interface.

Begin with a simple interface, called IName (Figure 3-1). IName
consists of two method signatures, the accessors getName and set-
Name.

82 Java Design

*Java expresses inheritance and polymorphism distinctly with different syntax.
C++ expresses both concepts with a single syntax; it blurs the distinction be-
tween these very different mechanisms, resulting in overly complex, overly deep
class hierarchies. (We design with interfaces regardless of language; Java
makes it easier for us to express that design in source code.)

In Smalltalk, interfaces (called protocols) are agreed upon by convention and
learned by reading source code. In C++, interfaces are implemented as classes with
no default implementation (everything inside is declared as being “pure virtual”).

Java interfaces can also include constants. This provides a convenient way to pack-
age useful constants when programming, but it has no impact on effective design.

Within the Java Language Specification, a signature is defined in a narrower way,
describing what a Java compiler must pay attention to when resolving overloaded
methods. In that document, an interface consists of a method name and the num-
ber and types of parameters—not the return type, not the name of the parameters,
and not any thrown exceptions. For overridden methods (in an extending/
implementing class, using the same method name and the same number and
types of parameters), a Java compiler checks to make sure that the return type
is the same and the thrown exceptions are the same.

UML offers a definition with the same basic meaning as the one we use in this
book: "An interface is a declaration of a collection of operations that may be
used for defining a service offered by an instance."

03.coad2ed.81-172 11/24/98 10:20 AM Page 82

By convention, interface names are capitalized: the IName inter-
face. References to an object of a class that implements an interface
are not capitalized: a name object, meaning, an object in a class
that implements IName.

By one convention, interface names end with the suffix “-able,”
“-ible,”or (occasionally) “-er.”*

By another convention, interface names begin with the prefix “I.”

By convention in this book, interface names begin with the prefix
“I”and are followed by

• a noun, if it’s an accessor interface

• a verb, if it’s a calculation interface, or

• a noun or a verb, if it’s a combination of interfaces.**

In Figure 3-1 the interface name is “I”+ a noun.

Design with Interfaces 83

Figure 3-1. An interface.

IName
getName
setName

«interface»

*Requiring interface names to end in -able or -ible is a bit too complicated a
convention. However, if you’d like to adopt this convention, take note of the fol-
lowing English-language spelling rules:

1. Drop a silent “e” before adding “-able.”

2. Check a dictionary. If the spelling is not listed, look at other forms of
the word to see which letter might make sense. (Again, this is a bit too
complicated for day-to-day use.)

**Choose whatever prefix convention you prefer: I, I_, Int_; whatever. We prefer
“I” (as long as it does not conflict with other prefix conventions of the project).

03.coad2ed.81-172 11/24/98 10:20 AM Page 83

In Java, an IName interface might look something like this:

public interface IName {
String getName();
voidsetName(String aName); }

A class that implements the IName interface promises to implement
the “get name” and “set name” methods in a way that is appropriate
for that class. The “get name”method returns the name of an object.
The “set name”method establishes a new name for an object (Figure
3-2). A dashed arrow indicates that a class (at the tail of the arrow)
implements the interface (at the head of the arrow).

The IName interface describes a standard way to interact with an
object in any class that implements that interface.

This means that as an object in any class, you could hold an IName
object (that is, objects within any number of classes that imple-
ment the IName interface). And you could ask an IName object for
its name without knowing or caring about what class that object
happens to be in.

3.2 Why Use Interfaces?

3.2.1 The Problem

Over the years, you may have encountered the classic barrier to:

• flexibility (graciously accommodating changes in direction)

• extensibility (graciously accommodating add-ons), and

• pluggability (graciously accommodating pulling out one class of
objects and inserting another with the same method signatures).

84 Java Design

Figure 3-2. A class that promises to implement the IName interface.

Person
name
getName
setName

IName
getName
setName

«interface»

03.coad2ed.81-172 11/24/98 10:20 AM Page 84

Yes, this is a barrier within object-oriented design.

All objects interact with other objects to get something done. An
object can answer a question or calculate a result all by itself, but
even then some other object does the asking. In short, objects in-
teract with other objects. That’s why scenario views are so signifi-
cant, because they model time-ordered sequences of interactions
between objects.

The problem with most class diagrams and scenarios is that an ob-
ject must be within a specified class.

Yet what is the element of reuse? It’s not just a class. After all, ob-
jects in a class are interconnected with objects in other classes.
The element of reuse is some number of classes, the number of
classes in a scenario, or even more, the total number of classes
contained in overlapping scenarios.

What’s the impact, in terms of pluggability? If you want to add an-
other class of objects, one that can be plugged in as a substitute for
an object in another class already in a scenario, you are in trouble.
There is no pluggability here. Instead, you must add associations,
build another scenario, and implement source code behind it all.*

The problem is that each association and each message-send is
hardwired to objects in a specific class (or class hierarchy), imped-
ing pluggability, as well as extensibility and flexibility.

Traditionally, objects in a scenario are hardwired to each other. But
if the “who I know” (associations) and “who I interact with” (mes-
sages) are hardwired to just one class of objects, then pluggability
is nonexistent; adding a new class means adding the class itself, as-
sociations, and scenarios, in addition to making changes to other
classes in the design and in source code.

Design with Interfaces 85

*In C++, developers often implement monolithic class hierarchies with a base
class that does nothing more than allow the ease of “pluggability” via base class
pointers. This is a bulky and limited workaround compared to the elegance of
Java interfaces.

03.coad2ed.81-172 11/24/98 10:20 AM Page 85

3.2.2 A Partial Solution

We’d like a more flexible, extensible, and pluggable approach, one
that would let us add in new classes of objects with no change in
associations or message-sends.

There is a partial solution.

If you want to add a new class that is a subclass of one of the classes
of objects participating in a scenario, you can do so without any
problems. Show the generalization class in your scenario, add a
note indicating that any object in a specialization class will do, and
you are ready to go.

However, if inheritance does not apply, or if you have already used
inheritance in some other way (keeping in mind that Java is a sin-
gle inheritance language), then this partial solution is no solution
at all.

3.2.3 Flexibility, Extensibility, and Pluggability—That’s Why

Interfaces enhance, facilitate, and even make possible the flexibil-
ity, extensibility, and pluggability that we so desire.

Interfaces shift one’s thinking about an object and its associations
and interactions with other objects.

Challenge Each Association Strategy: Is this association hardwired only to
objects in that class (simpler), or is this an association to any ob-
ject that implements a certain interface (more flexible, extensible,
pluggable)?

For an object and its associations to other objects ask, “Is this asso-
ciation hardwired only to objects in that class, or is this an associa-
tion to any object that implements a certain interface?” If it’s the
latter, you are in effect saying, “I don’t care what kind of object I
am associated with, just as long as that object implements the inter-
face that I need.”

86 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 86

Interfaces also shift one’s thinking about an object and the kinds of
objects that it interacts with during a scenario.

Challenge Each Message-Send Strategy: Is this message-send hardwired
only to objects in that class (simpler), or is this a message-send to
any object that implements a certain interface (more flexible, ex-
tensible, pluggable)?

For each message-send to another object ask, “Is this message-send
hardwired only to objects in that class, or is this a message-send to
any object that implements a certain interface? If it’s the latter, you
are in effect saying, “I don’t care what kind of object I am sending
messages to, just as long as that object implements the interface
that I need.”

So, when you need flexibility, specify associations (in class dia-
grams) and message-sends (in scenarios) to objects in any class that
implements the interface that is needed, rather than to objects in a
single class (or its subclasses).

Interfaces loosen up coupling, make parts of a design more inter-
changeable, and increase the likelihood of reuse—all for a modest
increase in design complexity.

Interfaces express “is a kind of” in a very limited way, “is a kind that
supports this interface.” This gives you the categorization benefits
of inheritance; at the same time, it obviates the major weakness of
inheritance: weak encapsulation within a class hierarchy.

Interfaces give composition a much broader sphere of influence.
With interfaces, composition is flexible, extensible, and pluggable
(composed of objects that implement an interface), rather than
hardwired to just one kind of object (composed of objects in just
one class).

Interfaces reduce the otherwise compelling need to jam many,
many classes into a class hierarchy with lots of multiple inheri-
tance. In effect, using interfaces streamlines how one uses inheri-
tance: use interfaces to express generalization-specialization of

Design with Interfaces 87

03.coad2ed.81-172 11/24/98 10:20 AM Page 87

method signatures (behavior); use inheritance to express general-
ization-specialization of interfaces implemented—along with addi-
tional attributes and methods.

Interfaces give you a way to separate method signatures from
method implementations. So you can use them to separate UI
method signatures from operating-system dependent method im-
plementations; that’s exactly what Java’s Abstract Windowing
Toolkit (AWT) and Swing do. You can do the same for data manage-
ment, separating method signatures from vendor-dependent
method implementations. You can also do the same for problem-
domain objects, as you’ll see later in this chapter.

Sound-bite summary: Why use interfaces? Interfaces give us a
way to establish associations and message-sends to objects in any
class that implements a needed interface, without hardwiring
associations or hardwiring message-sends to a specific class of
objects.

The larger the system and the longer the potential life span of a sys-
tem, the more significant interfaces become.

3.3 Factor-out Interfaces

Factoring out every method signature into a separate interface
would be overkill—you’d make your object models more complex
and your scenarios way too abstract.

In what contexts should you apply interfaces?

You can factor out method signatures into interfaces in a variety of
contexts, but the following are the four contexts in which inter-
faces really help:

Factor out repeaters.

Factor out to a proxy.

88 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 88

Factor out for analogous apps.

Factor out for future expansion.

3.3.1 Factor Out Repeaters

Begin with the simplest use of interfaces: to factor out common
method signatures to bring a higher level of abstraction (and an
overall visual simplification) to a class diagram. This is a modest yet
important use of interfaces.

Factor Out Repeaters Strategy: Factor out method signatures that repeat
within your class diagram. Resolve synonyms into a single signa-
ture.Generalize overly specific names into a single signature. Rea-
sons for use: to explicitly capture the common, reusable behavior
and to bring a higher level of abstraction into the model.

Look for repeating method signatures and factor them out.

Example: calcTotal in one class, calcTotal in another class.

Factor out that method signature into an ITotal interface.

Mark each class as one that implements the ITotal interface.

Now look for method signatures that are synonyms. Pick a com-
mon method signature and factor it out.

Example: calcTotal in one class, determineTotalAmount in
another class. Same behavior.

Pick a synonym: calcTotal.

Factor out that method signature into an ITotal interface.

Mark each class as one that implements the ITotal interface.

Next take each method signature and generalize it. (But be careful
not to generalize to the point of obscurity; a method name like
“process it” or “calculate it” would not be very helpful, would it?)

Design with Interfaces 89

03.coad2ed.81-172 11/24/98 10:20 AM Page 89

Then look for method signatures that are synonyms; finally, pick a
common method signature and factor it out.

Example: calcSubtotal in one class, calcTotal in another
class, calcGrandTotal in another class.

Pick a synonym: calcTotal.

Factor out that method signature into an ITotal interface.

Mark each class as one that implements the ITotal interface.

When factoring out interfaces, you also need to consider the re-
turn types and the parameter types; they must match up, too. In
fact in a class diagram, you could include a complete method sig-
nature:

return type + method name + parameter types + exceptions

However, including all of that information in a class diagram takes
up far too much screen real estate. It is far better to have an effec-
tive class diagram of the design plus source code with fine-grained
details, side by side.

3.3.1.1 Example: The Lunch Counter at Charlie’s Charters

Okay then, apply the “Factor Our Repeaters” strategy. Consider a
point-of-sale application for the lunch counter at Charlie’s Charters.

Build an initial class diagram (Figure 3-3).

In Java, it looks like this:

public class Customer {
✁

// methods / public / conducting business
public BigDecimal howMuch() { /* code goes here */ }

✁

}

90 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 90

Design with Interfaces 91

Figure 3-3. Repeating method signatures.

1

1..*

1

1 0..*1

0..*

1 0..* 1
Person

name
address

Customer
number
howMuch

Sale
dateTime
calcTotal
calcTax

SaleLineItem
quantity
calcTotal
calcTax

1

0..*

Store
number
grandTotal
howMany

Item
number
description
howMany

public class Sale {
✁

// methods / public / conducting business
public BigDecimal calcTotal() { /* code goes here */ }
public BigDecimal calcTax() { /* code goes here */ }

✁

}
public class SaleLineItem {
✁

// methods / public / conducting business
public BigDecimal calcTotal() { /* code goes here */ }
public BigDecimal calcTax() { /* code goes here */ }

✁

}
public class Store {
✁

// methods / public / conducting business
public BigDecimal grandTotal() { /* code goes here */ }
public int howMany() { /* code goes here */ }

✁

}
public class Item {
✁

// methods / public / conducting business

03.coad2ed.81-172 11/24/98 10:20 AM Page 91

public int howMany() { /* code goes here */ }
✁

}

Applying the “factor out repeaters”strategy:

You can factor out calcTotal without any problem.

