
Chapter 11: <list>

Background
<list>

list

The header <list> defines just the template class list, which is a
container that stores its controlled sequence of length N as a bidirectional
linked list of N nodes, each of which stores a single element. The advantage
of a linked list is its flexibility. You can insert and remove elements freely
and easily within the list, just by rewriting the forward and backward links
in nodes. You can even splice in whole sublists. The list nodes themselves
don’t move about in memory. As a consequence any iterators you maintain
to designate individual nodes remain valid for the life of the node. Similarly,
any pointers you maintain to the individual list element itself also remain
valid for the life of the node in which the element resides.

The price you pay is sequential access to arbitrary elements in the
sequence. To access element number i, for example, you have to chain from
one node to another i times, beginning with a pointer to the head of the list
stored in the container object. You can chain in either direction, but chain
you must. So the mean time to locate an arbitrary element increases linearly
with the total number of elements in the controlled sequence. Using STL
terminology, template class list supports bidirectional iterators.

Table 11.1, on page 240, shows how template class list stacks up against
the other STL containers. It is the clear winner for all operations that
rearrange list elements (insertions, erasures, and replacements). It is the
clear loser for all operations that locate arbitrary elements (searches and
random access). It also requires a moderately hefty overhead of two point-
ers per element, the forward and backward links stored in each node.

splice

sort

merge

Template class list defines several member functions that take advan-
tage of its peculiar properties. For example, you can splice elements from
one list into another, sort a list, or merge one ordered list into another. All
these operations simply restitch links between list nodes. No copying
occurs. The payoff can be significant for a list of elements that are expensive
to copy — because they are large or have nontrivial copy semantics.

exception
safety

Template class list has an additional virtue. It alone of the template
containers promises to behave predictably in the presence of exceptions
thrown by programmer-supplied code. Other containers provide a weaker
guarantee. (See Chapter 9: Containers.) For any container, an exception

thrown during execution of a member function leaves the container in a
consistent state, suitable for destruction; and the container does not lose
track of allocated storage. But for many operations, particularly those that
affect multiple elements, the exact state of the container is unspecified when
the exception is rethrown. list, by contrast, guarantees for most member
functions that any interrupted member function call leaves the container
in its original state when it rethrows the exception.

So in summary, you use template class list when you need flexibility
in rearranging sequences of elements, and in keeping track of individual
elements by storing iterators that remain valid across rearrangements. You
also use template class list when you need greater determinism in the
presence of exceptions. On the other hand, locating arbitrary elements
within a list object is relatively expensive, even if the list is kept in order,
since you have to perform a linear search each time. Consider other
containers if more rapid access is important.

Functional Description
namespace std {
template<class T, class A>
 class list;

 // TEMPLATE FUNCTIONS
template<class T, class A>
 bool operator==(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator!=(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator<(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator>(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator<=(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 bool operator>=(
 const list<T, A>& lhs,
 const list<T, A>& rhs);
template<class T, class A>
 void swap(
 list<T, A>& lhs,
 list<T, A>& rhs);
 };

Include the STL standard header <list> to define the container template
class list and several supporting templates.

290 Chapter 11

¤ list

template<class T, class A = allocator<T> >
 class list {
public:
 typedef A allocator_type;
 typedef typename A::pointer pointer;
 typedef typename A::const_pointer
 const_pointer;
 typedef typename A::reference reference;
 typedef typename A::const_reference const_reference;
 typedef typename A::value_type value_type;
 typedef T0 iterator;
 typedef T1 const_iterator;
 typedef T2 size_type;
 typedef T3 difference_type;
 typedef reverse_iterator<const_iterator>
 const_reverse_iterator;
 typedef reverse_iterator<iterator>
 reverse_iterator;
 list();
 explicit list(const A& al);
 explicit list(size_type n);
 list(size_type n, const T& v);
 list(size_type n, const T& v, const A& al);
 list(const list& x);
 template<class InIt>
 list(InIt first, InIt last);
 template<class InIt>
 list(InIt first, InIt last, const A& al);
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 void resize(size_type n);
 void resize(size_type n, T x);
 size_type size() const;
 size_type max_size() const;
 bool empty() const;
 A get_allocator() const;
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 void push_front(const T& x);
 void pop_front();
 void push_back(const T& x);
 void pop_back();
 template<class InIt>
 void assign(InIt first, InIt last);
 void assign(size_type n, const T& x);
 iterator insert(iterator it, const T& x);
 void insert(iterator it, size_type n, const T& x);
 template<class InIt>
 void insert(iterator it, InIt first, InIt last);
 iterator erase(iterator it);
 iterator erase(iterator first, iterator last);
 void clear();

<list> 291

 void swap(list& x);
 void splice(iterator it, list& x);
 void splice(iterator it, list& x, iterator first);
 void splice(iterator it, list& x, iterator first,
 iterator last);
 void remove(const T& x);
 templace<class Pred>
 void remove_if(Pred pr);
 void unique();
 template<class Pred>
 void unique(Pred pr);
 void merge(list& x);
 template<class Pred>
 void merge(list& x, Pred pr);
 void sort();
 template<class Pred>
 void sort(Pred pr);
 void reverse();
 };

The template class describes an object that controls a varying-length
sequence of elements of type T. The sequence is stored as a bidirectional
linked list of elements, each containing a member of type T.

The object allocates and frees storage for the sequence it controls through
a stored allocator object of class A. Such an allocator object must have the
same external interface as an object of template class allocator. Note that
the stored allocator object is not copied when the container object is as-
signed.

List reallocation occurs when a member function must insert or erase
elements of the controlled sequence. In all such cases, only iterators or
references that point at erased portions of the controlled sequence become
invalid.

All additions to the controlled sequence occur as if by calls to insert,
which is the only member function that calls the constructor T(const T&).
If such an expression throws an exception, the container object inserts no
new elements and rethrows the exception. Thus, an object of template class
list is left in a known state when such exceptions occur.

¤ list::allocator_type

typedef A allocator_type;

The type is a synonym for the template parameter A.
¤ list::assign

template<class InIt>
 void assign(InIt first, InIt last);
void assign(size_type n, const T& x);

If InIt is an integer type, the first member function behaves the same as
assign((size_type)first, (T)last). Otherwise, the first member
function replaces the sequence controlled by *this with the sequence
[first, last), which must not overlap the initial controlled sequence.
The second member function replaces the sequence controlled by *this
with a repetition of n elements of value x.

292 Chapter 11

¤ list::back

reference back();
const_reference back() const;

The member function returns a reference to the last element of the
controlled sequence, which must be non-empty.

¤ list::begin

const_iterator begin() const;
iterator begin();

The member function returns a bidirectional iterator that points at the
first element of the sequence (or just beyond the end of an empty sequence).

¤ list::clear

void clear();

The member function calls erase(begin(), end()).
¤ list::const_iterator

typedef T1 const_iterator;

The type describes an object that can serve as a constant bidirectional
iterator for the controlled sequence. It is described here as a synonym for
the implementation-defined type T1.

¤ list::const_pointer

typedef typename A::const_pointer
 const_pointer;

The type describes an object that can serve as a constant pointer to an
element of the controlled sequence.

¤ list::const_reference

typedef typename A::const_reference const_reference;

The type describes an object that can serve as a constant reference to an
element of the controlled sequence.

