
59

chapter

4

“One man’s constant is another man’s variable.”
—Alan Perlis

4.1 Data Types

A program can do many things, including perform calculations, sort names, prepare
phone lists, display images, play chess, ad infinitum. To do anything, however, the pro-
gram works with the data that is given to it. Data types specify what kind of data, such
as numbers and characters, can be stored and manipulated within a program. PHP sup-
ports a number of fundamental basic data types, such as integers, floats, and strings.
Basic data types are the simplest building blocks of a program. They are called scalars
and can be assigned a single literal value such as a number, 5.7, or a string of characters,
such as "hello", a date and time, or a boolean (true/false). See Figure 4.1.

PHP also supports composite data types, such as arrays and objects. Composite data
types represent a collection of data, rather than a single value (see Figure 4.2). The com-
posite data types are discussed in Chapter 8, “Arrays,” and Chapter 17, “Objects.”

$year

2008

$city

"NY"

Figure 4.1 Scalars hold one value.

The Building Blocks:
Data Types, Literals,
Variables, and Constants

ch04.fm Page 59 Saturday, October 21, 2006 4:30 PM

60 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

The different types of data are commonly stored in variables. Examples of PHP vari-
ables are $num = 5 or $name = "John" where variables $num and $name are assigned an
integer and a string, respectively. Variables hold values that can change throughout the
program, whereas once a constant is defined, its value does not change. PHP_VERSION
and PHP_OS are examples of predefined PHP constants. The use of PHP variables and
constants is addressed in “Variables” on page 70 and “Constants” on page 99 of this
chapter.

PHP supports four core data types:

• Integer
• Float (also called double)
• String
• Boolean

In addition to the four core data types, there are four other special types:

• Null
• Array
• Object
• Resources

4.1.1 Numeric Literals

PHP supports both integers and floating-point numbers. See Example 4.1.

• Integers—Integers are whole numbers and do not contain a decimal point; for
example, 123 and –6. Integers can be expressed in decimal (base 10), octal
(base 8), and hexadecimal (base 16), and are either positive or negative values.

• Floating-point numbers—Floating-point numbers, also called doubles or reals,
are fractional numbers such as 123.56 or –2.5. They must contain a decimal
point or an exponent specifier, such as 1.3e–2. The letter “e” can be either
upper or lowercase.

PHP numbers can be very large (the size depends on your platform), but a precision
of 14 decimal digits is a common value or (~1.8e308).

$numbers

3 5 7 9
$address="NY";

$person

$name="Joe";

$age=25

Figure 4.2 Arrays and objects hold multiple values.

ch04.fm Page 60 Saturday, October 21, 2006 4:30 PM

4.1 Data Types 61

EXAMPLE 4.1

12345 integer
23.45 float
.234E–2 float in scientific notation
.234e+3 float in scientific notation
0x456fff integer in base 16, hexadecimal
0x456FFF integer in base 16, hexadecimal
0777 integer in base 8, octal

EXAMPLE 4.2

<html>
<head><title>Printing Numbers</title>
</head>
<body bgcolor="lightblue">

<?php

print "The positive integer is " . 5623 . "
.
";

print "The negative integer is " . -22 . ".
";
print "The floating point number is " . 15.3 . "

.
";
print "The number in scientfic notation is " . 5e3 . "

.
";
print "\tThe string is: I can't help you!

";
?>
</body>
</html>

Figure 4.3 Output from Example 4.2.

ch04.fm Page 61 Saturday, October 21, 2006 4:30 PM

62 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.1.2 String Literals and Quoting

We introduce strings in this chapter but Chapter 6, “Strings,” provides a more compre-
hensive coverage. String literals are a row of characters enclosed in either double or sin-
gle quotes.1 The quotes must be matched. If the string starts with a single quote, it must
end with a matching single quote; likewise if it starts with a double quote, it must end
with a double quote. If a string of characters is enclosed in single quotes, the characters
are treated literally (each of the characters represents itself). We can say the single
quotes are the democratic quotes: All characters are treated equally.

Double quotes do not treat all characters equally. If a string is enclosed in double
quotes, most of the characters represent themselves, but dollar signs and backslashes
have a special meaning as shown in the following examples.

Single quotes can hide double quotes, and double quotes can hide single quotes:2

"This is a string"
'This is another string'
"This is also 'a string'"
'This is "a string"'

An empty set of quotes is called the null string. If a number is enclosed in quotes, it
is considered a string; for example, "5" is a string, whereas 5 is a number.

Strings are called constants or literals. The string value "hello" is called a string con-
stant or literal. To change a string requires replacing it with another string.

Strings can contain escape sequences (a single character preceded with a backslash).
Escape sequences cause a character to behave in a certain way; for example, a "\t" rep-
resents a tab and "\n" represents a newline. The backslash is also used for quoting a sin-
gle character so that it will not be interpreted; for example, \$5.00 where the dollar sign
in PHP is used to represent variables rather than money. \$5.00 could also be written
as '$5' because single quotes protect all characters from interpretation.

Here documents, also called here-docs, provide a way to create a block of text that sim-
plifies writing strings containing lots of single quotes, double quotes, and variables (see
Example 4.4).

1. PHP always null-terminates strings internally and keeps track of the length of the string.

2. PHP recognizes editors that use straight quotes, such as vi or Notepad, but not editors that automatically
transform straight quotes into curly quotes.

EXAMPLE 4.3

<html>
<head><title>Quotes</title></head>
<body bgcolor="lightblue">

1 <?php
2 $name = "Nancy"; // Setting a PHP variable

print "";

ch04.fm Page 62 Saturday, October 21, 2006 4:30 PM

4.1 Data Types 63

3 print " $name is my friend."; // Double quotes
4 print ' $name is my neighbor.'; // Single quotes
5 print " I can't go with you."; // Nested quotes
6 print " She cried, \"Help!\""; // Escaping quotes
7 print " I need \$5.00."; // The backslash

 // quotes one character
8 print " $name needs ". '$5.00 '; // Nested quotes

print "";
?>
</body>

</html>

EXPLANATION
1 PHP program starts here.
2 $name is a PHP variable. It is assigned the string "Nancy". You will learn all about

variables in the section “Variables” on page 70.
3 When a string is enclosed within double quotes, the PHP interpreter will substitue

the variable with its value; for example, $name will be replaced with "Nancy".
4 When a string is enclosed in single quotes, all characters are treated as literals.

Variable substitution will not occur.
5 Single quotes can be nested within double quotes and vice versa.
6 Quotes can be escaped with a backslash to make them literal characters within a

string.
7 The dollar sign is escaped from PHP interpretation, that is, is treated as a literal

character.
8 A string in double quotes is concatenated to a string in single quotes. Just as the

backslash protects the dollar sign from interpretaion, so do the single quotes. Re-
member, characters in single quotes are all treated as literals; that is, PHP does not
consider any of the enclosed characters as special. See the output in Figure 4.4.

EXAMPLE 4.3 (CONTINUED)

Figure 4.4 Single and double quotes.

ch04.fm Page 63 Saturday, October 21, 2006 4:30 PM

64 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

The Here Document—A Special Kind of Quoting. Here documents are a kind
of quoting popular in a number of languages, such as JavaScript, Perl, Shell scripts, and
so on. Here documents, also called here-docs, allow you to quote a large block of text
within your script without using multiple print statements and quotes. The entire block
of text is treated as though it is surrounded by double quotes. This can be useful if you
have a large block of HTML within your PHP script interspersed with variables, quotes,
and escape sequences.

Rules for a Here Document:

1. The user-defined delimiter word starts and terminates the here document. Text
is inserted between the delimiters. The delimiter can contain letters, numbers,
and the underscore character. The first letter must be a letter or an underscore.
By convention, the delimiter should be in all uppercase letters to make it stand
out from other words in your script. The delimeter is preceded by three < char-
acters; for example, <<<DELIMITER

print <<<HERE_DOC_DELIMITER
 <text here>
 ...
 < more text>
 ...

