
23

C H A P T E R 2

DB2 at a Glance:
The Big Picture

his chapter is like a book within a book: it covers a vast range of topics that will provide
you not only with a good introduction to DB2 core concepts and components, but also

with an understanding of how these components work together and where they fit in the “DB2
puzzle.” After reading this chapter you should have a general knowledge of the DB2 architecture
that will help you better understand the topics discussed in the next chapters. Subsequent chap-
ters will revisit and expand what has been discussed here.

In this chapter you will learn about:

• SQL statements and DB2 commands
• DB2 tools
• The DB2 environment
• Federation
• The database partitioning feature

You work with DB2 by issuing SQL statements and DB2 commands. To issue these statements
and commands, you use DB2 tools. The DB2 tools interact with the DB2 environment by passing
these statements and commands to the DB2 server for processing. This is shown in Figure 2.1.

T

Chong.book Page 23 Monday, January 10, 2005 4:18 PM

24 Chapter 2 • DB2 at a Glance: The Big Picture

2.1 SQL STATEMENTS AND DB2 COMMANDS

SQL is the standard language used for retrieving and modifying data in a relational database. An SQL
council formed by several industry leading companies determines the standard for these SQL state-
ments, and the different relational database management systems (RDBMSs) follow these stan-
dards to make it easier for customers to use their databases. This section introduces the different
categories of SQL statements and presents some examples.

DB2 commands are directives specific to DB2 that allow you to perform tasks against a DB2
server. There are two types of DB2 commands:

• System commands
• Command Line Processor (CLP) commands

Figure 2.1 Overview of DB2

DB2 Tools

Command Line Tools
Command Editor
Command Line Processor
Command Window

Development Tools
Development Center
Project Deployment Tool

General Administration Tools
Control Center
Journal
Replication Center
Task Center

Information
Information Center
Check for DB2 Updates

Monitoring Tools
Event Analyzer
Health Center
Indoubt Transaction Manager
Memory Visualizer
Activity Monitor

Setup Tools
Configuration Assistant
First Steps
Register Visual Studio Add-ins
...

SQL Statements and
DB2 Commands

SQL Statements
create bufferpool
create tablespace
create table
alter bufferpool
alter tablespace
alter table
select
insert
update
delete
...

DB2 System Commands
db2set
db2start
db2stop
db2ilist
db2icrt
db2idrop
...

DB2 CLP Commands
db2 update dbm cfg

catalog db
list node directory
create database
list applications
list tablespaces
...
<sql statement>

DB2 Environment

Instance DB2

Database MYDB1

Database MYDB2

Local db
Directory

Port

MyTablespace1

Table X Table Y Table Z Index Z

MyTablespace2

MyTablespace1

Table 1 Table 2 Table 3 Index 3

MyTablespace2

Syscatspace Tempspace1 Userspace1

Logs Bufferpool(s)

Syscatspace Tempspace1 Userspace1

Logs Bufferpool(s)

Instance-Level Profile Registry

Database Manager Configuration File

System db Directory

Node Directory

DCS Directory

Database Configuration File (db cfg)

Database Configuration File (db cfg)

Chong.book Page 24 Monday, January 10, 2005 4:18 PM

2.1 SQL Statements and DB2 Commands 25

2.1.1 SQL Statements

SQL statements allow you to work with the data stored in your database. The statements are
applied against the database you are connected to, not against the entire DB2 environment.
There are three different classes of SQL statements.

• Data Definition Language (DDL) statements create, modify, or drop database objects.
For example:
CREATE INDEX ix1 ON t1 (salary)
ALTER TABLE t1 ADD hiredate DATE
DROP VIEW view1

• Data Manipulation Language (DML) statements insert, update, delete, or select data
from the database objects. For example:
INSERT INTO t1 VALUES (10,’Johnson’,’Peter’)
UPDATE t1 SET lastname = ’Smith’ WHERE firstname = ’Peter’
DELETE FROM t1
SELECT * FROM t1 WHERE salary > 45000

• Data Control Language (DCL) statements grant or revoke privileges or authorities to
perform database operations on the objects in your database. For example:
GRANT select ON employee TO peter
REVOKE update ON employee FROM paul

2.1.2 DB2 System Commands

You use DB2 system commands for many purposes, including starting services or processes,
invoking utilities, and configuring parameters. Most DB2 system commands do not require the
instance—the DB2 server engine process—to be started (instances are discussed later in this
chapter). DB2 system command names have the format

db2x

where x represents one or more characters. For example:

N O T E SQL statements and DB2 commands can be specified in
uppercase or lowercase. However, in Linux/UNIX some of the com-
mands are case-sensitive; see Appendix B for a detailed explanation of
the use of uppercase versus lowercase in DB2.

N O T E SQL statements are commonly referred to simply as “state-
ments” in most RDBMS books. For detailed syntax of SQL statements,
see the DB2 UDB SQL Reference manual.

N O T E The file Command_and_SQL_Examples.pdf on the CD-ROM
accompanying this book includes a list of all SQL statements and DB2
commands and has examples for each one.

Chong.book Page 25 Monday, January 10, 2005 4:18 PM

26 Chapter 2 • DB2 at a Glance: The Big Picture

db2start
db2set
db2icrt

2.1.3 DB2 Command Line Processor (CLP) Commands

DB2 CLP commands are processed by the CLP tool (introduced in the next section). These com-
mands typically require the instance to be started, and they can be used for database and instance
monitoring and for parameter configuration. For example:

list applications
create database
catalog tcpip node

You invoke the Command Line Processor by entering db2 at an operating system prompt. If you
enter db2 and press the Enter key, you would be working with the CLP in interactive mode, and
you can enter the CLP commands as shown above. On the other hand, if you don’t want to work
with the CLP in interactive mode, prefix each CLP command with db2. For example:

db2 list applications
db2 create database
db2 catalog tcpip node

Many books, including this one, display CLP commands as db2 CLP_command for this reason.
Chapter 4, Using the DB2 Tools, explains the CLP in greater detail.

N O T E Many DB2 system commands provide a quick way to
obtain syntax and help information about the command by using the
-h option. For example, typing db2set –h displays the syntax of the
db2set command, with an explanation of its optional parameters.

N O T E On the Windows platform, db2 must be entered in the
DB2 Command Window, not at the operating system prompt. The DB2
Command Window and the DB2 CLP are discussed in detail in Chapter
4, Using the DB2 Tools.

N O T E A quick way to obtain syntax and help information about a
CLP command is to use the question mark (?) character followed by
the command. For example:

db2 ? catalog tcpip node

or just

db2 ? catalog

For detailed syntax of a command, see the DB2 UDB Command Refer-
ence manual.

Chong.book Page 26 Monday, January 10, 2005 4:18 PM

2.2 DB2 Tools Overview 27

2.2 DB2 TOOLS OVERVIEW
Figure 2.2 shows all the tools available from the IBM DB2 menu. The IBM DB2 menu on a
Windows system can be typically displayed by choosing Start > Programs > IBM DB2. On a
Linux/UNIX system, the operating system’s graphical support needs to be installed. DB2’s
graphical interface looks the same on all platforms. This section briefly introduces the tools pre-
sented in the IBM DB2 menu. Chapter 4 covers these tools in more detail, but for now simply
familiarize yourself with them.

2.2.1 Command Line Tools

Command line tools, as the name implies, allow you to issue DB2 commands and SQL state-
ments from a command line interface. The two text-based interfaces are the Command Line Pro-
cessor (CLP) and the Command Window. The Command Window is available only on Windows,
while the CLP is available on all other platforms.

The Command Editor is a graphical interface tool that provides the same functionality as the
text-based tools—and more. It also has the ability to invoke the Visual Explain tool, which
shows the access path for the query.

2.2.2 Development Tools

Development tools allow developers to easily write and test stored procedures and user-defined
functions, as well as to deploy them to different databases. DB2 provides two development tools.

Figure 2.2 The IBM DB2 menus

Chong.book Page 27 Monday, January 10, 2005 4:18 PM

28 Chapter 2 • DB2 at a Glance: The Big Picture

• The Development Center provides developers with an environment where they can
develop and test database application objects like stored procedures.

• The Project Deployment Tool lets developers deploy their Development Center project
to another database.

2.2.3 General Administration Tools

The general administration tools allow database administrators (DBAs) to manage their database
servers and databases from a central location.

• The Control Center is the most important of these tools. Not only does it support the
administration of DB2 database servers on the Linux, UNIX, and Windows platforms,
but also on the OS/390 and z/OS platforms. From the Control Center, database objects
can be created, altered, and dropped. The tool also comes with several advisors to help
you configure your system more quickly.

• The Journal tool can help investigate problems in the system. It tracks error messages
and scheduled tasks that have been executed.

• The Replication Center lets you set up and manage your replication environment. Use
DB2 replication when you want to propagate data from one location to another.

• The Task Center allows you to schedule tasks to be performed automatically. For example,
you can arrange for a backup task to run at a time when there is minimal database activity.

2.2.4 Information Tools

The Information menu provides easy access to the DB2 documentation. The Information Center
provides a fast and easy method to search the DB2 manuals. You can install the Information Center
locally on your computer or intranet server, or access it via the Internet. Use the Check for DB2
Updates menu option to obtain the most up-to-date information about updates to the DB2 product.

2.2.5 Monitoring Tools

To maintain your database system, DB2 provides several tools that can help pinpoint the cause
of a problem or even detect problems proactively before they cause performance deterioration.

• The Event Analyzer processes the information collected by an event monitor based on
the occurrence of an event. For example, when two applications cannot continue their
processing because the other is holding resources they need, a deadlock event occurs.
This event is captured by an event monitor, and you can use the Event Analyzer to
examine the captured data related to the deadlock and help resolve the contention.
Some other events that can be captured are connections to the database, buffer pool
activity, table space activity, table activity, SQL statements, and transactions.

• The Health Center detects problems before they happen by setting up thresholds
which when exceeded cause alert notifications to be sent. The DBA can then choose to
execute a recommended action to relieve the situation.

Chong.book Page 28 Monday, January 10, 2005 4:18 PM

2.3 The DB2 Environment 29

• The Indoubt Transaction Manager can help resolve issues with transactions that have
been prepared but have not been committed or rolled back. This is only applicable to
two-phase commit transactions.

• The Memory Visualizer tool lets you track the memory used by DB2. It plots a graph
so you can easily monitor memory consumption.

• The Activity Monitor allows you to monitor application performance and concurrency,
resource consumption, and SQL statement execution for a database. You can more eas-
ily diagnose problems with the reports this tool generates.

2.2.6 Setup Tools

The Setup tools help you configure your system to connect to remote servers, provide tutorials,
and install add-ins to development tools.

• First Steps is a good starting point for new DB2 users who wish to become familiar
with the product. This tool allows you to create a sample database and provides tutori-
als that help you familiarize yourself with DB2.

• The Configuration Assistant allows you to easily configure your system to connect to
remote databases and to test the connection.

• The Register Visual Studio Add-Ins menu item lets you add a plug-in into Microsoft
Visual Studio so that DB2 tools can be invoked from Visual Basic, Visual C++, and
Visual InterDev. In each of these Microsoft development tools, the add-in inserts the
DB2 menu entries into the tool’s View, Tools, and Help menus. These add-ins provide
Microsoft Visual Studio programmers with a rich set of application development tools
to create stored procedures and user-defined functions designed for DB2.