¤ list::const_reverse_iterator

typedef reverse_iterator<const_iterator>
 const_reverse_iterator;

The type describes an object that can serve as a constant reverse bidirec-
tional iterator for the controlled sequence.

¤ list::difference_type

typedef T3 difference_type;

The signed integer type describes an object that can represent the differ-
ence between the addresses of any two elements in the controlled sequence.
It is described here as a synonym for the implementation-defined type T3.

¤ list::empty

bool empty() const;

<list> 293

The member function returns true for an empty controlled sequence.
¤ list::end

const_iterator end() const;
iterator end();

The member function returns a bidirectional iterator that points just
beyond the end of the sequence.

¤ list::erase

iterator erase(iterator it);
iterator erase(iterator first, iterator last);

The first member function removes the element of the controlled se-
quence pointed to by it. The second member function removes the ele-
ments of the controlled sequence in the range [first, last). Both return
an iterator that designates the first element remaining beyond any elements
removed, or end() if no such element exists.

Erasing N elements causes N destructor calls. No reallocation occurs, so
iterators and references become invalid only for the erased elements.

The member functions never throw an exception.
¤ list::front

reference front();
const_reference front() const;

The member function returns a reference to the first element of the
controlled sequence, which must be non-empty.

¤ list::get_allocator

A get_allocator() const;

The member function returns the stored allocator object.
¤ list::insert

iterator insert(iterator it, const T& x);
void insert(iterator it, size_type n, const T& x);
template<class InIt>
 void insert(iterator it, InIt first, InIt last);

Each of the member functions inserts, before the element pointed to by
it in the controlled sequence, a sequence specified by the remaining
operands. The first member function inserts a single element with value x
and returns an iterator that points to the newly inserted element. The
second member function inserts a repetition of n elements of value x.

If InIt is an integer type, the last member function behaves the same as
insert(it, (size_type)first, (T)last). Otherwise, the last member
function inserts the sequence [first, last), which must not overlap the
initial controlled sequence.

Inserting N elements causes N constructor calls. No reallocation occurs,
so no iterators or references become invalid.

294 Chapter 11

If an exception is thrown during the insertion of one or more elements,
the container is left unaltered and the exception is rethrown.

¤ list::iterator

typedef T0 iterator;

The type describes an object that can serve as a bidirectional iterator for
the controlled sequence. It is described here as a synonym for the imple-
mentation-defined type T0.

¤ list::list

list();
explicit list(const A& al);
explicit list(size_type n);
list(size_type n, const T& v);
list(size_type n, const T& v,
 const A& al);
list(const list& x);
template<class InIt>
 list(InIt first, InIt last);
template<class InIt>
 list(InIt first, InIt last, const A& al);

All constructors store an allocator object and initialize the controlled
sequence. The allocator object is the argument al, if present. For the copy
constructor, it is x.get_allocator(). Otherwise, it is A().

The first two constructors specify an empty initial controlled sequence.
The third constructor specifies a repetition of n elements of value T(). The
fourth and fifth constructors specify a repetition of n elements of value x.
The sixth constructor specifies a copy of the sequence controlled by x. If
InIt is an integer type, the last two constructors specify a repetition of
(size_type)first elements of value (T)last. Otherwise, the last two
constructors specify the sequence [first, last). None of the construc-
tors perform any interim reallocations.

¤ list::max_size

size_type max_size() const;

The member function returns the length of the longest sequence that the
object can control.

¤ list::merge

void merge(list& x);
template<class Pred>
 void merge(list& x, Pred pr);

Both member functions remove all elements from the sequence control-
led by x and insert them in the controlled sequence. Both sequences must
be ordered by the same predicate, described below. The resulting sequence
is also ordered by that predicate.

For the iterators Pi and Pj designating elements at positions i and j, the
first member function imposes the order !(*Pj < *Pi) whenever i < j.

<list> 295

(The elements are sorted in ascending order.) The second member function
imposes the order !pr(*Pj, *Pi) whenever i < j.

No pairs of elements in the original controlled sequence are reversed in
the resulting controlled sequence. If a pair of elements in the resulting
controlled sequence compares equal (!(*Pi < *Pj) && !(*Pj < *Pi)),
an element from the original controlled sequence appears before an ele-
ment from the sequence controlled by x.

An exception occurs only if pr throws an exception. In that case, the
controlled sequence is left in unspecified order and the exception is re-
thrown.

¤ list::pointer

typedef typename A::pointer pointer;

The type describes an object that can serve as a pointer to an element of
the controlled sequence.

¤ list::pop_back

void pop_back();

The member function removes the last element of the controlled se-
quence, which must be non-empty.

The member function never throws an exception.
¤ list::pop_front

void pop_front();

The member function removes the first element of the controlled se-
quence, which must be non-empty.

The member function never throws an exception.
¤ list::push_back

void push_back(const T& x);

The member function inserts an element with value x at the end of the
controlled sequence.

If an exception is thrown, the container is left unaltered and the excep-
tion is rethrown.

¤ list::push_front

void push_front(const T& x);

The member function inserts an element with value x at the beginning
of the controlled sequence.

If an exception is thrown, the container is left unaltered and the excep-
tion is rethrown.

¤ list::rbegin

const_reverse_iterator rbegin() const;
reverse_iterator rbegin();

296 Chapter 11

The member function returns a reverse bidirectional iterator that points
just beyond the end of the controlled sequence. Hence, it designates the
beginning of the reverse sequence.

¤ list::reference

typedef typename A::reference reference;

The type describes an object that can serve as a reference to an element
of the controlled sequence.

¤ list::remove

void remove(const T& x);

The member function removes from the controlled sequence all ele-
ments, designated by the iterator P, for which *P == x.

The member function never throws an exception.
¤ list::remove_if

templace<class Pred>
 void remove_if(Pred pr);

The member function removes from the controlled sequence all ele-
ments, designated by the iterator P, for which pr(*P) is true.

An exception occurs only if pr throws an exception. In that case, the
controlled sequence is left in an unspecified state and the exception is
rethrown.

¤ list::rend

const_reverse_iterator rend() const;
reverse_iterator rend();

The member function returns a reverse bidirectional iterator that points
at the first element of the sequence (or just beyond the end of an empty
sequence). Hence, it designates the end of the reverse sequence.

¤ list::resize

void resize(size_type n);
void resize(size_type n, T x);

The member functions both ensure that size() henceforth returns n. If
it must make the controlled sequence longer, the first member function
appends elements with value T(), while the second member function
appends elements with value x. To make the controlled sequence shorter,
both member functions call erase(begin() + n, end()).

¤ list::reverse

void reverse();

The member function reverses the order in which elements appear in the
controlled sequence.

¤ list::reverse_iterator

typedef reverse_iterator<iterator>
 reverse_iterator;

<list> 297

The type describes an object that can serve as a reverse bidirectional
iterator for the controlled sequence.

¤ list::size

size_type size() const;

The member function returns the length of the controlled sequence.
¤ list::size_type

typedef T2 size_type;

The unsigned integer type describes an object that can represent the
length of any controlled sequence. It is described here as a synonym for the
implementation-defined type T2.

¤ list::sort

void sort();
template<class Pred>
 void sort(Pred pr);

Both member functions order the elements in the controlled sequence
by a predicate, described below.

For the iterators Pi and Pj designating elements at positions i and j, the
first member function imposes the order !(*Pj < *Pi) whenever i < j.
(The elements are sorted in ascending order.) The member template function
imposes the order !pr(*Pj, *Pi) whenever i < j. No ordered pairs of
elements in the original controlled sequence are reversed in the resulting
controlled sequence. (The sort is stable.)