Now look for synonyms.

The methods calcTotal and howMany could be synonyms, but they
have distinct meanings here (adding monetary units versus tallying
some items, respectively).

Moreover, the return types don’t match. This is a problem. We
could check the return types to see if they too are synonyms; or we
could try generalizing each return type to see if that helps. In this
case, however, calcTotal returns a BigDecimal number; howMany
returns an integer. You cannot combine different method signa-
tures into a single interface method signature.

Keep looking. The calcTotal and howMuch methods are synonyms,
and the return types match (both return a BigDecimal value). One
or the other will do just fine; choose calcTotal and factor it out.

Looking further, grandTotal is a specialized name for calcTotal. Use
calcTotal for both.

What are the common method signatures? Let's see:

• howMany—occurs twice

• calcTax—occurs twice

• calcTotal, how much (synonyms here)—occurs four times.

You can factor out those common method signatures, using these
interfaces:

• ICount—how many

• ITax—calcTax

• ITotal—calcTotal.

92 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 92

You can go a step further. What common interface combinations
are we using?

• ITotal, ITax—occur together, twice.

So you can combine those two interfaces, with this result:

• ISell—ITotal, ITax.

The result? See Figure 3-4. The “lollipops” indicate interface im-
plementers. Another way to indicate interface implementers is
with implement links, dashed arrows from implementers to inter-
faces. Convention: use interface links until they overpower your
class diagram, then switch over to lollipops to avoid link over-
load.

Design with Interfaces 93

Figure 3-4. Factor out repeating method signatures.

1

1..*

1

1 0..*1

0..*

1 0..* 1
Person

name
address

ITotal ISell

ISell

Customer
number
calcTotal

Sale
dateTime
calcTotal
calcTax

SaleLineItem
quantity
calcTotal
calcTax

1

0..*

ITotal

ICount

ICount

Store
number
calcTotal
howMany

Item
number
description
howMany

«interface»
ITotal

calcTotal

«interface»
ITax

calcTax

«interface»
ISell

«interface»
Icount

howMany

03.coad2ed.81-172 11/24/98 10:20 AM Page 93

In Java, it looks like this:

public interface ICount {
int howMany(); }

public interface ITotal {
BigDecimal calcTotal(); }

public interface ITax {
BigDecimal calcTax(); }

public interface ISell extends ITotal, ITax {}
public class Customer implements ITotal {
✁

// methods / public / ITotal implementation
public BigDecimal calcTotal() { /* code goes here */ }

✁

}
public class Sale implements ISell {
✁

// methods / public / ISell implementation
public BigDecimal calcTotal() { /* code goes here */ }
public BigDecimal calcTax() { /* code goes here */ }

✁

}
public class SaleLineItem implements ISell {
✁

// methods / public / ISell implementation
public BigDecimal calcTotal() { /* code goes here */ }
public BigDecimal calcTax() { /* code goes here */ }

✁

}
public class Store implements ITotal, ICount {
✁

// methods / public / ITotal implementation
public BigDecimal calcTotal() { /* code goes here */ }
// methods / public / ICount implementation
public int howMany() { /* code goes here */ }

✁

}

94 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 94

public class Item implements ICount {
✁

// methods / public / ICount implementation
public int howMany() { /* code goes here */ }

✁

}

Especially note this:

public interface ISell extends ITotal, ITax {}

Here, an interface extends two other interfaces. Is this Multiple in-
heritance?

Well, yes and no.

Yes, the new interface is a combination of the other two interfaces.
Yes, ISell is a special kind of ITotal and a special kind of ITax.

No, it’s not inheritance; only method signatures are involved. There
is absolutely no implementation behind these method signatures.

We really don’t think of it as inheritance, either.

We think of interfaces as useful method-signature descriptions,
ones that we can conveniently mix and match with the “extends”
keyword to provide pluggability.

One way to visualize it is to picture a stack of index cards; each
card has an interface name and its method signatures on it; grab
whatever combination is useful to you (ITotal, ITax); name that use-
ful combination (ISell)—especially if it is reusable.

3.3.1.2 Example: Simplify and Identify Object-Model Patterns

Together with David North, we have cataloged 31 object-model pat-
terns: templates of objects with stereotypical responsibilities and
interactions. Those patterns are documented at www.oi.com/hand-
book and (more thoroughly) in the book, Object Models: Strategies,
Patterns, and Applications.

Design with Interfaces 95

03.coad2ed.81-172 11/24/98 10:20 AM Page 95

One of the more puzzling matters has been how to show these
patterns within source code. Some have proposed adding extra
classes of objects to manage each pattern, but that seemed like
overkill somehow.

Interfaces offer an interesting twist. And the simplest use of inter-
faces, factoring out common method signatures, takes on some
added significance.

Consider the transaction pattern called “transaction–transaction
line item”(Figure 3-5).

Other patterns use attributes and methods with exactly the same
names. So everything can be factored out into interfaces.

For full impact, first add in attribute accessors (Figure 3-6).

In Java, it looks like this:

public class Transaction {
✁

// attributes / private
private int number;
private Date dateTime;
private String status;

// attributes / private / associations
private Vector transactionLineItems = new Vector();

// methods / public / conducting business
public float calcTotal() { /* code goes here */ }

96 Java Design

Figure 3-5. The transaction-transaction line item object-model pattern.

1 1..n

Transaction
number
dateTime
status
calcTotal
rank

TransactionLineItem
quantity
status
calcTotal
rate

03.coad2ed.81-172 11/24/98 10:20 AM Page 96

public Enumeration rank() {
/* return an enumeration with ranked transaction line items */
/* code goes here */ }

// methods / public / accessors for attribute values
public int getNumber() { return this.number; }
public void setNumber(int aNumber) { this.number = aNumber; }
public Date getDateTime() { return this.dateTime; }
public void setDateTime(Date aDateTime)

{ this.dateTime = aDateTime; }
public String getStatus() { return this.status; }
public void setStatus(String aStatus) { this.status = aStatus; }

✁

}

public class TransactionLineItem {
✁

// attributes / private
private int quantity;
private String status;

// attributes / private / associations
private Transaction transaction;

// methods / public / conducting business
public float calcTotal() { /* code goes here */ }
public int rate() { /* code goes here */ }

Design with Interfaces 97

Figure 3-6. An object-model pattern with attribute accessors.

1 1..n

Transaction
number
dateTime
status
calcTotal
rank
getNumber
setNumber
getDateTime
setDateTime
getStatus
setStatus

TransactionLineItem
quantity
status
calcTotal
rate
getQuantity
setQuantity
getStatus
setStatus

03.coad2ed.81-172 11/24/98 10:20 AM Page 97

// methods / public / accessors for attribute values
public int getQuantity() { return this.quantity; }
public void setQuantity(int aQuantity) { this.quantity = aQuantity; }
public String getStatus() { return this.status; }
public void setStatus(String aStatus) { this.status = aStatus; }

✁

}

Second, apply the “factor out repeaters”strategy (Figure 3-7).

In Java, it looks like this:

public interface IRank {
Enumeration rank(); }

98 Java Design

Figure 3-7. Factor out repeaters.

ITotal

IRank

INumber

IDateTime

IStatus

IRate

ITotal

IQuantity

IStatus

«interface»
ITotal

calcTotal

Transaction
number
dateTime
status
calcTotal
rank
getNumber
setNumber
getDateTime
setDateTime
getStatus
setStatus

TransactionLineItem
quantity
status
calcTotal
rate
getQuantity
setQuantity
getStatus
setStatus

1

1..*

«interface»
IRate

rate

«interface»
IRank

rank

«interface»
IStatus

getStatus
setStatus

«interface»
IDateTime

getDateTime
setDateTime

«interface»
INumber

getNumber
setNumber

«interface»
IQuantity

getQuantity
setQuantity

03.coad2ed.81-172 11/24/98 10:20 AM Page 98

public interface IRate {
int rate(); }

public interface ITotal {
float calcTotal() ; }

public interface INumber {
int getNumber();
void setNumber(int aNumber); }

public interface IDateTime {
Date getDateTime();
void setDateTime(Date aDate); }

public interface IQuantity {
int getQuantity();
void setQuantity(int aQuantity); }

public interface IStatus {
String getStatus();
void setStatus(String aStatus); }

public class Transaction
implements IRank, ITotal, INumber, IDateTime, IStatus {

✁

// class definition here
✁

}

public class TransactionLineItem
implements IRate, ITotal, IQuantity, IStatus {

✁

// class definition here
✁

}

Now, go for the gold: factor out the interfaces within each “pattern
player,” making pattern players explicit in the design (and ulti-
mately, in source code). See Figure 3-8.

Design with Interfaces 99

03.coad2ed.81-172 11/24/98 10:20 AM Page 99

In Java, it looks like this:

public interface ITransaction
extends ITotal, IRank, INumber, IDateTime, IStatus {}

public interface ILineItem
extends ITotal, IRate, IQuantity, IStatus {}

public class Transaction implements ITransaction {

100 Java Design

Figure 3-8. Factor out completely, so you can mark out pattern players.

1 1..*

Transaction
number
dateTime
status
calcTotal
rank
getNumber
setNumber
getDateTime
setDateTime
getStatus
setStatus

TransactionLineItem
quantity
status
calcTotal
rate
getQuantity
setQuantity
getStatus
setStatus

«interface»
ITotal

calcTotal

«interface»
ITransaction

«interface»
ILineItem

«interface»
IRate

rate

«interface»
IRank

rank

«interface»
IStatus

getStatus
setStatus

«interface»
IDateTime

getDateTime
setDateTime

«interface»
INumber

getNumber
setNumber

«interface»
IQuantity

getQuantity
setQuantity

03.coad2ed.81-172 11/24/98 10:20 AM Page 100

✁

// class definition here
✁

}

public class TransactionLineItem implements ILineItem {
✁

// class definition here
✁

}

3.3.2 Factor Out to a Proxy

Factor Out to a Proxy Strategy: Factor out method signatures into a
proxy, an object with a solo association to some other object.Rea-
son for use: to simplify the proxy within a class diagram and its
scenarios (Figure 3-9).

3.3.2.1 Recognizing a Proxy

Another way to bring interfaces into your design is to factor out
method signatures into a proxy. A proxy is one who acts as a sub-
stitute on behalf of another. Consider person and passenger in
Charlie’s Charters’ reservation system, this time with get and set
accessors included (Figure 3-9).

Design with Interfaces 101

Figure 3-9. Person with accessors.

1 0..1
Person

name
address
getName
setName
getAddress
setAddress

Passenger
type
number

03.coad2ed.81-172 11/24/98 10:20 AM Page 101

In Java, it looks like this:

public class Person {
✁

// attributes / private
private String name;
private String address;

// attributes / private / associations
private Passenger passenger;

// methods / public / accessors for attribute values
public String getName() { return this.name; }
public void setName(String aName) { this.name = aName; }
public String getAddress() { return this.address; }
public void setAddress(String anAddress)

{ this.address = anAddress; }

// methods / public / accessors for association values
public void addPassenger(Passenger aPassenger) {

this.passenger = aPassenger; }
public void removePassenger() { this.passenger = null; }
public Passenger getPassenger() { return this.passenger; }

✁

}

public class Passenger {
✁

// attributes / private
private int number;
private String type;

// attributes / private / associations
private Person person;

// methods / public / accessors for attribute values
public String getNumber() { return this.number; }
public void setNumber(int aNumber) { this.number = aNumber; }
public String getType() { return this.type; }
public void setType(String aType)

{ this.type = aType; }

102 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 102

// methods / public / accessors for association values
public Person getPerson() { return this.person; }

// constructors
// notice that there is no *default* constructor; a passenger must have
// a corresponding person object.
public Passenger(Person aPerson) {

// implicit call to superclass constructor super();
this.person = aPerson; }

✁

}

Passenger has a “one and only one” association with a person ob-
ject. Whenever an object (Passenger) has a “one and only one”asso-
ciation with another object (Person), then that object (Passenger)
can act as a proxy for the other (Person).

3.3.2.2 Life without a Proxy

Proxy? Why bother? Well, consider this “before” picture, where
you don’t have one object acting as a proxy for another. Suppose
that you’ve identified a passenger object, and would like to know
its name and address. What does the scenario look like? Ask a pas-
senger, delegate to a person—explicitly. Again and again. There
must be a better way to deal with this (Figure 3-10.)

Design with Interfaces 103

Figure 3-10. Asking a passenger for its person object, then asking a person ob-
ject for its name and address.

aPassenger
Passenger

aPerson
Person

1: calcTax()

3: getPerson(;person)

4: getName(;name)

5: getAddress(;address)

2: getAddress(;address)

aReservation
Reservation

03.coad2ed.81-172 11/24/98 10:20 AM Page 103

3.3.2.3 Life with a Proxy

A proxy answers questions on behalf of another, and it provides a
convenient interface. See Figure 3-11.

