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C H A P T E R 3

FUZZY LOGIC 
FUNDAMENTALS

3.1 INTRODUCTION

The past few years have witnessed a rapid growth in the number and variety of applica-
tions of fuzzy logic (FL). FL techniques have been used in image-understanding applications
such as detection of edges, feature extraction, classification, and clustering. Fuzzy logic poses
the ability to mimic the human mind to effectively employ modes of reasoning that are approxi-
mate rather than exact. In traditional hard computing, decisions or actions are based on preci-
sion, certainty, and vigor. Precision and certainty carry a cost. In soft computing, tolerance and
impression are explored in decision making. The exploration of the tolerance for imprecision
and uncertainty underlies the remarkable human ability to understand distorted speech, decipher
sloppy handwriting, comprehend nuances of natural language, summarize text, and recognize
and classify images. With FL, we can specify mapping rules in terms of words rather than num-
bers. Computing with the words explores imprecision and tolerance. Another basic concept in
FL is the fuzzy if–then rule. Although rule-based systems have a long history of use in artificial
intelligence, what is missing in such systems is machinery for dealing with fuzzy consequents or
fuzzy antecedents. In most applications, an FL solution is a translation of a human solution.
Thirdly, FL can model nonlinear functions of arbitrary complexity to a desired degree of accu-
racy. FL is a convenient way to map an input space to an output space. FL is one of the tools
used to model a multiinput, multioutput system. 

Soft computing includes fuzzy logic, neural networks, probabilistic reasoning, and genetic
algorithms. Today, techniques or a combination of techniques from all these areas are used to
design an intelligence system. Neural networks provide algorithms for learning, classification,
and optimization, whereas fuzzy logic deals with issues such as forming impressions and rea-
soning on a semantic or linguistic level. Probabilistic reasoning deals with uncertainty. Although
there are substantial areas of overlap between neural networks, FL, and probabilistic reasoning,
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in general they are complementary rather than competitive. Recently, many intelligent systems
called neuro fuzzy systems have been used. There are many ways to combine neural networks
and FL techniques. Before doing so, however, it is necessary to understand basic ideas in the
design of FL techniques. In this chapter, we will introduce FL concepts such as fuzzy sets and
their properties, FL operators, hedges, fuzzy proposition and rule-based systems, fuzzy maps
and inference engine, defuzzification methods, and the design of an FL decision system. 

3.2 FUZZY SETS AND MEMBERSHIP FUNCTIONS

Zadeh introduced the term fuzzy logic in his seminal work “Fuzzy sets,” which described
the mathematics of fuzzy set theory (1965). Plato laid the foundation for what would become
fuzzy logic, indicating that there was a third region beyond True and False. It was Lukasiewicz
who first proposed a systematic alternative to the bivalued logic of Aristotle. The third value
Lukasiewicz proposed can be best translated as “possible,” and he assigned it a numeric value
between True and False. Later he explored four-valued logic and five-valued logic, and then he
declared that, in principle, there was nothing to prevent the derivation of infinite-valued logic.
FL provides the opportunity for modeling conditions that are inherently imprecisely defined.
Fuzzy techniques in the form of approximate reasoning provide decision support and expert sys-
tems with powerful reasoning capabilities. The permissiveness of fuzziness in the human
thought process suggests that much of the logic behind thought processing is not traditional two-
valued logic or even multivalued logic, but logic with fuzzy truths, fuzzy connectiveness, and
fuzzy rules of inference. A fuzzy set is an extension of a crisp set. Crisp sets allow only full
membership or no membership at all, whereas fuzzy sets allow partial membership. In a crisp
set, membership or nonmembership of element x in set A is described by a characteristic func-
tion , where and . Fuzzy set theory extends this con-
cept by defining partial membership. A fuzzy set A on a universe of discourse U is characterized
by a membership function that takes values in the interval . Fuzzy sets represent
commonsense linguistic labels like slow, fast, small, large, heavy, low, medium, high, tall, etc. A
given element can be a member of more than one fuzzy set at a time. A fuzzy set A in U may be
represented as a set of ordered pairs. Each pair consists of a generic element x and its grade of
membership function; that is, i n, x is called a support value if .
A linguistic variable x in the universe of discourse U is characterized by 
and , where is the term set of x — that is, the set of names of lin-
guistic values of x, with each Tx

i  being a fuzzy number with membership function µx
i  defined on

U. For example, if x indicates height, then may refer to sets such as short, medium, or tall.
A membership function is essentially a curve that defines how each point in the input space is
mapped to a membership value (or degree of membership) between 0 and 1. As an example,
consider a fuzzy set tall. Let the universe of discourse be heights from 40 inches to 90 inches.
With a crisp set, all people with height 72 or more inches are considered tall, and all people with
height of less than 72 inches are considered not tall. The crisp set membership function for set
tall is shown in Figure 3.1. The corresponding fuzzy set with a smooth membership function is
shown in Figure 3.2. The curve defines the transition from not tall and shows the degree of mem-
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Figure 3.1 Crisp membership function.