An exception occurs only if pr throws an exception. In that case, the
controlled sequence is left in unspecified order and the exception is re-
thrown.

¤ list::splice

void splice(iterator it, list& x);
void splice(iterator it, list& x, iterator first);
void splice(iterator it, list& x, iterator first,
 iterator last);

The first member function inserts the sequence controlled by x before
the element in the controlled sequence pointed to by it. It also removes all
elements from x. (&x must not equal this.)

The second member function removes the element pointed to by first
in the sequence controlled by x and inserts it before the element in the
controlled sequence pointed to by it. (If it == first || it == ++first,
no change occurs.)

The third member function inserts the subrange designated by [first,
last) from the sequence controlled by x before the element in the control-
led sequence pointed to by it. It also removes the original subrange from
the sequence controlled by x. (If &x == this, the range [first, last)
must not include the element pointed to by it.)

298 Chapter 11

If the third member function inserts N elements, and &x != this, an
object of class iterator is incremented N times. For all splice member
functions, If get_allocator() == str.get_allocator(), no exception
occurs. Otherwise, in this implementation, a copy and a destructor call also
occur for each inserted element.

In all cases, only iterators or references that point at spliced elements
become invalid.

¤ list::swap

void swap(list& x);

The member function swaps the controlled sequences between *this
and x. If get_allocator() == x.get_allocator(), it does so in constant
time, it throws no exceptions, and it invalidates no references, pointers, or
iterators that designate elements in the two controlled sequences. Other-
wise, it performs a number of element assignments and constructor calls
proportional to the number of elements in the two controlled sequences.

¤ list::unique

void unique();
template<class Pred>
 void unique(Pred pr);

The first member function removes from the controlled sequence every
element that compares equal to its preceding element. For the iterators Pi
and Pj designating elements at positions i and j, the second member
function removes every element for which i + 1 == j && pr(*Pi, *Pj).

For a controlled sequence of length N (> 0), the predicate pr(*Pi, *Pj)
is evaluated N - 1 times.

An exception occurs only if pr throws an exception. In that case, the
controlled sequence is left in an unspecified state and the exception is
rethrown.

¤ list::value_type

typedef typename A::value_type value_type;

The type is a synonym for the template parameter T.
¤ operator!=

template<class T, class A>
 bool operator!=(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns !(lhs == rhs).
¤ operator==

template<class T, class A>
 bool operator==(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

<list> 299

The template function overloads operator== to compare two objects of
template class list. The function returns lhs.size() == rhs.size() &&
equal(lhs. begin(), lhs. end(), rhs.begin()).

¤ operator<

template<class T, class A>
 bool operator<(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function overloads operator< to compare two objects of
template class list. The function returns lexicographical_com-

pare(lhs. begin(), lhs. end(), rhs.begin(), rhs.end()).
¤ operator<=

template<class T, class A>
 bool operator<=(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns !(rhs < lhs).
¤ operator>

template<class T, class A>
 bool operator>(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns rhs < lhs.
¤ operator>=

template<class T, class A>
 bool operator>=(
 const list <T, A>& lhs,
 const list <T, A>& rhs);

The template function returns !(lhs < rhs).
¤ swap

template<class T, class A>
 void swap(
 list <T, A>& lhs,
 list <T, A>& rhs);

The template function executes lhs.swap(rhs).

Using <list>
list Include the header <list> to make use of template class list. You can

specialize list to store elements of type T by writing a type definition such
as:
typedef list<T, allocator<T> > Mycont;

Using a default template argument, you can omit the second argument.
Template class list supports all the common operations on containers,

as we described in Chapter 9: Containers. (See the discussion beginning on

300 Chapter 11

page 248.) We summarize here only those properties peculiar to template
class list.

constructors To construct an object of class list<T, A>, you can write any of:
list() to declare an empty list.
list(al) as above, also storing the allocator object al.
list(n) to declare a list with n elements, each constructed with the
default constructor T().
list(n, val) to declare a list with n elements, each constructed with
the copy constructor T(val).
list(n, val, al) as above, also storing the allocator object al.
list(first, last) to declare a list with initial elements copied from
the sequence designated by [first, last).
list(first, last, al) as above, also storing the allocator object al.

If you have specialized the template class for an allocator of type alloca-
tor<T>, which is the customary (and default) thing to do, there is nothing
to be gained by specifying an explicit allocator argument al. Such an
argument matters only for some allocators that the program defines explic-
itly. (See the discussion of allocators in Chapter 4: <memory>.)

The following descriptions all assume that cont is an object of class
list<T, A>.

resize

clear

To change the length of the controlled sequence to n elements, call
cont.resize(n). Excess elements are erased. If the sequence must be
extended, elements with the value T() are inserted as needed at the end.
You can also call cont.resize(n, val) to extend the sequence with
elements that store the value val. To remove all elements, call
cont.clear().

front

back

To access the first element of the controlled sequence, call cont.front().
To access the last element, call cont.back(). If cont is not a const object,
the expression is an lvalue, so you can alter the value stored in the element
by writing an expression such as cont.front() = T(). If the sequence is
empty, however, these expressions have undefined behavior.

push_back

push_front

pop_back

pop_front

To append an object with stored value x, call cont.push_back(x); to
prepend the object, call cont.push_front(x). To remove the last element,
call cont.pop_back(); to remove the first, call cont.pop_front(). In
either case, the sequence must, of course, be non-empty or the call has
undefined bahavior.

assign To replace the controlled sequence with the elements from a sequence
designated by [first, last), call cont.assign(first, last). The
sequence must not be part of the initial controlled sequence. To replace the
controlled sequence with n copies of the value x, call cont.assign(n, x).

insert To insert an element storing the value x before the element designated
by the iterator it, call cont.insert(it, x). The return value is an iterator
designating the inserted element. To insert the elements of a sequence

<list> 301

designated by [first, last) before the element designated by the itera-
tor it, call cont.insert(it, first, last). The sequence must not be
any part of the initial controlled sequence. To insert n copies of the value x,
call cont.insert(it, n, x).

erase To erase the element designated by the iterator it, call cont.erase(it).
The return value is an iterator designating the element just beyond the
erased element. To erase a range of elements designated by [first, last),
call cont.erase(first, last).

You can also perform a number of operations on a list object that take
advantage of its unique representation.

splice You can splice a sequence of list nodes into a list. The spliced nodes are
removed from their existing positions. No elements are copied — a splice
simply rewrites links within the nodes as needed.