HERE_DOC_DELIMITER

2. The delimiter cannot be surrounded by any spaces, comments, or other text.
The final delimiter can optionally be terminated with a semicolon and must be
on a line by itself.

3. All variable and escape sequences will be interpreted within the here document.

EXAMPLE 4.4

1 <?php
2 $bgcolor="darkblue";

$tablecolor = "yellow";
3 print <<<MY_BOUNDARY
4 <html><head><title>heredoc</title></head>
5 <body bgcolor="$bgcolor">
6 <table border="1" bgcolor=$tablecolor>

<tr><th>Author</th<th>Book</th></tr>
<tr>
 <td>Marcel Proust</td>
 <td>Remembrance of Things Past</td>
</tr>

ch04.fm Page 64 Saturday, October 21, 2006 4:30 PM

4.1 Data Types 65

EXPLANATIONEXPLANATION

<tr>
 <td>Charles Dickens</td>
 <td>Tale of Two Cities</td>
</tr>
</table>

</body>
7 </html>
8 MY_BOUNDARY;

?>

EXPLANATION
1 PHP starts here.
2 Two scalar variables are defined.
3 This is the here-doc. The user-defined terminator, MY_BOUNDARY, is prepended

with <<<. There can be no space after the terminator; otherwise an error like this
will be displayed: Parse error: syntax error, unexpected T_SL in c:\wamp\www\exem-
ples\ch4variables\heredoc.php on line 4

4 All of the HTML document is embedded in the here document. The HTML will
be sent to the browser as is. Any PHP code embedded withing the HTML tags will
be handled by the PHP interpreter.

5 The value of the variable, $bgcolor, will be assigned as the background color of
the page.

6 An HTML table is started here. The value of the variable, $tablecolor, will be
assigned as the background color of the table cells.

7 The HTML document ends here, inside the here-doc.
8 The user-defined terminator, MY_BOUNDARY, marks the end of the here document.

There can be no spaces surrounding the terminator. The semicolon is optional.

EXAMPLE 4.4 (CONTINUED)

Figure 4.5 Here document output.

ch04.fm Page 65 Saturday, October 21, 2006 4:30 PM

66 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

Escape Sequences. Escape sequences consist of a backslash followed by a single
character. When enclosed in double quotes, the backslash causes the interpretation of
the next character to “escape” from its normal ASCII code and to represent something
else (see Table 4.1). To display the escape sequences in your browser, the HTML <pre>
tag can be used (see Example 4.5); otherwise, the escape sequences placed within your
PHP script will not be interpreted.

Table 4.1 Escape Sequences

 Escape Sequence What It Represents

\' Single quotation mark

\" Double quotation

\t Tab

\n Newline

\r Return/line feed

\$ A literal dollar sign

\\ Backslash

\70 Represents the octal value

\x05 Represents the hexadecimal character

EXAMPLE 4.5

<html><head><title>Escape Sequences</title></head>
<body bgcolor="orange">

1 <pre>
2 <?php
3 print "\t\tTwo tabs are \\t\\t, and two newlines are

\\n\\n.\n\n";
4 print "\tThe escaped octal numbers represent ASCII

\101\102\103.\n";
 print "\tThe escaped hexadecimal numbers represent ASCII

\x25\x26.\n";
5 print '\tWith single quotes, backslash sequences are not

interpreted.\n';
?>

</pre>

</body>
</html>

ch04.fm Page 66 Saturday, October 21, 2006 4:30 PM

4.1 Data Types 67

EXPLANATION
1 Because this file will be displayed in a browser window, the HTML <pre> tags are

used to retain spaces and tabs. If you run PHP at the command line, the escape
sequences will be interpreted.

2 The PHP program starts here with its opening tag.
3 The escape sequences must be enclosed in double quotes. The sequences for tab

(\t) and newline (\n) characters produce tabs and newlines. If a backslash is
prepended with another backslash, then the backslash is treated as a literal.

4 In this example, by preceding an octal or hexadecimal number with a backslash,
its ASCII equivalent is displayed.

5 If a string is enclosed in single quotes, escape sequences are ignored. See the out-
put in Figure 4.6.

Figure 4.6 Escape sequences and the <pre> tag.

Figure 4.7 Escape sequences at the command line.

ch04.fm Page 67 Saturday, October 21, 2006 4:30 PM

68 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.1.3 Boolean Literals

Boolean literals (introduced in PHP 4) are logical values that have only one of two val-
ues, true or false, both case insensitive. You can think of the values as yes or no, on or
off, or 1 or 0. They are used to test whether a condition is true or false. When using
numeric comparison and equality operators, the value true evaluates to 1 and false eval-
uates to the empty string (see Figure 4.8).

$answer1 = true;
 or
if ($answer2 == false) { do something; }

4.1.4 Special Data Types

Null. NULL represents “no value,” meaning “nothing,” not even an empty string or
zero. It is a type of NULL. An uninitialized variable contains the value NULL. A variable
can be assigned the value NULL, and if a variable has been unset, it is considered to be
NULL.

Resource. A resource is a special variable, holding a reference to an external resource
such as a database object or file handler. Resources are created and used by special func-
tions. File and database resources are defined by the PHP interpreter and are only acces-
sible by functions provided by the interpreter (see Chapter 11, “Files and Directories,”
and Chapter 15, “PHP and MySQL Integration).

EXAMPLE 4.6

<?php
if (0 == False && "" == FALSE) {
 print "zero and null are false.
 ";}
if (1 == True && "abc" == true) {
 print "1 and \"abc\" are both true.
 "; }
?>

Figure 4.8 True and false.

ch04.fm Page 68 Saturday, October 21, 2006 4:30 PM

4.1 Data Types 69

The gettype() Function. The gettype() built-in function returns a string to iden-
tify the data type of its argument. The argument might be a variable, string, keyword,
and so on. You can use the gettype() function to check whether or not a variable has
been defined because if there is no value associated with the variable, the gettype()
function returns NULL (see Figure 4.9).

Strings returned from the gettype() function include the following:

"boolean" (since PHP 4)
"integer"

"double" (for historical reasons "double" is returned in case of a float,
and not simply "float")
"string"

"array"

"object"

"resource" (since PHP 4)
"NULL" (since PHP 4)

FOR MAT

string gettype (mixed var)

Examples:
$type=gettype(54.6); // Returns "float"
print gettype("yes"); // Returns and prints "string"

EXAMPLE 4.7

<html>
<head><title>Getting the Data Type with gettype()</title>
</head><body bgcolor="lightblue">

<pre>
<?php

print "Type 5623 is: " . gettype(5623) . ".\n";
print "Type -22 is: " . gettype(-22) . ".\n";
print "Type 15.3 is: " . gettype(15.3) . ".\n";
print "Type 5e3 is: " . gettype(5e3) . ".\n";
print "Type \"Hi\" is: " . gettype("Hi") . ".\n";
print "Type true is: " . gettype(true) . ".\n";
print "Type false is: " . gettype(false) . ".\n";
print "Type null is: " . gettype(null) . ".\n";
print "Type \$nothing is: " . gettype($nothing) . ".\n";

?>
</body>
</html>

ch04.fm Page 69 Saturday, October 21, 2006 4:30 PM

70 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.2 Variables

4.2.1 Definition and Assignment

Variables are fundamental to all programming languages. They are data items that rep-
resent a memory storage location in the computer. Variables are containers that hold
data such as numbers and strings. In PHP programs there are three types of variables:

1. Predefined variables
2. User-defined variables
3. Form variables related to names in an HTML form

Variables have a name, a type, and a value.

$num = 5; // name: "$num", value: 5, type: numeric
$friend = "Peter"; // name: "$friend", value: "Peter", type: string
$x = true; // name: "$x", value: true, type: boolean

The values assigned to variables can change throughout the run of a program whereas
constants, also called literals, remain fixed.