Figure 3.2 An example of a fuzzy membership function.
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bership for a given height. We can extend this concept to multiple sets. If we consider a universe
of discourse from 40 inches to 90 inches, then, to describe height, we can use three term values
such as short, average, and tall. In practice, the terms short, medium, and tall are not used in the
strict sense. Instead, they imply a smooth transition. Fuzzy membership functions representing
these sets are shown in Figure 3.3. The Figure shows that a person with height 65 inches will
have membership value 1 for set medium, whereas a person with height 60 inches may be a
member of the set short and also a member of the set medium; only the degree of membership
varies with these sets. Various types of membership functions are used, including triangular,
trapezoidal, generalized bell shaped, Gaussian curves, polynomial curves, and sigmoid func-
tions. Figure 3.3 shows trapezoidal membership functions. Triangular curves depend on three
parameters a, b, and c and are given by 

(3.1)

Figure 3.3 Trapezoidal membership functions.
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Trapezoidal curves depend on four parameters and are given by

The π-shaped membership functions are given by (Giarratano and Riley, 1993) 

where represents a membership function defined as

In Equation (3.4), a, b, and c are the parameters that are adjusted to fit the desired membership
data. The parameter b? is the half width of the curve at the crossover point. The Gaussian and π-
shaped membership functions are shown in Figures 3.4 and 3.5, respectively. Gaussian curves
depend on two parameters σ and c and are represented by

In designing a fuzzy inference system, membership functions are associated with term sets that
appear in the antecedent or consequent of rules. 
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Figure 3.4 Gaussian membership functions.

Figure 3.5 π-shaped membership functions.
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3.3 LOGICAL OPERATIONS AND IF–THEN RULES

Fuzzy set operations are analogous to crisp set operations. The important thing in defining
fuzzy set logical operators is that if we keep fuzzy values to the extremes 1 (True) or 0 (False),
the standard logical operations should hold. In order to define fuzzy set logical operators, let us
first consider crisp set operators. The most elementary crisp set operations are union, intersec-
tion, and complement, which essentially correspond to OR, AND, and NOT operators, respec-
tively. Let A and B be two subsets of U. The union of A and B, denoted , contains all
elements in either A or B; that is, . The intersection of A and B,
denoted , contains all the elements that are simultaneously in A and B; that is,

. The complement of A is denoted by , and it contains all ele-
ments that are not in A; that is ,  and . The truth tables for
these operators are shown in Figure 3.6.

In FL, the truth of any statement is a matter of degree. In order to define FL operators, we
have to find the corresponding operators that preserve the results of using AND, OR, and NOT
operators. The answer is min, max, and complement operations. These operators are defined,
respectively, as

The formulas for AND, OR, and NOT operators in Equation (3.6) are useful for proving
other mathematical properties about sets; however, min and max are not the only ways to
describe the intersection and union of two sets. Zadeh (1965) defined fuzzy union and fuzzy
intersection as

(3.6)

(3.7)

Figure 3.6 Truth tables for AND, OR, and NOT operators.
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In more general terms, the intersection of two fuzzy sets A and B is specified by a binary map-

ping T that aggregates two membership functions as

For example, the binary operator T may represent the multiplication of .

These fuzzy intersection operators are referred to as T-norm (triangular norm) operators, and

they meet the following basic requirements:

The first requirement ensures the correct generalization of crisp sets. The second requirement

implies that a decrease in the membership values in A and B cannot produce an increase in the

membership value of the intersection of sets A and B. The third requirement specifies that the

operation is insensitive to the order in which fuzzy sets are combined, and the fourth require-

ment enables us to take the intersection of any number of fuzzy sets and any order of pairwise

groupings. Similar to fuzzy intersection, the fuzzy union operator is specified by the following

binary mapping S:

These fuzzy union operators are known as T-conorm or S-norm operators, and they satisfy the

following requirements:
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Several T-norms and S-norms have been suggested in the literature (Yager, 1980; Dubois

and Prade, 1980; Schweizer and Sklar, 1963, Sugeno, 1977). One example of a pair of S-norm

and T-norm operators is the bounded sum and bounded product: 

Most applications use min for fuzzy intersection, max for fuzzy union, and for comple-

mentation. We have to remember that operators used in FL, such as union, intersection, and

complement, reduce to their crisp logic counterparts when the membership functions are

restricted to 0 or 1. 

Fuzzy inference systems consist of if–then rules that specify a relationship between the

input and output fuzzy sets. Fuzzy relations present a degree of presence or absence of associa-

tion or interaction between the elements of two or more sets. Let U and V be two universes of

discourse. A fuzzy relation is a set in the product space and is characterized by

the membership function , where , and . Fuzzy relations

play an important role in fuzzy inference systems. FL uses notions from crisp logic. Concepts in

crisp logic can be extended to FL by replacing 0 or 1 values with fuzzy membership values. A

singleton fuzzy rule assumes the form “if x is A, then y is B,” where , and has a

membership function, , where .  The if part of the rule, “x is A,” is

called the antecedent or premise, while the then part of the rule, “y is B,” is called the consequent

or conclusion. Interpreting an if–then rule involves two distinct steps. The first step is to evaluate

the antecedent, which involves fuzzifying the input and applying any necessary fuzzy operators.

The second step is implication, or applying the result of the antecedent to the consequent, which

essentially evaluates the membership function . It can be seen that in crisp logic a rule

is fired if the premise is exactly the same as the antecedent of the rule, and the result of such rule

firing is the rule’s actual consequent. In fuzzy logic, a rule is fired so long as there is a nonzero

degree of similarity between the premise and the antecedent of the rule. For most applications,

the fuzzy membership function for a given relation is obtained with the minimum or

product implication, given, respectively, as follows:  
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It was Mamdani (1977) who first proposed the minimum implication, and later Larsen
(1980) proposed the product implication. The minimum and product inferences have nothing to
do with traditional prepositional logic; hence, they are collectively referred to as engineering
implications. Details of implication methods can be found in the classic tutorial paper by Men-
del (1995).

