Mayer_CHO2.gxd

6/20/06 7:13 PM Page 15 :F

Chapter

Concepts

In this chapter

2.1 Security Contexts for Type Enforcement
2.2 Type Enforcement Access Control

2.3 The Role of Roles

2.4 Multilevel Security in SELinux

2.5 SELinux Features Familiarization

2.6 Summary

Exercises

page 16
page 19
page 29
page 31
page 32
page 36
page 37

15

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 16 :F

he details of the SELinux access control mechanism and policy language are

extensive and fully described in later chapters. However, the basic concepts
and goals of SELinux are fairly simple. In this chapter, we examine the security
concepts of SELinux and the motivations behind these concepts. Gaining a con-
ceptual understanding is necessary to effectively use and apply SELinux access
controls. This chapter focuses on the primary access control feature of SELinux,
type enforcement (TE), although we also briefly discuss the optional multilevel
security mechanism.

2.1 Security Contexts for Type Enforcement

All operating system access control is based on some type of access control attrib-
ute associated with objects and subjects. In SELinux, the access control attribute is
called a security context. All objects (files, interprocess communication channels,
sockets, network hosts, and so on) and subjects (processes) have a single security
context associated with them. A security context has three elements: user, role, and
type identifiers. The usual format for specifying or displaying a security context is
as follows:

user:role:type

The string identifiers for each element are defined in the SELinux policy lan-
guage, which we discuss in greater detail later. For now, just understand that a valid
security context must have one valid user, role, and type identifier, and that the
identifiers are defined by the policy writer. The namespaces for each identifier are
orthogonal. (So, for example, it is possible, but not usually advisable, to have the
same string identifier for a user, a role, and a type.)

16

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 17 :F

2.1 Security Contexts for Type Enforcement 17

Examining Security Contexts

SELinux modifies many system commands by adding the -z
option to display the security contexts of objects and subjects. For
example, 1s -z shows the security contexts of file system objects
and ps -z shows the security contexts of processes. Another use-
ful command is id, which shows the security context of your shell
(that is, your current user, role, and type). The following, for
example, shows the security context of a shell on a running
SELinux system:

$ id -z
joe:user_r:user_t

You can use these commands to explore your own SELinux system
as we walk through the examples in this chapter.

2.1.1 Comparing SELinux with Standard Linux

At this poing, it is useful to compare the access control attributes on standard
Linux with those of SELinux. For simplicity, we stick to common filesystem objects
such as files and directories. In standard Linux, the access control attributes of sub-
jects are the real and effective user and group IDs associated with all processes via
the process structure in the kernel. These attributes are protected by the kernel and
set via a number of controlled means, including the login process and setuid pro-
grams. For objects (for example, files), the inode of the file contains a set of access
mode bits and file user and group IDs. The former controls access based on three
sets of read/write/execute bits, one each for file owner, file group, and everyone else.
The latter determines the file owner and group to decide which set of bits to use on
a given access attempt.

As noted, in SELinux, the access control attributes are always the security con-
text triple. All objects and subjects have an associated security context. Where stan-
dard Linux uses the process user/group IDs, the file’s access mode, and the file
user/group IDs to grant or deny access, SELinux uses the security contexts of a
process and the object the process accesses. More specifically, because the primary
access control feature of SELinux is type enforcement, the type identifier from the
security context is used to determine access.

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 18 $

18 Chapter 2 * Concepts

NOTE SELinux adds type enforcement to standard Linux. This
means that both the standard Linux and enhanced SELinux access
controls must be satisfied to access an object. So, for example, if
we have SELinux write access to a file but we do not have w per-
mission on the file, we cannot write the file.

Table 2-1 summarizes the comparison of standard Linux and the added SELinux
security attributes and access control.

TABLE 2-1
Comparison of Standard Linux and Security-Enhanced Linux Access Control
Standard Linux SELinux Added
Process security attributes Real and effective user Security context
and group IDs
Object security attributes Access modes and file Security context
user and group IDs
Basis for access control ~ Process user/group 1D Permissions allowed between
and file’s access modes process type and file type
based on file’s user/
group ID

2.1.2 More on Security Contexts

The security context is a simple, consistent access control attribute. In SELinux,
the type identifier is the primary part of the security context that determines access.
For historical reasons, the type of a process is often called a domain. The use of
“domain” and “domain type” to mean the type of a process is so common and per-
vasive that we do not attempt to avoid using the term domain. In general, consider
domain, domain type, subject type, and process type to be synonymous.