PHP variables can be assigned different types of data, including:

• Numeric
• String
• Boolean
• Objects
• Arrays

Figure 4.9 PHP data types. Output from Example 4.7.

ch04.fm Page 70 Saturday, October 21, 2006 4:30 PM

4.2 Variables 71

Computer programming languages like C++ and Java require that you specify the
type of data you are going to store in a variable when you declare it. For example, if you
are going to assign an integer to a variable, you would have to say something like:

int n = 5;

and if you were assigning a floating-point number:

float x = 44.5;

Languages that require that you specify a data type are called “strongly typed” lan-
guages. PHP, conversely, is a dynamically, or loosely typed, language, meaning that you
do not have to specify the data type of a variable. In fact, doing so will produce an error.
With PHP you would simply say:

$n = 5;
$x = 44.5;

and PHP will figure out what type of data is being stored in $n and $x.

4.2.2 Valid Names

Variable names consist of any number of letters (an underscore counts as a letter) and
digits. The first letter must be a letter or an underscore (see Table 4.2). Variable names
are case sensitive, so Name, name, and NAme are all different variable names.

4.2.3 Declaring and Initializing Variables

Variables are normally declared before they are used. PHP variables can be declared in a
script, come from an HTML form, from the query string attached to the script’s URL,
from cookies, from the server, or from the server’s environment. Variable names are
explicitly preceded by a $. You can assign a value to the variable (or initialize a variable)
when you declare it, but it is not mandatory.

Table 4.2 Valid and Invalid Variable Name Examples

Valid Variable Names Invalid Variable Names

$name1 $10names

$price_tag box.front

$_abc $name#last

$Abc_22 A-23

$A23 $5

ch04.fm Page 71 Saturday, October 21, 2006 4:30 PM

72 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

To declare a variable called firstname, you could say:

$first_name="Ellie";

You can declare multiple variables on the same line by separating each declaration
with a semicolon. For example, you could say:

$first_name; $middle_name; $last_name;

Double, Single, and Backquotes in Assignment Statements. When assigning
a value to a variable, if the value is a string, then the string can be enclosed in either sin-
gle or double quotes; if the value is returned from a function, then the function is not
enclosed in quotes; and if the value is returned from a system command (see “Execution
Operators” on page 143), then the command is enclosed in backquotes:

$name = "Marko"; // Assign a string
$city = 'San Francisco'; // Assign a string
$now = date("m/d/Y"); // Assign output of a function
$dirlist = ‘ls -l‘; // Assign output of a UNIX/Linux system command
$dirlist = ‘dir /D/L‘ // Assign a Windows system command

FOR MAT

$variable_name = value; initialized
$variable_name; uninitialized, value is null

EXAMPLE 4.8

<html>
<head><title>Variables</title></head>
<body bgcolor="lightblue">

<?php

1 $name="Joe Shmoe";
2 $age=25.4;
3 $now=date("m/d/Y");
4 $nothing;
5 echo "$name is $age years old.
";
6 echo '$nothing contains the value of ',gettype($nothing),
 ".
";
7 echo "Today is $now
";

?>

</body>
</html>

ch04.fm Page 72 Saturday, October 21, 2006 4:30 PM

4.2 Variables 73

EXPLANATION
1 The variable called $name is defined and initialized within the string value "Joe

Shmoe". The string can be enclosed in either single or double quotes.
2 The variable called $age is assigned the floating-point value, 25.4. When assign-

ing a number, the value is not quoted.
3 The variable called $now is assigned the return value of the built-in date() func-

tion. The function is not enclosed in quotes or it will not be executed. Its argu-
ments, "m/d/Y", must be a string value, and are enclosed in quotes.

4 The variable $nothing is not assigned an initial value; it will have the value NULL.
5 The string is enclosed in double quotes. The floating-point value of $age is eval-

uated within the string.
6 The gettype() function tells us that the type of $nothing is NULL; that is, it has

no value.
7 The output of the PHP built-in date() function was assigned to $now and is printed

(see Figure 4.10).

EXAMPLE 4.9

<html><head><title>Backticks</title></head>
<body bgcolor="lightgreen">

<pre>
<?php

1 $month=`cal 7 2005`; // UNIX command
2 echo "$month
";

?>

</pre>
</body>
</html>

Figure 4.10 With or without quotes. Output from Example 4.8.

ch04.fm Page 73 Saturday, October 21, 2006 4:30 PM

74 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

EXPLANATION
1 The UNIX/Linux cal command and its arguments are enclosed in backquotes

(also called backticks). In PHP the backquotes are actually operators (see “Ex-
ecution Operators” on page 143). The command is executed by the operating
system. Its output will be assigned to the variable, $month.

2 The PHP code is embedded within HTML <pre> tags to allow the calendar,
$month, to be displayed in its natural format (see Figure 4.11).

EXAMPLE 4.10

<html><head><title>Backticks for Windows Command</title></head>
<body bgcolor="66cccc">

<pre>
<?php

1 $today =`date /T`; // Windows command
2 echo "Today is $today
";

?>

</pre>
</body>
</html>

Figure 4.11
Backquotes and UNIX.
Output from Example 4.9.

Figure 4.12
Backquotes and Windows.
Output from Example 4.10.

ch04.fm Page 74 Saturday, October 21, 2006 4:30 PM

4.2 Variables 75

4.2.4 Displaying Variables

The print and echo Constructs. So far, we have seen examples using both print
and echo to display data. These language constructs can be used interchangeably. The
only essential difference between echo() and print() is that echo allows multiple,
comma-separated arguments, and print doesn’t. Neither require parentheses around
their arguments because technically they are not functions, but special built-in con-
structs. (In fact, arguments given to echo must not be enclosed within parentheses.) To
print formatted strings, see printf and sprintf in Chapter 6, “Strings.”

Consider the following. Three variables are declared:

$name = "Tom";
$state = "New York";
$salary = 80000;

echo() can take a comma-separated list of string arguments:

echo $name, $state, $salary;

print() takes one string argument:

print $name;

However, the concatenation operator can be used to print mutliple strings or strings
containing multiple variables:

print $name . $state . $salary;
echo $name . $state . $salary;

or all of the variables can be enclosed in double quotes:

print "$name $state $salary
";
echo "$name $state $salary
";

If a variable is enclosed in double quotes, it will be evaluated and its value displayed.
If enclosed in single quotes, variables will not be evaluated. With single quotes, what
you see is what you get. Like all other characters enclosed within single quotes, the $ is
treated as a literal character.

The following strings are enclosed in single quotes:

echo '$name lives in $state and earns $salary.';

$name lives in $state and earns $salary.

print '$name lives in $state and earns $salary.';

$name lives in $state and earns $salary.

ch04.fm Page 75 Saturday, October 21, 2006 4:30 PM

76 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

The same strings are enclosed in double quotes:

echo "$name lives in $state and earns \$salary.";

Tom lives in New York and earns $80000.

print "$name lives in $state and earns \$salary.";

Tom lives in New York and earns $80000.

Shortcut Tags. There are several shortcuts you can use to embed PHP within the
HTML portion of your file, but to use these shortcuts, you must make a change in the
php.ini file. (If you don’t know where to find the php.ini file you are using, look at
the output of the built-in phpinfo() function where you will find the correct path to
the file.) Use caution: The PHP developers set this directive to “off” for security reasons.