3.4 FUZZY INFERENCE SYSTEM

A fuzzy inference system (FIS) essentially defines a nonlinear mapping of the input data
vector into a scalar output, using fuzzy rules. The mapping process involves input/output mem-
bership functions, FL operators, fuzzy if–then rules, aggregation of output sets, and defuzzifica-
tion. An FIS with multiple outputs can be considered as a collection of independent multiinput,
single-output systems. A general model of a fuzzy inference system (FIS) is shown in Figure
3.7. The FLS maps crisp inputs into crisp outputs. It can be seen from the figure  that the FIS
contains four components: the fuzzifier, inference engine, rule base, and defuzzifier. The rule
base contains linguistic rules that are provided by experts. It is also possible to extract rules from
numeric data. Once the rules have been established, the FIS can be viewed as a system that maps
an input vector to an output vector. The fuzzifier maps input numbers into corresponding fuzzy
memberships. This is required in order to activate rules that are in terms of linguistic variables.
The fuzzifier takes input values and determines the degree to which they belong to each of the
fuzzy sets via membership functions. The inference engine defines mapping from input fuzzy
sets into output fuzzy sets. It determines the degree to which the antecedent is satisfied for each
rule. If the antecedent of a given rule has more than one clause, fuzzy operators are applied to
obtain one number that represents the result of the antecedent for that rule. It is possible that one
or more rules may fire at the same time. Outputs for all rules are then aggregated. During aggre-
gation, fuzzy sets that represent the output of each rule are combined into a single fuzzy set.
Fuzzy rules are fired in parallel, which is one of the important aspects of an FIS. In an FIS, the
order in which rules are fired does not affect the output. The defuzzifier maps output fuzzy sets
into a crisp number. Given a fuzzy set that encompasses a range of output values, the defuzzifier

Figure 3.7 Block diagram of a fuzzy inference system.
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returns one number, thereby moving from a fuzzy set to a crisp number. Several methods for
defuzzification are used in practice, including the centroid, maximum, mean of maxima, height,
and modified height defuzzifier. The most popular defuzzification method is the centroid, which
calculates and returns the center of gravity of the aggregated fuzzy set. FISs employ rules. How-
ever, unlike rules in conventional expert systems, a fuzzy rule localizes a region of space along
the function surface instead of isolating a point on the surface. For a given input, more than one
rule may fire. Also, in an FIS, multiple regions are combined in the output space to produce a
composite region. A general schematic of an FIS is shown in Figure 3.8. 

Consider a multiinput, multioutput system. Let be the input vector and
be the output vector. The linguistic variable in the universe of discourse U

is characterized by and where is a term
set of x; that is, it is the set of names of linguistic values of x, with each being a fuzzy mem-
ber and the membership function defined onU. As an illustration, we consider a fuzzy infer-
ence system with two inputs and one output . Let the two inputs represent the
number of years of education and the number of years of experience, and let the output of the
system be salary. Let x1 indicate the number of years of education, represent its term set
{low, medium, high}, and the universe of discourse be . Let x2 indicate the number of
years of experience, the universe of discourse be , and the corresponding term set be
{low, medium, high}. Similarly, linguistic variable y in the universe of discourse V is character-
ized by , where is a term set of y; that is, T is the set of names of lin-
guistic values of y, with each being a fuzzy membership function defined on V. If the

Figure 3.8 Schematic diagram of a fuzzy inference system.
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variable y represents salary, then represents a term set {very low, low, medium, high, very

high}, and the universe of discourse is [20–200], which represents the minimum and maximum

in thousands of dollars—that is, 20,000, and 200,000, respectively. In order to map input vari-

ables x1 and x2 to output y, it is necessary that we first define the corresponding fuzzy sets. The

membership functions for the input and output variables are shown in Figure 3.9. The first step

in evaluating the output of a FIS is to apply the inputs and determine the degree to which they

belong to each of the fuzzy sets. The fuzzifier block performs the mapping from the input fea-

ture space to fuzzy sets in a certain universe of discourse. A specific value x1 is then mapped to

the fuzzy set with degree , to fuzzy set with degree , and so on. In order to per-

form this mapping, we can use fuzzy sets of any shape, such as triangular, Gaussian, π-shaped,

etc.

A fuzzy rule base contains a set of fuzzy rules R. A single if–then rule assumes the form

“if x is Tx then y is Ty .” An example of a rule might be “if education is high and experience is

high, then salary is very high.” For a multiinput, multioutput system,

(3.15)

Figure 3.9a Fuzzy membership functions for input1.
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Figure 3.9b Fuzzy membership function for input2.

Figure 3.9c Fuzzy membership function for output1.

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

experience

degree of
membership

low medium high

20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

salary

degree of
membership

very_low low medium high very_high

3.fm  Page 73  Monday, March 26, 2001  10:18 AM



74 Chapter 3  •  FUZZY LOGIC FUNDAMENTALS

where the ith fuzzy rule is

The p preconditions of form a fuzzy set , and the consequent is the
union of q independent outputs. If we consider a multiinput, single-output system, then the con-
sequent reduces to . For the given example, the rules are stated as

R1: if education is low and experience is low, then salary is very low
R2: if education is low and experience is medium, then salary is low
R3: if education is low and experience is high, then salary is medium
R4: if education is medium and experience is low, then salary is low
R5: if education is medium and experience is medium, then salary is medium
R6: if education is medium and experience is high, then salary is high
R7: if education is high and experience is low, then salary is medium
R8: if education is high and experience is medium, then salary is high
R9: if education is high and experience is high, then salary is very high

Interpreting an if–then rule is a three part process: (a) Resolve all fuzzy statements in the
antecedent to a degree of membership between 0 and 1; (b) if there are multiple parts to the ante-
cedent, apply fuzzy logic operators and resolve the antecedent to a single number between 0 and
1, is the result being the degree of support for the rule; and (c) apply the implication method,
using the degree of support for the entire rule to shape the output fuzzy set. If the rule has more
than one antecedent, the fuzzy operator is applied to obtain one number that represents the result
of applying that rule. For example, consider an ith rule

Then the firing strength or membership of the rule can be defined as

Equation (3.18) represents fuzzy intersection with the minimum or product operators.
Each fuzzy rule yields a single number that represents the firing strength of that rule. The firing
strength is then used to shape the output fuzzy set that represents the consequent part of the rule.
The implication method is defined as the shaping of the consequent (the output fuzzy set), based
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on the antecedent. The input for the implication process is a single number given by the anteced-
ent, and the output is a fuzzy set. Two methods are commonly used: the minimum and the prod-
uct methods, represented, respectively, by Equations (3.19) and (3.20), respectively.

where w is the variable that represents the support value of the membership function. For the
given example, if we assume that education equals 10 years and experience equals 18.6 years,
then it can be seen in Figure 3.10 that rules R5 and R6 fire. 

