
780

C H A P T E R 2 5

Problem Prevention
and Determination
Methodology

Objectives
This chapter covers the following concepts:

• Problem prevention best practices

• Change control best practices

• WebSphere best practices

• Working with IBM WebSphere support

25.1 Problem Prevention Best Practices
25.1.1 Testing Best Practices
One of the best ways to avoid and flush out problems prior to releasing a new application into the
production environment is to properly test it. To most, the concept of testing is an obvious prereq-
uisite to putting an application into the production environment. However, it is important to note
that the key is not just “testing,” but “proper testing”. To paraphrase a famous statement, it is not
whether you test, but how you test. A large percentage of the problems that occur in production
environments can be prevented if the application is properly tested. It is the goal of this section to
describe a test methodology that, when followed, will result in a significantly reduced risk of pro-
duction outages.

25.1.1.1 Properly Scaled Tests

Prior to testing an application, it is important to ensure the environment in which it is tested is
appropriate for that application. An appropriate test environment for an application is one that is a
scale model of its production environment, including all components from Web server to data-

ch25.qxd 11/17/04 9:55 AM Page 780

base. Having an exact replica of the production environment for testing may not always be eco-
nomically feasible; however, it is highly recommended that the test environment be an accurate
model of the production environment.

What Does It Mean to Have a Scale Model of Production in Test? Prior to discussing the
benefits of having a scale model of the production environment in test, it is important to clearly
articulate what we mean when using this phrase. It is broader than simply having a fraction of the
production computing power in the test environment. As an example, imagine a production
environment consisting of four machines, each with four processors. Two possible test
configurations may be

1. One 4-processor machine

2. Four 1-processor machines

While it is true that both of these proposed test environments have one-quarter the processing
power of the production environment, both leave out complexity. The first configuration, one
4-processor machine, disregards the complexity of having the application distributed across mul-
tiple systems. The second option, four 1-processor machines, ignores the impact of having mul-
tiple processors per machine. Although the number of processors per machine does not directly
affect the administrative configuration of the WebSphere environment, it does impact the ability
to troubleshoot the application. More specifically, this configuration increases the difficulty of
finding synchronization bugs.

Most synchronization problems are only found on multiple processor machines where true
multithreading and parallelization occur. Thus, not testing on multiprocessor servers can lead to
deploying an application, fraught with synchronization problems, into the production environ-
ment. A more correct scale would be to have four 2-processor machines or, at a minimum, two
2-processor machines.

Another key component to having a scale model of the production environment in test is to
ensure that the entire path length of the application is tested with no parts skipped, ensuring that
all tests are functionally and systematically complete. This includes having all database connec-
tions, Web servers, proxy servers, messaging servers, firewalls, and so on, configured and running
in the test environment as they will in production. Failing to test the entire environment may
result in deployment or run time failures.

Benefits of a Scale Model The most obvious reason for testing an application is for
correctness. It is important to verify that the application actually works as designed, but this is
only one of the reasons for testing. Another commonly overlooked reason for testing is to allow
you to become familiar with the dynamics of the application, its attributes in steady state, startup,
and under load in a safe environment. This is important because it will allow you to quickly
identify and isolate anomalies when the application enters the production environment. If the test
environment is not to scale of the production environment, then the dynamics observed will

25.1 Problem Prevention Best Practices 781

ch25.qxd 11/17/04 9:55 AM Page 781

change as the application moves to production, thus crippling your problem determination ability
and putting the company in a dangerous situation.

Maximizing performance tuning efforts is yet another reason for having a scale model of
the production environment in test. Performance is one of the key characteristics of any applica-
tion, often the second most important next to correctness. For an application to achieve maximum
performance, it must be tuned. Performance tuning is a highly iterative process dependent on
many parameters set both within an application server and the wider environment. If the test envi-
ronment is not to scale of the production environment, much of the hard work that went into tun-
ing the application and its environment is wasted because the parameters that achieved the best
results cannot be directly applied in production. A concrete example of a parameter that has a
large effect on an application server’s performance, thus an application’s performance, is the Java
Virtual Machine’s heap size. For example, if, by tuning, it is discovered that a maximum heap
size of 256 megabytes achieves the best performance in the test environment and the test environ-
ment is one-half scale of production, then this number can be doubled in production with a higher
degree of confidence than if the test environment were not to scale of production.