From the php.ini file:

; Allow the <? tag. Otherwise, only <?php and <script> tags are recognized.
; NOTE: Using short tags should be avoided when developing applications or
; libraries that are meant for redistribution, or deployment on PHP
; servers which are not under your control, because short tags may not
; be supported on the target server. For portable, redistributable code,
; be sure not to use short tags.
short_open_tag = Off <-- Turn this “On” to make short tags work

Instead of using the print() or echo() functions to ouput the value of variables,
they can be nested within HTML code by using <?= and ?> shortcut tags where they will
automatically be evaluated and printed. (Note: There can be no space between the ques-
tion mark and the equal sign.) All of the following formats are acceptable:

FOR MAT

<?= expression ?>
<?= $color ?>

<? echo statement; ?>
<? echo $color; ?>

You have chosen a <?= $color ?> paint for your canvas.

ch04.fm Page 76 Saturday, October 21, 2006 4:30 PM

4.2 Variables 77

EXAMPLE 4.11

<html>
<head><title>Variables</title></head>
<body bgcolor="lightblue">
<?php

1 $name = "Marko";
2 $city = "San Francisco";

?>

<p>

3 Today is <?=date("l")?>. // same as <?php echo date("l"); ?>

4 His name is <?=$name?> and he works in <?=$city?>.

</body>
</html>

EXPLANATION
1, 2 Two variables are assigned the string values, "Marko" and "San Francisco".
3, 4 The PHP shortcut tag is embedded within the HTML tags. PHP will evaluate the

expression within the shortcut tags and print their values. The resulting HTML
code contains the result of the evaluation as shown when viewing the browser’s
source (see Figure 4.13). In this example, the built-in date() function with a "l"
option will return the day of the week. The variables, $name and $city are eval-
uated and placed within the HTML code.

Figure 4.13 HTML source page viewed in the browser.

ch04.fm Page 77 Saturday, October 21, 2006 4:30 PM

78 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.2.5 Variables and Mixed Data Types

Remember, strongly typed languages like C++ and Java require that you specify the type
of data you are going to store in a variable when you declare it, but PHP is loosely typed.
It doesn’t expect or allow you to specify the data type when declaring a variable. You can
assign a string to a variable and later assign a numeric value. PHP doesn’t care and at
runtime, the PHP interpreter will convert the data to the correct type. In Example 4.12,
consider the following variable, initialized to the floating-point value of 5.5. In each suc-
cessive statement, PHP will convert the type to the proper data type (see Table 4.3).

Example 4.12 demonstrates data type conversion. The gettype built-in function is used
to display the data types after PHP has converted the data to the correct type. See
Figure 4.15 for the output.

Table 4.3 How PHP Converts Data Types

Variable Assignment Conversion

$item = 5.5; Assigned a float

$item = 44; Converted to integer

$item = "Today was bummer"; Converted to string

$item = true; Converted to boolean

$item = NULL; Converted to the null value

EXAMPLE 4.12

<html><head><title>Type Conversion</title></head>
<body bgcolor="pink">
<?php

1 $item = 5.5;
print "$item is a " . gettype($item) . "
";

2 $item = 44;
print "$item is a " . gettype($item) . "
";

Figure 4.14 Using shortcut tags. The output from Example 4.11.

ch04.fm Page 78 Saturday, October 21, 2006 4:30 PM

4.2 Variables 79

Type Casting. Like C and Java, PHP provides a method to force the conversion of
one type of value to another using the cast operator (see Chapter 5, “Operators”).

4.2.6 Concatenation and Variables

To concatenate variables and strings together on the same line, the dot (.) is used. The
dot is an operator because it operates on the expression on either side of it (each called
an operand). In expressions involving numeric and string values with the dot operator,
PHP converts numeric values to strings. For example, consider the following state-
ments:

// returns "The temperature is 87"
$temp = "The temperature is " . 87;
// returns "25 days till Christmas"
$message = 25 . " days till Christmas";

3 $item = "Today was a bummer!";
print "\"$item\" is a " . gettype($item) . "
";

4 $item = true;
print "$item is a " . gettype($item) . "
";

5 $item = NULL;
print "$item is a " . gettype($item) . "
";

?>
</body>
</html>

EXAMPLE 4.12 (CONTINUED)

Figure 4.15 Mixing data types. Output from Example 4.12.

ch04.fm Page 79 Saturday, October 21, 2006 4:30 PM

80 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.2.7 References

Another way to assign a value to a variable is to create a reference (PHP 4). A reference
is when one variable is an alias or pointer to another variable; that is, they point to the
same underlying data. Changing one variable automatically changes the other. This
might be useful in speeding things up when using large arrays and objects, but for now,
we will not need to use references.

EXAMPLE 4.13

<html>
<head><title>Concatenation</title></head>
<body bgcolor="ccff66">

<?php

1 $n = 5 . " cats";
2 $years = 9;

print "The $n " . "lived ". $years * 5 .
3 " years.
";
4 echo "He owns ", $years. $n , ".
";

?>

</body>
</html>

EXPLANATION
1 Variable $n is assigned a number concatenated to a string. The number is convert-

ed to a string and the two strings are joined together as one string by using the
concatenation operator, resulting in the string "5 cats".

2 Variable $years is assigned the number 9.
3 The concatenation operator joins all the expressions into one string to be dis-

played. The print() function can only take one argument.
4 The echo statement takes a list of comma-separated arguments, which causes the

values of $years and $n to be displayed just as with the concatenation operator.
See Figure 4.16 for the output.

Figure 4.16 Concatenation.

ch04.fm Page 80 Saturday, October 21, 2006 4:30 PM

4.2 Variables 81

To assign by reference, prepend an ampersand (&) to the beginning of the old variable
that will be assigned to the new variable; for example, $ref = & $old;. See Example
4.14 and it’s output in Figure 4.17.

One important thing to note is that only named variables can be assigned by refer-
ence, as shown in Example 4.15.

EXAMPLE 4.14

<html><head><title>References</title></head>
<body bgcolor="yellow">
<?php

1 $husband = "Honey"; // Assign the value "Honey" to $husband
2 $son = & $husband; // Assign a reference to $son.

 // Now $husband is a reference or alias
 // for $husband. They reference the same data.

3 print "His wife calls him $husband, and his Mom calls him $son.

";

4 $son = "Lazy"; // Assign a new value to $son;
 // $husband gets the same value

5 print "Now his wife and mother call him $son, $husband man.
";
?>
<body>
</html>

EXAMPLE 4.15

<?php
$age = 26;
$old = &$age; // This is a valid assignment.
$old = &(26 + 7); // Invalid; references an unnamed expression.
?>

Figure 4.17 References. Output from Example 4.14.

ch04.fm Page 81 Saturday, October 21, 2006 4:30 PM

82 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.2.8 Variable Variables (Dynamic Variables)

A variable variable is also called a dynamic variable. It is a variable whose name is stored
in another variable. By using two dollar signs, the variable variable can access the value
of the original variable. Consider the following example:

$pet ="Bozo";
$clown = "pet"; // A variable is assigned the name of another variable
echo $clown; // prints "pet"
echo ${$clown}; // prints Bozo

Dynamic variables are useful when you are dealing with variables that all contain a
similar name such as form variables. Curly braces are used to ensure that the PHP parser
will evaluate the dollar signs properly; that is, $clown will be evaluated first, and the first
dollar sign removed, resulting in ${pet}, and finally $pet will be evaulated to "Bozo".
Example 4.16 demonstrates how variable variables can be used dynamically to change
the color of a font. Output is shown in Figure 4.18.

EXAMPLE 4.16

<html>
<head><title>Variable Variables</title></head>
<body bgcolor="669966">

<?php

1 $color1 = "red";
$color2 = "blue";
$color3 = "yellow";

2 for($count = 1; $count <= 3; $count++){
3 $primary = "color" . $count; // Variable variable
4 print "";

echo "The value stored in $primary: ${$primary}
";
5 }

?>

</body>
</html>

ch04.fm Page 82 Tuesday, October 24, 2006 1:41 PM

4.2 Variables 83

EXPLANATION
1 Three variables are defined and assigned colors. Notice the variable names only

differ by the number appended to the name, 1, 2, and 3.
2 Although we haven’t yet discussed loops, this is the best way to illustrate the use

of variable variables (or dynamic variables). The initial value in the loop, $count,
is set to 1. If the value of $count is less than 3 ($count < 3), then control goes
to line 3. After the closing curly brace is reached on line 5, control will go back to
the top of the loop and the value of $count will be incremented by 1. If $count is
less than 3, the process repeats, and when $count reaches 3, the loop terminates.

3 The first time through the loop, the value of $count is appended to the string
"color" resulting in color1. The value, "color1", is then assigned to the vari-
able, $primary, so that $primary = color1;.