A proxy-based scenario is shown in Figure 3-12.

In Java, it looks like this:

public class Passenger {
✁

// methods / public / accessors for Person’s attribute values
public String getName() { return this.person.getName(); }
public void setName(String aName) { this.person.setName(aName); }
public String getAddress() { return this.person.getAddress(); }

104 Java Design

Figure 3-11. Person and Passenger, both with accessors.

1 0..1
Person

name
address
getName
setName
getAddress
setAddress

Passenger
type
number
getName
setName
getAddress
setAddress

aPassenger
Passenger

1: calcTax()

3: getAddress(;address)

2: getAddress(;address)

aReservation
Reservation

Figure 3-12. Asking a proxy for what you need.

03.coad2ed.81-172 11/24/98 10:20 AM Page 104

public void setAddress(String anAddress)
{ this.person.setAddress(anAddress); }

✁

}

Now you can ask a passenger for its name and address rather than
asking a passenger for its person object and then interacting with
that person object.

Yes, a passenger object still privately interacts with its person ob-
ject. We could show that interaction, as illustrated in a separate sce-
nario view (Figure 3-13).

But that really is rather boring and not something we would nor-
mally sketch out.

Hence, with a proxy, scenarios become simpler; the details about
whomever is being represented by the proxy are shielded from
view, letting the important stand out, improving effective commu-
nication—a good thing.

3.3.2.4 Introducing a Proxy Interface

Now let’s bring interfaces into the picture. Factoring out common-
ality yields Figure 3-14.

Design with Interfaces 105

aPerson
Person

1: getAddress(;address)

aPassenger
Passenger

Figure 3-13. Behind the scene: a proxy interacting with the one it represents
(boring).

03.coad2ed.81-172 11/24/98 10:20 AM Page 105

In Java, it looks like this:

public interface IName {
String getName();
void setName(String aName);

}

public interface IAddress {
String getAddress();
void setAddress(String anAddress);

}

public class Person implements IName, IAddress {
✁

// class definition here
✁

}

public class Passenger implements IName, IAddress {
✁

// class definition here
✁

}

You can combine these two interfaces as shown in Figure 3-15.

106 Java Design

Person
name
address
getName
setName
getAddress
setAddress

Passenger
type
number

«interface»
IName

getName
setName

«interface»
IAddress

getAddress
setAddress

1 0..1

getName
setName
getAddress
setAddress

Figure 3-14. Person and Passenger, with common interfaces.

03.coad2ed.81-172 11/24/98 10:20 AM Page 106

In Java, it looks like this:

public interface INameAddress extends IName, IAddress {}

public class Person implements INameAddress {
✁

// class definition here
✁

}

public class Passenger implements INameAddress {
✁

// class definition here
✁

}

Now bring agent into the picture (Figure 3-16).

In Java, it looks like this:

public class Person implements INameAddress {

Design with Interfaces 107

Figure 3-15. Person and Passenger with a single, combined interface.

Person
name

getName
setName
getAddress
setAddress

address

Passenger
type
number

«interface»
INameAddress

0..11

getName
setName
getAddress
setAddress

«interface»
IName

getName
setName

«interface»
IAddress

getAddress
setAddress

03.coad2ed.81-172 11/24/98 10:20 AM Page 107

✁

// class definition here
✁

}

public abstract class PersonRole implements INameAddress {
✁

// class definition here
✁

}

public class Passenger extends PersonRole {
✁

// class definition here
✁

}

public class Agent extends PersonRole {
✁

108 Java Design

Figure 3-16. A person is composed of one or more person roles; a person role
specializes into different kinds of person roles.

Person
name

getName
setName
getAddress
setAddress

address

PersonRole
number

«interface»
INameAddress

0..11

getName
setName
getAddress
setAddress

Passenger
type

Agent
password

getName
setName
getAddress
setAddress

03.coad2ed.81-172 11/24/98 10:20 AM Page 108

// class definition here
✁

}

Now consider a NameAddressUI object.

It’s a user interface (UI) object, one that contains a number of
smaller, handcrafted or GUI–builder-generated UI objects: text
fields, buttons, scrollable lists, and the like.

In addition, and more importantly (from an object-modeling per-
spective), a NameAddressUI object knows some number of objects
in classes that implement the INameAddress interface.

The real power is that the NameAddressUI is not hardwired to ob-
jects in just one class. Instead, it works with objects from any class
that implements the INameAddress interface (Figure 3-17).

In Java, it looks like this:

public class NameAddressUI {
✁

// attribute / private / association
private Vector nameAddresses = new Vector();

// method / public / accessor for object association values
public void addNameAddress(INameAddress aNameAddress) {

// only add objects of the type INameAddress to the vector
this.nameAddresses.addElement(aNameAddress) ; }

✁

}

Design with Interfaces 109

Figure 3-17. Each name-address UI object is composed of a collection of
INameAddress objects.

NameAddressUI

display
getName
setName
getAddress
setAddress

«interface»
INameAddress

0..* setName
getName
setAddress
getAddress

03.coad2ed.81-172 11/24/98 10:20 AM Page 109

Impact: interfaces change the very nature of an association, of one
object knowing other objects. As an object, one’s perspective shifts
from, “I hold a collection of sale objects” to “I hold a collection of
ISell objects,” meaning, objects in any class that implements the
ISell interface. Intriguing!

Here a UI object holds a collection of objects from any class that
implements a specific interface. This shifts an object-model
builder’s attention to “what interface does that object need to
provide?” rather than “what class(es) of objects should I limit my-
self to?”

With interfaces an object model gains better abstraction and sim-
pler results. The implementation also benefits from this simplifi-
cation.

Now, take a look at the corresponding scenario (Figure 3-18).

Additional impact: interfaces change the heart and soul of working
out dynamics with scenarios. A scenario is a time-ordered se-
quence of object interactions. Now, as an object in a scenario,
one’s perspective shifts from, “I send a message to a sale object” to
“I send a message to an ISell object,” meaning, an object in any
class that implements the ISell interface. Doubly intriguing!

In this scenario, a UI object sends a message to any object in a class
that implements the needed interface. For the receiving object, it
no longer matters where its class is in the class hierarchy, and it no
longer matters if its class spells out a different implementation
(time vs. size tradeoffs will always be with us).

With interfaces, your attention shifts from “what class of objects
am I working with now?”to “what’s the interface and what’s the in-
terface that I need from whatever kind of object I might work with,
now or in the future?”

With interfaces, you spend more time thinking about the interfaces
that you need, rather than who might implement that interface.

With interfaces, each scenario delivers more impact. Redundancy
across related scenarios goes down.

110 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 110

What’s the impact of interfaces? Reuse within the current app and
greater likelihood of reuse in future apps. In addition, you gain sim-
plified (easier to develop and maintain) models that are flexible, ex-
tensible, and support pluggability.

This is a nice outcome for relatively modest effort.

3.3.3 Factor Out for Analogous Apps

Factor Out for Analogous Apps Strategy: Factor out method signatures
that could be applicable in analogous apps.Reason for use: to in-
crease likelihood of using and reusing off-the-shelf classes.

You can use the “factor out repeaters”strategy to increase the level
of abstraction within a class diagram and its scenarios within the
problem domain you are currently working.

Design with Interfaces 111

Figure 3-18. A name-address UI object, interacting with an INameAddress object.

anImplementer
INameAddressImplementer

1: displayName()

2: getName(;name)

3: displayAddress()

4: getAddress(;address)

5: invokeSetName()

6: setName(name;)

7: invokeSetAddress()

8: setAddress(address;)

aNameAddressUI
NameAddressUI

03.coad2ed.81-172 11/24/98 10:20 AM Page 111

The “factor out for analogous apps” strategy takes an even broader
perspective. You can use this strategy to achieve use and reuse
across a family of analogous applications.

Here’s how.

3.3.3.1 Categorize to Your Heart’s Content

You can categorize business apps in different ways. If inheritance
were your only categorization mechanism, you could go absolutely
crazy. How could you decide upon just one or just a few ways to
categorize what you are working on?

Now you have interfaces. You can use them to categorize classes of
objects in multiple ways, across a variety of dimensions.

Consider business apps. Two key (yet certainly not all-inclusive)
categories are sales and rentals. In a sales system, some goods are
sold for a price. So we could categorize certain classes of objects as
being sellable, perhaps reservable, too.

In a rental system, talent, equipment, or space is rented for a date
or for an interval of time; the goods are still there, and are rented
again and again and again. Here, we could classify certain classes of
objects as being rentable, and perhaps reservable, too.

3.3.3.2 Categorize Charlie’s Charters Business

How do we categorize Charlie’s Charters business? Charlie’s Char-
ters is in the rental business: it rents space on a scheduled flight for
a specific date.

For a flight description on Charlie’s Charters, we can reserve space on
a scheduled flight. We can ask it if a seat is available; we can ask it to re-
serve a seat; and we can ask it to cancel a reservation (Figure 3-19).

Now consider a UI object who knows one or more flight descrip-
tion objects. Without interfaces, it looks like Figure 3-20.

The corresponding scenario is shown in Figure 3-21.

112 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 112

Design with Interfaces 113

Figure 3-19. Methods for reserving space on a scheduled flight.

FlightDescription

available
reserve
cancel

Figure 3-20. A UI class, custom crafted for a flight description.

FlightDescription

available
reserve
cancel

FlightDescriptionUI

invokeAvailable
invokeReserve
invokeCancel

0..*

Figure 3-21. UI objects, interacting with objects in just one class (hardwired
object interactions).

aFlightDescription
FlightDescription

1: invokeAvailable()

2: available(date;available)

3: invokeReserve()

4: reserve(date,reserver;reservation)

5: invokeCancel()

6: cancel(date,reserver;)

aFlightDescriptionUI
FlightDescriptionUI

03.coad2ed.81-172 11/24/98 10:20 AM Page 113

114 Java Design

Figure 3-22. The IDateReserve interface.

«interface»
IDateReserve

available (date)
reserve (date, reserver)
cancel (date, reserver)

3.3.3.3 How Can Interfaces Help in This Context?

Charlie’s Charters is a no-frills airline. It reserves space on a sched-
uled flight; it does not reserve specific seat numbers. (Adding
SeatMap, Seat, and SeatAssignment classes would take care of
that—not a big deal.)

For the Charlie’s Charters app, we are interested in reserving space
for a given date. We could use an interface called IDateReserve (see
Figure 3-22).

We need to add the passenger as a parameter for reserve and can-
cel. However, since we want this interface to be general, the para-
meter type should be that of an Object. Let’s give it the name
“reserver,”—and so we have:

reserve (date, reserver) and

cancel (date, reserver).

Here is what it looks like in Java:

public interface IDateReserve {
boolean available(Date aDate);
Object reserve(Date aDate, Object reserver);
boolean cancel(Date aDate, Object reserver); }

Code notes: available and cancel return boolean results. Reserve returns an ob-
ject, keeping the interface flexible (we aren’t needlessly limiting the interface to
objects in a specific class or its subclasses). The object that gets that returned
object must cast the result into whatever kind of object it expects to get back.

03.coad2ed.81-172 11/24/98 10:20 AM Page 114

Note that the method signatures are generalized a bit, so they can
be applied within any system that has IDateReserve elements
within it.

Why bother extracting this analogous interface? Simply put, we are
looking for an interface that makes it easy for objects that know
how to interact with that interface to “plug in”and make use of that
interface. Having off-the-shelf UI components that sport commonly
used interfaces saves design, development, and testing time. Very
nice indeed.

For example, if you have an object that knows how to interact with
an object in any class that implements IDateReserve, then you can
use and reuse that object in any app with IDateReserve objects in
it. Note that all you care about is the interface; you are free from
having to consider the specific class or classes of objects that you
might want to interact with. This gives new-found freedom within
object-oriented design.

3.3.3.4 An Aside: Some Related Interfaces

A variation on this theme is IDateTimeReserve, which is not
needed at Charlie’s because a flight description specifies a time of
departure. However, if we needed it, it would look like Figure 3-23.

Consider analogous systems such as other rental businesses.

For video rentals, you’d reserve a title for a date (for example, this
Saturday). This is another case in which you could use that same
IDateReserve interface.

Design with Interfaces 115

Figure 3-23. The IDateTimeReserve interface.

«interface»
IDateTimeReserve

available (dateTime)
reserve (dateTime, reserver)
cancel (dateTime, reserver)

03.coad2ed.81-172 11/24/98 10:20 AM Page 115

For hotel rooms, you’d be interested in reserving a certain kind of
room (concierge level) for an interval of time (for example, from
the fifth to the ninth). You could use an interface called IDateInter-
valReserve (Figure 3-24).