To splice the entire contents of the object cont2 before the element
designated by the iterator it, call cont.splice(it, cont2). The two
list objects must, of course, be distinct.
To splice the node designated by the iterator p in the object cont2 before
the node designated by the iterator it, call cont.splice(it, cont2,
p). The two list objects need not be distinct. (Splicing a node before itself
causes no change
To splice the sequence of nodes designated by [first, last) in the
object cont2 before the element designated by the iterator it, call
cont.splice(it, cont2, first, last). The two list objects need not
be distinct, but it must not designate any of the nodes to be spliced.
If a node migrates from one list to another as a result of a splice, it is

important that the two lists have allocator objects that compare equal. This
requirement is always met by default allocators. Otherwise, the node
cannot be safely erased by its new owner.

remove

remove_if

To remove all elements that compare equal (using operator==) to the
value v, call cont.remove(v). To remove each element x for which pr(x)
is true, call cont.remove_if(pr).

unique To remove all but the first of each subsequence of elements that compare
equal (using operator==), call cont.unique(). To replace operator==
with pr as the comparison function, call cont.unique(pr). Note that
unique is generally more effective if you first sort the sequence, so that all
groups of equal elements are adjacent.

sort To sort the sequence controlled by cont call cont.sort(). The resulting
sequence is ordered by operator<. (Elements are left in ascending order.)
The sort operation is performed as a succession of splices. To replace
operator< with pr as the ordering function, call cont.sort(pr).

merge To merge the ordered sequence controlled by cont2 into the ordered
sequence controlled by cont, call cont.merge(cont2). The merge opera-
tion is performed as a succession of splices, so cont2 is left empty (unless
it is the same object as cont). Both sequences must be ordered by operator<

302 Chapter 11

for the merge to work properly. (Sorting them, as above, does the job.) To
replace operator< with pr as the ordering function, call
cont.merge(cont2, pr).

reverse Finally, you can reverse the controlled sequence by calling reverse().
The operation is performed as a succession of splices.

Implementing <list>
list Figures 11.1 through 11.11 show the file list. It defines template class

list, along with a few template functions that take list operands.
A list object stores a pointer and a count to represent the controlled

sequence. Besides the allocator objects, described below, a list stores two
objects:

Head Head is a pointer to a dummy “head” node that in turn points forward
to the beginning of the controlled sequence and backward to its end.

Size Size counts the number of elements in the list.
The dummy head node greatly simplifies many list operations. It eliminates
the need for most special handling of the first and last nodes in the list. The
price you pay for a head node is unused storage for one list element. This
is typically a small price to pay, but for a list of very large elements it can
be significant.

That’s the easy part, familiar to anyone who has ever managed a linked
list. The object also stores three different allocator objects. Here’s where the
real trickery comes in.

In STL containers, all controlled storage is nominally managed through
the allocator object specified when you construct the container object. As
we mentioned in the previous chapter, in conjunction with vector objects,
allocators were originally invented to allocate and free arrays of objects of
some element type T. They have since been made far more ambitious, and
complex. Template class vector can get away with the simplest usages, but
not so template class list, for several subtle reasons.

Node To begin at the beginning, consider how you normally manage a bidi-
rectional linked list. You need to define a class Node that stores all the data
required of a list node. To store an element of type T, you can write:
class Node {

Node *Next, *Prev;
T Value;
};

The one small trick you must make use of dates back to the earliest days of
the C language, from which C++ evolved. The forward link Next and the
backward link Prev are both self-referential pointers — they point at other
objects of the same type as the object in which they reside. No sweat. You
can declare a pointer to an incomplete type inside a structured type, even
if that type is the one you’re busy completing.

<list> 303

// list standard header
#ifndef LIST_
#define LIST_
#include <functional>
#include <memory>
#include <stdexcept>
namespace std {

// TEMPLATE CLASS List_nod
template<class Ty, class A>

class List_nod {
protected:

typedef typename A::template
rebind<void>::other::pointer Genptr;

struct Node;
friend struct Node;
struct Node {

Genptr Next, Prev;
Ty Value;
};

List_nod(A Al)
: Alnod(Al) {}

typename A::template rebind<Node>::other Alnod;
};

// TEMPLATE CLASS List_ptr
template<class Ty, class A>

class List_ptr : public List_nod<Ty, A> {
protected:

typedef typename List_nod<Ty, A>::Node Node;
typedef typename A::template

rebind<Node>::other::pointer Nodeptr;
List_ptr(A Al)

: List_nod<Ty, A>(Al), Alptr(Al) {}
typename A::template rebind<Nodeptr>::other Alptr;
};

// TEMPLATE CLASS List_val
template<class Ty, class A>

class List_val : public List_ptr<Ty, A> {
protected:

List_val(A Al = A())
: List_ptr<Ty, A>(Al), Alval(Al) {}

typedef typename A::template
rebind<Ty>::other Alty;

Alty Alval;
};

// TEMPLATE CLASS list
template<class Ty, class Ax = allocator<Ty> >

class list : public List_val<Ty, Ax> {
public:

typedef list<Ty, Ax> Myt;
typedef List_val<Ty, Ax> Mybase;
typedef typename Mybase::Alty A;

Figure 11.1:
list
Part 1

304 Chapter 11

protected:
typedef typename List_nod<Ty, A>::Genptr Genptr;
typedef typename List_nod<Ty, A>::Node Node;
typedef typename A::template

rebind::<Node>::other::pointer Nodeptr;
struct Acc;
friend struct Acc;
struct Acc {

typedef typename A::template
rebind::<Nodeptr>::other::reference Nodepref;

typedef typename A::reference Vref;
static Nodepref Next(Nodeptr P)

{return ((Nodepref)(*P).Next); }
static Nodepref Prev(Nodeptr P)

{return ((Nodepref)(*P).Prev); }
static Vref Value(Nodeptr P)

{return ((Vref)(*P).Value); }
};

public:
typedef A allocator_type;
typedef typename A::size_type size_type;
typedef typename A::difference_type Dift;
typedef Dift difference_type;
typedef typename A::pointer Tptr;
typedef typename A::const_pointer Ctptr;
typedef Tptr pointer;
typedef Ctptr const_pointer;
typedef typename A::reference Reft;
typedef Reft reference;
typedef typename A::const_reference const_reference;
typedef typename A::value_type value_type;

// CLASS iterator
class iterator;
friend class iterator;
class iterator : public Bidit<Ty, Dift, Tptr, Reft> {
public:

typedef Bidit<Ty, Dift, Tptr, Reft> Mybase;
typedef typename Mybase::iterator_category

iterator_category;
typedef typename Mybase::value_type value_type;
typedef typename Mybase::difference_type

difference_type;
typedef typename Mybase::pointer pointer;
typedef typename Mybase::reference reference;
iterator()

: Ptr(0) {}
iterator(Nodeptr P)

: Ptr(P) {}
reference operator*() const

{return (Acc::Value(Ptr)); }
Tptr operator->() const

{return (&**this); }
iterator& operator++()

Figure 11.2:
list
Part 2

<list> 305

{Ptr = Acc::Next(Ptr);
return (*this); }

iterator operator++(int)
{iterator Tmp = *this;
++*this;
return (Tmp); }

iterator& operator--()
{Ptr = Acc::Prev(Ptr);
return (*this); }

iterator operator--(int)
{iterator Tmp = *this;
--*this;
return (Tmp); }

bool operator==(const iterator& X) const
{return (Ptr == X.Ptr); }

bool operator!=(const iterator& X) const
{return (!(*this == X)); }

Nodeptr Mynode() const
{return (Ptr); }

protected:
Nodeptr Ptr;
};

// CLASS const_iterator
class const_iterator;
friend class const_iterator;
class const_iterator

: public Bidit<Ty, Dift, Ctptr, const_reference> {
public:

typedef Bidit<Ty, Dift, Ctptr, const_reference>
Mybase;

typedef typename Mybase::iterator_category
iterator_category;

typedef typename Mybase::value_type value_type;
typedef typename Mybase::difference_type

difference_type;
typedef typename Mybase::pointer pointer;
typedef typename Mybase::reference reference;
const_iterator()

: Ptr(0) {}
const_iterator(Nodeptr P)

