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Internal Server 
Architectures

 

Often, it is important to understand how software works
internally in order to fully understand why it functions the
way it does, and how to configure it best to gain optimum
performance. This chapter covers some of the different inter-
nal server architectures from the point of view of the imple-
mentation and processing paradigm. 

It is by no means a complete lesson on server program-
ming, as there are a lot of subtleties and performance fea-
tures which contribute to the high performance seen in
today’s server products. Some of these features are too com-
plex for the scope of this book and may be trade secrets of
their respective companies.
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This chapter is not specific to proxy servers, and the principles can be
applied to any information server architecture. UNIX systems allow for
all of these different variants; on NT the operating system architecture
and programming design rules out multiprocess architectures, so these
variants are pertinent to UNIX systems only.

Architectural issues related to caching are covered separately in Chap-
ter 10.

 

SINGLE-PROCESS SERIALIZED SERVER ARCHITECTURE

 

The simplest type of server is one that sequentially accepts a request and
services it to the end before taking on the next request. Obviously, this is
an unacceptable alternative in the Internet server world where the num-
ber of requests is overwhelming and they must be serviced in parallel. It is
unacceptable to let a client wait until some other client request is ser-
viced.

This section is here for completeness, and to clarify the point that
Internet servers need to be able to handle parallel requests. There are sev-
eral different ways to accomplish this:

 

•

 

by forking a new process for each request

 

•

 

by keeping a pool of separate server processes that continuously 
accept requests and process them

 

•

 

by spawning a new thread, instead of a process, to handle each 
request

 

•

 

by keeping a pool of separate threads, instead of processes, around 
to handle the load of requests

 

•

 

by using an asynchronous I/O server architecture that is capable of 
managing multiple parallel connections from within a single process/
thread

 

FORKING

 

Admittedly, the simplest way to implement a server capable of servicing
multiple requests in parallel is the forking model [1]. In this model the
master process sits in a loop simply accepting new connections, and for
each new received connection forking a new process to handle it. The
new process will handle the request and exit upon completion.
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A benefit of this architecture is that the master process can be very
simple, and, therefore, stable. Another advantage is that the child pro-
cesses don’t have to worry about memory leaks because each process will
exit upon completing the response, and the memory will be automati-
cally cleaned up by the operating system.

In most early Web and proxy servers [2], the base architecture was so
simple that the authors were able to focus heavily on developing the actual
Web technology, the HTTP protocol, and server features, such as CGI—
still to date (in 1997) the only standard server application interface.

The dawn of commercial application of Web technology soon ren-
dered these forking servers inefficient to handle the load generated by the
boom of the Internet era. Namely, 

 

forking a new process involves consider-
able overhead

 

. Performance of these early forking servers, typically in the
range from a few requests to a few dozen requests per second, was only a
fraction of that of modern servers utilizing new, more efficient architec-
tures. Modern Web servers can handle hundreds of requests per second.

 

PROCESS MOB ARCHITECTURE

 

The first breakthrough in high-performance Web servers was the intro-
duction of the so-called 

 

process mob

 

 [3] architecture. In this model a set of
processes are preforked at the server startup time. These processes remain
resident, servicing requests in parallel. After each response, the process
will simply proceed to the next request.

The mob process model eliminates the overhead of the 

 

fork()

 

system call. Processes are created once during startup time, and the same
processes get reused over and over again. The mob process model has
been in use in the Netscape Proxy Server since its first version.

 

Dealing with Memory Leaks

 

The process mob model requires the server software to be written care-
fully so that the persistent processes don’t corrupt their address space by
programming errors causing crashes and don’t clutter the memory by
memory leaks. Despite diligence, memory leaks may still be a problem.
Some [older versions of ] operating systems may have standard system
libraries that unfortunately leak memory. Also, since it is possible for
users to add on their own server plugins using server programming APIs,
the user code may introduce a memory leak.

Two solutions exist to control memory leak related problems:
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•

 

limiting the lifetime of each server child process

 

•

 

memory pools

 

Limiting Child Process Lifetime

 

By limiting the lifetime of each server child process the processes are
forced to eventually exit (freeing any leaked memory) and get respawned
by the master process. Even though this reintroduces forking, it will have
minimal performance impact since there is only a small fraction of fork-
ing compared to the number of requests processed. A typical process life-
time is on the order of hundreds of requests.

 

Memory Pools

 

Memory pools are a creative way to prevent memory leaks while at the
same time enhancing performance. The standard dynamic memory man-
agement routines 

 

malloc()

 

 and 

 

free()

 

 involve certain overhead
that in the Web server environment can be avoided by introducing a new
clever memory allocation routine. This new memory allocator returns the
memory from a larger pool of memory preallocated using 

 

malloc()

 

and associates with the data structures containing information about the
request. Instead of having to worry about freeing all the allocated mem-
ory, this system doesn’t have an explicit memory freeing routine: all
memory is freed automatically upon the completion of request process-
ing.

From the system’s point of view, there was only one call to 

 

mal-
loc()

 

 at the beginning of the request, and one call to 

 

free()

 

 at the
end. In between, the server application handles application routines’
requests for memory allocation by giving out memory slots from the
large memory pool. Only a single pointer is retained to keep track of
where the allocated memory area ends and free area begins. Also, if
dynamic memory consumption is high, another pool may have to be
allocated.

 

MULTITHREADED, SINGLE-PROCESS ARCHITECTURE

 

Another approach to servicing parallel requests is to use multithreading
instead of multiple processes. The simpler version of this approach is to
create a new thread for each incoming connection and destroy the thread
upon completion of the request service. This corresponds to the forking
server model (the section on forking on page 30), but, instead of creating
new processes, new threads are created.
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Thread Pool Model

 

The use of threads can be refined in the same way the forking process
model was refined into the preforked process mob model: there is a pool
of prespawned threads that handle the mass of incoming connections.