For car rentals, you’d reserve a certain kind of car (full-size four-
door) for an interval of time (for example, from the fifth at 5 PM

until the ninth at 9 PM). You could use an interface called IDate-
TimeIntervalReserve (Figure 3-25).

3.3.3.5 Using IDateReserve for Charlie’s Charters

For Charlie’s Charters you need an IDateReserve interface as
shown in Figure 3-26.

You can use or reuse any object that knows how to interact with an
object in a class that implements the IDateReserve interface.

116 Java Design

Figure 3-24. The IDateIntervalReserve interface.

«interface»
IDateIntervalReserve

available (from date, to date)
reserve (from date, to date, reserver)
cancel (from date, to date, reserver)

Figure 3-25. The IDateTimeIntervalReserve interface.

«interface»
IDateTimeIntervalReserve

available (from dateTime, to dateTime)
reserve (from dateTime, to dateTime, reserver)
cancel (from dateTime, to dateTime, reserver)

Figure 3-26. The flight description class implements the IDateReserve interface.

FlightDescription

available
reserve
cancel

«interface»
IDateReserve

available (date)
reserve (date, reserver)
cancel (date, reserver)

03.coad2ed.81-172 11/24/98 10:20 AM Page 116

For example, a “date reservation”user interface could interact with
an object in any class that implements IDateReserve—a flight reser-
vation object, a video title object, and so on.

With interfaces you get new found flexibility. Now UI objects can
connect with an object in any class that implements the correct in-
terface (Figures 3-27 and 3-28).

Design with Interfaces 117

«interface»
IDateReserve

available (date)
reserve (date, reserver)
cancel (date, reserver)

DateReserveUI

invokeAvailable
invokeReserve
invokeCancel

FlightDescription

available
reserve
cancel

0..*

Figure 3-27. UI objects, connected to objects in classes that implement a given
interface (flexible associations).

anImplementer
IDateReserveImplementer

1: invokeAvailable()

2: available(date;available)

3: invokeReserve()

4: reserve(date,reserver;reservation)

5: invokeCancel()

6: cancel(date,reserver;)

aDateReserveUI
DateReserveUI

Figure 3-28. UI objects, interacting with objects in classes that implement a
given interface (flexible object interactions).

03.coad2ed.81-172 11/24/98 10:20 AM Page 117

With interfaces, our attention shifts from “what class of objects can
I interact with?”to “what’s the interface that I can interact with?”

3.3.6.6 Using IDateReserve in Other Apps

Let’s consider another date reservation example. Suppose you are
designing a system for a temporary help business in which each
worker and each piece of equipment is reservable for a date. In this
case, a “daily work order” object can interact with any objects in
classes that implement the IDateReserve interface (Figures 3-29
and 3-30).

Today, a daily work order might be a collection of workers and
pieces of equipment. Next year, it might be a collection of workers,
pieces of equipment, and workspace.

What is the impact of change ?

Add a new class to your object model: Workspace. Be sure it imple-
ments the IDateReserve interface. Connect it with whatever associ-
ations it might need (Figure 3-31).

118 Java Design

«interface»
IDateReserve

available (date)
reserve (date, reserver)
cancel (date, reserver)

DailyWorkOrder

reserveResources

Worker

available
reserve
cancel

Equipment

available
reserve
cancel

0..*

Figure 3-29. Each daily work order object is composed of a collection of
IDateReserve objects.

03.coad2ed.81-172 11/24/98 10:20 AM Page 118

No change to your scenario is needed. The interaction between a
daily work order and its IDateReserve objects remains exactly the
same.

Design with Interfaces 119

anImplementer
IDateReserveImplementer

1: reserveResources()

2: * reserve(date,reserver;reservation)

3: available(date;available)

aDailyWorkOrder
DailyWorkOrder

Figure 3-30. Each daily work order object interacts with its IDateReserve
objects.

«interface»
IDateReserve

available (date)
reserve (date, reserver)
cancel (date, reserver)

DailyWorkOrder

reserveResources

Workspace

available
reserve
cancel

Worker

available
reserve
cancel

Equipment

available
reserve
cancel

0..*

Figure 3-31. Each daily work order object is still composed of a collection of
IDateReserve objects.

03.coad2ed.81-172 11/24/98 10:20 AM Page 119

A daily work order holds a collection of IDateReserve objects.
What if it also holds other objects in that collection, objects from
classes that don’t implement IDateReserve? In this case, a daily
work order object can ask an object if it is an instance of IDateRe-
serve. If it is, the daily work order object can then use the interface
to interact with that object.*

The point of all this is expandability. By using interfaces, your
class diagram and scenarios are organized for change. Instead of
being hardwired to a limited number of classes of objects, your
design can accommodate objects from present or future classes,
just as long as these classes implement the interface(s) that you
need.

3.3.4 Factor Out for Future Expansion

Factor Out for Future Expansion Strategy: Factor out method signatures
now, so objects from different classes can be graciously accom-
modated in the future.Reason for use: to embrace flexibility.

You can use interfaces as a futurist, too. What if you are wildly suc-
cessful on your current project? Simply put, the reward for work
well done is more work.

So what is next? What other objects might you deal with in the fu-
ture, objects that could “plug in”more easily, if you could go ahead
and establish a suitable interface now?

You can add such interfaces to improve model understanding now
and point to change flexibility for the future (hey, this might even
get you a pay raise). And you can demonstrate to your customer
that your model is ready for expansion—just send more money!

120 Java Design

*In C++, information about what class an object is in is called run-time type in-
formation (RTTI). In Java and Smalltalk, information about what class an object
is in is a standard query that can be asked of any object.

03.coad2ed.81-172 11/24/98 10:20 AM Page 120

3.3.4.1 Factoring Out for the Future of Zoe’s Zones

Take a look at a zone and its sensors (see Figure 3-32).

Factor out common method signatures into a new interface (see
Figure 3-33).

Now adjust the class diagram, so a zone holds a collection of IActi-
vate objects (Figure 3-34).

Go even further: an IActivate object consists of other IActivates
(Figure 3-35).

However, this is going a bit too far. An IActivate is an interface; it has
no attributes, it has no associations. So showing an association with a
constraint on an interface really is going a bit too far. You cannot re-
quire an interface to implement an association.

Design with Interfaces 121

1 0..*
Zone

deactivate
activate

Sensor

deactivate
activate

Figure 3-32. A zone and its sensors.

Sensor

activate
deactivate

«interface»
IActivate

activate
deactivate

1 0..*
Zone

activate
deactivate

Figure 3-33. Factoring out a common interface.

03.coad2ed.81-172 11/24/98 10:20 AM Page 121

Now, what you can do is use method naming conventions that
imply attributes and methods:

• get/set method signatures imply attributes

getStatus and setStatus

• add/remove method signatures imply associations

addIActivate and removeIActivate.

By using the add/remove naming convention, we end up with a
new, improved IActivate interface (Figure 3-36).

Figure 3-37 depicts a corresponding scenario, showing add, acti-
vate, and deactivate. Zone is an example of an IActivateGroupIm-
plementer, Sensor is an example of an IActivateImplementer.

122 Java Design

0..*

Sensor

activate
deactivate

«interface»
IActivate

activate
deactivate

Zone

activate
deactivate

Figure 3-35. An IActivate and its collection of IActivates (too far).

0..*

activate
deactivate

«interface»
IActivate

activate
deactivate

Zone

activate
deactivate

Sensor

Figure 3-34. A zone and its collection of IActivates.

03.coad2ed.81-172 11/24/98 10:20 AM Page 122

Design with Interfaces 123

Figure 3-36. An IActivate and adding/removing IActivates.

1

0..*

Zone

Sensor

«interface»
IActivateGroup

addIActivate
removeIActivate

addIActivate
removeIActivate

«interface»
IActivate

activate
deactivate

activate
deactivate

Figure 3-37. An IActivateGroup interacting with its IActivates.

anImplementer
IActivateImplementer

1: setup()

2: c new(;IActivate)

3: addIActivate(IActivate;)

aGroupImplementer
IActivateGroupImplementer

4: activate()

5: * activate()

6: deactivate()

7: * deactivate()

In Java, it looks like this:

public interface IActivate {
void activate();
void deactivate(); }

03.coad2ed.81-172 11/24/98 10:20 AM Page 123

public interface IActivateGroup extends IActivate {
void addIActivate(IActivate anIActivate);
void removeIActivate(IActivate anIActivate); }

public class Sensor implements IActivate {
✁

// methods / public / IActivate implementation
public void activate() { /* code goes here */ }
public void deactivate() { /* code goes here */ }

✁

}

public class Zone implements IActivateGroup {
✁

// attributes / private / associations
private Vector activates = new Vector();

// methods / public / IActivateGroup implementation
public addIActivate(IActivate anIActivate) {

this.activates.addElement(anIActivate); }
public removeIActivate(IActivate anIActivate) {

this.activates.removeElement(anIActivate); }
public void activate() {

// iterate through the vector of “IActivates” and ask each one to
// activate itself
Enumeration activateList = this.activates.elements();
while (activateList.hasMoreElements()) {

// must cast the element to IActivate
IActivate anIActivate = (IActivate)activateList.nextElement();
anIActivate.activate(); }

}
public void deactivate() {

// iterate through the vector of “IActivates” and ask each one to
// deactivate itself
Enumeration activateList = this.activates.elements();
while (activateList.hasMoreElements()) {

// must cast the element to IActivate
IActivate anIActivate = (IActivate)activateList.nextElement();
anIActivate.deactivate(); }

}
✁

}

124 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 124

3.3.4.2 Flexibility, Extensibility, and Pluggability for Zoe’s Zones

One aspect of flexibility, extensibility, and pluggability is being able
to combine objects that you are already working with in new
ways—combinations that you might not have anticipated at first.

Now a zone could be a collection of other zones, which could be a
collection of sensors. And a sensor could be a collection of other
sensors. Nice.

A sensor could be a collection of zones, but this would probably
not make much sense. Interfaces allow you to express what kind of
behavior must be supported. However, reasonableness applies
when it comes to deciding what to plug together!

Another aspect of extensibility is being able to add in new classes
of objects: ones that you can anticipate now, and ones that may sur-
prise you in the future.

Look at the interfaces that you are establishing and consider what
other classes of objects might implement that same interface at
some point in the future.

For zones and sensors, you might look ahead to additional IActivates:
switches, motors, conveyor belts, and robot arms (Figure 3-38).

Design with Interfaces 125

Figure 3-38. Adding in some new IActivates—flexibility, extensibility, pluggability.

n

0..*

Motor

activate
deactivate

RobotArm

activate
deactivate

Sensor

activate
deactivate

Switch

activate
deactivate

Zone

activate
deactivate

«interface»
IActivate

activate
deactivate

03.coad2ed.81-172 11/24/98 10:20 AM Page 125

When the time comes, you could simply add the new classes, new
interface implementers, to the class diagram.

The scenario stays exactly the same as before, up to the point of
sending a message to an interface implementer.

3.4 A Short Interlude: Where to Add Interfaces

Okay, so at this point, you might be beginning to wonder about
when and where to use an interface. After all, for a fully flexible de-
sign, you could include interfaces everywhere:

• An interface for every method signature, separating signature
from implementation

• An interface for every method signature

• An interface at each end of an association, so each end of the
association is not hard-wired to objects in just one class

• An interface for every method call, so you can plug in an al-
ternative implementation of that method any time you
choose to.

Very flexible? Yes. Very unwieldy? Yes—and that is the problem. If
you set off to build the most flexible software in the universe, you
will most definitely run out of time, budget, and resources before
you get there. “As flexible as possible”is not a reasonable design ob-
jective.

So where does it make sense to add in an interface? Where should
you invest in designing-in flexibility? Here is a strategy on this very
matter:

Where to Add Interfaces Strategy: Add interfaces at those points in your
design that you anticipate change: (1) Connect with an interface
implementer rather than with an object in a specific class; (2)
Send a message to an interface implementer rather than to an
object in a specific class; and (3) Invoke a plug-in method rather
than a method defined within a class.

126 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 126

You’ve already seen the first two parts of this strategy; the third
part is coming up later in this chapter.

There’s a picture of this strategy in our minds that needs to some-
how get in print. The next four figures visually express this strategy.

When you add an interface, you are adding in a plug-in point, a
place where you can plug-in any object from any class that imple-
ments the interface (Figure 3-39). Think of an interface as a plug-in
point, like a socket on a circuit board.

Rather than connect with objects in a specific class, you can con-
nect with objects in any class that implements an interface (Figure
3-40). One might put it this way: The association connects to a
plug-in point.

Rather than send a message to an object in a specific class, you can
send a message to an interface implementer (Figure 3-41). Then
you can plug in to that plug-in point absolutely any object from any
class that implements that interface. You get added flexibility, at the
points where you need it (or anticipate that you need it).