The user and role identifiers in a security context have little impact in the access
control policy for type enforcement except for constraint enforcement, which we
discuss in Chapter 7, “Constraints.” For processes, user and role identifiers are more
interesting because they are used to control the association of types with user iden-
tifiers and thus with Linux user accounts (more on this later). For objects, however,
user and role identifiers have nearly no use. As a convention, the role of an object

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 19 :F

2.2 Type Enforcement Access Control 19

is usually object_r, and the user of an object is usually the user identifier of the
process that created the object. They have no effect on access control.

Finally, be aware of the differences between the user ID in standard Linux secu-
rity and the user identifier in a security context. Technically, these are completely
orthogonal identifiers, used separately by the standard and security-enhanced access
control mechanisms, respectively. Any relationship between these two is strictly pro-
vided via the login process according to conventions not directly enforced by the
SELinux policy.

2.2 Type Enforcement Access Control

In SELinux, all access must be explicitly granted. SELinux allows 7o access by
default, regardless of the Linux user/group IDs. Yes, this means that there is no
default superuser in SELinux, unlike root in standard Linux. The way access is
granted is by specifying access from a subject type (that is, a domain) and an object
type using an allow rule. An allow rule has four elements:

* Source type(s) Usually the domain type of a process attempting access
o Targer type(s) 'The type of an object being accessed by the process
* Object class(es) The class of object that the specified access is permitted

* Permission(s) 'The kind of access that the source type is allowed to the target
type for the indicated object classes

As an example, take the following rule:

allow user_t bin_t : file {read execute getattr};

This example shows the basic syntax of a TE allow rule. This rule has two type
identifiers: the source (or subject or domain) type, user_t; and the zrger (or object)
type, bin_t. The identifier £ile is the name of an object class defined in the policy
(in this case, representing an ordinary file). The permissions contained within the
braces are a subset of the permissions valid for an instance of the file object class.
The translation of this rule would be as follows:

A process with a domain type of user_t can read, execute, or get
attributes for a file object with a type of bin_t.

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 20 $

20 Chapter 2 * Concepts

As we discuss later, permissions in SELinux are substantially more granular than
in standard Linux, where there are only three (rwx). In this case, read and
execute are fairly conventional; getattr is less obvious. Essentially, getattr per-
mission to a file allows a caller to view (not change) attributes such as date, time,
and discretionary access control (DAC) access modes. In a standard Linux system, a
caller may view such information on a file with only search permission to the file’s
directory even if the caller does not have read access to the file.

Assuming that user_t is the domain type of an ordinary, unprivileged user
process such as a login shell process, and bin_t is the type associated with exe-
cutable files that users run with the typical security privileges (for example,
/bin/bash), the rule might be in a policy to allow users to execute shell programs

such as the bash shell.

NOTE There is no significance to the _t in the type identifier
name. This is just a naming convention used in most SELinux poli-
cies; a policy writer can define a type identifier using any conven-
ient convention allowed by the policy language syntax.

Throughout this chapter, we often depict allowed access using symbols: circles
for processes, boxes for objects, and arrows representing allowed access. For exam-
ple, Figure 2-1 depicts the access allowed by the previous allow rule.

execute

> bin_t

getattr

Subject

Obiect

FIGURE 2-1
A depiction of an allow rule

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 21 $

2.2 Type Enforcement Access Control 21

2.2.1 Type Enforcement by Example

SELinux allow rules such as the preceding example are really all there is to grant-
ing access in SELinux. The challenge is determining the many thousands of accesses
one must create to permit the system to work while ensuring that only the neces-
sary permissions are granted, to make it as secure as possible.

To further explore type enforcement, let’s use the example of the password man-
agement program (that is, passwd). In Linux, the password program is trusted to
read and modify the shadow password file (/etc/shadow) where encrypted pass-
words are stored. The password program implements its own internal security pol-
icy that allows ordinary users to change only their own password while allowing
root to change any password. To perform this trusted job, the password program
needs the ability to move and re-create the shadow file. In standard Linux, it has
this privilege because the password program executable file has the sezuid bit set so
that when it is executed by anyone, it runs as root user (which has all access to all
files). However, many, many programs can run as root (in reality, all programs can
potentially run as root). This means, any program (when running as root) has the
potential to modify the shadow password file. What type enforcement enables us to
do is to ensure that only the password program (or similar trusted programs) can
access the shadow file, regardless of the user running the program.