4 PHP expands ${$primary}a as follows:

${color1} First evaluate $primary within the curly braces.

$color1 Remove the braces and now evaluate $color1 resulting in "red".

The color of the font and the text will be red. Next time through the loop, the
count will go up by one ($count = 2) and the $color2 will be "blue", and finally
$color3 will be "yellow".

5 See “The for Loop” on page 235 for an example of how to make use of dynamic
variables with forms.

a. The curly braces are required. If you omit them, the variable $$primary will be evaluated as $color1
but not "red".

Figure 4.18 Dynamic variables. Output from Example 4.16.

ch04.fm Page 83 Tuesday, October 24, 2006 1:41 PM

84 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.2.9 Scope of Variables

Scope refers to where a variable is available within a script. Scope is important because it
prevents important variables from being accidentally modified in some other part of the
program and thus changing the way the program behaves. PHP has specific rules to con-
trol the visibility of variables. A local variable is one that exists only within a function. A
global variable is available anywhere in the script other than from within functions. (See
Chapter 9, “User-Defined Functions,” for creating global variables within functions.)
For the most part all PHP variables have a single scope, global.

Local Variables. Variables created within a function are not available to the rest of
the script. They are local to the function and disappear (go out of scope) when the func-
tion exits. If you have the same name for a variable within a function as in the main pro-
gram, modifying the variable in the function will not affect the one outside the function
(see Chapter 9, “User-Defined Functions”). Likewise, the function does not have access
to variables created outside of the function. Most of the variables we create will be visible
in the script or function in which they are declared. See Chapter 9, “User-Defined Func-
tions,” to get a full understanding of scope, including local variables, globals, superglo-
bals, and static.

Global and Environment Variables. Superglobal variables (see Table 4.4) are
accessible everywhere within a script and within functions. They are special variables
provided by PHP to help you manage HTML forms, cookies, sessions, and files, and to
get information about your environment and server.

Table 4.4 Some Superglobal Variables

Name Meaning

$GLOBALS An array of all global variables

$_SERVER Contains server variables (e.g., REMOTE_ADDR)

$_GET Contains form variables sent through GET method

$_POST Contains form variables sent through POST method

$_COOKIE Contains HTTP cookie variables

$_FILES Contains variables provided to the script via HTTP post file uploads

$_ENV Contains the environment variables

$_REQUEST A merge of the GET variables, POST variables, and cookie variables

$_SESSION Contains HTTP variables registered by the session module

ch04.fm Page 84 Saturday, October 21, 2006 4:30 PM

4.2 Variables 85

4.2.10 Managing Variables

You might want to find out if a variable has been declared, you might want to delete
one that has been set, or check to see if one that is set is not empty or is a string, num-
ber, scalar, and so on. PHP provides a number of functions (see Table 4.5) to help you
manage variables.

The isset() Function. The isset() function returns true if a variable has been set
and false if it hasn’t. If the variable has been set to NULL or has no value, it returns false.
If you want to see if a variable has been set to NULL, use the is_null() function. To
ensure that a variable has an initial value, the isset() function can be used to set a
default value. See Examples 4.17 and 4.18.

Table 4.5 Functions for Managing Variables

Function What It Returns

isset() True if variable has been set.

empty() True if variable is empty: "" (an empty string)
"0" (a string)
0 (an integer)

is_bool() True if variable is boolean; that is, contains TRUE or FALSE.

is_callable() True if variable is assigned the name of a function or an object.

is_double(), is_float(), is_real() True if variable is a floating-point number (e.g., 5.67 or .45).

is_int, is_integer, is_long True if a variable is assigned a whole number.

is_null() True if a variable was assigned the NULL value.

is_numeric() True if the variable was assigned a numeric string value or a
number.

is_object() True if the variable is an object.

is_resource() True if the variable is a resource.

is_scalar() True if the value was assigned a single value, such as a number
(e.g., "555" a string, or a boolean, but not an array or object).

is_string() True if a variable is a string of text (e.g., "hello").

unset() Unsets or destroys a list of values.

ch04.fm Page 85 Saturday, October 21, 2006 4:30 PM

86 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

FOR MAT

bool isset (variable, variable, variable);

Example:
$set = isset($name); // returns true or false
print isset($a, $b, $c); // prints 1 or nothing

EXAMPLE 4.17

<html><head><title>Testing Variables</title></head>
<body bgcolor="#66CC66">
The isset() function returns a boolean value.

If one or more variables exist and have a value, true is returned;

 otherwise false.

<p />
<?php

1 $first_name="John"; $middle_name=" "; $last_name="Doe";
2 $age;
3 $state=NULL;
4 print 'isset($first_name,$middle_name,$last_name) : ' .

 isset($first_name,$last_name) ."
";
5 print 'isset($age) : '. isset($age) ."
";

print 'isset($city) : '. isset($city) ."
";
print 'isset($state) : '. isset($state) ."
";

?>
</body>
</html>

EXPLANATION
1 Three variables are assigned string values; $middle_name is assigned the empty

string, a set of double quotes containing no text.
2 $age is declared but has not been assigned any value yet, which evaluates to NULL.
3 $state is declared and assigned the value NULL, which means it has no value.
4 The isset() function returns true if a variable has been set and given a non-null

value. In this case, all three variables have a value, even the variable assigned an
empty string. If true, 1 is displayed; if false, 0 or nothing is displayed.

5 Because $age was not given any value, it is implied to be null, and isset() re-
turns false. $city was never even declared, and $state was assigned NULL; is-
set() returns false. If you want to check explicitly for the NULL value (case insen-
sitive), use the built-in is_null() function (see Figure 4.19).

ch04.fm Page 86 Saturday, October 21, 2006 4:30 PM

4.2 Variables 87

EXAMPLE 4.18

<html><head><title>Give a Variable a Default Value</title></head>
<body bgcolor="66C68">

<p>
<?php

1 if (! isset($temp)) { $temp = 68 ; } // Sets a default value
2 echo "The default temperature is $temp degrees.
";

?>
</p>
</body>
</html>

EXPLANATION
1 The isset() function returns true if $temp has been set. The ! operator, the una-

ry “not” operator, reverses the boolean result. The expression reads, “if $temp is
not set, define it with a value of 68.”

2 The echo statement displays the default value in the browser (see Figure 4.20).

Figure 4.19 Is the variable set? Output from Example 4.17.

Figure 4.20 Setting a default value. Output from Example 4.18.

ch04.fm Page 87 Saturday, October 21, 2006 4:30 PM

88 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

The empty() Function. The empty() function returns true if a variable does not
exist, or exists and has been assigned one of the following: an empty string " ", 0 as a
number, "0" as a string, NULL, or no value at all. Example 4.19 demonstrates the use of
the empty() function.

FOR MAT

boolean empty (variable);

Example:
if (empty($result)){
print "\$result either doesn't exist or is empty\n";

EXAMPLE 4.19

<html><head><title>Testing Variables</title></head>
<body bgcolor="66C66">
The empty() function returns a boolean value.

If a variable doesn't exist or is assigned the empty string,
0,
or "0", NULL, or hasn't been assigned any value;
returns true, otherwise false.

<p>

<?php
1 $first_name=""; $last_name=" ";
2 $age=0;
3 $salary="0";
4 $state=NULL;

print 'empty($first_name) : ' . empty($first_name) ."
";
print 'empty($last_name) : ' . empty($last_name) ."
";
print 'empty($age) : '. empty($age) ."
";
print 'empty($salary) : '. empty($salary) ."
";
print 'empty($state) : '. empty($state) ."
";

?>

</p>
</body>
</html>

ch04.fm Page 88 Saturday, October 21, 2006 4:30 PM

4.2 Variables 89

The unset() Function. The unset() function (technically a language construct)
unsets or destroys a given variable. It can take a varied number of arguments and
behaves a little differently within functions (see Chapter 9, “User-Defined Functions”).
As of PHP 4, it has no return value and is considered a statement.