Sometimes you might need to vary the implementation of a
method. That is to say, you need the ability to unplug one algorithm

Design with Interfaces 127

Figure 3-39. Interfaces let you specify the plug-in points, the points of flexibil-
ity, within your design.

plug-in point

Figure 3-40. Connect with an interface implementer not limited to just objects
in a single class.

03.coad2ed.81-172 11/24/98 10:20 AM Page 127

and plug-in another one (Figure 3-42). We are not suggesting gen-
eral-purpose function blobs or master controllers here (we get a
wee bit queasy whenever we see a class name ending with the suf-
fix –er). Yet there are times where a plug-in point for some plug-
gable behavior brings some algorithmic flexibility that we’ve found
quite helpful.

Where should you add interfaces? Add interfaces to those places
where you, as a designer, see the cost-justified need for association
flexibility, messaging flexibility, and algorithmic flexibility.

Having completed this short interlude, let’s continue with more
strategies for interface-centric design.

3.5 Design-in Interfaces

The previous section presented four strategies on how to factor
out interfaces, that is to say, extract out interfaces from an evolving
object model. And factoring-out seems like a good way to begin
working with interfaces. Indeed, that’s how we got started.

128 Java Design

Figure 3-41. Send a message to an interface implementer not limited to just ob-
jects in a single class.

Figure 3-42. Delegate to an interface implementer so you won’t be restricted to
the methods defined in just one class.

03.coad2ed.81-172 11/24/98 10:20 AM Page 128

Yet a better approach is to design in interfaces in the first place. In
other words, look for and establish interfaces all along the way,
right as you build your object model. Then, as a crosscheck, you
can use the factoring-out strategies to check your interface design
and to find additional opportunities for adding flexibility using
composition and interfaces.

This two-pass approach—design in and then factor out—mirrors
what we’ve done in practice, the discovery process we’ve gone
through on a variety of projects.

Keep in mind why you design with interfaces. It’s all about substitu-
tion, being able to substitute an object in one class for an object in
another class. In fact, each interface within a design embodies two
kinds of substitution: plug-in substitution or interaction substitution.

Plug-in substitution means that you can interchangeably put in any
object that implements the required interface.

Interaction substitution means that you can send messages to an
object in one class as if it were an object in some other class. (In-
heritance is one way to do this; yet interfaces let you do this even
when the classes you are working with are not directly related via
inheritance.) The receiving object might do the work itself, or it
might ask another object to do the real work for you (delegation).
Either way, the work gets done.

Here is a list of the design-in strategies:

• Design-in interfaces based on common features

• Design-in interfaces based on role doubles

• Design-in interfaces based on behavior across roles

• Design-in interfaces based on collections and members

• Design-in interfaces based on common interactions

• Design-in interfaces based on intra-class roles

• Design-in interfaces based on a need for plug-in algorithms

• Design-in interfaces based on a need for plug-in feature
sequences

Design with Interfaces 129

03.coad2ed.81-172 11/24/98 10:20 AM Page 129

Let’s consider and apply these strategies one by one—and then in
combination with one another.

3.5.1 Design-in Interfaces Based on Common Features

As soon as you first write up a features list, you can identify impor-
tant interfaces for your model. Here’s what it takes:

Design-In, from Features to Interfaces Strategy:

1. Look for a common feature, one you need to provide in
different contexts.

2. Identify a set of method names that correspond to that feature.

3. Add an interface.

4. Identify implementers.

It’s time for an example—this time from Larry’s Loans. Larry and
his fellow loan sharks are very interested in both loan applicants
and borrowers (loan-account holders).

Consider this excerpt from Larry’s features list:

1. Total outstanding balances for a borrower

2. Total outstanding balances for an applicant (may or may not
be a borrower)

3. List accounts and limits for a borrower (a limit is the maxi-
mum amount one can borrow, as in a credit-card limit)

4. List accounts and limits for an applicant (may or may not be
a borrower)

Jot down some common method names:

totalBorrowingBalance

listAccountsAndLimits

Now define some interfaces.

130 Java Design

03.coad2ed.81-172 11/24/98 10:20 AM Page 130

If you planned using either name in any context, you could define
three interfaces: one for one method signature, one for the other
method signature, and one as a combination of the other two inter-
faces. If you did this with every interface, though, you’d end up
with a needless explosion in the number of interfaces in your de-
sign. Flexible, yet not simple.

At the other extreme, if these two method names were so closely
related that you’d always want them implemented in tandem,
then you could say it all in one interface. Simple, not needlessly
flexible.

So consider the middle ground between these two extremes. In
this case, choose the middle ground: “total” in many contexts, “list
and total” in other contexts (Figure 3-43).

In Java syntax, it’s:

public interface ITotalBorrowingBalance {
BigDecimal totalBorrowingBalance();

}
public interface IAccount extends ITotalBorrowingBalance {

Enumeration listAccountsAndLimits();
}

Next, build a class diagram around those interfaces. Loan applicant
and borrower can implement a common interface. Borrower will
do the real work; a loan applicant will delegate its work to its corre-
sponding borrower (Figure 3-44).

Note that Borrower defines the real work to be done; each loan ap-
plicant simply sends a message to its corresponding borrower

Design with Interfaces 131

Figure 3-43. Feature-inspired interfaces.

«interface»
IAccount

listAccountsAndLimits

«interface»
ITotalBorrowingBalance
totalBorrowingBalance

03.coad2ed.81-172 11/24/98 10:20 AM Page 131

object, letting it do all the work (delegation at work once again).
See Figure 3-45.

Now you can take any loan applicant or any borrower and ask the
same question: what is your loan–borrowing balance? So problem-
domain containers (like bank) and user-interface objects (like loan-
balance lists) can readily work with objects from either class in
exactly the same way.

Going from features to interfaces gives you a way to:

• categorize similar functionality.

Similar in name, with the potential for some behind-the-scenes
delegation

• explicitly represent those categorizations.

132 Java Design

Figure 3-44. From features to an interface to a class diagram.

«interface»
IAccount

listAccountsAndLimits

1 0..1

LoanApplication

LoanApplicant

totalBorrowingBalance
listAccountsAndLimits

Borrower

totalBorrowingBalance
listAccountsAndLimits

BorrowingAccount

totalBorrowingBalance

«interface»
ITotalBorrowingBalance
totalBorrowingBalance

0..*

1

0..*

1

03.coad2ed.81-172 11/24/98 10:21 AM Page 132

3.5.2 Design-in Interfaces Based on Role Doubles

For each role in your model, you can name an interface in its honor
and then let other roles offer that same interface. All of the others
will delegate the real work back to the original role-player.

The strategy looks like this:

Design-in, from Role Doubles to Interfaces Strategy:

1. Take a role and turn its method signatures into a role-
inspired interface.

2. Let another role (a “role double”) offer that same interface by:

• implementing that interface, and

• delegating the real work back to the original role player.

Larry’s Loans is most especially interested in borrowers. For Larry
and his cohorts, borrower is the most important role (after all, their
business and profits come from their borrowers). For a given bor-
rower, Larry needs to see the total approved lending limits and a
listing of the lending limits available to that borrower.

Design with Interfaces 133

Figure 3-45. A loan applicant delegates to a borrower; a borrower does the real
work.

aBorrower
Borrower

1: totalBorrowingBalance(;total)

2: totalBorrowingBalance(;total)

anAccount
Account

3: * getBalance(;balance)

aLoanApplicant
LoanApplicant

03.coad2ed.81-172 11/24/98 10:21 AM Page 133

First, select a role. The borrower role looks something like Figure 3-46.

Next, add a role-inspired interface (Figure 3-47).

Finally, let another role implement that interface, delegating the
real work back to the original role player (Figure 3-48).

Composition and interfaces work hand-in-hand. A loan applicant
may play the role of a borrower (composition). Both loan applicant
and borrower provide the same interface.

134 Java Design

Figure 3-46. Begin with a role.

Borrower

totalApprovedLimits
totalAvailableLimits

Figure 3-47. An interface corresponding to a role.

Borrower

totalApprovedLimits
totalAvailableLimits

«interface»
IBorrow

totalApprovedLimits
totalAvailableLimits

Figure 3-48. Role doubles.

LoanApplicant

totalApprovedLimits
totalAvailableLimits

Borrower

totalApprovedLimits
totalAvailableLimits

«interface»
IBorrow

totalApprovedLimits
totalAvailableLimits

0..11

03.coad2ed.81-172 11/24/98 10:21 AM Page 134

Actually, the model indicates that a loan applicant might play the
role of a borrower. If someone asks a loan-applicant object to “total
its approved limits”when it has no corresponding borrower object,
the loan-applicant object simply returns zero (and avoids messag-
ing a borrower altogether).

Figure 3-49 shows how a loan-applicant delegates to its borrower.

Expressed in Java, IBorrow, Borrower, and LoanApplicant look like
this:

public interface IBorrow {
BigDecimal totalApprovedLimits();
BigDecimal totalAvailableLimits();

}
public Borrower implements IBorrow {
✁

public BigDecimal totalApprovedLimits() {/*real work*/}
public BigDecimal totalAvailableLimits() {/*real work*/}

✃

}

Design with Interfaces 135

Figure 3-49. Ask a loan-applicant object; it delegates to its borrower object (If it
has one).

aBorrower
Borrower

1: totalApprovedLimits(;total)

2: [if (Borrower !=null)]totalApprovedLimits(;total)

3: [else] return 0.0

aLoanApplicant
LoanApplicant

03.coad2ed.81-172 11/24/98 10:21 AM Page 135

public LoanApplicant implements IBorrow {
✁

private Borrower borrower; /*add/remove with add/remove methods*/
public BigDecimal totalApprovedLimits() {

if (this.borrower != null)
return this.borrower.totalApprovedLimits(); /*delegate*/

else return (new BigDecimal (0.0));
}
public BigDecimal totalAvailableLimits() {

if (this.borrower != null)
return this.borrower.totalAvailableLimits(); /*delegate*/

else return (new BigDecimal (0.0));
}

✃

}

Interfaces give you a way to treat an object in one class just as if it
were an object in some other class. And that’s a good thing; it al-
lows you to focus on time-ordered sequences of object interactions
that are more important, more revealing, more able to help you im-
prove the model you are working on.

3.5.3 Design-in Interfaces Based on Behavior Across Roles

Another place to design-in interfaces is to look at a party and con-
sider what it does across its collection of party roles.

The same principle applies to a place (for example, an airport) and
its roles (day operations, night operations); it also applies to a thing
(an aircraft) and its roles (military or civilian).

3.5.3.1 Should a Party Support Role-at-a-Time Interfaces?

Back to the party for now. A party has a collection of party roles.
Should the party itself offer single-role interfaces (Figure 3-50)?

If so, then a party could delegate to its loan applicant and the loan
applicant could delegate to its borrower (Figure 3-51).

136 Java Design

03.coad2ed.81-172 11/24/98 10:21 AM Page 136

Yet why ask a party questions that apply to just a role? You don’t
need to. Instead, in scenarios, you end up interacting directly with
a borrower object or a loan applicant object.

Hence, should you add an IBorrow interface to a party? No way.
Why? Adding that interface needlessly complicates a party; you just
don’t need it.

Again, don’t add single-role-specific interfaces to a party (this
would make party too complicated, especially enterprise-wide); for
single-role-specific interaction, let the party interact with the role’s
methods itself, rather than through a separately defined interface.

So when might you add a role-related interface to a party? Ever?

Design with Interfaces 137

Figure 3-50. Should party offer single-role interfaces?

Party

totalApprovedLimits
totalAvailableLimits

«interface»
IBorrow

totalApprovedLimits
totalAvailableLimits

Figure 3-51. Party interacting with specific roles.

aLoanApplicant
LoanApplicant

1: totalApprovedLimits(;total)

2: totalApprovedLimits(;total)

aBorrower
Borrower

3: totalApprovedLimits(;total)

aParty
Party

03.coad2ed.81-172 11/24/98 10:21 AM Page 137

3.5.3.2 Should a Party Support “Behavior Across Roles” Interfaces?

Consider this: What does a party object do best? Simply put, it en-
forces behavior across its many roles.

Let’s explore this a bit further.

A party might have a number of roles. Here, a party can have two
roles; one of those roles might have a subsequent role (see Figure
3-52).

In general, a party might have many roles (loan applicant, bor-
rower, shareholder, lender, manager, executive, and so on). To sup-
port a party’s need to interact across its collection of roles, each
role could implement a common role interface. In this case, that
common role interface is IAuthorize (see Figure 3-53).

Note the designed-in flexibility: it’s easy to drop in a new role, as
long as that role implements the common interface(s) for party to
iterate over. Party does what party does best: enforce business
rules that apply across its roles.