25.1.1.2 Isolated Test Environment

To ensure the accuracy of any test, it is important to mandate that the test environment be isolated
from other environments and activities. This is necessary to ensure that the observed behaviors
are the result of the application or services with which the application is interacting and not some
external event. An isolated test environment consists of machines dedicated to running Web-
Sphere, an isolated subnet, dedicated database, and any other external systems and resources.
One of the most frustrating situations when attempting to debug a problem is being unable to iso-
late its source, only to later find out that the problem occurred because of some external situation.

25.1.1.3 Test Scenarios

To ensure that an application is ready to be deployed in the production environment, care must be
taken to ensure that the scenarios under which it is tested are realistic. Realistic test scenarios
consist of two parts.

The first step in creating realistic test scenarios is to ensure that the scripts used for testing
the application are realistic examples of what a user might do in production. General usage sce-
narios are usually known prior to developing an application in the architecture phase; however,
like most things, enterprise applications are not always used the way their architects envisioned.
Instead, people use the application in the way that feels most intuitive to them. Therefore, it is
best to get test cases from the users themselves. There are several ways to gather this information,
which vary depending on what is being deployed into production.

If the application is an update to an existing application already in production, then real-
world usage can be tracked on the current production version of the application, either by logging
or with an external monitoring tool capable of capturing transactions.

If the application is completely new, with functions never before available to its users, then
the task of gathering real-world scenarios becomes more difficult. One option is to use IBM’s

782 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 782

Rational Unified process or the Extreme Programming paradigm at http://www.extreme
programming.org/, in which the end users are constantly evaluating the application as it is being
developed. Another option is to verify the application’s general functionality via some archi-
tected use cases then release the application to a small alpha or beta test group to gather more user
oriented test cases.

GOTCHA
A commonly forgotten step when creating test scripts is to validate the returned
results. By default, many of the stress-testing applications only check for a HTTP 200
response, which is insufficient when testing J2EE applications. If the results are not
verified, the application could be displaying incomplete Web pages or, worse yet, the
data for a different user.

Once the test cases have been created, the next step is to run them against the application in
the test environment. As it is important to gather realistic test scenarios, it is also important to run
a diverse mixture of these scenarios while testing the application. The mixture should be a repre-
sentative set of your user population. For instance, if there are six different user types expected in
the production environment and the majority (50 percent) are expected to be of one type (type A)
while the remaining 50 percent will be equally distributed among the five remaining user types,
then you will want to run the tests with a similar distribution. In this example 50 percent of the
virtual users would be executing test A while the remaining 50 percent would be distributed
evenly among the other test cases.

GOTCHA
It is important to capture and test all possible user types even if there is one user type
that is only used once in a great while. An example would be an administrator perform-
ing some weekly or monthly functions. Though this administrator may be less than
1 percent of the user population, it is important to understand the implications of that
user’s actions.

TIP
While monitoring the performance of the application and its dependent parts, also
monitor the statistics of the testing machine. Never let the stress testing software or
hardware be the bottleneck in a test environment.

Test Types After the test scenarios have been created, the next step is to execute them in
various test types. The first tests that should be run are those that verify the correctness of the
application. There are several others tests that go beyond just testing functionality of the
application which should also be run. Three of the most important tests are performance, stress,
and endurance. Describing the detailed steps required to execute each of these tests is beyond the
scope of this book, so we will give a brief overview of each and pointers to more in-depth
resources as appropriate.

The performance test is probably the most well-known test type. In a performance test, as
the name suggests, the goal is to optimize the performance tuning parameters to maximize the

25.1 Problem Prevention Best Practices 783

ch25.qxd 11/17/04 9:55 AM Page 783

overall performance of the applications being tested. The process for performance tuning Web-
Sphere Application Server is described in great detail in chapter 22 of this book and in the
whitepaper, WebSphere 4.0 Performance Tuning Methodology found at http://www.ibm.com

/software/webservers/appserv/doc/v40/ws_40_tuning.pdf. The paper was written for the 4.0 version of
WebSphere Application Server; however, the logic and methodology detailed is applicable to
every WebSphere release, including the latest, V5.1.