FOR MAT

void unset (mixed var [, mixed var [, mixed ...]])

Example:
unset($a, $b); // unsets the variables

EXAMPLE 4.20

<html><head><title>Testing Variables</title></head>
<body bgcolor="66C66">
The unset() function destroys a variable.

<p>
<?php

1 $first_name="John";
$last_name="Doe";
$age=35;

2 unset($first_name, $last_name);
print 'After unset() was used, isset($first_name,$last_name) '.

3 isset($first_name,$last_name). "returns false.
";
?>
</p>

 </body>
</html>

Figure 4.21 Is the variable empty? Output from Example 4.19.

ch04.fm Page 89 Saturday, October 21, 2006 4:30 PM

90 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.2.11 Introduction to Form Variables

Now we are starting to get into what makes PHP so popular. As we mentioned in the
introduction to this book, PHP was designed as a Web-based programming language to
create dynamic Web content, to gather and manipulate information submitted by HTML
forms. For now, because we are talking about variables, we will examine a simple form
and how PHP collects and stores the form information in variables. Chapter 10, “More
on PHP Forms,” provides a comprehensive discussion on HTML forms and introduces
the special global arrays used to process them in your PHP scripts.

The php.ini File and register_globals. Before getting started, there are some
issues to be aware of based on the version of PHP you are using. The PHP initialization
file, called php.ini, contains a directive called register_globals. Older versions of
PHP (prior to 4.2.0) had this directive turned to “On” as the default, allowing PHP to
create simple variables from form data. Since then, register_globals has been set to
“Off” to avoid potential security breaches. If using PHP 5, you will have to turn this
feature on before PHP can directly assign form input to simple global variables, or the
data must be extracted programatically. We discuss both ways to do this in the follow-
ing section. The next excerpt is taken from the PHP 5 php.ini file, showing the line
where register_globals is set. The default is “Off” and you should really try to
adhere to this setting.

EXPLANATION
1 Two scalar variables are declared and assigned string values.
2 The built-in unset() function will destroy the variables listed as arguments.
3 The isset() function returns true if a variable exists, and false if it doesn’t.

Figure 4.22 Destroying variables.

ch04.fm Page 90 Saturday, October 21, 2006 4:30 PM

4.2 Variables 91

From the php.ini file:

; You should do your best to write your scripts so that they do not require
; register_globals to be on; Using form variables as globals can easily lead
; to possible security problems, if the code is not very well thought of.
register_globals = Off

If you do not set register_globals to “On,” add the following line to your PHP
program:

extract($_REQUEST);

The $_REQUEST superglobal array contains the information submitted to the server
from the HTML form. After extracting this information, PHP will create simple variables
corresponding to the form data as shown in Example 4.24. In Chapter 10, “More on PHP
Forms,” all aspects of extracting form data are discussed in detail. For now, assume
register_globals is set to “On.”

How PHP Handles Form Input. For each HTML form parameter, PHP creates a glo-
bal variable by the same name and makes it available to your script. For example, con-
sider this HTML input type for two text fields:

<input type="text" name="your_name">
<input type="text" name ="your_phone">

If you have a text field named "your_name", PHP will create a variable called
$your_name. And if you have another text field named "your_phone", PHP will in turn,
create a variable called $your_phone. The values assigned to the PHP variables are the
same values the user entered in the HTML text fields when filling out the form.

Example 4.21 illustrates a simple HTML form consisting of two fields. The form
starts with the opening <form> tag. The ACTION attribute of the form tag is assigned the
name of the PHP script that will handle the form input: <form ACTION="php script">.

After the user fills out the form (see Figure 4.25) and presses the submit button, the
values that he or she typed in the text boxes will be sent to the PHP script (see Example
4.22). The browser knows where to send the data based on the ACTION attribute of the
<form> tag, but it also needs to know how to send the form data to the server. The how,
or method, is also an attribute of the <form> tag, called the METHOD atribute. There are
two popular HTTP methods used to send the form information to the server—the GET
method (default) and the POST method. Because the GET method is the default, you don’t
have to explicitly assign it as an attribute. The browser just assumes that is the method
you are using. The GET method tells the browser to send a URL-encoded string, called
the query string, to the server. It attaches this encoded query string to the end of the URL
in the browser’s location box, prepended with a ?. It is the method used when doing
searches or handling static pages and GET query strings are limited in size (see
Figure 4.23).

ch04.fm Page 91 Saturday, October 21, 2006 4:30 PM

92 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

 If using the POST method, the METHOD attribute must be added to the HTML <form>
tag METHOD="POST" (case insensitive). With the POST method, the browser sends an
encoded message body in the HTTP header to the server so that it doesn’t appear in the
URL. It is not limited in size, but it can’t be bookmarked or reloaded, and does not
appear in the browser’s history (see Figure 4.24).

When PHP gets the form input from the server, it takes care of decoding the query
string or message body and assigning the respective input values to PHP variables as
shown in Example 4.21. (For a complete discussion of the differences between the GET
and POST methods, see http://www.cs.tut.fi/~jkorpela/forms/methods.html.)

Enter your name:

Enter your phone:

submit

serverbrowser

GET METHOD

query string

HTTP

http://127.0.0.1/.../form.html

John Doe

444-333-1234

PHP
$your_name="John Doe"

$your_phone="444-333-1234"

Figure 4.23 The GET method sends form input in the URL.

Enter your name:

Enter your phone:

submit

serverbrowser

HTTP

POST METHOD
http://127.0.0.1/.../form.html

John Doe

444-333-1234

HTTP header

$your_name="John Doe"

$your_phone="444-333-1234"

PHP

Figure 4.24 The POST method sends form input in an HTTP header.

ch04.fm Page 92 Saturday, October 21, 2006 4:30 PM

4.2 Variables 93

EXAMPLE 4.21

<html>
<head>
<title>Simple HTML Form</title>
</head>
<body bgcolor="lightblue">

1 <form action="http://localhost/exemples/ch4variables/
 form_example.php" />

<p>
please enter your name:

2 <input type="text" size=30 name="your_name" />

3 please enter your phone number:

<input type="text" size=30 name="your_phone" />

4 <input type=submit value="submit" />
5 </form>

</body>
</html>

EXPLANATION
1 The HTML <form> tag starts the form. The URL of the script that will handle the

form data is assigned to the action attribute. The “method” on how the data will
be transmitted is assigned to the method attribute. Because the GET method is the
default method for transmitting data to the server, you do not have to explicitly
assign it as an attribute. This example is using the GET method.

2, 3 The HTML input type is a text box that is set to hold 50 characters. One is named
"your_name" and the other is named "your_phone".

4 After the user enters his or her name and phone number in the respective text
boxes, and presses the submit button (see Figure 4.25), the browser will collect
and URL encode the input data, then send it to the server. The server will hand it
to the PHP script listed (see Example 4.22) in the action attribute on line 1.
When PHP gets the input data, it will decode it, and create a variable called
$your_name (the name of the first text box) and a variable called $your_phone
(the name of the second text box) and give it the values that were entered in the
form by the user.

5 This </form> tag ends the HTML form.

ch04.fm Page 93 Saturday, October 21, 2006 4:30 PM

94 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

EXAMPLE 4.22

(The PHP Script)

<?php
extract($_REQUEST);

1 print "Your phone number is $your_name.
";
print "Your phone number is $your_phone.";
?>

or in the HTML document use the PHP shortcut tags:

<html><head><title>Testing Variables</title></head>
<body>

2 Your phone number is <?=$your_name?> and your phone number is
 <?=$your_phone?>

</body></html>

EXPLANATION
1 The browser bundles up the input data, encodes it, and attaches it as a query

string to the URL as:

?http://localhost/exemples/ch4variables/form_example.php?

your_name=Samual+B.+Johnson+Jr.&your_phone=222-444-8888

PHP decodes the query string; that is, it removes the + signs and & and any other
encoding characters, and then creates global variables, called $your_name and
$your_phone, and assigns values based on the user input. In this example, the
values of the variables are printed as part of the PHP script.