Should a party support “behavior across roles”interfaces? Yes!

138 Java Design

Figure 3-52. An interface for behavior across roles.

Party

isAuthorized

Shareholder

isAuthorized

LoanApplicant

isAuthorized

Borrower

isAuthorized
accounts

«interface»
IAuthorize

isAuthorized

1

0..11 0..11

0..1

03.coad2ed.81-172 11/24/98 10:21 AM Page 138

3.5.4 Design-in Interfaces Based on Collections and Members

With each class you add to your model, you can add depth by con-
sidering what interfaces it needs for it to do its job as a collection it-
self, and then as a member within some other collection. Here’s
how:

Design-in, from Collections and Members to Interfaces Strategy:

1. Does your object hold a collection of other objects? If so:

a.Consider the potential “across the collection”method
signatures.

b. If other collections might offer the same set of method
signatures, then design in that common interface.

2. Is your object a member within a collection? If so:

If that object needs to provide an interface similar to the
collections it is in, then design in that common interface.

3. Identify implementers.

Design with Interfaces 139

Figure 3-53. A party interacts with its role; that role interacts with a subsequent
role.

aLoanApplicant
LoanApplicant

1: isAuthorized(actionCode;result)

2: isAuthorized(actionCode;result)

aBorrower
Borrower

3: isAuthorized(actionCode;result)

aParty
Party

Where "actionCode" indicates the kind of action that a party is checking to
see if it can take. For example: borrow funds electronically.

03.coad2ed.81-172 11/24/98 10:21 AM Page 139

To begin with, does your object hold a collection of other objects?
Collections are just about everywhere:

• If it’s a party (person or organization), it has a collection of roles.

• If it’s a role, it has a collection of moments or intervals.

• If it’s a place or container, it has a collection of moments or
intervals.

• If it’s a moment or interval, it might have a collection of subse-
quent moments or intervals.

• If it’s an item description, it might have a collection of corre-
sponding specific items (actual things to keep track of).

• If it’s an item description, it might have a collection of even
more detailed item descriptions.

For an example, consider Larry’s Loans.

An application is a collection of approvals; each approval sets an
approved limit (one that might be more, less, or the same as the
amount originally applied for).

As a collection, we could ask an application to total its approved
limits. That’s a generally useful interface (See Figure 3-54).

As a member in a collection, we could ask an object to compare its
approved amount vs. the applied-for amount. An approval object
would have to interact with its corresponding application object to
work out the answer. That’s another interesting addition to the in-
terface we are working on (See Figure 3-55).

The corresponding class diagram looks like Figure 3-56.

140 Java Design

Figure 3-54. A collection-inspired interface (i).

«interface»
ITotalApprovedLimit

totalApprovedLimit

03.coad2ed.81-172 11/24/98 10:21 AM Page 140

And the corresponding scenario looks like Figure 3-57.

The collection-inspired interface is ITotalApprovedLimit. Ask a loan
application for its total approved limits and it interacts with each of
its corresponding approval objects, returning the total approved
limit. Ask a loan approval for its total approved limits and it simply
returns its own approved amount.

In fact, you could plug in an object in any class that implements
this interface in either column of the scenario.

Note this added twist. If you plug something into the left position,
though, the interactions that follow might be different. It might, for
example, implement its own “total approved limit” method and re-
turn the result to the sender. Or it might interact with some num-
ber of other objects, not shown in the scenario.

Design with Interfaces 141

Figure 3-55. A collection-inspired interface (ii).

«interface»
ICompareAppliedVsApproved

compareAppliedVsApproved

Figure 3-56. From a collection itself and a collection member: first to an inter-
face, and then to a class diagram.

LoanApplication

totalApprovedLimit
compareAppliedVsApproved

LoanApproval

totalApprovedLimit
compareAppliedVsApproved

«interface»
ITotalApprovedLimit
totalApprovedLimit

«interface»
ICompareAppliedVsApproved

compareAppliedVsApproved

0..*1

03.coad2ed.81-172 11/24/98 10:21 AM Page 141

On the other hand, take a look at the member-in-a-collection-in-
spired interface, ICompareAppliedVsApproved (Figure 3-58).

Note the two paths. Ask a loan approval object to compare applied
vs. approved; it interacts with its one loan application, makes a
comparison, and returns the result to you. Or ask a loan application
object to compare applied vs. approved; it interacts with each of its
loan approvals, totals the approved amounts, makes a comparison,
and returns the result to you.

142 Java Design

Figure 3-57. A loan application interacting with its loan approval(s).

aLoanApproval
LoanApproval

1: totalApprovedLimit(;total)

2: * totalApprovedLimit(;total)

aLoanApplication
LoanApplication

Figure 3-58. A loan approval interacting with its loan application.

aLoanApproval
LoanApproval

3: compareAppliedVsApproved()

1: compareAppliedVsApproved()

4: * getApprovedAmount()

2: getAppliedAmount()

aLoanApplication
LoanApplication

03.coad2ed.81-172 11/24/98 10:21 AM Page 142

Examining collections and members gives you a way to establish
common interfaces for both a collection and its members (first from a
collection’s perspective and then from a member’s perspective).
With the same interface, you end up with broader answers from a col-
lection and more specific answers from a member. This brings more
meaningful content to the model sooner, as well as provides a useful
abstraction for thinking about and working with that added content.

3.5.5 Design-in Interfaces Based on Common Interactions

When working out dynamics with scenarios, you might come
across similar interactions going on between one column and oth-
ers (Figure 3-59).

When you see similar interactions, it’s a good time to design in an
interface. Why? To raise the abstraction level within your model. To
explicitly capture the interaction commonality. To make the sce-
nario “pluggable” (so you can unplug one interface implementer
and plug in another one).

Design with Interfaces 143

Figure 3-59. An example of similar interactions.

1: method1()

2: method2()

3: method3()

aClassA
ClassA

aClassB
ClassB

aClassC
ClassC

4: method4()

5: method5()

6: method6()

03.coad2ed.81-172 11/24/98 10:21 AM Page 143

Here’s the strategy:

Design-in, from Scenarios to Interfaces Strategy:

1. Look for similar interactions.

2. Add an interface-implementer column.

Use this naming convention:

I<what it does> Implementer.

3. Add an interface: I<what it does>.

4. Identify implementers.

Back to Larry’s Loans we go, this time beginning with a scenario for
assessing profit and risk, the two key aspects of any financial deal.
For a loan applicant, we can assess risk. For a borrower, someone
who has borrowed money from Larry’s Loans, we can assess both
profit and risk. The scenario looks like Figure 3-60.

Look at the similar interactions. The strongest similarity is in the as-
sess-risk scenario. A loan applicant asks each of its applications to
assess the risk it poses; then a loan applicant asks its corresponding
borrower object to assess its risk.

144 Java Design

Figure 3-60. Scenarios with some similar interactions.

aBorrower
Borrower

aBorrowingAccount
BorrowingAccount

1: assessProfit(;profit)

2: assessProfit(;profit)
3: assessProfit()

4: assessRisk(;risk)
5: * assessRisk(;risk)

6: assessRisk(;risk)
7: assessRisk()

aLoanApplicant
LoanApplicant

aLoanApplication
LoanApplication

03.coad2ed.81-172 11/24/98 10:21 AM Page 144

Another similarity in interaction occurs when a loan applicant asks
a borrower to assess its risk or to assess its profit.

So take the opportunity to introduce new interfaces (Figure 3-61).

But wait. If assessing profit always has assessing risk as a compan-
ion (and it always does, in real life), then we really don’t need an
IAssess interface after all. Here’s why:

Interface Granularity Strategy: If a method signature can only exist
with others, then add it directly to an interface definition with
those others (no need for a separate, one-signature interface).

You can use that strategy to keep your number of interfaces down
to a more modest level, as in Figure 3-62.

Design with Interfaces 145

Figure 3-61. A scenario-inspired interface.

«interface»
IAssessProfit

assessProfit

«interface»
IAssessProfitAndRisk

«interface»
IAssessRisk

assessRisk

Figure 3-62. Interfaces, upon applying the “interface granularity” strategy.

«interface»
IAssessProfitAndRisk

«interface»
IAssessRisk

assessRisk

assessProfit

03.coad2ed.81-172 11/24/98 10:21 AM Page 145

Okay, with the interfaces established, simplify the scenario itself.
How? Use a single “interface implementer”column to represent the
implementers of that interface: application, borrower, and borrow-
ing account (Figure 3-63).

Taking these new interfaces into a class diagram, you get Figure 3-64.

So what does this mean? It means that:

• You can ask a borrower object to assess its risk. It does so by
interacting with its borrowing account objects.

• You can ask an application object to assess its risk. It does so
by interacting with whatever objects it knows (for example,
credit reports).

• You can ask a loan-applicant object to assess its risk. It does so by
interacting with its application objects and its borrower object.

Working from scenarios to interfaces gives you a way to classify ob-
jects with similar functionality and interactions, regardless of what
classes those objects might be in, now or in the future.

146 Java Design

Figure 3-63. Scenarios with an interface implementer.

anImplementer
IAssessProfitAndRiskImplementer

1: assessProfit(;profit)

2: assessProfit(;profit)

4: assessRisk(;risk)

2: assessRisk(;risk)

aLoanApplicant
LoanApplicant

03.coad2ed.81-172 11/24/98 10:21 AM Page 146

Design with Interfaces 147

Figure 3-64. From scenarios to interfaces to a class diagram.

«interface»
IAssessProfitAndRisk

«interface»
IAssessRisk

assessRisk

assessProfit

LoanApplication

assessRisk

Borrower

assessProfit
assessRisk

BorrowingAccount

assessProfit
assessRisk

assessProfit
assessRisk

LoanApplicant
1 0..1 0..n

0..n

3.5.6 Design-in Interfaces Based on Intra-class Roles

Objects rarely do anything interesting by themselves. Most often,
an object interacts with objects in other classes to get something
done.

Yet sometimes objects within a class interact with other objects
in that same class. How can you recognize when this is the case?
Take the time to consider each class and the roles the objects in
that class might play, interacting with other objects in that same
class.

Design-in, from Intra-Class Roles to Interfaces Strategy:

1. Identify roles that objects within a class can play.

2. Establish an interface for each of those roles.

3. Identify implementers.

03.coad2ed.81-172 11/24/98 10:21 AM Page 147

At Larry’s Loans, there are accounts. In an account transfer, one ac-
count acts as an origin (“transfer from”) and another account acts
as a destination (“transfer to”).

Examining intra-class roles leads us to the interface in Figure 3-65.

So the Account class gets some added depth to it, as the imple-
menter of the interface (Figure 3-66).

We end up with a scenario with interactions between two objects
in the same class: a “transfer from” object and a “transfer to” object
(Figure 3-67).

148 Java Design

Figure 3-65. An interface inspired by examining intra-class roles.

«interface»
ITransfer

transferFrom
transferTo

Figure 3-66. From intra-class roles to interfaces to class diagram.

Account

transferTo
transferFrom

«interface»
ITransfer

transferFrom
transferTo

Figure 3-67. Objects in the same class interacting with each other.

toAccount
Account

1: transferFrom(amount,transferTo;result)

2: transferTo(amount;result)

fromAccount
Account

03.coad2ed.81-172 11/24/98 10:21 AM Page 148

This strategy uses interfaces in yet another way: this time, to ab-
stract up major interaction categories when objects in the same
class interact with each other in some collaborative way—and to
explicitly model those interaction categories in a class diagram.

3.5.7 Design-in Interfaces Based on a Need for Plug-in Algorithms

When it comes to building better object models, once the overall
model shape is in place, methods are where the action is, where
strategic advantage comes into play.

An object model without methods is not very exciting. All you end
up with is a well-structured data-holding system. An object model
that is feature-rich and correspondingly method-rich repre-
sents strategic advantage, genuine business advantage in the global
marketplace.

In a class, you define a method that applies to each object in that
class. It’s something that each object can do itself. Yes, there is
some potential for variation in what that method does (based upon
the state of that object and interactions with related objects), yet
the algorithm for each variation is set.

What happens when you require far more algorithmic diversity for
objects within a single class? When you find you need algorithmic
flexibility, use an interface and some plug-in algorithms—a specific
usage context for what is sometimes referred to as a strategy pat-
tern [Gamma 95]. Here is the strategy:

When to Use Plug-in Algorithms and Interfaces Strategy: Use a plug-in algo-
rithm and interface when you find this combination of problems:

• An algorithm you want to use can vary from object to object
within a single class

• An algorithm is complex enough that you cannot drive its
variation using attribute values alone.

• An algorithm is different for different categories of objects
within a class—and even within those categories (hence,
adding a category-description class won’t resolve this problem).

Design with Interfaces 149

03.coad2ed.81-172 11/24/98 10:21 AM Page 149

• An algorithm you want to use will be different over time
and you don’t know at this point what all those differences
will be.