After we obtain firing strengths of the rules, we need to combine the corresponding output
fuzzy sets into one composite fuzzy set. The process of combining output fuzzy sets into a single
set is called aggregation, a processthat unifies the outputs of all the rules. Essentially, aggrega-
tion takes all fuzzy sets that represent the output for each rule and combines them into a single
fuzzy set that is used as the input to the defuzzification process. Aggregation occurs only once
for each output variable. The inputs to the aggregation process are truncated or modified output
fuzzy sets obtained as the output of the implication process. The output of the aggregation pro-
cess is a single fuzzy set that represents the output variable. Since the aggregation method is
commutative, the order in which the rules are executed is not important. The commonly used
aggregation method is the max method. If we have two rules with output fuzzy sets represented
by two fuzzy sets µy

i(w) and µy
2(w), then, combining the two sets, we obtain the output decision

Notice that the last result is a membership curve. The output of aggregation of fuzzy sets in our
example is shown in Figure 3.10. In order to get a crisp value for output y, we need a defuzzifica-
tion process. The input to the defuzzification process is a fuzzy set (the aggregate output fuzzy
set), and the output of the defuzzification process is a single crisp number. The most commonly
used defuzzification method is the centroid calculation. Methods of defuzzification are dis-
cussed in the next section.

The fuzzy inference process defines the mapping surface , which is illustrated
in Figure 3.11. The inference process can be described completely in the five steps shown in Fig-
ure 3.12.

Step 1: Fuzzy Inputs

The first step is to take inputs and determine the degree to which they belong to each of the
appropriate fuzzy sets via membership functions.

(3.19)

(3.20)

(3.21)
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Figure 3.10 Fuzzy rules.
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Step 2: Apply Fuzzy Operators

Once the inputs have been fuzzified, we know the degree to which each part of the ante-
cedent has been satisfied for each rule. If a given rule has more than one part, the fuzzy logical
operators are applied to evaluate the composite firing strength of the rule. 

Step 3: Apply the Implication Method

The implication method is defined as the shaping of the output membership functions on
the basis of the firing strength of the rule. The input for the implication process is a single num-
ber given by the antecedent, and the output is a fuzzy set. Two commonly used methods of
implication are the minimum and the product.

Step 4: Aggregate all Outputs

Aggregation is a process whereby the outputs of each rule are unified. Aggregation occurs
only once for each output variable. The input to the aggregation process is the truncated output
fuzzy sets returned by the implication process for each rule. The output of the aggregation pro-
cess is the combined output fuzzy set.

Step 5: Defuzzify

The input for the defuzzification process is a fuzzy set (the aggregated output fuzzy set),
and the output of the defuzzification process is a crisp value obtained by using some defuzzifica-
tion method such as the centroid, height, or maximum. As an example, we consider a system that
determines dinner in a restaurant on the basis of the service received. We consider input mem-
bership functions with different degrees of overlap. Here, the input x denotes the quality of the

Figure 3.11 Mapping surface.
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service, which is represented by a number between 0 and 20, where 20 designates very good and
0 very poor. The input x is represented by the term set {very poor, poor, average, good, very
good}. The output y represents the tip, which varies between 5 and 30 percent, and is given by
the term set {very cheap, cheap, average, generous, very generous}. The input–output fuzzy sets
for this example are shown in Figures 3.13 and 3.14, respectively. We have assumed the follow-
ing five rules that define mapping :

R1: if service is very poor, then tip is very cheap
R2: if service is poor, then tip is cheap
R3: if service is average, then tip is average
R4: if service is good, then tip is generous
R5: if service is very good, then tip is very generous

Figure 3.12 Fuzzy inference process.

Fuzzify inputs

Defuzzify

Aggregate all output fuzzy sets
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Apply fuzzy operators
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3.fm  Page 78  Monday, March 26, 2001  10:18 AM



FUZZY INFERENCE SYSTEM 79

Figure 3.13 Input fuzzy sets.

Figure 3.14 Output fuzzy sets.
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We have implemented the FIS with these rules. The mapping function for the system is shown in
Figure 3.15. In order to see the effect of overlap between input fuzzy sets on the mapping func-
tions, we used another set of fuzzy input–output membership functions, illustrated in Figures
3.16 and 3.17, respectively. The corresponding mapping function is shown in Figure 3.18. The
mapping function depends on the number of input fuzzy sets and their shapes. It can be
seen from the preceding example that, as we increase the overlap between the input fuzzy sets,
the mapping function becomes smoother. 

3.5 DEFUZZIFICATION
A fuzzy inference system maps an input vector to a crisp output value. In order to obtain a

crisp output, we need a defuzzification process. The input to the defuzzification process is a
fuzzy set (the aggregated output fuzzy set), and the output of the defuzzification process is a sin-
gle number. Many defuzzification techniques have been proposed in the literature. The most
commonly used method is the centroid. Other methods include the maximum, the means of
maxima,  height, and modified height method. The five methods may be described as follows:

(a) Centroid defuzzification method: In this method, the defuzzifier determines the
center of gravity (centroid) of B and uses that value as the output of the FLS. For
a continuous aggregated fuzzy set, the centroid is given by

Figure 3.15 Mapping surface.
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Figure 3.16 Input fuzzy sets.