2.2.7 Other Tools

The following are other DB2 tools that are not invoked directly from the DB2 menus.

• The License Center summarizes the licenses installed in your DB2 system and allows
you to manage them.

• Visual Explain describes the access plan chosen by the DB2 optimizer, the brain of
DB2, to access and retrieve information from tables.

• SQL Assist aids new users who are not familiar with the SQL language to write SQL
queries.

• The Satellite Administration Center helps you set up and administer both satellites
and the central satellite control server.

2.3 THE DB2 ENVIRONMENT

Several items control the behavior of your database system. We first describe the DB2 environ-
ment on a single-partition database, and in section 2.6, Database Partitioning Feature, we expand

Chong.book Page 29 Monday, January 10, 2005 4:18 PM

30 Chapter 2 • DB2 at a Glance: The Big Picture

the material to include concepts relevant to a multipartition database system (we don’t want to
overload you with information not required at this stage in the chapter).

Figure 2.3 provides an overview of the DB2 environment. Consider the following when you
review this figure:

• The figure may look complex, but don’t be overwhelmed by first impressions! Each
item in the figure will be discussed in detail in the following sections.

• Since we reference Figure 2.3 throughout this chapter, we strongly recommend that you
bookmark page 31. Alternatively, since this figure is available in color as a GIF file on
the CD-ROM provided with this book (Figure_2_3.gif), consider printing it.

• The commands shown in the figure can be issued from the Command Window on Win-
dows or the operating system prompt on Linux/UNIX. Chapter 4, Using the DB2 Tools,
describes equivalent methods to perform these commands from the DB2 graphical
tools.

• Each arrow points to a set of three commands. The first command in each set (in blue if
you printed the figure using a color printer) inquires about the contents of a configura-
tion file, the second command (in black) indicates the syntax to modify these contents,
and the third command (in purple) illustrates how to use the command.

• The numbers in parentheses in Figure 2.3 match the superscripts in the headings in the
following subsections.

2.3.1 An Instance(1)

In DB2, an instance provides an independent environment where databases can be created and
applications can be run against them. Because of these independent environments, databases in
separate instances can have the same name. For example, in Figure 2.3 the database called
MYDB2 is associated to instance DB2, and another database called MYDB2 is associated to
instance myinst. Instances allow users to have separate, independent environments for produc-
tion, test, and development purposes.

When DB2 is installed on the Windows platform, an instance named DB2 is created by default. In
the Linux and UNIX environments, if you choose to create the default instance, it is called db2inst1.

To create an instance explicitly, use:

db2icrt instance_name

To drop an instance, use:

db2idrop instance_name

To start the current instance, use:

db2start

Chong.book Page 30 Monday, January 10, 2005 4:18 PM

31

F
ig

u
re

 2
.3

 T
he

 D
B

2
en

vi
ro

nm
en

t

W
in

do
w

s
M

ac
hi

ne
w

ith
T

C
P

IP
 a

dd
re

ss
 9

.1
28

.1
9.

22
 a

nd
 D

B
2

U
D

B
 E

S
E

V
8.

2
(S

in
gl

e
P

ar
tit

io
n

E
nv

iro
nm

en
t)

W
in

1

In
st

an
ce

D
B

2
(1

)

In
st

an
ce

-L
ev

el
 P

ro
fil

e
R

eg
is

tr
y(2

)

D
at

ab
as

e
M

an
ag

er
 C

on
fig

ur
at

io
n

F
ile

 (
db

m
 c

fg
)(2

)

S
ys

te
m

 d
b

D
ire

ct
or

y(3
)

N
od

e
D

ire
ct

or
y(3

)

D
C

S
 D

ire
ct

or
y(3

)

D
at

ab
as

e
M

Y
D

B
1

(4
)

M
yT

ab
le

sp
ac

e1
(5

)
M

yT
ab

le
sp

ac
e2

(5
)

Ta
bl

e1
(6

)
Ta

bl
e3

(6
)

Ta
bl

e2
(6

)
In

de
x3

(6
)

D
at

ab
as

e
C

on
fig

ur
at

io
n

F
ile

 (
db

 c
fg

)(2
)

Lo
gs

(7
)

B
uf

fe
rp

oo
l(s

)(8
)

S
ys

ca
ts

pa
ce

(5
)

Te
m

ps
pa

ce
1(5

)
U

se
rs

pa
ce

1(5
)

D
at

ab
as

e
M

Y
D

B
2

(4
)

M
yT

ab
le

sp
ac

e1
(5

)
M

yT
ab

le
sp

ac
e2

(5
)

Ta
bl

eX
(6

)
Ta

bl
eZ

(6
)

Ta
bl

eY
(6

)
In

de
xZ

(6
)

D
at

ab
as

e
C

on
fig

ur
at

io
n

F
ile

 (
db

 c
fg

)(2
)

Lo
gs

(7
)

B
uf

fe
rp

oo
l(s

)(8
)

S
ys

ca
ts

pa
ce

(5
)

Te
m

ps
pa

ce
1(5

)
U

se
rs

pa
ce

1(5
)

Lo
ca

l d
b

D
ire

ct
or

y(3
)

P
or

t

In
st

an
ce

m
yi

ns
t(1

)

In
st

an
ce

-L
ev

el
 P

ro
fil

e
R

eg
is

tr
y(2

)

D
at

ab
as

e
M

an
ag

er
 C

on
fig

ur
at

io
n

F
ile

 (
db

m
 c

fg
)(2

)

S
ys

te
m

 d
b

D
ire

ct
or

y(3
)

N
od

e
D

ire
ct

or
y(3

)

D
C

S
 D

ire
ct

or
y(3

)

D
at

ab
as

e
M

Y
D

B
2

(4
)

M
yT

ab
le

sp
ac

e1
(5

)

M
yT

ab
le

sp
ac

e2
(5

)

M
yT

ab
le

sp
ac

e3
(5

)

M
yT

ab
le

sp
ac

e4
(5

)

Ta
bl

e1
(6

)

Ta
bl

e3
(6

)

In
de

x3
(6

)

LO
B

s
(L

ar
ge

 O
bj

ec
ts

(6
)

In
de

x1
(6

)
Ta

bl
e2

(6
)

In
de

x2
(6

)

D
at

ab
as

e
C

on
fig

ur
at

io
n

F
ile

 (
db

 c
fg

)(2
)

Lo
gs

(7
)

B
uf

fe
rp

oo
l(s

)
(8

)

S
ys

ca
ts

pa
ce

(5
)

Te
m

ps
pa

ce
1(5

)
U

se
rs

pa
ce

1(5
)

P
or

t

Lo
ca

l d
b

D
ire

ct
or

y(3
)

se
t

se
t

=
se

t D
B

2I
N

S
TA

N
C

E
=

D
B

2

pa
ra

m
et

er
pa

ra
m

et
er

va
lu

e
db

2s
et

 -
al

l
db

2s
et

=
-g

db
2s

et
 D

B
2I

N
S

T
P

R
O

F
=

C
:\M

Y
D

IR
 -

g
pa

ra
m

et
er

va
lu

e

E
nv

iro
nm

en
tV

ar
ia

bl
es

(2
)

G
lo

ba
l-L

ev
el

 P
ro

fil
e

R
eg

is
tr

y(2
)

db
2s

et
 -

al
l

db
2s

et
=

-i
db

2s
et

 D
B

2I
N

S
T

P
R

O
F

=
C

:\M
Y

D
IR

-i
m

yi
ns

t

pa
ra

m
et

er
va

lu
e

in
st

an
ce

_n
am

e

db
2

ge
t d

bm
 c

fg
db

2
up

da
te

 d
bm

 c
fg

us
in

g
db

2
up

da
te

 d
bm

 c
fg

us
in

g
IN

T
R

A
_P

A
R

A
LL

E
L

Y
E

S

db
2

lis
t d

b
di

re
ct

or
y

db
2

ca
ta

lo
g

db
as

at
 n

od
e

db
2

ca
ta

lo
g

db
 m

yd
b

as
 y

ou
rd

b
at

 n
od

e
m

yn
od

e

db
2

lis
t n

od
e

di
re

ct
or

y
db

2
ca

ta
lo

g
tc

pi
p

no
de

re
m

ot
e

se
rv

er
db

2
ca

ta
lo

g
tc

pi
p

no
de

 m
yn

od
e

re
m

ot
e

9.
26

.1
38

.3
5

se
rv

er
 6

00
00

db
2

lis
t d

cs
 d

ire
ct

or
y

db
2

ca
ta

lo
g

dc
s

db
as

db
2

ca
ta

lo
g

dc
s

db
 m

yd
b

as
 d

b1
g

db
2

lis
t d

b
di

re
ct

or
y

on
db

2
lis

t d
b

di
re

ct
or

y
on

 C
:

db
2

ge
t d

b
cf

g
fo

r
db

2
up

da
te

 d
b

cf
g

fo
r

us
in

g
db

2
up

da
te

 d
b

cf
g

fo
r

m
yd

b2
us

in
g

M
IN

C
O

M
M

IT
 3

pa
ra

m
et

er
 v

al
ue

db
na

m
e

al
ia

s

 n

od
en

am
e

no
de

na
m

e
ho

st
na

m
e/

IP
 a

dd
re

ss
po

rt

db
na

m
e

lo
ca

tio
n_

na
m

e dr
iv

e/
pa

th

db
na

m
e

db
na

m
e

pa
ra

m
et

er
 v

al
ue

Chong.book Page 31 Monday, January 10, 2005 4:18 PM

32 Chapter 2 • DB2 at a Glance: The Big Picture

To stop the current instance, use:

db2stop

When an instance is created on Linux and UNIX, logical links to the DB2 executable code are
generated. For example, if the machine in Figure 2.3 was a Linux/UNIX machine and the
instances DB2 and myinst were created, both of them would be linked to the same DB2 code. A
logical link works as an alias or pointer to another program. In Windows, there is a shared install
path, and all instances access the same libraries and executables.

2.3.2 The Database Administration Server

The Database Administration Server (DAS) is a daemon or process running on the database
server that allows for remote graphical administration from remote clients using the Control
Center. If you don’t need to administer your DB2 server using a graphical interface from a
remote client, you don’t need to start the DAS. There can only be one DAS per server machine
regardless of the number of instances on the machine. Note that the DAS needs to be running at
the database server you are planning to administer remotely, not at the DB2 client.

To start the DAS, use the command:

db2admin start

To stop the DAS, use the command:

db2admin stop

2.3.3 Configuration Files and the DB2 Profile Registries(2)

Like many other RDBMSs, DB2 uses different mechanisms to influence the behavior of the
database management system. These include:

• Environment variables
• DB2 profile registry variables
• Configuration parameters

2.3.3.1 Environment Variables

Environment variables are defined at the operating system level. On Windows you can create a new
entry for a variable or edit the value of an existing one by choosing Control Panel > System >
Advanced Tab > Environment Variables. On Linux and UNIX you can normally add a line to
execute the script db2profile (Bourne or Korn shell) or db2cshrc (C shell) (provided after
DB2 installation), to the instance owner’s .login or .profile initialization files.