Figure 2-2 depicts how the password program might work in an SELinux system
using type enforcement.

euid: root
passwd_t

write, create, ...
(change password)

root root

shadow_t

/etc/shadow

allow passwd_t shadow_t : file {ioctl read write create getattr
setattr lock relabelfrom relabelto append unlink link rename};

FIGURE 2-2
Type enforcement example: passwd program

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 22 CE

22 Chapter 2 * Concepts

In this example, we defined two types. The passwd_t type is a domain type
intended for use by the password program. The shadow_t type is the type for the
shadow password file. If we examine such a file on disk, we would see something

like this:

1s -Z /etc/shadow
root root system_u:object_r:shadow_t shadow

-r

Likewise, examining a process running the password program under this policy
would yield this:

ps -az
joe:user_r:passwd_t 16532 pts/0 00:00:00 passwd

For now, you can ignore the user and role elements of the security context and just
note the types.

Examine the allow rule in Figure 2-2 The purpose of this rule is to give the
passwd process domain type (passwd_t) the access to the shadow’s file type
(shadow_t) needed to allow the process to move and create a new shadow password
file. So, in reexamining Figure 2-2, we see that the depicted process running the
password program (passwd) can successfully manage the shadow password file
because it has an effective user ID of root (standard Linux access control) and
because a TE allow rule permits it adequate access to the shadow password file’s
type (SELinux access control). Both are necessary, neither is sufficient.

2.2.2 The Problem of Domain Transitions

If all we had to do was provide allowed access for processes to objects such as files,
writing a TE policy would be straightforward. However, we have to figure out a way
to securely run the right programs in a process with the right domain type. For
example, we do not want programs not trusted to access the shadow file to some-
how execute in a process with the passwd_t domain type. This could be disastrous.
This problem brings us to the issue of domain transitions.

To illustrate, examine Figure 2-3, in which we expand upon the previous pass-
word program example. In a typical system, a user (say Joe) logs in, and through the
magic of the login process, a shell process is created (for example, running bash).
In standard Linux security, the real and effective user IDs (that is, joe) are the
same.! In our example SELinux policy, we see that the process type is user_t,

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 23 $

2.2 Type Enforcement Access Control 23

which is intended to be the domain type of ordinary, untrusted user processes. As
Joe’s shell runs other programs, the type of the new processes created on Joe’s behalf
will keep the user_t domain type unless some other action is taken. So how does
Joe change passwords?

B

uid: joe
euid: joe
user_t

euid: root

passwd_t write, create, ...

(change password)

passwd
root root

write, ... G
shadow_t

/etc/shadow

bash

FIGURE 2-3
The problem of domain transitions

We would not want Joe’s untrusted domain type user_t to have the capability
to read and write the shadow password file directly because this would allow any
program (including Joe’s shell) to see and change the contents of this critical file. As
discussed previously, we want only the password program to have this access, and
then only when running with the passwd_t domain type. So, the question is how
to provide a safe, secure, and unobtrusive method for transitioning from Joe’s shell
running with the user_t type to a process running the password program with the
passwd_t type.

2.2.3 Review of SetUID Programs in Standard Linux Security

Before we discuss how to deal with the problem of domain transitions, let’s first
review how a similar problem is handled in standard Linux where the same prob-
lem of providing Joe a means to securely change his password exists. The way Linux
solves this problem is by making passwd a setuid to the root program. If you list
the password program file on a typical Linux system, you see something like this:

1ls -1 /usr/bin/passwd
-r-s—x—x 1 root root 19336 Sep 7 04:11 /usr/bin/passwd

1 To be precise, Joe would not be a user ID. Rather, the string joe is used to determine the user ID (which is
an integer number) from the password file (/etc/passwd). For ease of explanation, we skip that interme-
diate step and just use the string identifiers in our examples.

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 24 $

24 Chapter 2 * Concepts

Notice two things about this listing. First the s in the x spot for the owner per-
mission. This is the so-called setuid bir and means that for any process that executes
this file, its effective UID (that is, the user ID used for access control decisions) will
be changed to that of the file owner. In this case, root is the file owner, and there-
fore when executed the password program will always run with the effective user ID
of root. Figure 2-4 shows these steps.

o
\ B
H\login fork()

uid: joe
euid: joe

uid: joe rite, create
euid: root wnite, o

(change password)

bash —y passwd

root root

/etc/shadow

/usr/bin/passwd

FIGURE 2-4
Password program security in standard Linux (setuid)

What actually happens when Joe runs the password program is that his shell will
make a fork () system call to create a near duplicate of itself. This duplicate process
still has the same real and effective user IDs (joe) and is still running the shell pro-
gram (bash). However, immediately after forking, the new process will make an
execve () system call to execute the password program. Standard Linux security
requires that the calling user ID (still joe) have x access, which in this case is true
because of the x access to everyone. Two key things happen as a result of the suc-
cessful execve () call. First, the shell program running in the new process is
replaced by the password program (passwd). Second, because the setuid bit is set
for owner, the effective user ID is changed from the process’ original ID to the file
owner ID (root in this case). Because root can access all files, the password pro-
gram can now access the shadow password file and handle the request from Joe to
change his password.