One of the main themes of this chapter, thus far, has been the importance of having a scale
model of your production environment in test. A key component of this is having an accurate
model of user workload to ensure that the planned capacity is enough to handle the estimated user
load. Stress testing is designed to apply user workload, above and beyond what is expected, in an
attempt to find the breaking point of the application and its environment. This type of test has sev-
eral benefits. First, it will help you better understand the characteristics of the application under
high load and what piece of the application is likely to fail. If a potential weak link can be identi-
fied, procedures can be put into place to deal with the problem, allowing you to be proactive
instead of reactive. The second benefit is that application bugs, which might not surface under
normal load, will get flushed out. One of the most prominent types of these bugs are those caused
by synchronization (or lack of it). Flushing out synchronization bugs is a function of time, load,
and parallelism. The larger these components are, the greater the possibility of finding a synchro-
nization problem. Stress testing increases the load part of this equation.

The last type of test we discuss is the endurance test. The length of the endurance test is
what differentiates it from all other tests. Most tests last several minutes or, at most, an hour, but
in the endurance test the application is run under heavy load, as expected in production, for many
hours or even days. The purpose of this is to uncover problems that may appear after extended
usage. There are many problems that fall into this category, including session problems, intermit-
tent failures, and the aforementioned synchronization bugs.

25.1.2 Change Control Best Practices
The production environment should be a strictly controlled environment. Failure to adhere to a
stringent change control policy can result in inexplicable problems in the production environ-
ment. This section describes some best practices associated with change control with the produc-
tion environment.

25.1.2.1 Restricting Administrative Privileges

The first step in ensuring proper change control is to limit the number of people who have admin-
istrative privileges on the production machines. Oftentimes we have encountered production sys-
tems on which many people in the organization have administrative privileges, leading to a
myriad of problems. This is especially problematic if the production machines are shared across
many departments within the organization. In most cases, each department will have their own
set of priorities, and, if the administrative privileges are not restricted to one or a select few
administrators, people can unwittingly make changes that impact other applications within the
environment.

784 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 784

25.1.2.2 Access History

Even with proper restriction on administrative privileges, problems can occur because of admin-
istrative errors. When they happen it is useful to have a log detailing who made the last change, at
what time, and from which remote machine. This is not to place blame but rather to identify what
actions caused the problem and to be able to inquire as to why that particular action was per-
formed. Once the problematic action is identified, an alternative procedure can be created to
avoid future outages.

Another reason to keep an access history is to identify hackers. By following the potential
hacker’s actions, you can see what techniques he/she is using to access your site, and you may be
able to identify their intentions if they should break in.

25.1.2.3 Backing Up Your Configuration

Prior to making any configuration change, it is a good idea to back up the current, working con-
figuration. WebSphere provides a utility, backupConfig, to aid this process. BackupConfig is
command line utility (found in the <WASND_ROOT>/bin and <WAS_ROOT>/bin directories)
that creates a backup of the installation’s configuration files, including application and server
data. BackupConfig can be run by executing the provided executable. Be aware that its default
behavior is to stop all WebSphere processes prior to performing the backup. This behavior can be
overridden by supplying the switch –nostop. The complete command would be backupConfig
–nostop.

TIP
When using WebSphere in a distributed environment, backupConfig only needs to be
run on the Deployment Manager.

To restore from a previously saved configuration, use the restoreConfig command. Like
backupConfig, restoreConfig’s default behavior is to stop the WebSphere processes prior to
restoring the configuration. Again, the –nostop command line option can be used to override the
default behavior.

TIP
Unfortunately, we are all human and it is possible to forget to back up the configuration
prior to making a change. Creating cron jobs, a scheduled execution of a task, is one
way to overcome this human limitation. By creating a daily or weekly cron job that runs
the backupConfig command, you can ensure that you have a recovery point even if
you forget to manually run the backupConfig command.

Beyond backing up the configuration, it is also a good idea to backup the entire WebSphere
installation directory immediately after installation, before and after any major changes, such as
adding a node to a cell. This is useful in the event an administrator accidentally deletes a critical
file, such as startupServer.bat or java.exe. Mistakes such as these are not uncommon, especially
when working from the command line and dealing with many different directories at once.

25.1 Problem Prevention Best Practices 785

ch25.qxd 11/17/04 9:55 AM Page 785

Regardless of whether this has happened in your organization before, it is best to protect against
these types of mistakes and create regular backups.