The DB2INSTANCE environment variable allows you to specify the current active instance to
which all commands apply. If DB2INSTANCE is set to myinst, then issuing the command
CREATE DATABASE mydb will create a database associated to instance myinst. If you wanted

Chong.book Page 32 Monday, January 10, 2005 4:18 PM

2.3 The DB2 Environment 33

to create this database in instance DB2, you would first change the value of the DB2INSTANCE
variable to DB2.

Using the Control Panel (Windows) or the user profile (Linux/UNIX) to set the value of an envi-
ronment variable guarantees that value the next time you open a window or session. If you only
want to change this value temporarily while in a given window or session, you can use the oper-
ating system set command on Windows, or export on Linux/UNIX. The command

set DB2INSTANCE=DB2 (on Windows)

or

export DB2INSTANCE=DB2 (on Linux and UNIX)

sets the value of the DB2INSTANCE environment variable to DB2. A common mistake when using
the command is to leave spaces before and/or after the equal sign (=)—no spaces should be entered.

To check the current setting of this variable, you can use any of these three commands:

echo %DB2INSTANCE% (Windows only)
set DB2INSTANCE
db2 get instance

For a list of all available instances in your system, issue the following command:

db2ilist

2.3.3.2 The DB2 Profile Registry

The word “registry” always causes confusion when working with DB2 on Windows. The DB2
profile registry variables, or simply the DB2 registry variables, have no relation whatsoever with
the Windows Registry variables. The DB2 registry variables provide a centralized location
where some key variables influencing DB2’s behavior reside.

The DB2 Profile Registry is divided into four categories.

• The DB2 instance-level profile registry
• The DB2 global-level profile registry
• The DB2 instance node-level profile registry
• The DB2 instance profile registry

The first two are the most common ones. The main difference between the global-level and the
instance-level profile registries, as you can tell from their names, is the level to which the variables
apply. Global-level profile registry variables apply to all instances on the server. As you can see
from Figure 2.3, this registry has been drawn outside of the two instance boxes. Instance-level
profile registry variables apply to a specific instance. You can see separate instance-level profile
registry boxes inside each of the two instances in the figure.

N O T E Some of the DB2 registry variables are platform-specific.

Chong.book Page 33 Monday, January 10, 2005 4:18 PM

34 Chapter 2 • DB2 at a Glance: The Big Picture

To view the current DB2 registry variables, issue the following command from the CLP:

db2set -all

You may get output like this:

[i] DB2INSTPROF=C:\PROGRAM FILES\SQLLIB
[g] DB2SYSTEM=PRODSYS

As you may have already guessed, [i] indicates the variable has been defined at the instance
level, while [g] indicates that it has been defined at the global level.

The following are a few other commands related to DB2 Registry variables.

To view all the registry variables that can be defined in DB2, use this command:

db2set -lr

To set the value of a specific variable (in this example, DB2INSTPROF) at the global level, use:

db2set DB2INSTPROF="C:\PROGRAM FILES\SQLLIB" -g

To set a variable at the instance level for instance myinst, use:

db2set DB2INSTPROF="C:\MY FILES\SQLLIB" -i myinst

Note that for the above commands, the same variable has been set at both levels: the global level
and the instance level. When a registry variable is defined at different levels, DB2 will always
choose the value at the lowest level, in this case the instance level.

For the db2set command, as with the set command discussed earlier, there are no spaces
before or after the equal sign.

Some registry variables require you to stop and start the instance (db2stop/db2start) for
the change to take effect. Other registry variables do not have this requirement. Refer to the DB2
UDB Administration Guide: Performance for a list of variables that have this requirement.

2.3.3.3 Configuration Parameters

Configuration parameters are defined at two different levels: the instance level and the database
level. The variables at each level are different (not like DB2 registry variables, where the same
variables can be defined at different levels).

At the instance level, variables are stored in the Database Manager Configuration file (dbm cfg).
Changes to these variables affect all databases associated to this instance, which is why Figure 2.3
shows a Database Manager Configuration file box defined per instance and outside the databases.

To view the contents of the Database Manager Configuration file, issue the command:

db2 get dbm cfg

To update the value of a specific variable, use:

db2 update dbm cfg using parameter value

Chong.book Page 34 Monday, January 10, 2005 4:18 PM

2.3 The DB2 Environment 35

For example:

db2 update dbm cfg using INTRA_PARALLEL YES

With Version 8, many of the Database Manager Configuration parameters are now “configurable
online,” meaning the change is dynamic—you don’t need to stop and start the instance. The file
ConfigurationParameters.pdf included on the CD-ROM accompanying this book provides a
short description of the Database Manager Configuration parameters and indicates whether they
are configurable online.

At the database level, parameter values are stored in the Database Configuration file (db cfg).
Changes to these parameters only affect the specific database. In Figure 2.3 you can see there is
a Database Configuration file box inside each of the databases defined.

To view the contents of the Database Configuration file, issue the command:

db2 get db cfg for dbname

For example:

db2 get db cfg for mydb2

To update a value of a specific variable, use:

db2 update db cfg for dbname using parameter value

For example:

db2 update db cfg for mydb2 using MINCOMMIT 3

With Version 8 many of these parameters are configurable online, meaning that the change is
dynamic, and you no longer need to disconnect all connections to the database for the change to
take effect. The file ConfigurationParameters.pdf included on the book’s CD-ROM provides a
short description of the Database Configuration parameters and indicates whether they are con-
figurable online.

2.3.4 Connectivity and DB2 Directories(3)

In DB2, directories are used to store connectivity information about databases and the servers on
which they reside. There are four main directories, which are described in the following subsections.
The corresponding commands to set up database and server connectivity are also included; how-
ever, many users find the Configuration Assistant graphical tool very convenient to set up data-
base and server connectivity.

Chapter 6, Configuring Client and Server Connectivity, discusses all the commands and con-
cepts described in this section in detail, including the Configuration Assistant.

2.3.4.1 System Database Directory
The system database directory (or system db directory) is the main “table of contents” that con-
tains information about all the databases to which you can connect from your DB2 system. As
you can see from Figure 2.3, the system db directory is stored at the instance level.

Chong.book Page 35 Monday, January 10, 2005 4:18 PM

36 Chapter 2 • DB2 at a Glance: The Big Picture

To list the contents of the system db directory, use the command:

db2 list db directory

Any entry from the output of this command containing the word Indirect indicates that the entry
is for a local database, that is, a database that resides on the database server on which you are
working. The entry also points to the local database directory indicated by the Database drive
item (Windows) or Local database directory (Linux/UNIX).

Any entry containing the word Remote indicates that the entry is for a remote database—a data-
base residing on a server other than the one on which you are currently working. The entry also
points to the node directory entry indicated by the Node name item.

To enter information into the system database directory, use the catalog command:

db2 catalog db dbname as alias at node nodename

For example:

db2 catalog db mydb as yourdb at node mynode

The catalog commands are normally used only when adding information for remote data-
bases. For local databases, a catalog entry is automatically created after creating the database
with the CREATE DATABASE command.

2.3.4.2 Local Database Directory

The local database directory contains information about databases residing on the server where
you are currently working. Figure 2.3 shows the local database directory overlapping the data-
base box. This means that there will be one local database directory associated to all of the data-
bases residing in the same location (the drive on Windows or the path on Linux/UNIX). The
local database directory does not reside inside the database itself, but it does not reside at the
instance level either; it is in a layer between these two. (After you read section 2.3.10, The Inter-
nal Implementation of the DB2 Environment, it will be easier to understand this concept.)

Note also from Figure 2.3 that there is no specific command used to enter information into this
directory, only to retrieve it. When you create a database with the CREATE DATABASE com-
mand, an entry is added to this directory.

To list the contents of the local database directory, issue the command:

db2 list db directory on drive / path

where drive can be obtained from the item Database drive (Windows) or path from the item
Local database directory (Linux/UNIX) in the corresponding entry of the system db directory.

2.3.4.3 Node Directory

The node directory stores all connectivity information for remote database servers. For example,
if you use the TCP/IP protocol, this directory shows entries such as the host name or IP address

Chong.book Page 36 Monday, January 10, 2005 4:18 PM

2.3 The DB2 Environment 37

of the server where the database to which you want to connect resides, and the port number of
the associated DB2 instance.

To list the contents of the node directory, issue the command:

db2 list node directory

To enter information into the node directory, use:

db2 catalog tcpip node node_name
 remote hostname or IP_address
 server service_name or port_number

For example:

db2 catalog tcpip node mynode
 remote 192.168.1.100
 server 60000

You can obtain the port number of the remote instance to which you want to connect by looking
at the SVCENAME parameter in the Database Manager Configuration file of that instance. If
this parameter contains a string value rather than the port number, you need to look for the corre-
sponding entry in the TCP/IP services file mapping this string to the port number.

2.3.4.4 Database Connection Services Directory

The Database Connection Services (DCS) directory contains connectivity information for host
databases residing on a zSeries (z/OS or OS/390) or iSeries (OS/400) server. You need to have
DB2 Connect software installed unless the server you are working on has DB2 UDB Enterprise
Server Edition (ESE) installed. DB2 ESE comes with DB2 Connect support built in.

To list the contents of the DCS directory, issue the following command:

db2 list dcs directory

To enter information into the DCS directory, use:

db2 catalog dcs db dbname as location_name

For example:

db2 catalog dcs db mydb as db1g

2.3.5 Databases(4)

A database is a collection of information organized into interrelated objects like table spaces,
tables, and indexes. Databases are closed and independent units associated to an instance.
Because of this independence, objects in two or more databases can have the same name. For
example, Figure 2.3 shows a table space called MyTablespace1 inside the database MYDB1
associated to instance DB2. Another table space with the name MyTablespace1 is also used
inside the database MYDB2, which is also associated to instance DB2.

Chong.book Page 37 Monday, January 10, 2005 4:18 PM

38 Chapter 2 • DB2 at a Glance: The Big Picture

Since databases are closed units, you cannot perform queries involving tables of two different
databases in a direct way. For example, a query involving Table1 in database MYDB1 and TableZ
in database MYDB2 is not readily allowed. For an SQL statement to work against tables of dif-
ferent databases, you need to use federation (see section 2.4, Federation).

You create a database with the command CREATE DATABASE. This command automatically
creates three table spaces, a buffer pool, and several configuration files, which is why this com-
mand can take a few seconds to complete.

2.3.6 Table Spaces(5)

Table spaces are logical objects used as a layer between logical tables and physical containers.
Containers are where the data is physically stored in files, directories, or raw devices. When you
create a table space, you can associate it to a specific buffer pool (database cache) and to specific
containers.

Three table spaces—the catalog (SYSCATSPACE), system temporary space (TEMPSPACE1),
and the default user table space (USERSPACE1)—are automatically created when you create a
database. The catalog and the system temporary space can be considered system structures, as
they are needed for the normal operation of your database. The catalog contains metadata (data
about your database objects) and must exist at all times. Some other RDBMSs call this structure
a “data dictionary.”

A system temporary table space is the work area for the database manager to perform opera-
tions, like joins and overflowed sorts. There must be at least one system temporary table space in
each database.

The USERSPACE1 table space is created by default, but you can delete it. To create a table in a
given table space, use the CREATE TABLE statement with the IN table_space_name
clause. If a table space is not specified in this statement, the table will be created in the first user-
created table space. If you have not yet created a table space, the table will be created in the
USERSPACE1 table space.