Figure 3.17 Output fuzzy sets.
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where S denotes the support of .  Often, discretized variables are used so that
y’ can be approximated as shown in Equation (3.23), which uses summations instead
of integration.

The centroid defuzzification method finds the “balance” point of the solution
fuzzy region by calculating the weighted mean of the output fuzzy region. It is the
most widely used technique because, when it is used, the defuzzified values tend to
move smoothly around the output fuzzy region. The technique is unique, however,
and not easy to implement computationally. The method of centroid defuzzification
is depicted in Figure 3.19.

(b) Maximum-decomposition method: In this method, the defuzzifier examines the
aggregated fuzzy set and chooses that output y for which is the maximum, as
shown in Figure 3.20. Unlike the centroid method, the maximum-decomposition

Figure 3.18 Mapping surface.
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method has some properties that are applicable to a narrower class of problems. The
output value for this method is sensitive to a single rule that dominates the fuzzy rule
set. Also, the output value tends to jump from one frame to the next as the shape of
the fuzzy region changes. 

(c) Center of maxima: In a multimode fuzzy region, the center-of-maxima technique
finds the highest plateau and then the next highest plateau. The midpoint between
the centers of these plateaus is selected as shown in Figure 3.21.

Figure 3.19 Centroid defuzzification method.

Figure 3.20 Defuzzification (maximum-decomposition method).
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(d) Height defuzzification: In this method, the defuzzifier first evaluates at

and then computes the output of the FLS, where denotes the center of gravity of

fuzzy sets Bi . Output yh in this case is given by

where m represents the number of output fuzzy sets obtained after implication and

yi’ represents the centroid of fuzzy region i. This technique is easy to use because the

centers of gravity of commonly used membership functions are known ahead of

time. Regardless of whether minimum or product inference is used, the fuzzy infer-

ence process essentially defines the mapping of the given vector of crisp values to an

output crisp value using fuzzy rules stored in the knowledge base. 

The fuzzy inference process just discussed is known as Mamdani’s fuzzy infer-

ence method. Sugeno (1977) suggested a fuzzy inference method that is similar to

Mamdani’s. In Sugeno’s method, the first two parts, namely, mapping inputs to

fuzzy membership functions and applying fuzzy operators, are the same as in Mam-

dani’s method. The main difference between the two  is in the evaluation of the out-

put membership functions. In Sugeno’s method, the output membership function is a

constant or a linear function. A fuzzy rule for the zero-order Sugeno method is of the

form , where A and B are fuzzy sets in the antecedent

and K  is a constant. The first-order Sugeno model has rules of the form

, where A and B are fuzzy sets in the anteced-

ent and p, q, and r are constants.

Figure 3.21 Defuzzification (average of maximums).
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3.6 FUZZY SET REPRESENTATION WITH A CUBE

Kosko (1997) provided a geometric representation of fuzzy sets. The geometry of fuzzy
sets involves both the domain , and the range of mapping . The
geometry of fuzzy sets aids us in describing fuzziness and defining fuzzy concepts. Kosko repre-
sents the fuzzy power set , the set of all fuzzy subsets of x, by a cube. A point in the cube
represents a fuzzy set. The set of all fuzzy subsets equals the unit hypercube . Vertices
of the cube, , define crisp sets. A two-dimensional hypercube is shown in Figure 3.22. We may
view the fuzzy subset as a point in the unit hypercube. With this formulation, we
define fuzzy set intersection by the pairwise minimum, union by the pairwise maximum, and
complement by a reversal of order, as follows: 

Consider two fuzzy sets, and in a four-
dimensional cube. The following are various intersections, unions, and complements of these
sets:

(3.25)

(3.26)

Figure 3.22 Unit cube representing a fuzzy set.
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The overlap-fit vector in this example is not equal to all zeros, and the overlap-fit
vector is not equal to the vector of all ones. A distance between two fuzzy sets is often
required to calculate fuzziness or entropy. The distance of order l between two points A and B
can be defined as

where n represents the dimension of the unit cube, l is the order of the distance measure, xi rep-
resents ith variable, represents membership values for fuzzy set A, and denotes
membership values for fuzzy set B. For l = 1, Equation (3.27) represents the Hamming distance,
whereas for l = 2, it represents the Euclidean distance. This leads us to a simple definition of the
size of set A as the sum of its components or the fuzzy Hamming distance between the ori-
gin and the point in the hypercube representing the set: 

The position of the fuzzy set in the unit hypercube determines  the set’s fuzziness. Since
entropy is a measure of uncertainty, the term fuzzy entropy is defined to quantify fuzziness. The
fuzzy entropy of fuzzy set A, , varies from 0 to 1 on the unit hypercube. The vertices of the
cube have zero entropy, while the midpoint has the maximum, or unity, entropy. Kosko (1997)
defined entropy as  the ratio of the distance between the point defining the fuzzy subset and the
nearest vertex to the distance between the point and the farthest vertex: 

The fuzzy entropy theorem states that the entropy can be written as

Kosko (1986, 1987) provided a geometric proof of the fuzzy entropy theorem. With this
representation, the fuzzy inference process can be represented as the mapping of a fuzzy set
from one cube to another.
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3.7 HEDGES