25.1.2.4 Maintain a Log History

Usually a problem is discovered only after several occurrences and perhaps not until an external
complaint is logged. By keeping a log history, you can uncover how long this problem has been
occurring and potentially find a pattern in the events that caused the problem to occur.

25.1.2.5 Documented Procedures

It is easy to forget a step when performing a complex operation such as installing WebSphere or
upgrading an application. The best way to avoid such errors is to document the steps for these
complex operations. The document should consist of clear and detailed steps with screen shots
that show expected results to avoid possible confusions and misinterpretations. Every administra-
tor should have a hard copy of these documents and follow them to the letter.

Execution of the procedures should involve, at the very least, two people. The first adminis-
trator executes the steps and the other verifies them.

TIP
Automating the documented procedures is an advanced technique that, when imple-
mented properly, eliminates all potential user error. The risk is that there is no human
control on the process. For more information on automated scripting, refer to chapter
20, Automated WebSphere Administration.

25.1.3 WebSphere Best Practices
IBM provides numerous white papers and articles about best practices and design patterns for
WebSphere. The WebSphere Developer Domain Web site is a great place to find many useful
WebSphere articles, including best practices-specific papers. A Web site that hosts an extensive
collection of best practices for administering the WebSphere Application Server Web site is also
available at http://www.software.ibm.com/wsdd/zones/bp. IBM best practices are reviewed and
updated for new versions of WebSphere. It is recommended you stay informed and follow the
best practices published by IBM.

25.1.3.1 Application Best Practices

Application performance and scalability is heavily influenced by the design of the application,
database, and other resources. The importance of following application best practices is underes-
timated in many cases. A good application design for performance and scalability follows certain
fundamental best practices and avoids common mistakes. Following the WebSphere application
best practices is a good starting point for designing applications with great performance and scal-
ability. Performance, in particular, suffers from poorly designed and implemented applications.

786 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 786

25.1.3.2 Code Reviews

Code reviews are an extremely effective way to find code bugs and, thus, prevent problems, but
many times they are not fully completed due to project deadlines or other time constraints. Code
reviews are performed by programmers who are not the authors of the code that is investigated. In
many cases code reviews are as effective as or even more effective than testing.

Code reviews include simple things like checking for naming conventions, code indenting
or adding Javadoc comments, and more complex tasks like code optimization or logic checking.
The tasks in the first category make your code easier to maintain and reuse, while tasks in the sec-
ond category check the correctness and improve the performance of your application. Code opti-
mization like caching data, efficient use of database connections, or eliminating unnecessary
object instantiation can significantly increase performance.

The good news is that you can use Java code analyzers to automate much of the code
review process. Most Java code analyzers detect things like unused or duplicate imports, unused
private and local variables, missing Javadoc comments, violation of naming conventions, and
empty “catch” blocks or “if” statements. You will still have to check for logic errors and code
optimization, but most of these simple (but time-consuming) code checking tasks are automated.

TIP
You can integrate Java code analyzers with Ant. In this way you can check your code
any time you run a unit test or complete a build.

25.1.4 WebSphere Fix Packs and Interim Fixes
In many cases, the solution to your problem may be as simple as applying a fix pack or interim
fix. For this reason, we recommend that you stay up to date with fix packs for your version of
WebSphere and check for interim fixes when problems occur. Although applying a fix pack
requires careful planning, this operation pays off in most cases by fixing or preventing problems.
It is recommended that you also keep current supporting products such as DB2, and so on.

TIP
Fix packs should be tested in nonproduction environment first. Occasionally features
in a fix pack may not be compatible with existing applications.

Interim fixes are WebSphere code fixes created for known individual problems and should
be applied when you have a critical problem without a valid workaround. Interim fixes are indi-
vidually tested and are integrated with the next WebSphere fix pack. Make sure that you check the
WebSphere Application Server fix packs and interim fixes Web site http://www.ibm.com/soft-
ware/webservers/appserv/was/support/ when a problem occurs in order to determine if this is a
documented problem. Each released version of WebSphere details the defects that were fixed in
its accompanied release notes. You can also create a “My support” profile to receive weekly
e-mail notifications about IBM product updates. For WebSphere, go to http://www-306

25.1 Problem Prevention Best Practices 787

ch25.qxd 11/17/04 9:55 AM Page 787

.ibm.com/software/webservers/appserv/was/support/ and select My Support from the right
menu.