Figure 2.3 shows other table spaces that were explicitly created with the CREATE TABLESPACE
statement (in brown in the figure on the CD-ROM). Chapter 8, The DB2 Storage Model, dis-
cusses table spaces in more detail.

N O T E While CREATE DATABASE looks like an SQL statement,
it is considered a DB2 CLP command.

N O T E Do not confuse the term “catalog” in this section with the
catalog command mentioned earlier; they have no relationship at all.

Chong.book Page 38 Monday, January 10, 2005 4:18 PM

2.3 The DB2 Environment 39

2.3.7 Tables, Indexes, and Large Objects(6)

A table is an unordered set of data records consisting of columns and rows. An index is an
ordered set of pointers associated with a table, and is used for performance purposes and to
ensure uniqueness. Nontraditional relational data, such as video, audio, and scanned documents,
are stored in tables as large objects (LOBs). Tables and indexes reside in table spaces. Chapter 8
describes these in more detail.

2.3.8 Logs(7)

Logs are used by DB2 to record every operation against a database. In case of a failure, logs are
crucial to recover the database to a consistent point. See Chapter 13, Developing Backup and
Recovery Solutions, for more information about logs.

2.3.9 Buffer Pools(8)

A buffer pool is an area in memory where all index and data pages other than LOBs are pro-
cessed. DB2 retrieves LOBs directly from disk. Buffer pools are one of the most important
objects to tune for database performance. Chapter 8, The DB2 Storage Model, discusses buffer
pools in more detail.

2.3.10 The Internal Implementation of the DB2 Environment

We have already discussed DB2 registry variables, configuration files, and instances. In this sec-
tion we illustrate how some of these concepts physically map to directories and files in the Win-
dows environment. The structure is a bit different in Linux and UNIX environments, but the
main ideas are the same. Figures 2.4, 2.5, and 2.6 illustrate the DB2 environment internal imple-
mentation that corresponds to Figure 2.3.

Figure 2.4 shows the directory where DB2 was installed: H:\Program Files\IBM\SQLLIB. The
SQLLIB directory contains several subdirectories and files that belong to DB2, including the
binary code that makes DB2 work, and a subdirectory is created for each instance that is created
on the machine. For example, in Figure 2.4 the subdirectories DB2 and MYINST correspond to
the instances DB2 and myinst respectively. The DB2DAS00 subdirectory corresponds to the DAS.

At the top of the figure there is a directory H:\MYINST. This directory contains all the databases
created under the H: drive for instance myinst. Similarly, the H:\DB2 directory contains all the
databases created under the H: drive for instance DB2.

Figure 2.5 shows an expanded view of the H:\Program Files\IBM\SQLLIB\DB2 directory. This
directory contains information about the instance DB2. The db2systm binary file contains the
database manager configuration (dbm cfg). The other two files highlighted in the figure
(db2nodes.cfg and db2diag.log) are discussed later in this book. For now, the description of
these files in the figure is sufficient. The figure also points out the directories where the system
database, Node, and DCS directories reside. Note that the Node and DCS directories don’t exist
if they don’t have any entries.

Chong.book Page 39 Monday, January 10, 2005 4:18 PM

40

Figure 2.4 The internal implementation environment for DB2 for Windows

Figure 2.5 Expanding the DB2 instance directory

This directory contains
all the instance information

for instance DB2

This directory contains
all the instance information

for instance myinst

This directory
contains all the information

for the DAS

This directory contains
all the databases created

under the H: drive for
instance myinst

This directory contains
all the databases created

under the H: drive for
instance DB2

Expanding the
DB2 Directory

DCS
Directory

Node
Directory

System Database
Directory

Database
Manager Configuration

File (dbm cfg)

This file logs DB2 error messages
used by DB2 Tech Support and

experienced DBAs.

This file is used in a
multipartition environment to describe

the partitions and servers.

Chong.book Page 40 Monday, January 10, 2005 4:18 PM

2.3 The DB2 Environment 41

In Figure 2.6, the H:\DB2 and H:\MYINST directories have been expanded. The subdirectories
SQL00001 and SQL00002 under H:\DB2\NODE0000 correspond to the two databases created
under instance DB2. To map these directory names to the actual database names, you can review
the contents of the local database directory with this command:

list db directory on h:

Chapter 6, Configuring Client and Server Connectivity, shows sample output of this command.
Note that the local database directory is stored in the subdirectory SQLDBDIR. This subdirec-
tory is at the same level as each of the database subdirectories; therefore, when a database is
dropped, this subdirectory is not dropped. Figure 2.6 shows two SQLDBDIR subdirectories, one
under H:\DB2\NODE0000 and another one under H:\MYINST\NODE0000.

Knowing how the DB2 environment is internally implemented can help you understand the DB2
concepts better. For example, looking back at Figure 2.3 (that one you should have printed!),
what would happen if you dropped the instance DB2? Would this mean that databases MYDB1
and MYDB2 are also dropped? The answer is no. Figure 2.4 clearly shows that the directory
where the instance information resides (H:\Program Files\IBM\SQLLIB\DB2) and the directory
where the data resides (H:\DB2) are totally different. When an instance is dropped, only the sub-
directory created for that instance is dropped.

Figure 2.6 Expanding the directories containing the database data

This is the Database
Configuration file (db cfg)
for database SQL00001

under instance DB2This is the Local
Database Directory for
the databases under

instance DB2This is the Local
Database Directory for
the databases under

instance myinst

Expanding
the DB2
Directory

Expanding the
MYINST
Directory

Chong.book Page 41 Monday, January 10, 2005 4:18 PM

42 Chapter 2 • DB2 at a Glance: The Big Picture

Similarly, let’s say you uninstall DB2 at a given time, and later you reinstall it on the same drive. After
reinstallation, can you access the “old” databases created before you uninstalled DB2 the first time?
The answer is yes. When you uninstalled DB2, you removed the SQLLIB directory, therefore the
DB2 binary code as well as the instance subdirectories were removed, but the databases were left
untouched. When you reinstall DB2, a new SQLLIB directory is created with a new default DB2
instance; no other instance is created. The new DB2 instance will have a new empty system database
directory (db2systm). So even though the directories containing the database data were left intact, you
need to explicitly put the information in the DB2 system database directory for DB2 to recognize the
existence of these databases. For example, if you would like to access the MYDB1 database of the
DB2 instance, you need to issue this command to add an entry to the system database directory:

catalog db mydb1 on h:

If the database you want to access is MYDB2 that was in the myinst instance, you would first
need to create this instance, switch to the instance, and then issue the catalog command as
shown below.

db2icrt myinst
set DB2INSTANCE=myinst
catalog db mydb2 on h:

It is a good practice to back up the contents of all your configuration files as shown below.

db2 get dbm cfg > dbmcfg.bk
db2set -all > db2set.bk
db2 list db directory > systemdbdir.bk
db2 list node directory > nodedir.bk
db2 list dcs directory > dcsdir.bk

Notice that all of these commands redirect the output to a text file with a .bk extension.

2.4 FEDERATION

Database federated support in DB2 allows tables from multiple databases to be presented as
local tables to a DB2 server. The databases may be local or remote; they can also belong to dif-
ferent RDBMSs. While Chapter 1 briefly introduced federated support, this section provides an
overview of how federation is implemented.

First of all, make sure that your server allows federated support: The database manager parame-
ter FEDERATED must be set to YES.

DB2 uses NICKNAME, SERVER, WRAPPER, and USER MAPPING objects to implement
federation. Let’s consider the example illustrated in Figure 2.7.

C A U T I O N The purpose of this section is to help you under-
stand the DB2 environment by describing its internal implementation.
We strongly suggest that you do not tamper with the files and directories
discussed in this section. You should only modify the files using the com-
mands described in earlier sections.

Chong.book Page 42 Monday, January 10, 2005 4:18 PM

2.4 Federation 43

The DB2 user db2user connects to the database db2db. He then issues the statement:

SELECT * FROM remote_sales

The table remote_sales, however, is not a local table but a nickname, which is a pointer to
a table in another database, possibly in another server and from a different RDBMS. A nickname
is created with the CREATE NICKNAME statement, and requires a SERVER object (aries in the
example) and the schema and table name to be accessed at this server (csmmgr.sales).

A SERVER object is associated to a WRAPPER. A wrapper is associated to a library that con-
tains all the code required to connect to a given RDBMS. For IBM databases like Informix,
these wrappers or libraries are provided with DB2. For other RDBMSs, you need to obtain the
IBM DB2 Information Integrator software. In Figure 2.7, the wrapper called informix was cre-
ated, and it is associated to the library db2informix.dll.

To access the Informix table csmmgr.sales, however, you cannot use the DB2 user id and password
directly. You need to establish a mapping between the DB2 user id and an Informix user id that
has the authority to access the desired table. This is achieved with the CREATE USER MAPPING

Figure 2.7 An overview of a federation environment

DB2
CONNECT TO db2db USER db2user USING db2psw

INFORMIX

SELECT * FROM csmmgr.sales

Local connection from
Informix client to
Informix database

Informix Database
informixdb

CREATE USER MAPPING FOR
"db2user" SERVER "aries"
OPTIONS
(REMOTE_AUTHID 'informixuser'
REMOTE_PASSWORD 'informixpsw')

SELECT * FROM remote_sales

CREATE NICKNAME remote_sales FOR "aries". "csmmgr"."sales"

CREATE SERVER "aries" WRAPPER "informix" ...

CREATE WRAPPER "informix" LIBRARY 'db2informix.dll'
(A wrapper includes the client code of the)other RDBMS

CONNECT TO informixdb
userid = informixuser
password = informixpsw

Table
csmmgr.sales

Chong.book Page 43 Monday, January 10, 2005 4:18 PM

44 Chapter 2 • DB2 at a Glance: The Big Picture

statement. Figure 2.7 shows how the DB2 user db2user and the Informix user informixuser are
associated with this statement.

2.5 CASE STUDY: THE DB2 ENVIRONMENT

You recently attended a DB2 training class and would like to try things out on your own laptop
at the office. Your laptop is running Windows 2000 and DB2 UDB Enterprise Server Edition has
been installed. You open the Command Window and take the following steps.

1. First, you want to know how many instances you have in your computer, so you enter:
db2ilist

2. Then, to find out which of these instances is the current active one, you enter:
db2 get instance

With the db2ilist command, you found out there were two instances defined on this
computer, DB2 and myinst. With the db2 get instance command, you learned that
the DB2 instance is the current active instance.

3. You would now like to list the databases in the myinst instance. Since this one is not the
current active instance, you first switch to this instance temporarily in the current Com-
mand Window:
set DB2INSTANCE=myinst

4. You again issue db2 get instance to check that myinst is now the current instance.
5. To list the databases defined on this instance you issue:

db2 list db directory

 This command shows that you only have one database (MYDB2) in this instance.
6. You want to try creating a new database called TEMPORAL, so you execute:

db2 create database temporal

The creation of the database takes some time because several objects are created by
default inside the database. Issuing another list db directory command now
shows two databases: MYDB2 and TEMPORAL.

7. You connect to the MYDB2 database (db2 connect to mydb2) and check which
tables you have in this database (db2 list tables for all). You also check how
many table spaces are defined (db2 list tablespaces).