A linguistic hedge or modifier is an operation that modifies the meaning of a term or a
fuzzy set. For example, if hot is a fuzzy set, then very hot, more or less hot, and extremely hot are
examples of hedges that are applied to that fuzzy set. Hedges can be viewed as operators that act
upon a fuzzy set’s membership function to modify it. Hedges play the same role in fuzzy pro-
duction rules that adjectives and adverbs play in English sentences. There are hedges that inten-
sify the characteristics of a fuzzy set (very, extremely), that dilute the membership curve
(somewhat, rather, quite), that form the complement (not), and that approximate a scalar to a
fuzzy set (about, close to, approximately). The mechanics underlying the hedge operation is
generally heuristic in nature. For example, is used frequently to implement the hedge
slightly. Zadeh’s original definition of the hedge very intensifies the fuzzy region by squaring the
membership function at each point in the set . On the other hand, the hedge somewhat
dilutes the fuzzy region by taking the square root of the membership function at each point along
the set . A generalization of the concentrator hedge is 

where . This hedge simply replaces the exponent of the intensification function with a real
positive number greater than unity. Figure 3.23 shows the hedge that uses the general concentra-
tor form with . The complement of very is a hedge group represented by somewhat, rather,
and quite. These hedges basically dilute the force of a fuzzy set membership function. A gener-

(3.31)

Figure 3.23 Concentrator hedge.
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alization of the dilator hedge simply replaces the exponent of the intensification function with a

real positive number less than unity, expressed as a fraction . The generalized dilator edge

is defined as

where . Generalized dilator hedges are shown in Figure 3.24. The contrast hedges change

the nature of fuzzy regions by making the region either less fuzzy (intensification) or more fuzzy

(diffusion). Hedges such as positively, absolutely, and definitely are contrast hedges, changing a

fuzzy set by raising the truth values above and decreasing all the truth values below ,

thus reducing the overall fuzziness of the region (Figure 3.25). These hedges are represented by 

(3.32)

(3.33)

Figure 3.24 Dilator hedge.
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Similarly, a hedge such as generally changes the fuzzy surface by reducing all truth values
above and increasing all truth values below , as shown in Figure 3.26. These hedges
are represented by 

Since a hedge is linguistic in nature, multiple hedges can be applied to a single fuzzy
region. The approximation hedges are an important class of transformers. They not only broaden
or restrict existing bell-shaped fuzzy regions, but also convert scalar values into bell-shaped
fuzzy regions. The most often used approximate hedge is the about hedge, which creates a space
that is proportional to the height and width of the generated fuzzy space.

Figure 3.25 Intensification hedge.
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3.8 FUZZY SYSTEMS AS FUNCTION APPROXIMATORS

A fuzzy system can be used to approximate a function. Kosko (1997) described a class of
additive fuzzy systems. An additive fuzzy system approximates a functioon by covering its
graph with fuzzy patches. The approximation improves as the fuzzy patches grow in number.
Additive fuzzy systems have a feed-forward architecture that resembles the feed-forward multi-
layer neural systems used to approximate functions. Additive fuzzy systems are different from
conventional fuzzy inference systems. Additive fuzzy systems add the then parts of fired if-then
rules, whereas conventional fuzzy inference systems combine the then part with pairwise max-
ima. The fuzzy mapping function for the adaptive fuzzy system that approximates a
function is shown in Figures 3.27 and 3.28. Fuzzy patches approximate the function.
The approximation improves with the number of patches. However, the computational cost also
increases with the number of patches. A schematic diagram for an additive fuzzy system is pre-
sented in Figure 3.29. A Cartesian product space for the system is shown in Figure 3.30. Rules
for the additive system are of the form “If X is A, then Y is B.” Additive fuzzy systems fire all
rules in parallel and average the scaled then part sets. The class of additive fuzzy systems repre-
sents a large number of additive systems. The most commonly used model for an additive fuzzy

Figure 3.26 Diffusion hedge.
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Figure 3.27 Function approximation with four fuzzy patches.

Figure 3.28 Function approximation with five fuzzy patches.

Figure 3.29 Additive fuzzy interference system.
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system is the standard additive model (SAM), which defines a function given by Kosko (1992) ,
viz.,

where Vj is the volume of the jth then-part set Bj and wj is the weight of the jth rule (often, wj = 1).
The term cy is the centroid of the jth output set. Fit valu escales the then-part set Bj, and m
is the number of rules. The SAM equation departs from the linguistic context of earlier fuzzy
models. The complexity of a SAM system depends on the complexity of the if-part fuzzy sets Aj

and the dimensionality of the problem. Simple sets such as trapezoids and bell curves lead to
efficient approximation. 

Figure 3.30 Fuzzy rule as a state patch.
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3.9 EXTRACTION OF RULES FROM SAMPLE DATA POINTS

Earlier, we saw that in order to design a FIS, we need a rule base that contains fuzzy rules.
Usually, these rules are obtained from expert knowledge. However, on many occasions, we may
not know rules, but we may have sample data points or training samples in the input/output
spaces. In situations like this, it is possible to generate fuzzy rules that define the mapping sur-
face. The generated rules then can be used to design an FIS that performs the desired mapping.
Wang and Mendel (1991) suggested a systematic method for extracting fuzzy rules from sample
data points. The method consists of five steps. They have also shown that the mapping surface
can approximate any real continuous function on a compact set to a desired degree of accuracy.
In this method, it is possible to combine information of two kinds: numeric and linguistic. 

Consider a function . We can design an FIS with two inputs and one output to
approximate the function, using the following steps: 

Step 1. Divide the input/output space into fuzzy regions: Divide each domain interval into
2N + 1 regions. Let the regions be denoted as SN (small N), . . . , S1 (small 1), CE (central), B1 (big
1), . . . , BN (big N). The number of regions can be different for each variable. Assign each region
a fuzzy membership function. Fuzzy membership functions for x1, x2, and y are shown in Figure
3.31a−c. 

Figure 3.31a Fuzzy membership function.
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Figure 3.31b Fuzzy membership function.