: Ptr(P) {}
const_iterator(const typename list<Ty, Ax>::iterator& X)

: Ptr(X.Mynode()) {}
const_reference operator*() const

{return (Acc::Value(Ptr)); }
Ctptr operator->() const

{return (&**this); }
const_iterator& operator++()

{Ptr = Acc::Next(Ptr);
return (*this); }

const_iterator operator++(int)
{const_iterator Tmp = *this;
++*this;
return (Tmp); }

Figure 11.3:
list
Part 3

306 Chapter 11

const_iterator& operator--()
{Ptr = Acc::Prev(Ptr);
return (*this); }

const_iterator operator--(int)
{const_iterator Tmp = *this;
--*this;
return (Tmp); }

bool operator==(const const_iterator& X) const
{return (Ptr == X.Ptr); }

bool operator!=(const const_iterator& X) const
{return (!(*this == X)); }

Nodeptr Mynode() const
{return (Ptr); }

protected:
Nodeptr Ptr;
};

typedef std::reverse_iterator<iterator>
reverse_iterator;

typedef std::reverse_iterator<const_iterator>
const_reverse_iterator;

list()
: Mybase(), Head(Buynode()), Size(0)
{}

explicit list(const A& Al)
: Mybase(Al), Head(Buynode()), Size(0)
{}

explicit list(size_type N)
: Mybase(), Head(Buynode()), Size(0)
{insert(begin(), N, Ty()); }

list(size_type N, const Ty& V)
: Mybase(), Head(Buynode()), Size(0)
{insert(begin(), N, V); }

list(size_type N, const Ty& V, const A& Al)
: Mybase(Al), Head(Buynode()), Size(0)
{insert(begin(), N, V); }

list(const Myt& X)
: Mybase(X.Alval),

Head(Buynode()), Size(0)
{insert(begin(), X.begin(), X.end()); }

template<class It>
list(It F, It L)
: Mybase(), Head(Buynode()), Size(0)
{Construct(F, L, Iter_cat(F)); }

template<class It>
list(It F, It L, const A& Al)
: Mybase(Al), Head(Buynode()), Size(0)
{Construct(F, L, Iter_cat(F)); }

template<class It>
void Construct(It F, It L, Int_iterator_tag)
{insert(begin(), (size_type)F, (Ty)L); }

template<class It>
void Construct(It F, It L, input_iterator_tag)
{insert(begin(), F, L); }

Figure 11.4:
list
Part 4

<list> 307

~list()
{erase(begin(), end());
Freenode(Head);
Head = 0, Size = 0; }

Myt& operator=(const Myt& X)
{if (this != &X)

assign(X.begin(), X.end());
return (*this); }

iterator begin()
{return (iterator(Head == 0 ? 0

: Acc::Next(Head))); }
const_iterator begin() const

{return (const_iterator(Head == 0 ? 0
: Acc::Next(Head))); }

iterator end()
{return (iterator(Head)); }

const_iterator end() const
{return (const_iterator(Head)); }

reverse_iterator rbegin()
{return (reverse_iterator(end())); }

const_reverse_iterator rbegin() const
{return (const_reverse_iterator(end())); }

reverse_iterator rend()
{return (reverse_iterator(begin())); }

const_reverse_iterator rend() const
{return (const_reverse_iterator(begin())); }

void resize(size_type N)
{resize(N, Ty()); }

void resize(size_type N, Ty X)
{if (size() < N)

insert(end(), N - size(), X);
else

while (N < size())
pop_back(); }

size_type size() const
{return (Size); }

size_type max_size() const
{return (Mybase::Alval.max_size()); }

bool empty() const
{return (size() == 0); }

allocator_type get_allocator() const
{return (Mybase::Alval); }

reference front()
{return (*begin()); }

const_reference front() const
{return (*begin()); }

reference back()
{return (*(--end())); }

const_reference back() const
{return (*(--end())); }

void push_front(const Ty& X)
{Insert(begin(), X); }

void pop_front()
{erase(begin()); }

Figure 11.5:
list
Part 5

308 Chapter 11

void push_back(const Ty& X)
{Insert(end(), X); }

void pop_back()
{erase(--end()); }

template<class It>
void assign(It F, It L)
{Assign(F, L, Iter_cat(F)); }

template<class It>
void Assign(It F, It L, Int_iterator_tag)
{assign((size_type)F, (Ty)L); }

template<class It>
void Assign(It F, It L, input_iterator_tag)
{erase(begin(), end());
insert(begin(), F, L); }

void assign(size_type N, const Ty& X)
{Ty Tx = X;
erase(begin(), end());
insert(begin(), N, Tx); }

iterator insert(iterator P, const Ty& X)
{Insert(P, X);
return (--P); }

void Insert(iterator P, const Ty& X)
{Nodeptr S = P.Mynode();
Nodeptr Snew = Buynode(S, Acc::Prev(S));
Incsize(1);
try {
Mybase::Alval.construct(&Acc::Value(Snew), X);
} catch (...) {
--Size;
Freenode(Snew);
throw;
}
Acc::Prev(S) = Snew;
Acc::Next(Acc::Prev(Snew)) = Snew; }

void insert(iterator P, size_type M, const Ty& X)
{size_type N = M;
try {
for (; 0 < M; --M)

Insert(P, X);
} catch (...) {
for (; M < N; ++M)

{iterator Pm = P;
erase(--Pm); }

throw;
}}

template<class It>
void insert(iterator P, It F, It L)
{Insert(P, F, L, Iter_cat(F)); }

template<class It>
void Insert(iterator P, It F, It L,

Int_iterator_tag)
{insert(P, (size_type)F, (Ty)L); }

template<class It>
void Insert(iterator P, It F, It L,

input_iterator_tag)

Figure 11.6:
list
Part 6

<list> 309

{size_type N = 0;
try {
for (; F != L; ++F, ++N)

Insert(P, *F);
} catch (...) {
for (; 0 < N; --N)

{iterator Pm = P;
erase(--Pm); }

throw;
}}

template<class It>
void Insert(iterator P, It F, It L,

forward_iterator_tag)
{It Fs = F;
try {
for (; F != L; ++F)

Insert(P, *F);
} catch (...) {
for (; Fs != F; ++Fs)

{iterator Pm = P;
erase(--Pm); }

throw;
}}

iterator erase(iterator P)
{Nodeptr S = (P++).Mynode();
Acc::Next(Acc::Prev(S)) = Acc::Next(S);
Acc::Prev(Acc::Next(S)) = Acc::Prev(S);
Mybase::Alval.destroy(&Acc::Value(S));
Freenode(S);
--Size;
return (P); }

iterator erase(iterator F, iterator L)
{while (F != L)

erase(F++);
return (F); }

void clear()
{erase(begin(), end()); }

void swap(Myt& X)
{if (Mybase::Alval == X.Alval)

{std::swap(Head, X.Head);
std::swap(Size, X.Size); }

else
{iterator P = begin();
splice(P, X);
X.splice(X.begin(), *this, P, end()); }}

void splice(iterator P, Myt& X)
{if (this != &X && !X.empty())

{Splice(P, X, X.begin(), X.end(), X.Size); }}
void splice(iterator P, Myt& X, iterator F)

{iterator L = F;
if (F != X.end() && P != F && P != ++L)

{Splice(P, X, F, L, 1); }}
void splice(iterator P, Myt& X, iterator F, iterator L)

{if (F != L && P != L)
{size_type N = 0;