When this happens, you can design-in an interface so you can plug-
in the functionality you need, on an object-by-object basis.

Here is the strategy:

Design-in, from Plug-in Algorithms to Interfaces Strategy:

1. Look for useful functionality you’d like to “plug in.”

2. Add a plug-in point, using an interface.

3. Identify implementers.

At Larry’s Loans, we need a way to validate the terms of a borrow-
ing account. Terms include restrictions on interest rate, com-
pounding method, and prepayment penalties. And yet validating:

• is different for different kinds of terms.

• is different even for the same kind of term (so adding a “term
category description”class won’t help us here).

• is going to change over time, in ways we don’t know in
advance.

So begin tackling these problems by adding an interface (see Figure
3-68).

Now add the plug-in point in a class diagram (see Figure 3-69).

150 Java Design

Figure 3-68. A plug-in inspired interface.

«interface»
IValidateTerm

validateTerm

03.coad2ed.81-172 11/24/98 10:21 AM Page 150

Next, take it a step further, adding something to actually plug into
that plug-in point (see Figure 3-70).

An IValidateTerm object is an algorithm you can plug into a term
object. For one term you might want to plug in an algorithm that
compares the interest rate being charged with the interbank loan
rate. For another term, you might want to plug in an algorithm that
compares the penalty stated in that term with the maximum al-
lowed by law within the applicable geopolitical region. And so on.

So you create a term object; create the appropriate validater; plug
the validater into the term object; and you’re ready to go.

The “validate a term”scenario looks like Figure 3-71.

Note that the term itself is passed along to the validater, so the im-
plementer can in turn send messages to the term object, to get
whatever the implementer needs to do its job (this kind of interac-
tion is sometimes referred to as a “callback”).

Design with Interfaces 151

Figure 3-69. Adding a plug-in point.

«interface»
IValidateTerm

validateTerm

Term

validate

1

Figure 3-70. Adding something to plug-in at the plug-in point.

InterbankLoanRateValidater

validateTerm

MaxPenaltyAllowedValidater

validateTerm

«interface»
IValidateTerm

validateTerm

Term

validate

1

03.coad2ed.81-172 11/24/98 10:21 AM Page 151

Here’s how to express it in Java:

public interface IValidateTerm {
int validateTerm(Term term);

}
public class Term {
✁

private IValidateTerm validater;
public void addValidater (IValidateTerm validater) {

this.validater = validater; }
public int validate() {

return this.validater.validateTerm(this); }
✃

}

So what might happen when you plug in a specific term validater?
It depends on the behavior of what you plug in, of course. Figure
3-72 is an example.

Designing-in interfaces at plug-in points gives you a way to design
for current or anticipated algorithmic diversity for objects within a
class, adding algorithmic flexibility to your design.

152 Java Design

Figure 3-71. Delegating to a plug-in point.

anImplementer
IValidateTermImplementer

1: validate(;result)

2: validateTerm(term;result)

aTerm
Term

03.coad2ed.81-172 11/24/98 10:21 AM Page 152

3.5.8 Design-in Interfaces Based on a Need for Plug-in Feature Sequences

But first, it’s time for another short interlude about designing with
designs (plural). Plugging in feature sequences is another good rea-
son for systematically designing interfaces.

3.5.8.1 Short Interlude: Effective Design Requires Designs

Design is all about making comparisons, tradeoffs, and judgments.

It’s good engineering practice to develop and consider several de-
sign alternatives, then assess and select the one you’d like to use
for the system under consideration. This occurs (or certainly
should occur) again and again and again, throughout the design
process.

Strategies and patterns are essential ingredients for assessing and
selecting from design alternatives.

Working out dynamics with scenarios is one of the best ways to
compare design alternatives.

Design with Interfaces 153

Figure 3-72. What happens once you ask a plug-in method to do its thing
depends on that plug-in method.

aValidater
InterbankLoanRateValidater

1: validate(;result)

2: validateTerm(term;result)

4: getValue(;value)

3: queryTheTerm(;value)

5: doTheValidation(value;result)

aTerm
Term

03.coad2ed.81-172 11/24/98 10:21 AM Page 153

Sometimes it’s important to gather some empirical evidence: De-
sign and build a small part of the system to work out what ap-
proach to take on your project.

Please note that this is not an exhortation to look for the best design,
the one true design, or something close (it doesn’t exist!). Please
also note that you’re not reading anything like, “Follow these steps
and the very first design you come up with will be the best one.”On
the other hand, nor are you seeing an endorsement for design by
committee—far from it. Good things get accomplished by small
groups and even in a small group someone needs to play “chief archi-
tect”and make important decisions along the way.

By considering three possibilities, you can look for the best of that
set. And nearly always the result will be better than grabbing the
first design that pops into your head and running with it.

In fact, good designers often end up with a simpler overall result,
with a sense of “Gee, that was obvious” or “I’m glad we got there,
but it would have been nice to get there sooner.”Such is the nature
of good design. Yes, strategies and patterns get you there sooner.
Yet this “collapsing of complexity”and “aha!” insight are an integral
part of designing for even the very best software designers.

The best design work we do occurs with teams of about 10 design-
ers. We routinely design in three parallel subteams. After 30 min-
utes of design, each sub-team presents work in progress. We learn
from each other. And we come up with a far better design than any
one subteam could produce on its own. Sometimes we pick one
design out of the three. More often, we merge good ideas from all
three. It takes a seasoned mentor to guide the process. A handbook
of strategies and patterns is also an essential ingredient.

Now let’s try designing with designs.

3.5.8.2 Feature Sequences

Many applications require feature sequences, also known as busi-
ness events, business activities, or operational procedures. How
should you model such sequences?

154 Java Design

03.coad2ed.81-172 11/24/98 10:21 AM Page 154

Consider the following example, adding the feature “make a sale”
to Charlie’s Charters.

Feature: Make a sale.

Initiate a new sale.

Accept item and quantity.

Accept method of payment.

Accept amount tendered

(make change, record the sale).

Design #1. We could introduce a “feature sequence (FS)” class, as
in Figure 3-73.

The first design? Let a make-a-sale object do all the work. It grabs
the data values it needs and does everything else. Low encapsula-
tion, low distribution of responsibility, low resiliency to change.

Design #2. Let a make-a-sale object coordinate yet do absolutely no
detailed work. It holds collections. It steps through the process of
making a sale. It delegates everything it possibly can to the objects
it interacts with. It takes care of a transaction’s start/commit/abort.
It delivers behavior across the collection of objects it knows and in-
teracts with. Moderate encapsulation, moderate distribution of re-
sponsibility, and moderate resiliency to change. A reasonable
design. Let’s try for something even better.

Design #3. Let a problem-domain object do whatever it takes to co-
ordinate making a sale. In other words, let a sale object make a sale
(Figure 3-74).

Design with Interfaces 155

Figure 3-73. Try out a “feature sequence”?

MakeASale_FS

acceptItemAndQuantity
acceptMethodOfPayment
acceptAmountTendered

initiate

03.coad2ed.81-172 11/24/98 10:21 AM Page 155

High encapsulation, high distribution of responsibility across prob-
lem-domain objects, moderate resiliency to change.

Take a closer look at Design #3. How does it work? Consider the
scenario in Figure 3-75.

Observation: In this design, human-interaction (HI) objects focus
on doing one thing and one thing well: interaction!

Another observation: Rather than thinking of a human-interaction
object as a sequence manager, think of it as an interactive view of
the current states of some problem-domain objects. For example: a
store object has a current state; it notifies its listeners (such as a
store window object) whenever it changes state; a store window
receives such notifications and updates itself accordingly.

Design #4. One more time! Let’s take design #3 and improve upon it.
The problem with design #3 is that it does not allow you to plug in
variations on what it means to make a sale. Plug in? Yes, you can use
an interface to define a useful plug-in point—a point in your design
where you want to design in added flexibility. (This is another usage
context for what is sometimes referred to as a strategy pattern.)

Figure 3-76 shows the Sale class with its corresponding plug-in
point for plugging in whatever sequencing is needed to make a sale.

Figure 3-77 shows two implementers of the IMakeASale interface
(when you create a sale object, you also “plug in” an object from a
class that implements that interface).

Now every time someone asks a sale object to make a sale, that sale
object delegates to whatever IMakeASale object it is holding

156 Java Design

Figure 3-74. Let a sale coordinate the making of a sale?

Sale

acceptItemAndQuantity

featureSequenceState

acceptMethodOfPayment
acceptAmountTendered

initiate

03.coad2ed.81-172 11/24/98 10:21 AM Page 156

Design with Interfaces 157

Figure 3-75. Establish a new sale (initial steps).

aSale
Sale

1: makeSale()

3: c initiate(listener;)

10: [IF Line Item] addLineItem(item,quantity;)

7: update(oldSale,newSale,status;)

13: update(oldSale,newSale,status;)

2: initiate()

8: display()

9: acceptInput(;input)

14: display()

15: acceptInput(;input)

4: addListener(listener;)

5:setStatus("add line items";)

6: notifyListeners()

11: addIt(item,quantity;)

12: notifyListeners()

aSaleGUI
Sale_HI

IF

ENDIF

Figure 3-76. A sale with a process plug-in point.

«interface»
IMakeASale

makeASale

Sale
featureSequenceState
makeASale

1

03.coad2ed.81-172 11/24/98 10:21 AM Page 157

(meaning, whatever object from any class that implements
IMakeASale).

Figure 3-78 is an example scenario view.

Note that the sale itself is passed along to the sequencer, so the se-
quencer can in turn send messages to the sale object, to get whatever
the sequencer needs to do its job (another example of a “callback”).

For the utmost in flexibility, Design #4 is the winner. It offers high
encapsulation, high distribution of responsibility across problem-
domain objects, high resiliency to change.

However, it’s the winning design of the four designs only if you
need such flexibility. Remember it’s important to design in flexibil-
ity where you need it, not every single place you possibly can!

Wouldn’t this fourth design be the obvious first choice for an expe-
rienced designer? In practice, we’ve found the answer to be no.
The most flexible design is not always needed. Nor is it intuitively
obvious to experienced designers (a team of designers worked on
this sequence of designs and only one came up with design #4).
Perhaps it’s just that as designers we digest so much content that it
takes us a while to see what’s really needed within a design (as
Jerry Weinberg wrote in Secrets of Consulting, know-when pays a
lot more than know-how). A sense of “collapsing complexity” and
“aha!” insight is still very much a part of everyday practice for even
very experienced software designers, as it should be.

158 Java Design

Figure 3-77. Plug in the process of your choice.

MakeASale_Standard
sale
makeASale

MakeASale_OneClick
sale
makeASale

«interface»
IMakeASale

makeASale

03.coad2ed.81-172 11/24/98 10:21 AM Page 158

Design with Interfaces 159

Figure 3-78. Make a sale with a sequencer.

15: makeASale()

14: addIt(item,quantity;)

18: notifyListeners()

aSale
Sale

aMakeASaleStandard
MakeASale_Standard

1: makeSale()

3: c initiate(listener;)

13: [IF Line Item] addLineItem(item,quantity;)

6: makeASale(status;sale)

8: setStatus(status;)

10: update(oldSale,newSale,status;)

2: initiate()

11: display()

12: acceptInput(;input)

19: update(oldSale,newSale,status;)

20: display()

21: acceptInput(;input)

4: addListener(listener;)

7: decideNextStep(oldStatus;newStatus)

5: makeASale()

9: notifyListeners()

17: setStatus(status;)

16: decideNextStep(oldStatus;newStatus)

aSale
Sale_HI

Let the sequencer decide
the next step.

ENDIF

IF

03.coad2ed.81-172 11/24/98 10:21 AM Page 159

3.6 Design with Interfaces: Applying Multiple Strategies

Now apply a number of strategies together, in concert. First apply
them for Zoe’s Zones. Then apply them for Charlie’s Charters.

3.6.1 Designing-in Flexibility Is a Very Good Thing

Begin with a zone and sensor class diagram as in Figure 3-79.

This class diagram is a simple yet inflexible diagram. Why inflexi-
ble? Each association is hardwired to objects in a specific class. And
each message-send will be hardwired to objects in a specific class.

Design in some flexibility. Review the list of interface strategies:

• Factor-out

Repeaters

Proxies

Analogous apps

Future expansion

160 Java Design

Figure 3-79. A simple yet inflexible diagram: zone and sensor.

1

0..*

Zone

deactivate
activate

Sensor

deactivate
monitor

activate

03.coad2ed.81-172 11/24/98 10:21 AM Page 160

Design with Interfaces 161

• Design-in

Common features

Role doubles

Behavior across roles

Collections and members

Common interactions

Intra-class roles

Plug-in algorithms

Plug-in feature sequences.

Try out the last two in the list.