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 25 :F

2.2 Type Enforcement Access Control 25

Use of the setuid bit is well established in UNIX-like operating systems and is a
simple and powerful feature. However, it also illustrates the primary weakness of
standard Linux security. The password program needs to run as root to access the
shadow file. However, when running as root, the password program can effectively
access any system resource. This is a violation of the central security engineering
principal of least privilege. As a result, we must trust the password program to be
benign with respect to all other possible actions on the system. For truly secure
applications, the password program requires an extensive code audit to ensure it
does not abuse its extra privilege. Further, when the inevitable unforeseen error
makes its way into the password program, it presents a possible opportunity to
introduce vulnerabilities beyond accessing the shadow password file. Although the
password program is fairly simple and highly trusted, think of the other programs
(including login shells) that may and do run as root with that power.

What we would really like is a way to ensure least privilege for the password pro-
gram and any other program that must have some privilege. In simple terms, we
want the password program to be able to access only the shadow and other pass-
word-related files plus those bare-minimum system resources necessary to run; and
we would like to ensure that no other program but the password (and similar) pro-
grams can access the shadow password file. In this way, we need only evaluate the
password (and similar) programs with respect to its role in managing user accounts
and need not concern ourselves with other programs when evaluating security con-
cerns for user account management.

This is where type enforcement comes in.

2.2.4 Domain Transitions

As previously shown in Figure 2-2, the allow rule that would ensure that
passwd process domain type (passwd_t) can access the shadow password file.
However, we still have the problem of domain transitions described earlier.
Providing for secure domain transition is analogous to the concept of setuid pro-
grams, but with the strength of type enforcement. To illustrate, let’s take the setuid
example and add type enforcement (see Figure 2-5).

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 26 $

26 Chapter 2 * Concepts

uid: joe
euid: root)
write, create, ...

passwd_t (change password)

uid: joe root root
euid: joe execve()

user_t

shadow_t

/etc/shadow
r-s--X--X root root

passwd_exec_t

allow user _t passwd_exec_t : file { getattr execute };
allow passwd_t passwd_exec_t : file entrypoint;
Jusr/bin/passwd allow user_t passwd_t: process transition;

FIGURE 2-5
Passwd program security in SELinux (domain transitions)

Now our example is more complicated. Let’s examine this figure in detail. First
notice that we have added the three types we showed previously, namely Joe’s shell
domain (user_t), the password program’s domain type (passwd_t), and the
shadow password file type (shadow_t). In addition, we have added the file type for
the passwd executable file (passwd_exec_t). For example, listing the security con-
text for the password program on-disk executable would yield a result something

like this:

1ls -Z /usr/bin/passwd
-r-s—xXx—x root root system_u:object_r:passwd_exec_t /usr/bin/passwd

Now we have enough information to create the TE policy rules that allow the
password program (and presumably only the password program) to run with the
passwd_t domain type. Let’s look at the rules from Figure 2-5. The first rule is as
follows:

allow user_t passwd_exec_t : file {getattr execute};

What this rule does is allow Joe’s shell (user_t) to initiate an execve () system
call on the passwd executable file (passwd_exec_t). The SELinux execute file
permission is essentially the same permission as x access for files in standard Linux.

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 27 :F

2.2 Type Enforcement Access Control 27

(The shell “stats” the file before trying to execute, hence the need for getattr per-
mission, too.) Recall our description of how a shell program actually works. First it
forks a copy of itself, including identical security attributes. This copy still retains
Joe’s shell original domain type (user_t). Therefore, the execute permission must
be for the original domain (that is, the shell’s domain type). That is why user_t is
the source type for this rule.

Let’s now look at the next allow rules from Figure 2-5:

allow passwd_t passwd_exec_t : file entrypoint;

This rule provides entrypoint access to the passwd_t domain. The entrypoint
permission is a rather valuable permission in SELinux. What this permission does
is define which executable files (and therefore which programs) may “enter” a
domain. For a domain transition, the new or “to-be-entered” domain (in this case,
passwd_t) must have entrypoint access to the executable file used to transition
to the new domain type. In this case, assuming that only the passwd executable file
is labeled with passwd_exec_t, and that only type passwd_t has entrypoint
permission to passwd_exec_t, we have the situation that only the password pro-
gram can run in the passwd_t domain type. This is a powerful security control.

WARNING The concept of entrypoint permission is extremely
important. If you did not fully understand the preceding example,
please re-read it again before proceeding.