2 You can also use the shortcut tags within the HTML document to display the value
of the PHP variables. The output is displayed in the browser, as shown in
Figure 4.26.

Figure 4.25 The HTML form has been filled out by a user.

ch04.fm Page 94 Saturday, October 21, 2006 4:30 PM

4.2 Variables 95

Extracting the Data by Request. In the previous example, we used the default GET
method to send form input to the server. We also assumed the register_globals in
the php.ini file was turned “On,” allowing PHP to create simple global variables with
the form data. In the following example, we assume that register_globals is turned
“Off” (the recommended and default setting) and that the method is POST, the more
commonly used method when working with form input, as shown in Figure 4.24. This
method sends the form input as a message body in the HTTP header to the server and
does not append the data to the URL in the browser. Even though the input data is sent
using a different method, it is received in the same URL-encoded format. When
register_globals is turned off, PHP provides special variables, called arrays, to store
the form information. Because we do not cover arrays until Chapter 8, “Arrays,” we will
create simple variables to hold input data from the form, but first must explicitly extract
the data from a special global array called $_REQUEST. This special array contains all of
the input data for both GET and POST methods, and once it is extracted will be assigned
to PHP variables with the same name as was given to the corresponding input devices
in the HTML form.

EXAMPLE 4.23

(The HTML Form Source)
<html>
<head>
<title>First HTML Form</title>
</head>
<body bgcolor="lightblue">

1 <form action="/phpforms/form1.php" method="POST">
<p>
Please enter your name:

2 <input type="text" size=50 name="your_name">
<p>
Please enter your phone:

3 <input type="text" size=50 name="your_phone">
<p>
Please enter your email address:

4 <input type="text" size=50 name="your_email_addr">
<p>

Figure 4.26 Output from the PHP script in Example 4.22. The input data is appended to the
URL after the ?.

ch04.fm Page 95 Saturday, October 21, 2006 4:30 PM

96 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

5 <input type=submit value="submit">
<input type=reset value="clear">

6 </form>
<hr>
</body>
</html>

EXPLANATION
1 The HTML <form> tag starts the form. The URL of the script that will handle the

form data is assigned to the action attribute. The “method” on how the data will
be transmitted is assigned to the method attribute. The POST method is used here.
This is the most common method for processing forms. The form input is sent in
an HTTP header to the server.

2, 3, 4 The input devices are three text boxes for accepting user input. The name at-
tribute is assigned the names of the respective boxes, your_name, your_phone,
and your_email (see Figure 4.27). These same names will be used as variable
names in the PHP program, /phpforms/form1.php, listed in the forms action at-
tribute.

5 When the user presses the submit button, the form input is encoded and sent to the
server. The form input will not be visible in the URL as it is with the GET method.

6 This marks the end of the form.

EXAMPLE 4.23 (CONTINUED)

Figure 4.27 Data has been entered into the HTML form.

ch04.fm Page 96 Saturday, October 21, 2006 4:30 PM

4.2 Variables 97

EXAMPLE 4.24

(The PHP program)
<html><head><title>Processing First Form</title>
</head>
<body bgcolor = "lightgreen">
<h2>Here is the form input:</h2>
<?php

1 extract($_REQUEST, EXTR_SKIP); // Extracting the form input
print "Welcome to PHP $your_name
"; // register_globals
 // is off
print "Can I call you at $your_phone
";
print "Is it ok to send you email at $your_email_addr
";

?>
</body>
</html>

EXPLANATION
1 If the register_globals directive in the php.ini file is set to “Off,” the built-in

PHP extract() function can be used to get the form input stored in $_REQUEST,
an array that contains input recieved from both GET and POST methods. The ex-
tract() function will convert the input into variables of the same name as the
input devices in the HTML file. The EXTR_SKIP flag ensures that if there is a col-
lision, that is, you have already defined a variable with the that name somewhere
in your PHP program, it won’t be overwritten.

2 The variables $your_name, $your_phone, and $your_email_addr were created
by the extract() function and named after the text boxes originally named in the
HTML form. The output is displayed in the browser, as in Figure 4.28.

Figure 4.28
After PHP processes the input
data from the form.

ch04.fm Page 97 Saturday, October 21, 2006 4:30 PM

98 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

Predefined Variables. PHP provides a number of predefined variables (see
Table 4.6 and Figure 4.29), some that are not fully documented because they depend on
which server is running, its configuration, and so on. Some are defined in the php.ini
file. These variables describe the environment, server, browser, version number, config-
uration file, and so on.

There many more predefined variables; which ones are set depends on your PHP con-
figuration. The function phpinfo() can be used to retrieve built-in variables that have
been set.

<?php
phpinfo(INFO_VARIABLES);
?>

Table 4.6 Predefined Variablesa

a. See the full list of predefined variables at
http://www.phpfreaks.com/PHP_Reference/Predefined-Variables/8.php

Variable What It Does

AUTH_TYPE If running the Apache server as a module, this is set to the
authentication type.

DOCUMENT_ROOT The full path of the Web’s document root, normally where
HTML pages are stored and defined in the server’s
configuration file.

HTTP_USER_AGENT Identifies the type of Web browser to the server when it
requests a file.

HTTP_REFERER The full URL of the page that contained the link to this
page. Of course if there isn’t a referring page, this variable
would not exist.

REMOTE ADDRESS The remote IP address of the client machine that requested
the page.

ch04.fm Page 98 Saturday, October 21, 2006 4:30 PM

4.3 Constants 99

4.3 Constants

“The only thing constant in life is change.”
—Francois de la Rouchefoucauld, French classical author

Some real-world constants, such as pi, the speed of light, the number of inches in a foot,
and the value of midnight, are values that don’t change. PHP not only provides its own
predefined constants but lets you create your own. Using constants makes it easy to
write and maintain your programs.

4.3.1 What Is a Constant?

Unlike variables, a constant is a value that, once set, cannot be changed or unset during
the execution of your script. An example of a constant is the value of pi or the version
of PHP you are using. Constants are very useful because they are visible throughout a

Figure 4.29 PHP variables (partial output from the phpinfo() function).

ch04.fm Page 99 Saturday, October 21, 2006 4:30 PM

100 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

program (global in scope) and their values don’t change; for example, a constant might
be defined for the document root of your server, the name of your site, or the title,
author, and copyright year of this book. Once defined, those values are fixed.

You can define constants at the top of your program or in another file that can be
included in your script. (See the require() and include() functions discussed in
“Managing Content with Include Files” on page 487.) Later if a constant value needs to
be modified, once you change its value in the program, then when the program is exe-
cuted, the new value will be reflected wherever the constant is used throughout the pro-
gram, thus facilitating program maintenance.

4.3.2 Creating Constants with the define() Function

PHP constants are defined as words, and by convention, capitalized. Like variables, they
are case sensitive and consist of uppercase and lowercase letters, numbers, and the
underscore. Like variables, they cannot start with a number.

Unlike variables, constants are not preceded by a dollar sign and are not interpreted
when placed within quotes.

Constants are global in scope, meaning they are available for use anywhere in a PHP
script.

The only way that you can create a constant is with he PHP built-in define() func-
tion. Only a single, scalar value can be assigned to a constant, including strings, integers,
floats, and booleans.

The define() function creates a named constant. The first argument is the name of
the constant and the second argument is the value that will be assigned to it. Constants
are normally case sensitive, but you can use an optional third argument of TRUE to turn
off case sensitivity.

FOR MAT

bool define (string name, mixed value [, bool case_insensitive])

Example:
// defines document root
define('DOC_ROOT', '/http://artemis/~ellie/public_html');
// defines the include folder
define('INCLUDES', DOC_ROOT.'/../includes');

ch04.fm Page 100 Saturday, October 21, 2006 4:30 PM

4.3 Constants 101

The defined() function checks whether a constant has been set. It returns TRUE if
the constant has been defined; otherwise, FALSE.