The monitoring algorithm might vary so greatly from sensor to sensor
that we need a plug-in point. Apply the plug-in algorithms strategy.

The overall monitoring sequence for a zone might vary over time.
Apply the plug-in feature sequences strategy.

The result looks like Figure 3-80.

Now a zone holds a collection of IActivates—sub-zones, sensors, or
anything else that we might want to plug in over time (motors,
robot arms, and the like).

And each sensor object gets its own monitoring algorithm. You can
plug in the standard default algorithm or develop your own and
plug it into the sensor objects you are working with.

Flexibility!

3.6.2 Yet There Usually Is a Design Tradeoff: Simplicity vs. Flexibility

Consider the class diagram in Figure 3-81.

03.coad2ed.81-172 11/24/98 10:21 AM Page 161

162 Java Design

Figure 3-81. A simple class diagram for the retail part of Charlie’s business.

1

1..*

Party
name
getName
setName

Cashier
number
calcTotal

1 0..1

Sale

calcTotal
calcTax
makeASale
initiate
acceptItemsAndQtys
acceptMethodOfPayment
acceptAmountTendered

1 0..*

SaleLineItem
qty
calcTotal

Item
number
calcPriceForQty

Price
price

calcPriceForQty
effectiveDate

0..* 1 1 1..*

Figure 3-80. A more flexible yet more complex model; flexibility comes with a
price.

1 0..*

Zone

deactivate
activate

Sensor

deactivate
activate

MonitorAlgorithm1

monitor

«interface»
IMonitor

monitor

«interface»
IActivate

activate
deactivate

0..*

monitor

03.coad2ed.81-172 11/24/98 10:21 AM Page 162

Design with Interfaces 163

This class diagram is simple yet inflexible. Why inflexible? Every associ-
ation is hard-wired to a specific class. Every message-send will be hard-
wired to objects in a specific class. It’s simple; it’s easy to implement
(as long as requirements don’t change too drastically along the way).

Now consider a variation on the theme (Figure 3-82).

Figure 3-82. A more complicated yet more flexible class diagram for Charlie’s
business.

sale line items1..*

SaleLineItem
qty
calcTotal

Item
number
calcPriceForQty

Price
price

calcPriceForQty
effectiveDate

PriceAlgorithm

calcPriceForQty

MakeASale_Standard

makeASale
initiate
acceptItemsAndQtys
acceptMethodOfPayment
acceptAmountTendered

Sale

calcTotal
calcTax
makeASale

number
date
status

initiate
acceptItemsAndQtys
acceptMethodOfPayment
acceptAmountTendered

«interface»
IMakeASaleSequencer
makeASale

«interface»
IName

getName
setName

«interface»
ITotal

calcTotal

«interface»
IPriceForQty

calcPriceForQty

1..*

Party
name
getName
setName

Cashier
number
calcTotal
setName
getName

sales

a price

1

1

an item

1

0..1

0..*

1

0..1

03.coad2ed.81-172 11/24/98 10:21 AM Page 163

This class diagram is more complicated yet more flexible. The dia-
gram includes plug-in points just at those points where the de-
signer anticipates the need to design in some flexibility. A better
design? Yes, if such flexibility fits within the capability, schedule,
and cost constraints for the project at hand.

Add in plug-in points where you need them, where they pay for
themselves by adding flexibility in exchange for increased model
complexity.

3.7 Naming Interfaces Revisited

With more experience with interfaces in practice, we’ve thought
more and more about what makes a good interface name. We’ve dis-
covered some more things about useful interface names along the way.

You see, in practice, interface names give you a way to classify:

• The kinds of classes whose objects you want to plug into that
plug-in point:

IParty

getAddress, setAddress

getLegalName, setLegalName

getNumber, setNumber

addPartyRole, getPartyRole, removePartyRole

with a “kinds of classes”interface name that follows this pattern:

I<noun, just like a class name>

• Or the kinds of behavior you want such objects to exhibit

ITotal (or ICalcTotal)

calcTotal

with a “kinds of behavior”interface name that follows this
pattern:

I<verb, just like a method name>

164 Java Design

03.coad2ed.81-172 11/24/98 10:21 AM Page 164

With these variations on “kinds of behavior:”

• an algorithm plug in point with:

I<verb> Algorithm

indicating you are expecting to plug in an algorithm.

• or, feature sequencers with:

I<verb> Sequencer

indicating that what you are expecting is indeed a sequencer.

Which approach is better? Or perhaps it is better to ask: which ap-
proach when?

The “kinds of classes” classification can be expressed with inter-
faces or with superclasses; after all, “is a kind of” is the central idea
behind an effective subclass–superclass relationship. We usually
take on the main problem-domain classification first, with inheri-
tance. For other “kinds of classes” classifications, we use interface
names built with a noun.

The “kinds of classes” interfaces work well for plug-in points at the
end of an association or the end of a message—describing the full
spectrum of interactions (more than just a “get” and a “set”) along
that path.

In contrast, the “kinds of behavior”interfaces work well for:

• little groupings of functionality within an “is a kind of”classifi-
cation scheme, and

• the functionality required at an algorithmic plug-in point.

In practice, the most common “kinds of classes” names we use in
object models correspond to the “pattern players” in the compan-
ion book, Object Models: Strategies, Patterns, and Applications.
As class names, we can express those pattern players this way:

Party, PartyRole

Place, PlaceRole

Thing, ThingRole

Moment, Interval

LineItem, ItemDescription, SpecificItem

Design with Interfaces 165

03.coad2ed.81-172 11/24/98 10:21 AM Page 165

Yet often we find that we want one of these categories (e.g., Role)
to offer the same interface as another (e.g., Party) and so we end up
using interfaces for such overlaps—and inheritance when we
don’t:

IParty, PartyRole

IPlace, PlaceRole

IThing, ThingRole

Moment, Interval

LineItem, ItemDescription, ISpecificItem

Each of those “kinds of classes”classes and interfaces might consist
of a number of little “kinds of behavior”interfaces, for example:

IParty: IAddress, IConnectPartyRole, INameLegal, INumber,
IPhone

PartyRole: INumber, IConnectMoment

where:

IAddress: getAddress, setAddress

IConnectMoment: addMoment, getMoment, removeMoment

IConnectPartyRole: addRole, getRole, removeRole

INameLegal: getNameLegal, setNameLegal

INumber: getNumber, setNumber

Problem-domain objects need large-grain interfaces like IParty and
IPlace—and occasionally a plug-in method interface like ITaxAlgo-
rithm. In contrast, human-interaction objects often need fine-
grained interfaces like IAddress and INumber.

Incidentally, using “kinds of classes” interfaces requires that some
class provide the creation services for objects of that type, such a
class is known as a factory (let it know what kind of object you
need and it makes one up for you).

166 Java Design

03.coad2ed.81-172 11/24/98 10:21 AM Page 166

3.8 What Java Interfaces Lack

From a software designer’s perspective, interfaces are the most im-
portant language construct in Java. As you’ve seen again and again
in this chapter, interfaces open the door to remarkable design flexi-
bility.

Yet, to make sure you leave this chapter with your feet firmly
planted on terra firma, we wrap up this chapter with Java interface
shortcomings.

Java interfaces specify method signatures and nothing more. And
that’s just not enough. James Gosling knows this; he included asser-
tions in the last Java spec he wrote himself, took them out during a
schedule crunch, and regrets having done so (as reported in an in-
terview in JavaWorld, in March 1998).

We really should have syntax for three kinds of assertions, so we
can express:

• The conditions for invoking a particular method (method pre-
conditions)

• The conditions that an object satisfy at the end of a particular
method (method postconditions)

• The conditions that an object must satisfy at the end of any
method execution (commonly referred to as class invariants).

You see, there is a whole world of implied context for each and
every plug-in point that you establish with an interface. Each
plug-in point is like an integrated-circuit socket on a circuit
board.

1. Someone decided the added flexibility was worth the added
cost of establishing that plug-in point.

2. Someone expects that whatever is plugged into that socket
will abide by certain rules and conventions.

Design with Interfaces 167

03.coad2ed.81-172 11/24/98 10:21 AM Page 167

For Java plug-in points, interfaces, it would be great if you could ex-
press that context explicitly, with programming language syntax
for preconditions, postconditions, and assertions (the program-
ming language Eiffel sets the standard here). We hope to see Java in-
clude such syntax at some point in the future.

3.9 Summary

In this chapter you’ve worked with interfaces: common sets of
method signatures that you define for use again and again in your
application.

Designing with interfaces is the most significant aspect of Java-in-
spired design because it gives you freedom from associations that
are hardwired to just one class of objects and freedom from sce-
nario interactions that are hardwired to objects in just one class. For
systems in which flexibility, extensibility, and pluggability are key is-
sues, Java-style interfaces are a must. Indeed the larger the system
and the longer the potential life span of a system, the more signifi-
cant interface-centric design becomes.

In this chapter, you’ve learned and applied the following specific
strategies for designing better apps:

Challenge Each Association Strategy: Is this association hardwired only to
objects in that class (simpler), or is this an association to any ob-
ject that implements a certain interface (more flexible, extensible,
pluggable)?

Challenge Each Message-Send Strategy: Is this message-send hardwired
only to objects in that class (simpler), or is this a message-send to
any object that implements a certain interface (more flexible, ex-
tensible, pluggable)?

Factor Out Repeaters Strategy: Factor out method signatures that repeat
within your class diagram. Resolve synonyms into a single signa-
ture.Generalize overly specific names into a single signature. Rea-

168 Java Design

03.coad2ed.81-172 11/24/98 10:21 AM Page 168

sons for use: to explicitly capture the common, reusable behavior
and to bring a higher level of abstraction into the model.

Factor Out to a Proxy Strategy: Factor out method signatures into a
proxy, an object with a solo association to some other object.Rea-
son for use: to simplify the proxy within a class diagram and its
scenarios (Figure 3-9).

Factor Out for Analogous Apps Strategy: Factor out method signatures
that could be applicable in analogous apps.Reason for use: to in-
crease likelihood of using and reusing off-the-shelf classes.

Factor Out for Future Expansion Strategy: Factor out method signatures
now, so objects from different classes can be graciously accom-
modated in the future. Reason for use: to embrace change
flexibility.

Where to Add Interfaces Strategy: Add interfaces at those points in your
design that you anticipate change: (1) Connect with an interface
implementer rather than with an object in a specific class; (2)
Send a message to an interface implementer rather than to an
object in a specific class; and (3) Invoke a plug-in method rather
than a method defined within a class.

Design-in, from Features to Interfaces Strategy:

1. Look for a common feature, one you need to provide in
different contexts.

2. Identify a set of method names that correspond to that feature.

3. Add an interface.

4. Identify implementers.

Design-in, from Role Doubles to Interfaces Strategy:

1. Take a role and turn its method signatures into a role-in-
spired interface.

2. Let another role (a “role double”) offer that same interface by:

Design with Interfaces 169

03.coad2ed.81-172 11/24/98 10:21 AM Page 169

• implementing that interface, and

• delegating the real work back to the original role player.

Design-in, from Collections and Members to Interfaces Strategy:

1. Does your object hold a collection of other objects? If so:

a.Consider the potential “across the collection”method
signatures.

b. If other collections might offer the same set of method
signatures, then design in that common interface.

2. Is your object a member within a collection? If so:

If that object needs to provide an interface similar to the
collections it is in, then design in that common interface.

3. Identify implementers.

Design-in, from Scenarios to Interfaces Strategy:

1. Look for similar interactions.

2. Add an interface-implementer column.

Use this naming convention:

I<what it does> Implementer.

3. Add an interface: I<what it does>.

4. Identify implementers.

Interface Granularity Strategy: If a method signature can only exist
with others, then add it directly to an interface definition with
those others (no need for a separate, one-signature interface).

Design-in, from Intra-class Roles to Interfaces Strategy:

1. Identify roles that objects within a class can play.

2. Establish an interface for each of those roles.

3. Identify implementers.

170 Java Design

03.coad2ed.81-172 11/24/98 10:21 AM Page 170

When to Use Plug-in Algorithms and Interfaces Strategy: Use a plug-in algo-
rithm and interface when you find this combination of problems:

• An algorithm you want to use can vary from object to object
within a single class

• An algorithm is complex enough that you cannot drive its
variation using attribute values alone.

• An algorithm is different for different categories of objects
within a class—and even within those categories (hence,
adding a category-description class won’t resolve this problem).

• An algorithm you want to use will be different over time
and you don’t know at this point what all those differences
will be.

Design-in, from Plug-in Algorithms to Interfaces Strategy:

1. Look for useful functionality you’d like to “plug in.”

2. Add a plug-in point, using an interface.

3. Identify implementers.

Design with Interfaces 171

03.coad2ed.81-172 11/24/98 10:21 AM Page 171

03.coad2ed.81-172 11/24/98 10:21 AM Page 172