Let’s now look at the final rule:

allow user_t passwd_t : process transition;

This is the first allow rule we have seen that did not provide access to file
objects. In this case, the object class is process, meaning the object class repre-
senting processes. Recall that all system resources are encapsulated in an object class.
This concept holds for processes, too. In this final rule, the permission is transi-
tion access. This permission is needed to allow the type of a process’ security con-
text to change. The original type (user_t) must have transition permission to
the new type (passwd_t) for the domain transition to be allowed.

These three rules together provide the necessary access for a domain transition to
occur. For a domain transition to succeed, all three rules are necessary; alone, none

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 28 $

28 Chapter 2 * Concepts

is sufficient. Therefore, a domain transition is allowed only when the following
three conditions are true:

1. The process’ new domain type has entrypoint access to an executable file
type.

2. The process’ current (or old) domain type has execute access to the entry

point file type.

3. The process’ current domain type has transition access to the new
domain type.

When all three of these permissions are permitted in a TE policy, a domain tran-
sition may occur. Further, with the use of the entrypoint permission on exe-
cutable files, we have the power to strictly control which programs can run with a
given domain type. The execve () system call is the only way to change a domain
type,? giving the policy writer great control over an individual program’s access to
privilege, regardless of the user who may be invoking the program.

Now the issue is how does Joe indicate that he wants a domain transition to
occur. The above rules allow only the domain transition; they do not require it.
There are ways that a programmer or user can explicitly request a domain transition
(if allowed), but in general we do not want users to have to make these requests
explicitly. All Joe wants to do is run the password program, and he expects the sys-
tem to ensure that he can. We need a way to have the system initiate a domain tran-
sition by default.

2.2.5 Default Domain Transitions: type_transition Statement

To support domain transitions occurring by default (as we want in the case of the
password program), we need to introduce a new rule, the zype transition rule
(type_transition). This rule provides a means for the SELinux policy to specify
default transitions that should be attempted if an explicit transition was not
requested. Let’s add the following type transition rule to the allow rules:

type_transition user_t passwd_exec_t : process passwd_t;

2 To be precise, a recent change to SELinux provides a means for a process, with necessary privilege, to change
its security context without an execve () call. In general, without strong justification, this mechanism,
described in Chapter 5, “Type Enforcement,” should not be used because it greatly weakens the strength of
type enforcement.

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 29 :F

2.3 The Role of Roles 29

The syntax of this rule differs from the allow rule. There are still source and tar-
get types (user_t and passwd_exec_t, respectively) and an object class
(process). However, instead of permissions, we have a third type, the default type
(pas swd_t).

Type_transition rules are used for multiple different purposes relating to
default type changes. For now, we are concerned with a type_transition rule
that has process as its object class. Such rules cause a default domain transition to
be attempted. The type_transition rule indicates that, by default on an
execve () system call, if the calling process’ domain type is user_t and the exe-
cutable file’s type is passwd_exec_t (as is the case in our example in Figure 2-5),
a domain transition to a new domain type (passwd_t) will be attempted.

The type_transition rule allows the policy writer to cause default domain tran-
sitions to be initiated without explicit user input. This makes type enforcement less
obtrusive to the user. In our example, Joe does not want to know anything about access
control or types; he wants only to change his password. The system and policy designer
can use type_transition rules to make these transitions transparent to the user.

NOTE Remember that a type_transition rule causes a
domain transition to be attempted by default, but it does not allow
it. You must still provide the three types of access required for a
domain transition to successfully occur, whether it was initiated
by default or as a result of the user’s explicit request.

2.3 The Role of Roles
SELinux also provides a form of role-based access control (RBAC). The RBAC

feature of SELinux is built upon type enforcement; access control in SELinux is pri-
marily via type enforcement. Roles limit the types to which a process may transi-
tion based on the role identifier in the process’ security context. In this manner, a
policy writer can create a role that is allowed to transition into a set of domain
types (assuming the type enforcement rules allow the transition), thereby defining
the limits of the role. Take our password program example in Figure 2-5. Although
according to the type enforcement rules, the password program can be executed by
the user_t domain type to enter the new passwd_t domain, Joe’s role must also
be allowed to be associated with the new domain type for the transition to occur.
To illustrate, we extend the password program example in Figure 2-6.

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 30 $

30 Chapter 2 * Concepts

user_r:passyd_t write, setattr, ...