EXAMPLE 4.25

<?php
1 define('ISBN', "0-13-140162-9");
2 define('TITLE', "JavaScript by Example");
3 if (defined(’ISBN’) and defined(’TITLE’)){
4 print ISBN . "
";

print TITLE . "
";
}

5 define('TITLE', "PHP by Example"); // Can’t change TITLE, and
 // can’t redefine it.

6 print TITLE;
?>

EXPLANATION
1, 2 Two constants are defined, ISBN and TITLE, the first argument to the function.

The second argument is the value being assigned to each of the constants. Once
set, the only way to change a constant is to redefine it with the define() function.

3 The define() function returns TRUE if the named constant has been defined. The
expression reads, “if the constant ISBN and the constant TITLE have both been de-
fined, proceed to line 3.”

4 Notice that the constants are not quoted. If they are quoted, their values will not
be printed, but just the words ISBN and TITLE.

5 You cannot redefine a constant like this. If you want to modify the value, you must
go back into the program and change the original definition on line 2.

6 The constant TITLE was unaffected by line 5. By definition, a constant cannot be
changed or unset. The output of this program is shown in Figure 4.30.

Figure 4.30 User-defined constants. Output from Example 4.25.

ch04.fm Page 101 Saturday, October 21, 2006 4:30 PM

102 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.3.3 The constant() Function

The constant() function returns that value of a constant. This function can be helpful
if you don’t know the name of the constant because its name was stored in a variable or
was returned from a function.

4.3.4 Predefined and “Magic” Constants

PHP comes with a number of predefined constants shown in Table 4.6. They provide
information that doesn’t change such as the name of the script file, the version of PHP
and the operating system, and so on.

There are five predefined constants called magic constants (see Table 4.7). These are
constants that change depending on how they are used in a program. They cannot be
enclosed in quotes and are not case sensitive. The name of the contant is enclosed in two
underscores on both sides.

FOR MAT

mixed constant (string name)

Example:
define (ISBN, "0-13-140162-9");
$value=constant(ISBN); // Returns 0-13-140162-9

Table 4.7 Magic Constants

Name Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the
name of the included file is returned.

__FUNCTION__ The function name (added in PHP 4.3.0). As of PHP 5 this constant
returns the function name as it was declared (case sensitive). In PHP
4 its value is always lowercased.

__CLASS__ The class name (added in PHP 4.3.0). As of PHP 5 this constant
returns the class name as it was declared (case sensitive). In PHP 4 its
value is always lowercased.

__METHOD__ The class method name (added in PHP 5.0.0). The method name is
returned as it was declared (case sensitive).

ch04.fm Page 102 Saturday, October 21, 2006 4:30 PM

4.3 Constants 103

 PHP has several special built-in constants described in Table 4.8.

The script in Example 4.26 shows how the predefined constants can be used to give
information to the browser. It’s output is displayed in Figure 4.31.

Table 4.8 Built-In Constants

Name Description

PHP_VERSION The version of the PHP parser currently running

PHP_OS The operating system of the server on which the PHP parser is
running

PHP_OS The name of the operating system on which the PHP parser is
executing; e.g., Linux

TRUE A true value.

FALSE A false value.

EXAMPLE 4.26

<?php
// Using PHP built-in constants
echo "PHP version = " . PHP_VERSION . "
";
echo "Server operating system = " . PHP_OS . "
";
echo "Current file name= " . __FILE__ . "
";
echo "Current line number= " . __LINE__ . "
";
echo "TRUE = ". TRUE . "
";
echo "false = ". FALSE . "
";

?>

Figure 4.31 Predefined constants. Output from Example 4.26.

ch04.fm Page 103 Saturday, October 21, 2006 4:30 PM

104 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

4.4 Chapter Summary

4.4.1 What You Should Know

Now that you have finished this chapter you should be able to answer the following
questions:

1. What are the PHP basic data types?

2. What is the gettype() function?

3. What is the difference between a scalar and a composite data type?

4. What is the difference between a variable and a constant?

5. When do you need double quotes? Single quotes?

6. How can you see a backslash interpreted in the browser?

7. How do you concatenate two strings?

8. Why would you use a here-doc?

9. What data type is represented by true or false? Are true and false case sensitive?

10. What is NULL?

11. Is "$_over-out" a valid variable name? Why or why not?

12. Is it mandatory to initialize a variable?

13. What function can you use to tell if a variable exists?

14. How do you get rid of a variable?

15. What is meant by scope?

16. What is the function of the register_globals directive? In what file is it
located? Is it on or off in your version of PHP?

17. What are form variables?

18. What is the difference between the GET and POST methods?

19. What is the value of $_REQUEST?

ch04.fm Page 104 Saturday, October 21, 2006 4:30 PM

4.4 Chapter Summary 105

20. How do you create a constant?

21. Why are constants useful?

22. What is a “magic constant”?

4.4.2 What’s Next?

Another important chapter basic to all programming languages, Chapter 5, “Operators,”
covers PHP’s rich set of operators and how to use them to manipulate data; for example,
how to perform arithmetic on numbers, compare strings and numbers, test equality,
combine expressions, and test them with logical operators, bitwise operations, and
more.

1. Create a string variable to contain one string that will be printed in bold text on
two lines as:

“Ouch! That’s not nice,” snickered Mrs. O’Connell.
“You mustn’t do that, Mr. O’Connell.”

2. What does the following code print?

print ("What a perfect day.");
print ("3" + 2);
print ("5 dogs" + "6 cats" . "10 birds");
print ("<pre>\t\tIt's been real!\n</pre>");
print ("\t\tLater, dude.\n");

3. Create four variables that contain an integer, float, string, and boolean value.

Print the value of each variable and its data type in an HTML table. Use
gettype().

4. In Exercise 1 you created the following PHP output. Now we will rewrite this

script to include user-defined variables. Where you see < > in the example,
input your variable values.

Print the output in the browser. Can you format the output so that a dollar
sign appears before the money values and format the numbers with a precision
of two places to the right of the decimal point (e.g., $410.00)? Hint: See
http: //www.htmlite.com/php011.php.

Check to see if the variables are set (isset()) before displaying them.

CHAPTER 4 LAB

ch04.fm Page 105 Saturday, October 21, 2006 4:30 PM

106 Chapter 4 • The Building Blocks: Data Types, Literals, Variables, and Constants

 Set variables as follows;

 $sales = 190000;
 $rent = 25000;
 $salary = 37500;
 $supplies = 410;
 $total = $rent + $salary + $supplies; // Addition
 $operating_income = $sales - $exp_total; // Subtraction
 $net_income = $operating_income * 0.60; // Multiplication

 Book Store Operating Costs
==
Sales: <print variable values here>

Expenses:
 Rent: < >
 Salary:
 Supplies:

Total: < >
 Operating income: < >
 Income after taxes (net): < >
===

5. Use the shortcut PHP tags, <?= ?>, within the HTML document to display the

variables in the previous exercise. (Check the php.ini file to see if shortcut
tags are allowed and if set to “Off”, turn them “On”.)

6. Create an HTML form that contains three text boxes, one for the user’s name,

one for his cell phone number, and one for his e-mail address. Write a PHP
script to display the output.

7. Rewrite Exercise 4 so that the user enters input into an HTML form, and write a
PHP script to process the form and display the output as it did in Exercise 4.

8. Write a PHP script that displays the values entered into the form fields. Add a
constant to the following script that will define a COPY_RIGHT constant contain-
ing your SITE_NAME with the copyright symbol appended (concatenated) to it.
Display the constants and their corresponding values in an HTML table. Hint:
See http://www.desilva.biz/php/constants.html.

<?php>
// Define your site name, since it does NOT change
// anywhere within your script.
define('SITE_NAME', 'Your site');

// Define the current year, possibly to use in your copyright
// statement or for 'date' calculations.
define('THIS_YEAR', date('Y'));
?>

ch04.fm Page 106 Saturday, October 21, 2006 4:30 PM