Figure 11.7:
list
Part 7

310 Chapter 11

for (iterator Fs = F; Fs != L; ++Fs, ++N)
if (Fs == P)

return; // else granny knot
Splice(P, X, F, L, N); }}

void remove(const Ty& V)
{iterator L = end();
for (iterator F = begin(); F != L;)

if (*F == V)
erase(F++);

else
++F; }

template<class Pr1>
void remove_if(Pr1 Pr)
{iterator L = end();
for (iterator F = begin(); F != L;)

if (Pr(*F))
erase(F++);

else
++F; }

void unique()
{iterator F = begin(), L = end();
if (F != L)

for (iterator M = F; ++M != L; M = F)
if (*F == *M)

erase(M);
else

F = M; }
template<class Pr2>

void unique(Pr2 Pr)
{iterator F = begin(), L = end();
if (F != L)

for (iterator M = F; ++M != L; M = F)
if (Pr(*F, *M))

erase(M);
else

F = M; }
void merge(Myt& X)

{if (&X != this)
{iterator F1 = begin(), L1 = end();
iterator F2 = X.begin(), L2 = X.end();
while (F1 != L1 && F2 != L2)

if (*F2 < *F1)
{iterator Mid2 = F2;
Splice(F1, X, F2, ++Mid2, 1);
F2 = Mid2; }

else
++F1;

if (F2 != L2)
Splice(L1, X, F2, L2, X.Size); }}

template<class Pr3>
void merge(Myt& X, Pr3 Pr)
{if (&X != this)

{iterator F1 = begin(), L1 = end();
iterator F2 = X.begin(), L2 = X.end();

Figure 11.8:
list
Part 8

<list> 311

while (F1 != L1 && F2 != L2)
if (Pr(*F2, *F1))

{iterator Mid2 = F2;
Splice(F1, X, F2, ++Mid2, 1);
F2 = Mid2; }

else
++F1;

if (F2 != L2)
Splice(L1, X, F2, L2, X.Size); }}

void sort()
{if (2 <= size())

{const size_t MAXN = 25;
Myt X(Mybase::Alval), Arr[MAXN + 1];
size_t N = 0;
while (!empty())

{X.splice(X.begin(), *this, begin());
size_t I;
for (I = 0; I < N && !Arr[I].empty(); ++I)

{Arr[I].merge(X);
Arr[I].swap(X); }

if (I == MAXN)
Arr[I - 1].merge(X);

else
{Arr[I].swap(X);
if (I == N)

++N; }}
for (size_t I = 1; I < N; ++I)

Arr[I].merge(Arr[I - 1]);
swap(Arr[N - 1]); }}

template<class Pr3>
void sort(Pr3 Pr)
{if (2 <= size())

{const size_t MAXN = 25;
Myt X(Mybase::Alval), Arr[MAXN + 1];
size_t N = 0;
while (!empty())

{X.splice(X.begin(), *this, begin());
size_t I;
for (I = 0; I < N && !Arr[I].empty(); ++I)

{Arr[I].merge(X, Pr);
Arr[I].swap(X); }

if (I == MAXN)
Arr[I - 1].merge(X, Pr);

else
{Arr[I].swap(X);
if (I == N)

++N; }}
for (size_t I = 1; I < N; ++I)

Arr[i].merge(Arr[I - 1], Pr);
swap(Arr[N - 1]); }}

void reverse()
{if (2 <= size())

{iterator L = end();

Figure 11.9:
list
Part 9

312 Chapter 11

for (iterator F = ++begin(); F != L;)
{iterator M = F;
Splice(begin(), *this, M, ++F, 1); }}}

protected:
Nodeptr Buynode(Nodeptr Narg = 0, Nodeptr Parg = 0)

{Nodeptr S = Alnod.allocate(1, (void *)0);
Alptr.construct(&Acc::Next(S),

Narg != 0 ? Narg : S);
Alptr.construct(&Acc::Prev(S),

Parg != 0 ? Parg : S);
return (S); }

void Freenode(Nodeptr S)
{Alptr.destroy(&Acc::Next(S));
Alptr.destroy(&Acc::Prev(S));
Alnod.deallocate(S, 1); }

void Splice(iterator P, Myt& X, iterator F, iterator L,
size_type N)
{if (Mybase::Alval == X.Alval)

{if (this != &X)
{Incsize(N);
X.Size -= N; }

Acc::Next(Acc::Prev(F.Mynode())) =
L.Mynode();

Acc::Next(Acc::Prev(L.Mynode())) =
P.Mynode();

Acc::Next(Acc::Prev(P.Mynode())) =
F.Mynode();

Nodeptr S = Acc::Prev(P.Mynode());
Acc::Prev(P.Mynode()) =

Acc::Prev(L.Mynode());
Acc::Prev(L.Mynode()) =

Acc::Prev(F.Mynode());
Acc::Prev(F.Mynode()) = S; }

else
{insert(P, F, L);
X.erase(F, L); }}

void Incsize(size_type N)
{if (max_size() - size() < N)

throw length_error("list<T> too long");
Size += N; }

Nodeptr Head;
size_type Size;
};

// list TEMPLATE OPERATORS
template<class Ty, class A> inline

void swap(list<Ty, A>& X, list<Ty, A>& Y)
{X.swap(Y); }

template<class Ty, class A> inline
bool operator==(const list<Ty, A>& X,

const list<Ty, A>& Y)
{return (X.size() == Y.size()

&& equal(X.begin(), X.end(), Y.begin())); }

Figure 11.10:
list

Part 10

<list> 313

But allocators cause problems. The first problem is that an object of type
list<T, allocator<T> > is constructed with an allocator object that
doesn’t do the whole job. We’re not interested in allocating objects of type
T, which is all that an allocator<T> object knows how to allocate. (But it
does know how to construct and destroy such an object, so it is still needed.)
Instead, we want to allocate objects of type Node. That means we need an
allocator object of type allocator<Node>. And we want to associate it, in
some obvious way, with the allocator<T> object supplied to the list
object when it is constructed. The allocator might be allocating objects from
a private storage pool, for example, which we certainly want to use as
intended.

rebind Two bits of trickery, supplied by all allocator types, give you the power
you need. The first is member template class rebind — the bizarre formula
A::rebind<Node>::other is a way of naming the type allocator<Node>
when all you have is the synonym A for the type allocator<T>. Once you
can name the kind of allocator object you want, you still have to construct
one from the original allocator object. So all allocator types supply a
template constructor. For the default template class allocator, this con-
structor looks like:
template<class U>

allocator(const allocator<U>&);

You can thus construct an allocator<Node> object from an allocator<T>
object. For a more complex allocator than template class allocator, the
constructor must be smart enough to copy over any pointers to private
storage, or what have you.

template<class Ty, class A> inline
bool operator!=(const list<Ty, A>& X,

const list<Ty, A>& Y)
{return (!(X == Y)); }

template<class Ty, class A> inline
bool operator<(const list<Ty, A>& X,

const list<Ty, A>& Y)
{return (lexicographical_compare(X.begin(), X.end(),

Y.begin(), Y.end())); }
template<class Ty, class A> inline

bool operator>(const list<Ty, A>& X,
const list<Ty, A>& Y)

{return (Y < X); }
template<class Ty, class A> inline

bool operator<=(const list<Ty, A>& X,
const list<Ty, A>& Y)

{return (!(Y < X)); }
template<class Ty, class A> inline

bool operator>=(const list<Ty, A>& X,
const list<Ty, A>& Y)

{return (!(X < Y)); }
} /* namespace std */
#endif /* LIST_ */

Figure 11.11:
list

Part 11

314 Chapter 11

smart
pointers

Allocators cause yet another problem. They reserve the right to store the
objects they allocate in funny places. More precisely, an allocator type A
defines the type A::pointer, which you are obliged to use to describe any
“pointer” to an allocated object. We use quotes here because the type need
not be a pointer in the old-fashioned sense inherited from C. (See the
discussion of smart pointers on page 99.) If p has type A::pointer, it
promises that *p is an lvalue that designates the allocated object. (You can
access the value or assign to it via *p.) But not much more.