8. Next, you want to review the contents of the database configuration file (db cfg) for the
MYDB2 database:
db2 get db cfg for mydb2

N O T E Several assumptions have been made in this case study and
the rest of the case studies in this book, so if you try to follow them
some steps may not work for you. If you do follow some or all of the
steps in the case studies, we recommend you use a test computer system.

Chong.book Page 44 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 45

9. To review the contents of the Database Manager Configuration file (dbm cfg) you issue:
db2 get dbm cfg

10. At this point, you want to practice changing the value of a dbm cfg parameter, so you
pick the INTRA_PARALLEL parameter which has a value set to YES. You change its
value to NO as follows:
db2 update dbm cfg using INTRA_PARALLEL NO

11. You learned at the class that this parameter is not “configurable online,” so you know
you have to stop and start the instance. Since there is a connection to a database in the
current instance (remember you connected to the MYDB2 database earlier from your
current Command Window), DB2 will not allow you to stop the instance. Enter the fol-
lowing sequence of commands:
db2 terminate (terminates the connection)
db2stop
db2start

And that’s it! In this case study you have reviewed some basic instance commands like db2ilist
and get instance. You have also reviewed how to switch to another instance, create and connect
to a database, list the databases in the instance, review the contents of the database configuration
file and the database manager configuration file, update a database manager configuration file
parameter, and stop and start an instance.

2.6 DATABASE PARTITIONING FEATURE

In this section we introduce you to the database partitioning feature (DPF) available on DB2
UDB Enterprise Server Edition (ESE). DPF lets you partition your database across multiple
servers or within a large SMP server. This allows for scalability, since you can add new
machines and spread your database across them. That means more CPUs, more memory, and
more disks from each of the additional machines for your database!

DB2 UDB ESE with DPF is ideal to manage large databases, whether you are doing data warehous-
ing, data mining, online analytical processing (OLAP), or working with online transaction processing
(OLTP) workloads. You do not have to install any new code to enable this feature, but you must pur-
chase the license before enabling the database partitioning feature. Users connect to the database and
issue queries as usual without the need to know the database is spread among several partitions.

Up to this point, we have been discussing a single partition environment, and all of those con-
cepts apply to a multipartition environment as well. We will now point out some implementation
differences and will introduce a few new concepts, including database partitions, partition
groups, and the coordinator partition, that are relevant only to a multipartition environment.

N O T E Prior to Version 8, DB2 UDB ESE with DPF was known as
DB2 UDB Enterprise-Extended Edition (EEE).

Chong.book Page 45 Monday, January 10, 2005 4:18 PM

46 Chapter 2 • DB2 at a Glance: The Big Picture

2.6.1 Database Partitions

A database partition is an independent part of a partitioned database with its own data, config-
uration files, indexes, and transaction logs. You can assign multiple partitions across several
physical servers or to a single physical server. In the latter case, the partitions are called logical
partitions and they can share the machine’s resources.

A single-partition database is a database with only one partition. We described the DB2 environ-
ment for this type of database in section 2.3, The DB2 Environment. A multipartition database
(also referred to as a partitioned database) is a database with two or more database partitions.
Depending on your hardware environment, there are several topologies for database partitioning.
Figure 2.8 shows configurations of physical partitions, one partition per machine. The illustra-
tion at the top of the figure shows an SMP machine with one partition (single-partition environ-
ment). This means the entire database resides on this one machine. The illustration at the bottom

Figure 2.8 Database partition configurations with one partition per machine

Database Partition

SMP machine

Memory

CPUs

Disk

Database Partition

SMP machine

Memory

CPUs

Disk

Database Partition

SMP machine

Memory

CPUs

Disk

Communication Facility

Multipartition configuration
(one partition per machine)

Multiple partitions on a cluster of SMP
machines (also known as a
Massively Parallel Processing (MPP)
environment)

Single-partition on a
Symmetric Multiprocessor (SMP)
machine

Single-Partition Configuration

Chong.book Page 46 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 47

shows two SMP machines, one partition per machine (multipartition environment). This means
the database is split between the two partitions.

Figure 2.9 shows multipartition configurations with multiple partitions per machine. Unlike Fig-
ure 2.8 where there was only one partition per machine, this figure illustrates two (or more) par-
titions per machine.

N O T E In Figure 2.8, the symmetric multiprocessor (SMP) systems
could be replaced by uniprocessor systems.

Figure 2.9 Database partition configurations with multiple partitions per machine

Communication Facility

Database Partition 1 Database Partition 2

Big SMP machine

Memory

CPUs

Disk

Communication Facility

Database Partition 1 Database Partition 2

Big SMP machine

Memory

CPUs

Disk

Communication Facility

Database Partition 3 Database Partition 4

Big SMP machine

Memory

CPUs

Disk

Communication Facility

Multiple partitions
on a cluster of SMP
machines (MPP)

Multiple partitions
on an SMP machine

Multipartition Configurations Partitions (several partitions per machine)

Chong.book Page 47 Monday, January 10, 2005 4:18 PM

48 Chapter 2 • DB2 at a Glance: The Big Picture

To visualize how a DB2 environment is split in a DPF system, Figure 2.10 illustrates a partial
reproduction of Figure 2.3, and shows it split into three physical partitions, one partition per
server. (We have changed the machine in the original Figure 2.3 to use the Linux operating sys-
tem instead of the Windows operating system.)

In Figure 2.10, the DB2 environment is “split” so that it now resides on three servers running the
same operating system (Linux, in this example). The partitions are also running the same DB2
version, but it is important to note that different FixPak levels are allowed. This figure shows
where files and objects would be located on a new installation of a multipartition system.

It is also important to note that all of the machines participating in a DPF environment have to be
interconnected by a high-speed communication facility that supports the TCP/IP protocol. TCP/IP
ports are reserved on each machine for this “interpartition” communication. For example, by
default after installation, the services file on Linux (/etc/services) is updated as follows (assum-
ing you chose to create the db2inst1 instance):

DB2_db2inst1 60000/tcp
DB2_db2inst1_1 60001/tcp
DB2_db2inst1_2 60002/tcp
DB2_db2inst1_END 60003/tcp
db2c_db2inst1 50000/tcp

This also depends on the number of partitions on the server. By default, ports 60000 through
60003 are reserved for interpartition communication. You can update the services file with the
correct number of entries to support the number of partitions you are configuring.

When the partitions reside on the same machine, communication between the partitions still
requires this setup. You force interpartition communication to be performed in memory by set-
ting the DB2 registry variable DB2_FORCE_FCM_BP to YES.

For a DB2 client to connect to a DPF system, you issue catalog commands at the client to
populate the system and node directories. In the example, the port number to use in these com-
mands is 50000 to connect to the db2inst1 instance, and the host name can be any of the servers

N O T E Prior to Version 8, the term “node” was used instead of
“database partition.” In Version 8, some commands will accept this term
for compatibility with scripts written in previous versions of DB2.

Also, note that the node directory concept described in section 2.3.4.3,
Node Directory, has no relationship whatsoever to the database parti-
tion concept, even though the term “node” is used.

N O T E Since we reference Figure 2.10 throughout this section, we
recommend that you bookmark page 49. Alternatively, since this figure is
available in color on the CD-ROM provided with this book
(Figure_2_10.gif), consider printing it.

Chong.book Page 48 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 49

participating in the DPF environment. The server used in the catalog command becomes the
coordinator, unless the DBPARTITIONNUM option of the connect statement is used. The
concept of coordinator is described later in this section. Chapter 6, Configuring Client and
Server Connectivity, discusses the catalog command in detail.

Figure 2.10 The DB2 environment in DB2 UDB ESE with DPF

Linux Server Linux1 with TCPIP address 9.128.19.23 and DB2 UDB ESE v8.2

Instance MyInst Instance Level
Profile Registry
Databse Manager
Config File (dbm cfg)
System db Directory

Node Directory

DCS Directory

Database MYDB2

Syscatspace

D a t a b a s e C o n f i g F i l e (d b c f g)

L o c a l d b D i r e c t o r y

B u f f e r p o o l (s)

L o g s

T e m p s p a c e 1

U s e r s p a c e 1

M y T a b l e s p a c e 1

T a b l e 1

T a b l e 2

I n d e x 1
I n d e x 2

M y T a b l e s p a c e 2

T a b l e 3

M y T a b l e s p a c e 3

I n d e x 3

G l o b a l L e v e l P r o f i l e R e g i s t r y

E n v i r o n m e n t V a r i a b l e s

P o r t

Linux Server
Linux1

Linux Server
Linux2

Linux Server

(NFS source server)
Linux3

Chong.book Page 49 Monday, January 10, 2005 4:18 PM

50 Chapter 2 • DB2 at a Glance: The Big Picture

2.6.2 The Node Configuration File

The node configuration file (db2nodes.cfg) contains information about the database partitions
and the servers on which they reside that belong to an instance. Figure 2.11 shows an example of
the db2nodes.cfg file for a cluster of four UNIX servers with two partitions on each server.

In Figure 2.11, the partition number, the first column in the db2nodes.cfg file, indicates the num-
ber that identifies the database partition within DB2. You can see that there are eight partitions in
total. The numbering of the partitions must be in ascending order, can start from any number,
and gaps between the numbers are allowed. The numbering used is important as it will be taken
into consideration in commands or SQL statements.

The second column is the hostname or TCP/IP address of the server where the partition is created.

The third column, the logical port, is required when you create more than one partition on the
same server. This column specifies the logical port for the partition within the server and must be
unique within a server. In Figure 2.11, you can see the mapping between the db2nodes.cfg
entries for partitions 2 and 3 for server myserverb and the physical machine implementation.
The logical ports must also be in the same order as in the db2nodes.cfg file.

The fourth column in the db2nodes.cfg file, the netname, is required if you are using a high-
speed interconnect for interpartition communication or if the resourcesetname column is used.

N O T E Each of the servers participating in the DPF environment
have their own separate services file, but the entries in those files that
are applicable to DB2 interpartition communication must be the same.

Figure 2.11 An example of the db2nodes.cfg file

Database Partition 2 Database Partition 3

myserverb Machine

Memory

CPUs

Disk

Communication Facility

Port 0 Port 1

0 myservera 0
1 myservera 1

4 myserverc 0
5 myserverc 1
6 myserverd 0
7 myserverd 1

2 myserverb 0
3 myserverb 1

...sqllib/db2nodes.cfg

DB2 Instance-Owning Machine

Partition
Number

Hostname or IP
Address

Logical
Port

Chong.book Page 50 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 51

The fifth column in the db2nodes.cfg file, the resourcesetname, is optional. It specifies the operat-
ing system resource that the partition should be started in.

On Windows, the db2nodes.cfg file uses the computer name column instead of the resourceset-
name column. The computer name column stores the computer name for the machine on which
a partition resides. Also, the order of the columns is slightly different: partition number, host-
name, computer name, logical port, netname, and resourcesetname.

The db2nodes.cfg file must be located

• Under the SQLLIB directory for the instance owner on Linux and UNIX
• Under the SQLLIB\instance_name directory on Windows

In Figure 2.10 this file would be on the Linux3 machine, as this machine is the Network File
System (NFS) source server, the server whose disk(s) can be shared.