Figure 3.31c Fuzzy membership function.
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Step 2. Generate fuzzy rules from given data points: First determine the degree of the
given data point for each membership function, and assign the point to the
region with the maximum degree of membership. Then obtain a rule from the given data point.
The rule may look like the following:

Step 3. Assign a degree to each rule: There are many data points, each generating a rule.
Therefore, some rules may conflict. The degree of a rule can be defined as follows: For rule Ri,
viz., if x1 is A and x2 is B, then y is C, the degree of the rule is defined as

where represent membership values in fuzzy sets A, B, and C,
respectively. In practice, we may have a priori information about data points. We therefore
assign a degree to each data point that represents expert belief in the rule. The degree of the rule
then can be written as

Step 4. Create a combined FAM bank, shown in Figure 3.32. Cells in the FAM bank are to
be filled with fuzzy rules, by assignment. If there is more than one rule in any cell, then the rule
with the maximum degree is used. If there is a rule with an OR operator, it fills all the cells in
that row or column.

Step 5. Determine a mapping based on the combined FAM bank. We used the following
defuzzification to determine output y for given inputs : The output membership region o1

is given by

The centroid defuzzification method can be used to obtain the crisp output y. 

We can view the preceding five-step procedure as a block. Input to the block consists of
examples and expert rules, and the output of the block is a mapping from input to output space.
Wang and Mendel (1991) used the five-step process for a chaotic time-series prediction problem.
A chaotic time series which is sufficiently complicated that it appears to be “random” can be

R1: if x1 is B1 and x2 is CE, then y is B1
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generated from a deterministic nonlinear system. The time series Wang and Mendel used is gen-
erated from the differential equation 

where . Those two researchers generated and plotted the time series with 1,000 points,
using the first 700 points to train the system and the last 300 points to test the system. They
approximated the time series using both an FLS and a neural network and compared the results.
They showed that the approximation could be greatly improved by dividing the domain into
finer intervals. An FLS can approximate any arbitrary continuous function to any desired degree
of accuracy. The ability to approximate an arbitrary function is an important property that can be
used in many image-processing applications. Given discrete data points, we can generate a func-
tion passing through those points. The function can then be used in applications such image
interpolation or predictive image coding. 

3.10 FUZZY BASIS FUNCTIONS

From the previous section, we know that a FIS is a nonlinear system that maps a crisp
input vector x to a scalar y. The mapping can be represented as . Discussions in the pre-
vious sections offer a geometric interpretation of a FIS. Kim and Mendel (1995) provided the

Figure 3.32 The form of a FAM bank.
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FUZZY BASIS FUNCTIONS 97

mathematical formula that defines the mapping function for a FIS. Their expansion for the FIS
mapping function is 

where M denotes the number of rules, represents the center of gravity of the output fuzzy set
that is associated with the rule Ri, p is the dimension of vector x, and represents input
membership functions. This expansion is valid only when we choose singleton fuzzification
functions, product inference, maximum-product composition, and height defuzzification (Men-
del, 1995). Equation (3.40) can be rewritten as

were the are called fuzzy basis functions (FBFs) and are given by

Equation (3.42) is valid for singleton fuzzification. The representation in Equation (3.40)
is referred to as the fuzzy basis function expansion. Relationships between the fuzzy function
and other basis functions (such as trigonometric functions) were studied extensively by Kim and
Mendel (1993). It can be seen that the FBF expansion is essentially a sum over M rules, each of
which generates an FBF. The rules in the FBF expansion can be obtained from numeric data as
well as from expert’ knowledge. It is therefore convenient to decom poseas

Equation (3.43) can be rewritten as 
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98 Chapter 3  •  FUZZY LOGIC FUNDAMENTALS

where FBFs are associated with numeric data, and ML fuzzy basis func-
tions are associated with linguistic information. These FBFs are given by

It can be seen from Equations (3.45) and (3.46) that each FBF is normalized by informa-
tion that is associated with both numeric and linguistic information.

Because the decomposition of an FBF depends on M, where , a mapping
function associated with an FLS can be expressed as a summation over FBFs. Unlike other clas-
sical basis functions (e.g., trigonometric functions), which are inherently orthogonal, FBFs are
not orthogonal. They are, however, important and unique, because of the fact that they are the
only basis functionsthat can include numeric, as well as linguistic, information.

3.11 DESIGN AND IMPLEMENTATION OF A FUZZY INFERENCE SYSTEM

FISs map vectors from input space to output space. A number of other methods, including
neural networks, mathematical functions, and conventional control systems, can perform a simi-
lar mapping. For any given problem, if a simpler solution is already available, we must try that
first. Alternative methods may be used instead of an FLS. However, among the many advantages
FISs have are that they are flexible, they have the ability to model any nonlinear function to any
arbitrary degree of accuracy, they are based on rules that can be specified with a natural lan-
guage, they can be built from expert knowledge, and they are tolerant to imprecise data. Fuzzy
logic techniques can be used to complement other techniques, such as neural networks or
genetic algorithms. In order to design an FIS, we must first decide inputs, outputs, each of their
domains, and fuzzy inference rules. Mapping rules can be obtained from numeric data or from
expert knowledge. We also need to decide input and output membership functions, overlap
between these functions, implication and aggregation methods, and the defuzzification method.
With the choice of these parameters, we can design a variety of FISs. In order to implement an
FIS, we can select any method and algorithm and any programming environment. Today, many
software and hardware tools are available for designing and implementing fuzzy logic systems.
Most software tools provide extensive debugging and optimization features, as well as a graphi-
cal user interface (GUI) environment that makes fuzzy logic system design simple and easy. One
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such package is the MATLAB fuzzy logic toolbox, which relies heavily on GUI tools that pro-
vide an environment for FIS design, analysis, and implementation. Examples shown in earlier
sections may be worked out with the use of this toolbox. MATLAB provides five primary GUI
tools for building, editing, and observing an FIS.