This weaker promise causes a real problem with the declaration of class
Node. You want to write:
class Node {

A::rebind<Node>::pointer Next, Prev;
T Value;
};

but you can’t. An allocator template can be specialized only for a complete
type. Type Node is not complete until the closing brace of its definition. You
need to describe the pointers it stores before you can complete its definition.
What can you do?

void
pointers

When such dependency loops occur, the usual copout in C is to introduce
generic, or “void,” pointers, as in:
class Node {

void *Next, *Prev;
T Value;
};

A void pointer is obliged to store any kind of object pointer you can declare
in C. You lose a bit of type checking this way, and you have to write
occasional type casts when you use the pointers, but it does solve the
problem.

When it comes to pointers supplied by allocators, however, the C++
Standard is less than clear. It suggests that an A::pointer can be an arbitrary
template class type, subject to the restrictions we sketched above. But it
imposes no requirement that such a template class type define the equiva-
lent of a void pointer. An implementation has to fill in the blanks.

This implementation assumes that any A::pointer is interconvertible
with any A::rebind<void>::pointer. Put another way, the type
A::<void>::pointer supplies the generic pointer type for the family of
types A<T>::pointer, all of which have the same representation. Whoever
writes the allocator template must supply an explicit specialization for type
void anyway. It shouldn’t be all that hard to ensure that the explicit
specialization supplies a sufficiently flexible pointer type in the bargain.

null
pointers

This implementation also assumes that an integer zero still serves as a
null pointer, no matter how exotic the pointers defined by the allocator.
Specifically, you can assign zero to a generic pointer object; the resulting
value will not compare equal to a generic pointer to any allocated object.
And you can compare a generic pointer object to zero, using operator==;
the result is true only if the generic pointer object stores a null pointer. (We

<list> 315

quietly made this assumption in the previous chapter, with respect to the
member object First.)

Smart pointers introduce one last wrinkle. This implementation assumes
that they may have a nontrivial constructor and destructor, unlike the scalar
pointers inherited from C. To play the game strictly by the rules, you need
an allocator object to perform these tasks for you (though it’s hard to
imagine what special magic might be required). So a list object makes use
of three allocator objects:

Alnod Alnod for the node type, to allocate and free nodes
Alptr Alptr for the node pointer type, to construct and destroy links stored in

nodes
Alty Alty for the element type, to construct and destroy elements stored in

nodes
In principle, it is necessary to store only one of these allocator objects.

Either of the others can be generated on the fly as needed, as in:
A::rebind<Node>::other(Alty).destroy(p);

which generates a temporary allocator akin to Alnod long enough to
destroy the node pointer p. Perhaps a compiler will know enough to
optimize away the actual generation of a temporary, at least for default
allocator objects. On the other hand, we know that the storage for a typical
allocator object can be optimized away. (See the discussion of zero-size
allocator objects on page 266.) So this implementation takes the safer bet
that storing three allocator objects in a list object involves no real over-
heads in space or time.

After that long preamble, we can now study the code with a bit more
wisdom. The file list reveals that a specializaton list<T, A> derives from
a succession of three base classes:

List_nod List_nod<T, A> defines the generic pointer type Genptr and the node
type Node. It also stores the allocator object Alnod.

List_ptr List_ptr<T, A> defines the node pointer type Nodeptr. It also stores
the allocator object Alptr.

List_val List_val<T, A> stores the allocator object Alnod.
A smart enough compiler knows to allocate no storage within a list<T,
A> object for any of these base objects.

Still more complexity is encapsulated in the member struct Acc. It
supplies handy functions for accessing the objects stored in a list node.
Thus, the expression Acc::Next(Ptr) lets you access the forward pointer
Next in the node designated by Ptr. To make the expression an lvalue, the
function Acc::Next must return a reference to the stored object. Opinions
differ considerably on how much latitude an allocator has in defining
reference types. Some feel that Alloc<T>::reference must always be a
synonym for T&. But just in case someone supplies an allocator that suc-
ceeds in being more clever, these functions make uniform use of the
reference types defined by the allocators.

316 Chapter 11

list defines nontrivial member classes iterator and const_itera-
tor. They are even simpler than template class Ptrit, which vector uses
to define its iterators — list supports just bidirectional iterators, not
random-access iterators as does vector. The iterators for both containers
store only a single pointer.

Buynode

Freenode

Incsize

A handful of protected member functions perform a number of common
operations. The call Buynode(next, prev) allocates a node and initializes
the two pointer member objects appropriately. The call Freenode(p) frees
a node. Both assume that some other agency will construct and destroy the
stored element value as needed. The call Incsize(n) increments the stored
length of the controlled sequence. It checks for the unlikely event that the
list has grown too large.

Splice The call splice(p, cont2, first, last, n) splices the sequence of
n nodes designated by [first, last), in the list object cont2, just before
p. It assumes that the caller has checked for any overlap that could cause
problems. But it does check for an attempt to splice between two containers
with incompatible allocators, in which case it copies (and erases) the nodes
instead. The order in which links are altered here is very delicate, if various
special cases are to work properly.

The member functions that list shares with other template containers
introduce little new. We described most of the machinery in conjunction
with template class vector. What you will find here is a greater effort to
recover gracefully when programmer-supplied code throws an exception.
Recall that list alone among the containers promises to roll back any
operation interrupted by a thrown exception.

splice The three versions of splice defer the actual work to Splice and
Incsize, after suitable checking. An attempt to splice a sequence of nodes
to a point somewhere inside the sequence is a particular concern. The C++
Standard simply says this operation is undefined. Moreover, it requires a
splice of a subrange from the same container to occur in constant time,
independent of the number of elements in the subrange. This requirement
leaves no room for the kind of checking required to avoid generating a knot
in the list.

This implementation deviates from the C++ Standard by checking any-
way. If the splice would generate a knot, the controlled sequence is left
unaltered.

sort Both forms of sort work the same way. They perform a succession of
merges to an array of temporary list objects. Each element of the array
stores a list that can grow twice as long as the one that precedes it, before
it is merged into the next larger list. The last element is a special case — it
stores an arbitrarily long list. But the array size is (arbitrarily) set at 25
elements, plus the overflow list at the end. So sort can sort up to 32 million
elements before it has to deviate from the simple doubling algorithm. The
final step is to merge the temporary lists back into the (now empty)
container.

<list> 317

Testing <list>
tlist.c Figures 11.12 through 11.14 shows the file tlist.c. It is one of three test

programs that look very much alike. See the file tvector.c, beginning on
page 285, and the file tdeque.c, beginning on page 350. To ease comparison
of these three test programs, we have simply commented out any tests
inappropriate for a given container, without removing the unused code.