On Linux and UNIX you can edit the db2nodes.cfg file with any ASCII editor or use DB2 com-
mands to update the file. On Windows, you can only use the db2ncrt and db2ndrop com-
mands to create and drop database partitions; the db2nodes.cfg file should not be edited directly.

For any platform, you can also use the db2start command to add and or remove a database par-
tition from the DB2 instance and update the db2nodes.cfg file using the add dbpartitionnum
and the drop dbpartitionnum clauses respectively.

2.6.3 An Instance in the DPF Environment

Partitioning is a concept that applies to the database, not the instance; you partition a database,
not an instance. In a DPF environment an instance is created once on an NFS source server
machine. The instance owner’s home directory is then exported to all servers where DB2 is to be
run. Each partition in the database has the same characteristics: the same instance owner, pass-
word, and shared instance home directory.

On Linux and UNIX, an instance maps to an operating system user; therefore, when an instance
is created, it will have its own home directory. In most installations /home/user_name is the
home directory. All instances created on each of the participating machines in a DPF environ-
ment must use the same name and password. In addition, you must specify the home directory of
the corresponding operating system user to be the same directory for all instances, which must
be created on a shared file system. Figure 2.12 illustrates an example of this.

In Figure 2.12, the instance myinst has been created on the shared file system, and myinst maps
to an operating system user of the same name, which in the figure has a home directory of /home/
myinst. This user must be created separately in each of the participating servers, but they must share
the instance home directory. As shown in Figure 2.12, all three Linux servers share /home/myinst,
and it resides on a shared file system local to Linux3. Since the instance owner directory is locally
stored on the Linux3 machine, this machine is considered to be the DB2 instance-owning
server.

Chong.book Page 51 Monday, January 10, 2005 4:18 PM

52 Chapter 2 • DB2 at a Glance: The Big Picture

Figure 2.12 also shows that the Database Administration Server user db2as is created locally on
each participating server in a DPF environment. There can only be one DAS per physical server
regardless of the number of partitions that machine contains. The DAS user’s home directory
cannot be mounted on a shared file system. Alternatively, different userids and passwords can be
used to create the DAS on different machines.

2.6.4 Partitioning a Database

When you want to partition a database in a DPF environment, simply issue the CREATE DATABASE
command as usual. For example, if the instance owner home directory is /home/myinst, when
you execute this command:

CREATE DATABASE mydb2

the structure created is as shown in Figure 2.13.

Figure 2.12 An instance in a partitioned environment

N O T E Make sure the passwords for the instances are the same on
each of the participating machines in a DPF environment, otherwise the
partitioned system will look like it is hanging because the partitions are
not able to communicate.

/home
 /myinst
 /NODE0000
 /SQL00001
 /NODE0001
 /SQL00001
 /NODE0002
 /SQL00001

Figure 2.13 A partitioned database in a single file system

Instance
has home directory

myinst

/home/myinst

Linux2 server

Local Disk

Local Disk
/home/db2as

Local Disk

Local Disk
/home/db2as

Shared File System:
/home/myinst

/sqllib ...
Local Disk
/home/db2as

Instance
has home directory

myinst

/home/myinst

Linux1 server

Instance
has home directory

myinst

/home/myinst

Linux3 server

Chong.book Page 52 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 53

If you don’t specify a path in your CREATE DATABASE command, by default the database is
created in the directory specified by the database manager configuration parameter DFTDBPATH,
which defaults to the instance owner’s home directory. This partitioning is not optimal because
all of the database data would reside in one file system that is shared by the other machines
across a network.

We recommend that you create a directory with the same name, locally in each of the participat-
ing machines. For the environment in Figure 2.12, let’s assume the directory /data has been cre-
ated locally on each machine. When you execute the command:

CREATE DATABASE mydb2 on /data

the following directory structure is automatically built for you:

/data/instance_name/NODExxxx/SQLyyyyy

The /data directory is specified in the CREATE DATABASE command, but the directory must
exist before executing the command. instance_name is the name of the instance; for example,
myinst. NODExxxx distinguishes which partition you are working with, where xxxx represents
the number of the partition specified in the db2nodes.cfg file. SQLyyyyy identifies the database,
where yyyyy represents a number. If you have only one database on your system, then yyyyy is
equal to 00001; if you have three databases on your system, you will have different directories as
follows: SQL00001, SQL00002, SQL00003. To map the database names to these directories,
you can review the local database directory using the command:

list db directory on /data

Inside the SQLyyyyy directories are subdirectories for table spaces, and within them, files con-
taining database data—assuming all table spaces are defined as system-managed space (SMS).

Figure 2.14 illustrates a partitioned database created in the /data directory

Figure 2.14 A partitioned database across several file systems

Local Disk

Linux2 Server

Shared File System:
/home/myinst

/sqllib ...

Local Disk

Local Disk
/data
/myinst
/NODE0000
/SQL00001

Local Disk
/data
/myinst
/NODE0001
/SQL00001

Local Disk
/data
/myinst
/NODE0002
/SQL00001

Linux3 ServerLinux1 Server
Instance
has home directory

myinst

/home/myinst

Instance
has home directory

myinst

/home/myinst

Instance
has home directory

myinst

/home/myinst

Chong.book Page 53 Monday, January 10, 2005 4:18 PM

54 Chapter 2 • DB2 at a Glance: The Big Picture

Partitioning a database is described in more detail in Chapter 8, The DB2 Storage Model.

2.6.5 Configuration Files in a DPF Environment

As shown in Figure 2.10, the Database Manager Configuration file (dbm cfg), system database
directory, node directory, and DCS directory are all part of the instance-owning machine and are
not partitioned. What about the other configuration files?

• Environment variables: Each participating server in a partitioned environment can have
different environment variables.

• Global-level profile registry variable: This is stored in a file called default.env that is
located in a subdirectory under the /var directory. There is a local copy of this file on
each server.

• Database configuration file: This is stored in the file SQLDBCON that is located in the
SQLyyyyy directory for the database. In a partitioned database environment, a separate
SQLDBCON file is created for each partition in every database.

• The local database directory: This is stored in the file SQLDBDIR in the corresponding
directory for the database. It has the same name as the system database directory, which
is located under the instance directory. A separate SQLDBDIR file exists for each parti-
tion in each database.

2.6.6 Logs in a DPF Environment

The logs on each database partition should be kept in a separate place. The database configura-
tion parameter Path to log files (LOGPATH) on each partition should point to a local file system,

N O T E Before creating a database, be sure to change the value of
the dbm cfg parameter DFTDBPATH to an existing path created locally
with the same name on each of the participating machines of your DPF
system. Alternatively, make sure to include this path in your CREATE
DATABASE command. Similarly, to create the SAMPLE database, spec-
ify this path in the command:

db2sampl path

C A U T I O N We strongly suggest you do not manually edit any of
the DB2 configuration files. You should modify the files using the com-
mands described in earlier sections.

N O T E The values of the global-level profile registry variables,
database configuration file parameters, and local database directory
entries should be the same for each database partition.

Chong.book Page 54 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 55

not a shared file system. The default log path in each partition includes a NODE000x subdirec-
tory. For example, the value of this parameter in the DPF system shown in Figure 2.10 could be:

• For Partition 0: /datalogs/db2inst1/NODE0000/SQL00001/SQLOGDIR/
• For Partition 1: /datalogs/db2inst1/NODE0001/SQL00001/SQLOGDIR/
• For Partition 2: /datalogs/db2inst1/NODE0002/SQL00001/SQLOGDIR/

To change the path for the logs, update the database configuration parameter NEWLOGPATH.

2.6.7 The Catalog Partition

As stated previously, when you create a database, several table spaces are created by default.
One of them, the catalog table space SYSCATSPACE, contains the DB2 system catalogs. In a
partitioned environment SYSCATSPACE is not partitioned, but resides on one partition known
as the catalog partition. The partition from which the CREATE DATABASE command is issued
becomes the catalog partition for the new database. All access to system tables must go through
this database partition. Figure 2.10 shows SYSCATSPACE residing on server Linux1, so the
CREATE DATABASE command was issued from this server.

For an existing database, you can determine which partition is the catalog partition by issuing the
command list db directory. The output of this command has the field Catalog database
partition number for each of the entries, which indicates the catalog partition number for that database.

2.6.8 Partition Groups

A partition group is a logical layer that provides for the grouping of one or more database par-
titions. A database partition can belong to more than one partition group. When a database is cre-
ated, DB2 creates three default partition groups, and these partition groups cannot be dropped.

• IBMDEFAULTGROUP: This is the default partition group for any table you create. It
contains all database partitions defined in the db2nodes.cfg file. This partition group
cannot be modified. Table space USERSPACE1 is created in this partition group.

• IBMTEMPGROUP: This partition group is used by all system temporary tables. It
contains all database partitions defined in the db2nodes.cfg file. Table space TEMPSPACE1
is created in this partition.

• IBMCATGROUP: This partition group contains the catalog tables (table space
SYSCATSPACE). It only includes the database’s catalog partition. This partition group
cannot be modified.

To create new database partition groups, use the CREATE DATABASE PARTITION GROUP
statement. This statement creates the database partition group within the database, assigns database
partitions that you specified to the partition group, and records the partition group definition in
the database system catalog tables.

Chong.book Page 55 Monday, January 10, 2005 4:18 PM

56 Chapter 2 • DB2 at a Glance: The Big Picture

The following statement creates partition group pgrpall on all partitions specified in the
db2nodes.cfg file:

CREATE DATABASE PARTITION GROUP pgrpall ON ALL DBPARTITIONNUMS

To create a database partition group pg23 consisting of partitions 2 and 3, issue this command:

CREATE DATABASE PARTITION GROUP pg23 ON DBPARTITIONNUMS (2,3)

Other relevant partition group statements/commands are:

• ALTER DATABASE PARTITION GROUP (statement to add or drop a partition in the group)
• DROP DATABASE PARTITION GROUP (statement to drop a partition group)
• LIST DATABASE PARTITION GROUPS (command to list all your partition groups;

note that IBMTEMPGROUP is never listed)

2.6.9 Buffer Pools in a DPF Environment

Figure 2.10 shows buffer pools defined across all of the database partitions. Interpreting this fig-
ure for buffer pools is different than for the other objects, because the data cached in the buffer
pools is not partitioned as the figure implies. Each buffer pool in a DPF environment holds data
only from the database partition where the buffer pool is located.

You can create a buffer pool in a partition group using the CREATE BUFFERPOOL statement
with the DATABASE PARTITION GROUP clause. This means that you have the flexibility to define
the buffer pool on the specific partitions defined in the partition group. In addition, the size of the
buffer pool on each partition in the partition group can be different. The following statement will
create buffer pool bpool_1 in partition group pg234, which consists of partitions 2, 3, and 4.

CREATE BUFFERPOOL bpool_1 DATABASE PARTITION GROUP pg234
 SIZE 10000
 EXCEPT ON DBPARTITIONNUM (3 TO 4) SIZE 5000

Partition 2 in partition group pg234 will have a buffer pool bpool_1 defined with a size of 10,000
pages, and Partitions 3 and 4 will have a buffer pool of size 5,000 pages.