In practice, there is typically a single so-called 

 

accept thread

 

, which, as
its name suggests, sits waiting for new connections and accepts them as
they come in. It will then queue the connection and notify the so-called

 

worker threads

 

 of the new connection. One of the worker threads
dequeues the connection, reads the request from the connection, services
it, and then moves on to the next request (with persistent connections),
or dequeues a new connection.

 

MULTITHREADED, MULTIPROCESS ARCHITECTURE

 

The multiprocess and multithreaded architectures can be combined: the
result is a pool of preforked processes, each containing a pool of pre-
spawned threads. As an example, this architecture was deployed in
Netscape Netsite Server 1.1.

 

SINGLE-PROCESS, ASYNCHRONOUS I/O ARCHITECTURE

 

In the face of the extremely high loads that proxy servers may have to
cope with, even threading may have too much overhead associated with
it. The management of—and the context switches between—the hun-
dreds of threads may take up a considerable portion of the processing
power.

Most of the duration of a request service cycle is spent waiting for a
(slow) remote server to respond. During this time the thread (or process)
is idle but tied up with that request and cannot do anything useful. Once
data is streaming in, the proxy will simply pass it to the client, possibly
doing some content filtering and writing to the cache.

In the asynchronous I/O architecture, the sockets are marked non-
blocking [4]. This causes 

 

read()

 

 calls to return immediately with a
return status indicating that the call would block [5] if there is no data,
instead of waiting for data to arrive. This allows the software to perform
other tasks (service other requests) while the connection is idle. Similarly,
calls to 

 

write()

 

 will return a status code indicating that the call will
block if the receiving end of the connection is not yet ready to receive
more data (that is, internal buffers are full and the application should

 

Chapter3  Page 33  Friday, January 26, 2001  2:41 PM



 

34 Web Proxy Servers

 

wait for the destination to read more data). Normally, the 

 

write()

 

 call
will block waiting for the data to be delivered, but with the asynchronous
I/O enabled the software can continue with other tasks and deliver the
remaining data later when the socket is ready for more writing.

The overall architecture whirls around the so-called 

 

select loop

 

, which
is named after the 

 

select()

 

 call. 

 

select() 

 

is given an array repre-
senting socket descriptors, and it blocks until one or some of them are
ready for reading and/or writing. On return the bits of the array are mod-
ified to indicate which sockets are ready for either read or write (or both).
The software can then match the socket with the task (request) that it is
performing (servicing) and figure out what data is to be written to the
socket, and what is to be read from the socket, and where to pass it.

After all sockets have been handled, sockets that ended up indicating
a blocking state are then set in the descriptor array and 

 

select()

 

 is
called again.

This asynchronous I/O engine architecture is employed by the Har-
vest [

 

6

 

] and Squid [

 

7

 

] proxy servers.

 

MIXED ASYNCHRONOUS I/O WITH THREADS 
ARCHITECTURE

 

Asynchronous I/O can be combined with the multithreaded architec-
ture—and it actually simplifies the implementation significantly. In this
design one thread runs the asynchronous I/O engine (the 

 

I/O worker
thread

 

), while the remaining 

 

worker threads

 

 handle requests in the normal
fashion. However, once they reach the point of simple data pumping
between two sockets, they pass the socket descriptors to the I/O worker
thread.

This way the regular worker threads can handle the more complex
steps of request processing which may block—such as authentication or
custom API functions—and are thus harder to rearchitect to be com-
pletely non-blocking. Only once these steps are completed is the request
processing passed to the asynchronous I/O worker thread which will take
over the processing for the more mechanical data pumping part.

This is ideal—the longest (wallclock) time is spent doing I/O while it
usually requires only little CPU cycles but would cause a lot of context
switches (two or more for every new buffer of data received). The first
part of the request processing consists of various mappings, checkings,
authentication, authorization, and cache lookup, all of which are harder
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to implement with the non-blocking I/O model—so it is natural to per-
form these initial steps in a dedicated worker thread which is allowed to
block.

This mixed thread and asynchronous architecture model is used by,
for example, the Netscape Enterprise Server.

 

SUMMARY

 

This chapter concludes the overview part of this book. The following
parts study each major area of proxy server operation: protocols, caching,
performance, filtering, monitoring, access control, and security. You do
not have to proceed in this order; you may read the parts and chapters
you are interested in, and leave the rest for reference. However, the next
chapter on the HTTP protocol is recommended reading in order to get
an understanding about how HTTP actually works, and how the various
proxy server features relate to the HTTP protocol.

 

Endnotes

 

1. “Forking” means the creation of a new process in UNIX. It is accomplished via the 

 

fork()

 

 system call.

2. Among the first Web servers were CERN 

 

httpd

 

 and NCSA 

 

httpd

 

, both forking 
UNIX servers. CERN 

 

httpd

 

 could act as a proxy server as well.

3. The term “process mob” comes from having this “mob,” or crowd, of processes that 
are all competing to grab and service new connections. It was introduced for Web 
servers by Netscape’s Netsite Server 1.0 in 1994.

4. The non-blocking I/O for a socket descriptor is enabled using 

 

ioctl()

 

, by setting 
the 

 

FIONBIO

 

 attribute.

5. Return value 

 

-1

 

, with 

 

errno

 

 set to 

 

EWOULDBLOCK

 

.

6. 

 

http://excalibur.usc.edu.

 

7. 

 

http://squid.nlanr.net.
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