(change password)

root root
execve()

shadow_t

bash

/etc/shadow
r-s--x--x root root
role user_r types passwd_t;

passwd_exec_t

Jusr/bin/passwd

FIGURE 2-6
Roles in domain transitions

We have added the role portion (user_r) of the security contexts for the
processes depicted. We also added a new rule, specifically the role statement:

role user_r type passwd_t;

The role statement declares role identifiers and associates types with the
declared role. The previous statement declares the role user_r (if it has not already
been declared in the policy) and associates the type passwd_t with the role. What
this association means is that the passwd_t type is allowed to coexist in a security
context with the role user_r. Without this role statement, the new context
joe:user_r:passwd_t could not be created, and the execve () system call would
fail, even though the TE policy allows Joes type (user_t) all the necessary access.

A policy writer can define roles that are further constrained and then associate
these roles to specific users. For example, imagine that in our policy we also create a
role called restricted_user_r, identical to user_r in all regards except that it is
not associated with the passwd_t type. Thus, if Joe’s role is restricted user_r
instead of user_r, Joe would not be authorized to run the password program even
though the TE rules would allow his domain type the access.

Chapter 6, “Roles and Users,” discusses in detail the purposes of roles in SELinux
and in particular how they are created and associated with users.

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 31 :F

2.4 Multilevel Security in SELinux 31

2.4 Multilevel Security in SELinux

Type enforcement is far and away the most important mandatory access control
(MAC) mechanism that SELinux introduces. However, in some situations, prima-
rily for a subset of classified government applications, traditional multilevel security
(MLS) MAC coupled with type enforcement is valuable. In recognition of these sit-
uations, SELinux has always had some form of MLS capability included. The MLS
features are optional and generally the less important of the two MAC mechanisms
in SELinux. For the vast majority of security applications, including many if not
most classified data applications, type enforcement is the best-suited mechanism for
enhanced security. Nonetheless, the addition of MLS enhances security for some
applications.

The basic concept of MLS was introduced in Chapter 1, “Background;” actual
implementations of MLS are more involved. The security level used by MLS systems
is a combination of a hierarchical sensitivity and a set (including the null set) of non-
hierarchical caregories. These sensitivities and categories are used to reflect real infor-
mation confidentiality or user clearances. In most SELinux policies, the sensitivities
(s0, s1, ...) and categories (c0, c1, ...) are given generic names, leaving it to user-
space programs and libraries to assign user-meaningful names. (For example, s0

might be associated with UNCLASSIFIED and s1 with SECRET.)

To support MLS, the security context is extended to include security levels as
such these:

user:role:type:sensitivityl[:category,...][-sensitivity[:category, ...]1]

Notice that the MLS security context must have at least one security level (which
is composed of a single sensitivity and zero or more categories), but can include two
security levels. These two security levels are called low (or current for processes) and
high (or clearance for processes), respectively. If the high security level is missing, it
is considered to be the same value as the low (the most common situation). In prac-
tice, the low and high security levels are usually the same for most objects and
processes. A range of levels is typically used for processes that are considered trusted
subjects (that is, a process trusted with the ability to downgrade information) or
multilevel objects such as directories that might contain objects of differing security
levels. For purposes of this overview, assume that all processes and objects have a
single security level.

The MLS rules for accessing objects are much the same as discussed in Chapter
1, except that security levels are not hierarchical but rather governed by a dominance

e

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 32 $

32 Chapter 2 * Concepts

relationship. Unlike equality where a level is either higher than, equal to, or lower
than another level, in a dominance relationship, there is a fourth state called incom-
parable (also known as noncomparable; see the definition of incomp in the following
list). What causes security levels to be related via dominance rather than equality are
the categories, which have no hierarchical relationship to one another. As a result,
the four dominance operators that can relate two MLS security levels are as follows:

dom: (dominates) SL1 dom SL2 if the sensitivity of SL1 is higher or equal to
the sensitivity of SL2, and the categories of SL1 are a superset of the
categories of SL2.

domby: (dominated by) SL1 domby SL2 if the sensitivity of SL1 is lower than
or equal ro the sensitivity of SL2, and the categories of SL1 are a sub-
set of the categories of SL2.

eq: (equals) SL1 eq SL2 if the sensitivity of SL1 and SL2 are equal, and
the categories of SL1 and SL2 are the same ser.

incomp: (incomparable or noncomparable) SL1 incomp SL2 if the categories
of SL1 and SL2 cannot be compared (that is, neither is a subset of

the other).

Given the domain relationship, a variation of the Bell-La Padula model is imple-
mented in SELinux where a process can “read” an object if its current security level
dominates the security level of the object, and “write” an object if its current secu-
rity level is dominated by the security level of the object (and therefore read and write
the object only if the two security levels are equal).

The MLS constraints in SELinux are in addition to the TE rules. If MLS is
enabled, both checks must pass (in addition to standard Linux access control) for
access to be granted. Chapter 8, “Multilevel Security,” discusses the SELinux
optional MLS features.