As an analogy, think of it as if you were issuing the CREATE BUFFERPOOL statement on each parti-
tion separately, with the same buffer pool name for each partition but with different sizes. That is:

• On partition 2: CREATE BUFFERPOOL bpool_1 SIZE 10000
• On partition 3: CREATE BUFFERPOOL bpool_1 SIZE 5000
• On partition 4: CREATE BUFFERPOOL bpool_1 SIZE 5000

Note that we use these statements only to clarify the analogy; they will not work as written. Exe-
cuting each of these commands as shown will attempt to create the same buffer pool on all parti-
tions. It is not equivalent to using the DATABASE PARTITION GROUP clause of the CREATE
BUFFERPOOL statement.

Buffer pools can also be associated to several partition groups. This means that the buffer pool
definition will be applied to the partitions in those partition groups.

Chong.book Page 56 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 57

2.6.10 Table Spaces in a Partitioned Database Environment

You can create a table space in specific partitions, associating it to a partition group, by using the
CREATE TABLESPACE statement with the IN DATABASE PARTITION GROUP clause. This
allows users to have flexibility as to which partitions will actually be storing their tables. In a
partitioned database environment with three servers, one partition per server, the statement:

CREATE TABLESPACE mytbls IN DATABASE PARTITION GROUP pg234
 MANAGED BY SYSTEM USING (‘/data’)
 BUFFERPOOL bpool_1

creates the table space mytbls, which spans partitions 2, 3, and 4 (assuming pg234 is a partition
group consisting of these partitions). In addition, the table space is associated with buffer pool
bpool_1 defined earlier. Note that creating a table space would fail if you provide conflicting
partition information between the table space and the associated buffer pool. For example, if
bpool_1 was created for partitions 5 and 6, and table space mytbls was created for partitions 2, 3,
and 4, you would get an error message when trying to create this table space.

2.6.11 The Coordinator Partition

In general, each database connection has a corresponding DB2 agent handling the application
connection. An agent can be thought of as a process (Linux/UNIX) or thread (Windows) that
performs DB2 work on behalf of the application. There are different types of agents. One of
them, the coordinator agent, communicates with the application, receiving requests and sending
replies. It can either satisfy the request itself or delegate the work to multiple subagents to work
on the request.

The coordinator partition of a given application is the partition where the coordinator agent
exists. You use the SET CLIENT CONNECT_NODE command to set the partition that is to be the
coordinator partition. Any partition can potentially be a coordinator, so in Figure 2.10 we do not
label any particular partition as the coordinator node. If you would like to know more about DB2
agents and the DB2 process model, refer to Chapter 14, The DB2 Process Model.

2.6.12 Issuing Commands and SQL Statements in a DPF Environment

Imagine that you have twenty physical servers, with two database partitions on each. Issuing
individual commands to each physical server or partition would be quite a task. Fortunately,
DB2 provides a command that executes on all database partitions.

2.6.12.1 The db2_all command

Use the db2_all command when you want to execute a command or SQL statement against
all database partitions. For example, to change the db cfg parameter LOGFILSIZ for the data-
base sample in all partitions, you would use:

db2_all ";db2 UPDATE DB CFG FOR sample USING LOGFILSIZ 500"

Chong.book Page 57 Monday, January 10, 2005 4:18 PM

58 Chapter 2 • DB2 at a Glance: The Big Picture

When the semicolon (;) character is placed before the command or statement, the request runs in
parallel on all partitions.

2.6.12.2 Using Database Partition Expressions

In a partitioned database, database partition expressions can be used to generate values based on
the partition number found in the db2nodes.cfg file. This is particularly useful when you have a
large number of database partitions and when more than one database partition resides on the
same physical machine, because the same device or path cannot be specified for all partitions.
You can manually specify a unique container for each database partition or use database parti-
tion expressions. The following example illustrates the use of database partition expressions.

On Linux/UNIX, here are sample contents of a db2nodes.cfg file:

0 myservera 0
1 myservera 1
2 myserverb 0
3 myserverb 1

This shows two servers with two database partitions each. The command:

CREATE TABLESPACE ts2
 MANAGED BY DATABASE USING
 (file ’/data/TS2/container $N+100’ 5000)

creates the following containers:

• /data/TS2/container100 on database partition 0
• /data/TS2/container101 on database partition 1
• /data/TS2/container102 on database partition 2
• /data/TS2/container103 on database partition 3

You specify a database partition expression with the argument $N (note that there must be a
space before $N in the command). Table 2.1 shows other arguments for creating containers.
Operators are evaluated from left to right, and % represents the modulus (the remainder of a divi-
sion). Assuming the partition number to be evaluated is 3, the value column in Table 2.1 shows
the result of resolving the database partition expression.

N O T E In partitioned environments, the operating system com-
mand rah performs commands on all servers simultaneously. The rah
command works per server, while the db2_all command works per
database partition. The rah and db2_all commands use the same
characters. For more information about the rah command, refer to
your operating system manuals.

Chong.book Page 58 Monday, January 10, 2005 4:18 PM

2.6 Database Partitioning Feature 59

2.6.13 The DB2NODE Environment Variable

In section 2.3, The DB2 Environment, we talked about the DB2INSTANCE environment vari-
able used to switch between instances in your database system. The DB2NODE environment
variable is used in a similar way, but to switch between partitions on your DPF system. By
default, the active partition is the one defined with the logical port number of zero (0) in the
db2nodes.cfg file for a server. To switch the active partition, change the value of the DB2NODE
variable using the SET command on Windows and the export command on Linux/UNIX. Be
sure to issue a terminate command for all connections from any partition to your database
after changing this variable or the change will not take effect.

Using the settings for the db2nodes.cfg file shown in Table 2.2, you have four servers, each with
two logical partitions. If you log on to server myserverb, any commands you execute will affect
partition 2, which is the one with logical port of zero on that server, and the default coordinator
partition for that server.

Table 2.1 Database Partition Expressions

Database Partition Expressions Example Value

[blank]$N $N 3

[blank]$N+[number] $N+500 503

[blank]$N%[number] $N%2 1

[blank]$N+[number]%[number] $N+15%13 5

[blank]$N%[number]+[number] $N%2+20 21

Table 2.2 Sample Partition Information

Partition Server Name Logical Port

0 myservera 0

1 myservera 1

2 myserverb 0

3 myserverb 1

4 myserverc 0

5 myserverc 1

6 myserverd 0

7 myserverd 1

Chong.book Page 59 Monday, January 10, 2005 4:18 PM

60 Chapter 2 • DB2 at a Glance: The Big Picture

If you would like to make partition 0 the active partition, make this change on a Linux/UNIX system:

DB2NODE=0
export DB2NODE
db2 terminate

Note that partition 0 is on server myservera. Even if you are connected to myserverb, you can
make a partition on myservera the active one. To determine which is your active partition, you
can issue this statement after connecting to a database:

db2 "values (current dbpartitionnum)"

2.6.14 Partitioning Maps and Partitioning Keys

By now you should have a good grasp of how to set up a DPF environment. It is now time to under-
stand how DB2 distributes data across the partitions. Figure 2.15 shows an example of this distribution.

A partitioning map is an internally generated array containing 4096 entries for multipartition
database partition groups or a single entry for single-partition database partition groups. The parti-
tion numbers of the database partition group are specified in a round-robin fashion in the array.

A partitioning key is a column (or group of columns) that determines the partition on which a
particular row of data is physically stored. You define a partitioning key explicitly using the
CREATE TABLE statement with the PARTITIONING KEY clause.

When you create or modify a database partition group, a partitioning map is associated with it. A
partitioning map in conjunction with a partitioning key and a hashing algorithm determine
which database partition will store a given row of data.

For the example in Figure 2.15, let’s assume partition group pg0123 has been defined on parti-
tions 0, 1, 2, and 3. An associated partitioning map is automatically created. This map is an array

N O T E You must issue the terminate command, even if there
aren’t any connections to any partitions.

Figure 2.15 Distributing data rows in a DPF environment

Partitioning key
for table mytable

col1, col2, col3

Hashing algorithm

Partitioning map
for partitioning
group pg0123 0 1 2 3 4 5 6 7 4092 40954093 4094

p0 p1 p2 p3p0 p1 p2 p3p0 p1 p2 p3 ...

Chong.book Page 60 Monday, January 10, 2005 4:18 PM

2.7 Case Study: DB2 with DPF Environment 61

with 4096 entries containing the values 0, 1, 2, 3, 0, 1, 2, 3. . . . (note that this is shown in Figure
2.15 as p0, p1, p2, p3, p0, p1, p2, p3 . . . to distinguish them from the array entry numbers). Let’s
also assume table mytable has been created with a partitioning key consisting of columns col1,
col2, and col3. For each row, the partitioning key column values are passed to the hashing algo-
rithm, which returns an output number from 0 to 4095. This number corresponds to one of the
entries in the array that contains the value of the partition number where the row is to be stored.
In Figure 2.15, if the hashing algorithm had returned an output value of 7, the row would have
been stored in partition p3.

2.7 CASE STUDY: DB2 WITH DPF ENVIRONMENT

Now that you are familiar with DPF, let’s review some of the concepts discussed using a simple
case study.

Your company is expanding, and it recently acquired two other firms. Since the amount of data
will be increased by approximately threefold, you are wondering if your current single-partition
DB2 database server will be able to handle the load, or if DB2 with DPF will be required. You
are not too familiar with DB2 with DPF, so you decide to play around with it using your test
machines: two SMP machines running Linux with four processors each. The previous DBA,
who has left the company, had installed DB2 UDB ESE with DPF on these machines. Fortu-
nately, he left a diagram with his design, shown in Figure 2.16.

Figure 2.16 is a combined physical and logical design. When you validate the correctness of the
diagram with your system, you note that database mydb1 has been dropped, so you decide to
rebuild this database as practice. The instance db2inst1 is still there, as are other databases.
These are the steps you follow.

1. Open two telnet sessions, one for each server. From one of the sessions you issue the
commands db2stop followed by db2start, as shown in Figure 2.17.

The first thing you note is that there is no need to issue these two commands on
each partition; issuing them on any partition once will affect all partitions. You also can
tell that there are four partitions, since you received a message from each of them.

2. Review the db2nodes.cfg file to understand the configuration of your partitions (see
Figure 2.18). Using operating system commands, you determine that the home directory
for instance db2inst1 is /home/db2inst1. The db2nodes.cfg file is stored in the directory
/home/db2inst1/sqllib.

Figure 2.18 shows there are four partitions, two per server. The server host names
are aries and saturn.

3. Create the database mydb1. Since you want partition 0 to be your catalog partition, you
must issue the CREATE DATABASE command from partition 0. You issue the state-
ment db2 "values (current dbpartitionnum)" to determine which partition
is currently active and find out that partition 3 is the active partition (see Figure 2.19).

Chong.book Page 61 Monday, January 10, 2005 4:18 PM

62 Chapter 2 • DB2 at a Glance: The Big Picture

Figure 2.16 DB2 UDB ESE with DPF design

Chong.book Page 62 Monday, January 10, 2005 4:18 PM

2.7 Case Study: DB2 with DPF Environment 63

4. Next, you change the DB2NODE environment variable to zero (0) as follows (see Fig-
ure 2.20):
DB2NODE=0
export DB2NODE
db2 terminate

[db2inst1@aries db2inst1]$ db2stop
05-18-2004 23:44:42 3 0 SQL1064N DB2STOP processing was successful.
05-18-2004 23:44:43 1 0 SQL1064N DB2STOP processing was successful.
05-18-2004 23:44:44 2 0 SQL1064N DB2STOP processing was successful.
05-18-2004 23:44:44 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.