3.12 SUMMARY

The chapter deals with fuzzy logic fundamentals. Zadeh (1965) introduced the term fuzzy
logic and described the mathematics of fuzzy set theory. Fuzzy set allows partial memberships.
Fuzzy sets represent linguistic labels or term sets such as slow, fast, low, medium, high, etc.
Fuzzy membership functions represent term sets. Commonly used membership functions are tri-
angular, trapezoidal, bell shaped, and Gaussian curves. In fuzzy logic, the truth of any statement
is a matter of degree. In fuzzy logic, operators such as AND, OR, and NOT are implemented by
intersection, union, and complement operators. There are various ways to define these operators.
Commonly, AND, OR, and NOT operators are implemented by the min, max, and complement
operators. A fuzzy inference system (FIS) maps crisp inputs to crisp outputs. An FIS consists of
four components: the fuzzifier, inference engine, rule base, and defuzzifier. The fuzzifier maps
input numbers into corresponding fuzzy membership values. The inference engine defines map-
ping from input fuzzy sets to output fuzzy sets. It determines the degree to which the antecedent
part is satisfied for each rule. If the antecedent part of  the rule has more than one clause, fuzzy
operators are applied to obtain a number that represents the result of the antecedent part for that
rule. Outputs of all rules are then aggregated. The defuzzifier maps the output fuzzy sets into a
crisp number. The commonly used defuzzification method is the centriod method. The chaper
also provides an illustrative example for a FIS. 

Kosko (1997) has provided geometric representation of fuzzy sets. He represents fuzzy
sets with a unit hypercube in a multidimensional space. The corners of the cube represent crisp
sets. The position of a fuzzy set in the unit hypercube determines its fuzziness. Kosko (1997)
defines fuzzy entropy of a fuzzy set.  Kosko has also shown that a fuzzy system can be used for
function approximation, and that an additive fuzzy system approximates a function by covering
its graph with fuzzy patches. The approximation improves as the fuzzy patches grow in number. 

The chapter also describes hedges. A linguistic hedge is an operation that modifies the
meaning of the term or fuzzy set. Hedges play the same role in fuzzy production rules that adjec-
tives and adverbs play in English sentences. There are hedges that intensify characteristics of a
fuzzy set (very, extremely), dilute fuzzy sets (somewhat, rather) or form a complement (not).
Zadeh’s original definition of the hedge very intensifies the fuzzy region by squaring the mem-
bership function at each point in the set, that is .  On the other hand the hedge somewhat
dilutes the fuzzy region and it is given b y.  A few other hedges are described in the chap-
ter.

In designing a FIS we need fuzzy rules. Often, these rules are obtained from experts
knowledge. However, it is also possible to generate fuzzy rules from sample data points. Wang

( )2
A xµ

( )0.5
A xµ
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100 Chapter 3  •  FUZZY LOGIC FUNDAMENTALS

and Mendel (1991) have suggested a systematic method for extracting fuzzy rules from sample
data points. The method consists of five steps. The chapter basically describes fundamentals of
fuzzy logic, fuzzy membership functions, how to design an FIS, and how to extract fuzzy rules
form sample data points. 
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EXERCISES

3.1 Design a Sugeno-style FIS tipper with two inputs and one output. Let the first input be food
and the second input be service.The output is the tip. Let the universe of discourse for both
inputs  be 1–10 and for the output 5–30. Assume the following three rules: 

If service is poor or food is rancid, then tip is cheap

If service is good, then tip is average

If service is excellent or food is delicious, then tip is generous

Assume that the input variable food is represented by the term set {rancid, average, delicious}
and the input variable service is represented by the term set {poor, good, excellent}. You may
use triangular or trapezoidal membership functions. If service and food are rated as 4 and 9,
respectively, what will be the tip, with your system?

3.2 Design a fuzzy inference system that can predict profit. Inputs to the system are cost, sales, and
market share. Assume the following:

Assume the following rules:

(a) If sales are SN, then profit is SN

(b) If market share is HIGH, then profit is SP

(c) If cost is ZR, then profit is SP

(d) If cost is SN and market share is HIGH, then profit is LP

Use trapezoidal membership functions and show the mapping surface. What will be the profit
if sales are $2,100,000, cost per unit is $75, and the market share is 33%?

Variable Minimum Maximum Term set Remark

1 sales $0 $3,000,000 LN, SN, ZR, SP, LP Input1

2 cost per unit $0 $200 LN, SN, ZR, SP, LP Input2

3 market share 0% 50% LOW, MEDIUM, HIGH Input3

4 profit 0% $500,000 LN, SN, ZR, SP, LP Output
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102 Chapter 3  •  FUZZY LOGIC FUNDAMENTALS

3.3 Repeat Exercise 2, using Gaussian membership functions. Also, add the following three rules
to the rule base and plot the mapping surface: 

(a) If sales are LP, then profit is SP
(b) If sales are LP and market share is HIGH, then profit is LP
(c) If market share is LOW and sales are LN, then profit is LN

3.4 Find the union and intersection of the following fuzzy sets:

3.5 Consider the following fuzzy sets in a five-dimensional unit cube:

(a) Find .
(b) Find , where represent the first- and the

second-order distances, respectively.
(c) Find represents entropy.

3.6 Plot the following fuzzy set for integer values of x between −4 and 5. Also, plot the corre-
sponding generalized concentrator and the dilator hedges. 
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3.7 (a) Explain the Wang and Mendel algorithm for extracting fuzzy rules from data samples.
(b) Consider the following samples and show outputs for various steps in the algorithm. What

rules can you generate from these data samples?

x1 x2 x3 Class

27 5 1 Water

28 29 29 Forest
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