2.5 SELinux Features Familiarization

At this time, it is worthwhile to play with an SELinux system a little. For our
examples, we use a Fedora Core 4 (FC4) distribution with the strict policy. Most of
these examples should also work on Red Hat Enterprise Linux version 4 (RHEL4) or
Fedora Core 5 (FC5). You might also be able to work with other distributions,
although there may be differences. Appendix A, “Obtaining SELinux Sample

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 33 :F

2.5 SELinux Features Familiarization

33

Policies,” describes how to obtain the policy files and other materials we use as

examples throughout this book and how to configure your system accordingly.

Running in Permissive Mode

SELinux can run in permissive mode, where the access checks occur; but instead
of denying unallowed access, it simply audits them. This mode is useful when
first learning about SELinux, and you may want to start exploring the system in
this mode. Of course, permissive mode should not be used in operational sys-
tems if you want the enhanced access security of SELinux. Note that some util-
ities are found in /usr/sbin, which is not normally in a regular user’s path.

The simplest way to check the current mode of SELinux is to run the geten-
force command. To set the system in permissive mode, run the command
setenforce 0. (You must be logged in as root in the sysadm_t domain to
change the system to permissive mode.) To return it to enforcing mode, run the
command setenforce 1. (Because you are in permissive mode, you just need
to be logged in as root to change the system to enforcing mode.)

We have already mentioned the -z option added to some system commands.
Commands such as 1s and ps display the security contexts of files and
processes. As an exercise, run the commands ps xZ and 1s -z /bin and
examine the various security contexts for running processes and executable files.

2.5.1 Reuvisiting the Passwd Example

Throughout this chapter, we used the example of the shadow password file and
the password program. If you examine the security context of these two files, their
types should be shadow_t and passwd_exec_t, respectively. As discussed previ-
ously, passwd_exec_t is the entrypoint type for the passwd_t domain. To witness
how the process of domain transitions work, walk through the following set of com-

mands. You need two terminal windows or virtual consoles to do this walkthrough.

In the first window, run the passwd command:

S passwd

Changing password for user joe.
Changing password for joe
(current) UNIX password:

Mayer_ CHO2.gxd 6/20/06 7:13 PM Page 34 :F

34 Chapter 2 * Concepts

This starts the password program and prompts for the user’s current password.
Do not enter the password, but instead switch to the second terminal. In the sec-
ond terminal, su to root and then run the ps command:

S su
Password:
Your default context is root:sysadm_r:sysadm_t.

Do you want to choose a different one? [n]
ps alegrep passwd
user_u:user_r:passwd_t 4299 pts/1 S+ 0:00 passwd

As you can see, the type of the running password program is passwd_t, as we
would expect given the rules described in the examples earlier in this chapter.

NOTE In a strict policy such as the one we use for our examples,
a normal user (that is, a user running a shell in the user_t
domain) does not have permission to read many /proc/pid
entries, and as such the passwd process would not show up in the
ps axz output. That is why you need to su to root first.

2.5.2 Perusing the Policy File

In FC4 systems, the binary file containing the kernel policy is located in the well-
known directory /etc/selinux/. The configuration file (config) in that direc-
tory indicates the policy to be used and loaded on boot. You can also configure the
system to boot in permissive mode in this file. For our exercises, we are using FC4’s

strict policy, which (if installed according to Appendix A) should be here:

/etc/selinux/strict/policy/policy. [ver]

The version of the policy reflects the version of the SELinux policy compiler
(checkpolicy). In our example, the version is 19. Configuring an SELinux system
and creating a kernel policy file from policy sources are discussed in greater detail
in Part ITI, “Creating and Writing SELinux Security Policies.” For now, we want to
look around inside the policy to see what is there.

A useful tool for examining the contents of a policy is the policy analysis tool
apol created by Tresys Technology and distributed in a package of SELinux tools
called SeTools (see Appendix D, “SELinux Commands and Utilities”). The SeTools
package is included on most SELinux distributions. Run the command apol to
determine whether the tool is present on your system. If not, Appendix D provides
information on how to obtain the SeTools package.

e

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 35

—p—

2.5 SELinux Features Familiarization 35

The apol (for “analyze policy”) tool is a sophisticated SELinux policy analysis
tool that we use throughout the book to examine SELinux policies. For now, we
want to use some of its basic features to examine aspects of the policy file. Run apol
and open the strict policy file. Under the menu Query > Policy Summary, you can
view a summary of the policy statistics (see Figure 2-7).