[db2inst1@aries db2inst1]$ db2start
05-18-2004 23:44:51 1 0 SQL1063N DB2START processing was successful.
05-18-2004 23:44:51 0 0 SQL1063N DB2START processing was successful.
05-18-2004 23:44:52 3 0 SQL1063N DB2START processing was successful.
05-18-2004 23:44:53 2 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

[db2inst1@aries db2inst1]$

Figure 2.17 Running the db2stop and db2start commands

[db2inst1@aries sqllib]$ pwd
/home/db2inst1/sqllib

[db2inst1@aries sqllib]$ more db2nodes.cfg
0 aries.myacme.com 0
1 aries.myacme.com 1
2 saturn.myacme.com 0
3 saturn.myacme.com 1

[db2inst1@aries sqllib]$

Figure 2.18 A sample db2nodes.cfg file

[db2inst1@saturn db2inst1]$ db2 "values (current dbpartitionnum)"

1

 3

 1 record(s) selected.

Figure 2.19 Determining the active partition

Chong.book Page 63 Monday, January 10, 2005 4:18 PM

64 Chapter 2 • DB2 at a Glance: The Big Picture

In the CREATE DATABASE command you specify the path, /db2database in this
example, which is an existing path that has been created locally on all servers so that
the data is spread across them.

5. To confirm that partition 0 is indeed the catalog partition, simply issue a list db
directory command and look for the Catalog database partition number field
under the entry for the mydb1 database. Alternatively, issue a list tablespaces
command from each partition. The SYSCATSPACE table space will be listed only on
the catalog partition.

6. Create partition group pg23 on partitions 2 and 3. Figure 2.21 shows how to accom-
plish this and how to list your partition groups. Remember that this does not list
IBMTEMPGROUP.

7. Create and manage your buffer pools. Issue this statement to create buffer pool BP23
on partition group pg23:
db2 "create bufferpool BP23 database partition group pg23 size 500"

[db2inst1@saturn db2inst1]$ DB2NODE=0
[db2inst1@saturn db2inst1]$ export DB2NODE
[db2inst1@saturn db2inst1]$ db2 terminate
DB20000I The TERMINATE command completed successfully.

[db2inst1@saturn db2inst1]$ db2 list applications
SQL1611W No data was returned by Database System Monitor. SQLSTATE=00000

[db2inst1@saturn db2inst1]$ db2 create db mydb1 on /db2database
DB20000I The CREATE DATABASE command completed successfully.

[db2inst1@saturn db2inst1]$ db2 connect to mydb1

 Database Connection Information

 Database server = DB2/LINUX 8.1.2
 SQL authorization ID = DB2INST1
 Local database alias = MYDB1

[db2inst1@saturn db2inst1]$ db2 "values (current dbpartitionnum)"

1

 0

 1 record(s) selected.

[db2inst1@saturn db2inst1]$

Figure 2.20 Switching the active partition, then creating a database

Chong.book Page 64 Monday, January 10, 2005 4:18 PM

2.7 Case Study: DB2 with DPF Environment 65

Figure 2.22 shows this statement. It also shows you how to associate this buffer
pool to another partition group using the ALTER BUFFERPOOL statement.

To list your buffer pools and associated partition groups, you can query the
SYSCAT.BUFFERPOOLS catalog view, also shown in Figure 2.22.

Note that a buffer pool can be associated with any partition group. Its definition will
be applied to all the partitions in the partition group, and you can specify different sizes
on the partitions if required.

[db2inst1@saturn db2inst1]$ db2 "create database partition group pg23 on
dbpartitionnum (2 to 3)"
DB20000I The SQL command completed successfully.

[db2inst1@saturn db2inst1]$ db2 "list database partition groups"

DATABASE PARTITION GROUP

IBMCATGROUP
IBMDEFAULTGROUP
PG23

 3 record(s) selected.

[db2inst1@saturn db2inst1]$

Figure 2.21 Creating partition group pg23

[db2inst1@saturn db2inst1]$ db2 "create bufferpool BP23 database partition group
pg23 size 500"
DB20000I The SQL command completed successfully.

[db2inst1@saturn db2inst1]$ db2 "alter bufferpool BP23 add database partition group
IBMCATGROUP"
DB20000I The SQL command completed successfully.

[db2inst1@saturn db2inst1]$ db2 "select bpname, ngname from syscat.bufferpools"

BPNAME NGNAME
--
IBMDEFAULTBP -

BP23 PG23

BP23 IBMCATGROUP

 3 record(s) selected.

[db2inst1@saturn db2inst1]$

Figure 2.22 Managing buffer pools

Chong.book Page 65 Monday, January 10, 2005 4:18 PM

66 Chapter 2 • DB2 at a Glance: The Big Picture

8. Create the table space mytbls1:
db2 "create tablespace mytbls1 in database partition group pg23
 managed by system using ('/data') bufferpool bp23"

9. Create table table1 in table space mytbls1 with a partitioning key of col1 and col2:
db2 "create table table1 (col1 int, col2 int, col3 char(10))
 in mytbls1
 partitioning key (col1, col2)"

10. Create the index index1. Note that this doesn’t have any syntax specific to a DPF
environment:
db2 "create index index1 on table1 (col1, col2)"

The index will be constructed on each partition for its subset of rows.
11. Test the db2_all command to update the database configuration file for all partitions

with one command. Figure 2.23 shows an example of this.

And that’s it! In this case study you have reviewed some basic statements and commands appli-
cable to the DPF environment. You reviewed the db2stop and db2start commands, deter-
mined and switched the active partition, and created a database, a partition group, a buffer pool,
a table space, a table with a partitioning key, and an index. You also used the db2_all com-
mand to update a database configuration file parameter.

2.8 SUMMARY

This chapter provided an overview of the DB2 core concepts using a “big picture” approach. It
introduced SQL statements and their classification in Data Definition Language (DDL), Data
Manipulation Language (DML), and Data Control Language (DCL).

[db2inst1@aries sqllib]$ db2 get db cfg for mydb1 | grep LOGFILSIZ
 Log file size (4KB) (LOGFILSIZ) = 1000
[db2inst1@aries sqllib]$ db2_all "db2 update db cfg for mydb1 using LOGFILSIZ 500"

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
aries.myacme.com: db2 update db cfg for mydb1 using LOGFILSIZ 500 completed ok

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
aries.myacme.com: db2 update db cfg for mydb1 using LOGFILSIZ 500 completed ok

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
saturn.myacme.com: db2 update db cfg for mydb1 using LOGFILSIZ 500 completed ok

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
saturn.myacme.com: db2 update db cfg for mydb1 using LOGFILSIZ 500 completed ok
[db2inst1@aries sqllib]$ db2 get db cfg for mydb1 | grep LOGFILSIZ
 Log file size (4KB) (LOGFILSIZ) = 500
[db2inst1@aries sqllib]$

Figure 2.23 Using db2_all to update the db cfg file

Chong.book Page 66 Monday, January 10, 2005 4:18 PM

2.9 Review Questions 67

DB2 commands are classified into two groups—system commands and CLP commands—and
several examples were provided, like the command to start an instance, db2start.

You need an interface to issue SQL statements and commands to the DB2 engine. This interface
was provided by using the DB2 tools available with the product. Two text-based interfaces were
mentioned, the Command Line Processor (CLP) and the Command Window. The Control Cen-
ter was noted as being the most important administration graphical tool.

The chapter introduced the concepts of instances, databases, table spaces, buffer pools, logs,
tables, indexes, and other database objects in a single partition system. There are different levels
of configuration for the DB2 environment: the environment variables, the DB2 registry vari-
ables, and the configuration parameters at the instance (dbm cfg) and database (db cfg) levels.
DB2 has federation support for queries using tables from other databases in the DB2 family. The
chapter also covered database partition, catalog partition, coordinator node, and partitioning
map on a multipartition system.

Two case studies reviewed the single-partition and multipartition environments respectively,
which should help you understand the topics discussed in the chapter.

2.9 REVIEW QUESTIONS

1. How are DB2 commands classified?
2. What is a quick way to obtain help information for a command?
3. What is the difference between the Information Center tool and simply reviewing the

DB2 manuals?
4. What command is used to create a DB2 instance?
5. How many table spaces are automatically created by the CREATE DATABASE

command?
6. What command can be used to get a list of all instances on your server?
7. What is the default instance that is created on Windows?
8. Is the DAS required to be running to set up a remote connection between a DB2 client

and a DB2 server?
9. How can the DB2 environment be configured?

10. How is the local database directory populated?
11. Which of the following commands will start your DB2 instance?

A. startdb
B. db2 start
C. db2start
D. start db2

12. Which of the following commands will list all of the registry variables that are set on
your server?
A. db2set –a
B. db2set –all

Chong.book Page 67 Monday, January 10, 2005 4:18 PM

68 Chapter 2 • DB2 at a Glance: The Big Picture

C. db2set –lr
D. db2set -ltr

13. Say you are running DB2 on a Windows server with only one hard drive (C:). If the
DB2 instance is dropped using the db2idrop command, after recreating the DB2
instance, which of the following commands will list the databases you had prior to
dropping the instance?
A. list databases
B. list db directory
C. list db directory all
D. list db directory on C:

14. If the list db directory on C: command returns the following:
 Database alias = SAMPLE
 Database name = SAMPLE
 Database directory = SQL00001
 Database release level = a.00
 Comment =
 Directory entry type = Home
 Catalog database partition number = 0
 Database partition number = 0

which of the following commands must be run before you can access tables in the database?
A. catalog db sample
B. catalog db sample on local
C. catalog db sample on SQL00001
D. catalog db sample on C:

15. If there are two DB2 instances on your Linux server, inst1 and inst2, and if your default
DB2 instance is inst1, which of the following commands allows you to connect to data-
bases in the inst2 instance?
A. export inst2
B. export instance=inst2
C. export db2instance=inst2
D. connect to inst2

16. Which of the following DB2 registry variables optimizes interpartition communication
if you have multiple partitions on a single server?
A. DB2_OPTIMIZE_COMM
B. DB2_FORCE_COMM
C. DB2_USE_FCM_BP
D. DB2_FORCE_FCM_BP

17. Which of the following tools is used to run commands on all partitions in a multiparti-
tion DB2 database?
A. db2_part
B. db2_all
C. db2_allpart
D. db2

Chong.book Page 68 Monday, January 10, 2005 4:18 PM

2.9 Review Questions 69

18. Which of the following allows federated support in your server?
A. db2 update db cfg for federation using FEDERATED ON
B. db2 update dbm cfg using FEDERATED YES
C. db2 update dbm cfg using NICKNAME YES
D. db2 update dbm cfg using NICKNAME, WRAPPER, SERVER, USER MAPPING

YES
19. Which environment variable needs to be updated to change the active logical database

partition?
A. DB2INSTANCE
B. DB2PARTITION
C. DB2NODE
D. DB2PARTITIONNUMBER

20. Which of the following statements can be used to determine the value of the current
active database partition?
A. values (current dbpartitionnum)
B. values (current db2node)
C. values (current db2partition)
D. values (current partitionnum)

Chong.book Page 69 Monday, January 10, 2005 4:18 PM