The test program performs a simple test that each of the member
functions and types is present and behaves as intended, for one specializa-
tion of template class list. If all goes well, the program prints:
SUCCESS testing <list>

and takes a normal exit.

// test <list>
#include <assert.h>
#include <iostream>
#include <functional>
#include <list>
using namespace std;

// TEST <list>
int main()

{typedef allocator<char> Myal;

// TEST list
typedef list<char, Myal> Mycont;
char ch, carr[] = "abc";
Mycont::allocator_type *p_alloc = (Myal *)0;
Mycont::pointer p_ptr = (char *)0;
Mycont::const_pointer p_cptr = (const char *)0;
Mycont::reference p_ref = ch;
Mycont::const_reference p_cref = (const char&)ch;
Mycont::size_type *p_size = (size_t *)0;
Mycont::difference_type *p_diff = (ptrdiff_t *)0;
Mycont::value_type *p_val = (char *)0;

Mycont v0;
Myal al = v0.get_allocator();
Mycont v0a(al);
assert(v0.empty() && v0.size() == 0);
assert(v0a.size() == 0 && v0a.get_allocator() == al);
Mycont v1(5), v1a(6, ’x’), v1b(7, ’y’, al);
assert(v1.size() == 5 && v1.back() == ’\0’);
assert(v1a.size() == 6 && v1a.back() == ’x’);
assert(v1b.size() == 7 && v1b.back() == ’y’);
Mycont v2(v1a);
assert(v2.size() == 6 && v2.front() == ’x’);
Mycont v3(v1a.begin(), v1a.end());
assert(v3.size() == 6 && v3.front() == ’x’);

Figure 11.12:
tlist.c

Part 1

318 Chapter 11

const Mycont v4(v1a.begin(), v1a.end(), al);
assert(v4.size() == 6 && v4.front() == ’x’);
v0 = v4;
assert(v0.size() == 6 && v0.front() == ’x’);

// assert(v0[0] == ’x’ && v0.at(5) == ’x’);

// v0.reserve(12);
// assert(12 <= v0.capacity());

v0.resize(8);
assert(v0.size() == 8 && v0.back() == ’\0’);
v0.resize(10, ’z’);
assert(v0.size() == 10 && v0.back() == ’z’);
assert(v0.size() <= v0.max_size());

Mycont::iterator p_it(v0.begin());
Mycont::const_iterator p_cit(v4.begin());
Mycont::reverse_iterator p_rit(v0.rbegin());
Mycont::const_reverse_iterator p_crit(v4.rbegin());
assert(*p_it == ’x’ && *--(p_it = v0.end()) == ’z’);
assert(*p_cit == ’x’ && *--(p_cit = v4.end()) == ’x’);
assert(*p_rit == ’z’

&& *--(p_rit = v0.rend()) == ’x’);
assert(*p_crit == ’x’

&& *--(p_crit = v4.rend()) == ’x’);

assert(v0.front() == ’x’ && v4.front() == ’x’);
v0.push_back(’a’);
assert(v0.back() == ’a’);
v0.pop_back();
assert(v0.back() == ’z’ && v4.back() == ’x’);

v0.push_front(’b’);
assert(v0.front() == ’b’);
v0.pop_front();
assert(v0.front() == ’x’);

v0.assign(v4.begin(), v4.end());
assert(v0.size() == v4.size()

&& v0.front() == v4.front());
v0.assign(4, ’w’);
assert(v0.size() == 4 && v0.front() == ’w’);
assert(*v0.insert(v0.begin(), ’a’) == ’a’);
assert(v0.front() == ’a’

&& *++v0.begin() == ’w’);
v0.insert(v0.begin(), 2, ’b’);
assert(v0.front() == ’b’

&& *++v0.begin() == ’b’
&& *++ ++v0.begin() == ’a’);

v0.insert(v0.end(), v4.begin(), v4.end());
assert(v0.back() == v4.back());
v0.insert(v0.end(), carr, carr + 3);
assert(v0.back() == ’c’);
v0.erase(v0.begin());
assert(v0.front() == ’b’ && *++v0.begin() == ’a’);
v0.erase(v0.begin(), ++v0.begin());

Figure 11.13:
tlist.c

Part 2

<list> 319

Exercises
Exercise 11.1 This implementation of template class list never copies elements between

nodes. Elements are constructed and destroyed, but never assigned. Under
what circumstances is this behavior most desirable?

Exercise 11.2 Why must an allocator be specialized only for a complete type?

assert(v0.front() == ’a’);

v0.clear();
assert(v0.empty());
v0.swap(v1);
assert(!v0.empty() && v1.empty());
swap(v0, v1);
assert(v0.empty() && !v1.empty());
assert(v1 == v1 && v0 < v1);
assert(v0 != v1 && v1 > v0);
assert(v0 <= v1 && v1 >= v0);

v0.insert(v0.begin(), carr, carr + 3);
v1.splice(v1.begin(), v0);
assert(v0.empty() && v1.front() == ’a’);
v0.splice(v0.end(), v1, v1.begin());
assert(v0.size() == 1 && v0.front() == ’a’);
v0.splice(v0.begin(), v1, v1.begin(), v1.end());
assert(v0.front() == ’b’ && v1.empty());
v0.remove(’b’);
assert(v0.front() == ’c’);
v0.remove_if(binder2nd<not_equal_to<char> >(

not_equal_to<char>(), ’c’));
assert(v0.front() == ’c’ && v0.size() == 1);

v0.merge(v1, greater<char>());
assert(v0.front() == ’c’ && v0.size() == 1);
v0.insert(v0.begin(), carr, carr + 3);
v0.unique();
assert(v0.back() == ’c’&& v0.size() == 3);
v0.unique(not_equal_to<char>());
assert(v0.front() == ’a’ && v0.size() == 1);
v1.insert(v1.begin(), carr, carr + 3);
v0.merge(v1);
assert(v0.back() == ’c’ && v0.size() == 4);
v0.sort(greater<char>());
assert(v0.back() == ’a’ && v0.size() == 4);
v0.sort();
assert(v0.back() == ’c’ && v0.size() == 4);
v0.reverse();
assert(v0.back() == ’a’ && v0.size() == 4);

cout << "SUCCESS testing <list>" << endl;
return (0); }

Figure 11.14:
tlist.c

Part 3

320 Chapter 11

Exercise 11.3 Rewrite template class list to eliminate the use of a head node. Under
what circumstances is this rewrite a better design?

Exercise 11.4 Write the template class forward_list, which stores only a single forward
pointer in each node. What operations become more difficult (have less
desirable time complexity) compared to template class list? What are the
relative sizes of nodes for the two containers?

Exercise 11.5 Alter the definition of list iterators so that it is easy to determine if two
iterators designate elements in different lists.

Exercise 11.6 One way to implement a hash table is as a vector of lists. A hash function maps
a key value to an index into the vector. All elements of a given list share the
same hash value even if their keys differ. (With a good hash function, a
typical hash table has lists that are uniformly short, so lookup time for a
given key is essentially constant.) Write the template class hash_list that
implements a simple hash table.

Exercise 11.7 Alter the implementation of hash_list from the previous list to use a
single list and a vector of list iterators. What are the advantages and
disadvantages of the two versions?

Exercise 11.8 [Harder] How can you implement a bidirectional linked list storing only
one pointer object per node?

Exercise 11.9 [Very hard] How can you eliminate the need for generic pointers in defin-
ing a list node?

<list> 321

322 Chapter 11