] SE Linux Policy Analysis - felc/ icpolicy/policy.19 [=l[=](x]
Hle Search Query Advanced Help ' Policy Summary [=)[al[x]
Policy Summary Statistics
Policy Components | Policy Aules | File Contexts | Analysis | policy cont |
Folicy Version: .18 (binary)
Types | ClassesiPerms | Foles | Users | Booleans | initial 510 | Policy Typs: binary
- Types | [~ Search Optic Number of Classes and Permissions
Obiect Classes:
NetworkManager_dbusel_syster| W Show Types 1 Show Ath Comman Perms 3 o
NetworkManager_exec_t = e, Rl Permissions: 205
NetwarkManager_t ol Rl E!
NetworkMarager_var_run_t W Lse Allases f Inclucle | Mumber D; Tvg:s and Attributes s
accelgraphics_ext_t Pt 0
L cot_cata, t — Search Aesults
acct_exec_t Number of Type Enforcement Rulss
It allow 372755 £
e neveraliow i
aditime_t clone (pre v.11): 0
amin_passwil_exec_t type_transition.: 2657
2fs_boa_port_t type_change: 68
afs_fs_port_t Sprtes o
afs_ka_port_t auditdeny. 0
afs_pt_port_t dontaudit 230663
fs_vl_port_t
bk A Number of Roles
Roles: [
|)
Show Type Info Humber o;l RA: Fules, .
role_transttion a7
B ——
Atridates ——————_ Humber of Users:
users, 3
Number of Initial S1Ds:
5IDs o
Number of Booleans:
78
Close Wi
Show Attribute Info | | =
Classes: 55 Ferma:205 Types: 1589 Aftribs:0 TErues: 614155 Foles:6 Users:3 .13 (binary)

FIGURE 2-7
Policy summary using apol

Apol has a series of major tabs (Policy Components, Policy Rules, Analysis, and
so on) that enable you to search and analyze a policy in various ways. Take some
time to explore the Policy Components and Policy Rules tabs and become familiar
with both portions of the policy we discussed in this chapter and the apol tool
itself. You will find it useful throughout Part II, “SELinux Policy Language,” to use
apol to examine your policy and follow along with the examples.

Mayer_CHO2.gxd

36

6/20/06 7:13 PM Page 36 :F

Chapter 2 * Concepts

2.6 Summary

SELinux access control is based on a security context associated with all
system resources including processes. The security context contains three ele-
ments: user, role, and type identifiers. The type identifier is the primary basis
for access control.

In SELinux, type enforcement is the primary access control feature. Access is
granted between subjects (that is, processes) and objects by specifying allow
rules that have the subject’s type (also called a domain type) as the source and
the object’s type as the target. Access is granted for specified object classes
using a fine-grained set of permissions defined for each object class.

One of the key benefits of type enforcement is the ability to control which
programs may run with a given domain type, thereby allowing access control
down to individual programs (rather than the less-secure level of a user). The
capability for a program to enter into a domain (that is, run with a given
process type) is called domain transition and is tightly controlled by SELinux
allow rules. SELinux also allows domain transitions to occur automatically
through the type_transition rule.

SELinux does not directly use the role identifiers in a security context for
access control. Instead, all access is controlled based on types. Roles are used
to associate the allowed domain types into which a process running on behalf
of a user may transition. This allows sets of type enforcement allowed capabil-
ities to be grouped together and authorized for a user as a role.

SELinux provides an optional MLS access control mechanism that provides
further access restrictions for a certain class of data sensitivity applications. The
MLS features are built upon the TE mechanism. MLS also extends the secu-
rity context to include a current (or low) security level and an optional high
(or clearance) security level.

Mayer_CHO2.gxd

6/20/06 7:13 PM Page 37 :F

37

Exercises

What is a “domain” and how is it related to or different from a type?

What are the access control attributes used by SELinux type enforcement
security to control access? What portion of the attribute is used by type
enforcement for access control?

Let’s assume that we have a file named datafile with the following secu-
rity attributes:

-r-Xr-xr-x root root system_u:object_r:data_t datafile

Let’s also assume that your shell process type is user_t and that type has all
access permissions for file objects of type data_t. Can you read and/or
write this file? Why or why not?

For SELinux to allow a domain transition, a number of access permissions
must be allowed among three types. What are the access permissions
required and between what types? What do the types represent?

In answering Question 4, was a type_transition rule required? Why or
why not?

In SELinux, a role is not used as a basis for access control, but it can pre-
vent a domain transition from succeeding. How and why?

Extra credit: Examine the SELinux configuration file /etc/selinux/config.
What are the possible states in which SELinux can run and what do each mean?
How do the settings in this file differ from using the setenforce command?