25.2 Problem Determination Methodology
Often, when an error occurs in WebSphere, the user knows a problem has occurred but doesn’t
know what to do about it or what it means—the user just knows that something is broken. This
section takes you through WebSphere problem determination methodology, a series of rules to
follow when you encounter a problem, to help pinpoint its origin and take it to resolution.

Why is methodology important? The foundation of any problem determination process is
good methodology. Knowing how to go about determining if you have a problem, where the
problem exists, and the basics of how to solve that problem are important to any enterprise
project.

You might be asking, “Why not tell us how to troubleshoot WebSphere?” Troubleshooting
a product the size of WebSphere could fill a book on its own. WebSphere is a very large and com-
plex piece of software and to try to address in detail how to debug each specific component is
beyond the scope of an administration book. While this subsection does not cover detailed trou-
bleshooting of the application server, it does lay the foundation for troubleshooting your environ-
ment if and/or when a problem occurs. This methodology section lays out a set of rules you can
employ when doing in-depth problem determination. Following these rules when a problem
occurs can help expedite locating the problem (the first step in any problem determination
process) and then resolution.

25.2.1 Locating the Error in a Complex Environment
When a problem occurs, pinpointing its origin can take some detective work, especially in a com-
plex environment where multiple tiers with multiple products are integrated with one another.
Knowing where each product’s log files are located is an important step in knowing your environ-
ment, since the log files often provide very useful information. We have detailed where to locate
and how to read WebSphere’s log files in chapter 24, WebSphere Problem Determination Tools—
Logging and Tracing. Often, when troubleshooting in a complex environment, problem determi-
nation becomes a team effort, involving administrators and application developers from each
component in the environment.

This is especially true in the initial stages of determining where the problem resides (e.g.,
which tier, which component/product). Rarely is one person an expert in each component that
makes up the environment (e.g., the back-end, the Web server, the edge component, the authenti-
cation server, the application, etc.). It is often necessary to involve people from various roles to
assist in determining where the problem is or is not located. For example, if you are experiencing
the problem when testing a new build of an application, make sure the necessary application
developers are available to help determine if the error could be originating from the application
code. Or, if the error is occurring when accessing the back-end data store, involve the database
administrator to assist in determining if the error is originating from the database.

788 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 788

To help pinpoint the component where the problem exists, it is useful to create a diagram of
the path a request would take, assuming it did not fail, beginning with the client all the way to the
back-end, depicting each component the request touches. For example, assume that a request for
a simple servlet is failing. If you were to map the flow of a request in a simple environment begin-
ning from a browser, it might look something like the servlet request goes through the proxy fire-
wall to the network sprayer; from the network sprayer through the domain firewall to the Web
server; from the Web server through an additional firewall to WebSphere Application Server,
which then responds back to the Web server that responds to the browser.

At any one of these points, the request might fail. However, the request can be tracked by
looking at access and error logs of each of the components involved. Additionally, this might
require enabling trace on the various components to track the requests. For example, the access
log on WebSphere’s embedded HTTP Server might be enabled so you can verify that the request
from the Web server made it into WebSphere. Possibly, one of the components is throwing error
messages into the log files, or there are communication issues between two or more of the com-
ponents involved. Once the failing component(s) is located, a more thorough examination of the
error can begin. Problem determination of products outside the WebSphere Application Server or
products installed and running in WebSphere Application Server (like WebSphere Portal or a cus-
tom J2EE application) is out of the scope of this section. While this section is mainly geared
toward problem determination with regard to the WebSphere Application Server run time, some
of this methodology still applies to external products and applications.

25.2.2 Could the Error Be Valid?
Once the error is isolated to a particular component(s) within the environment, one of the first
things to evaluate is the error code, message, and any associated stack trace that appears. Often
these error codes and/or messages provide useful information as to what went wrong. Most prod-
ucts and protocols also have guides that provide additional information on particular error codes.
WebSphere has a Message Reference guide that is a subsection of the InfoCenter documentation.
This Message Reference section has a description of each error code that WebSphere can log in

25.2 Problem Determination Methodology 789

Figure 25.1 Example request path through enterprise environment.

ch25.qxd 11/17/04 9:55 AM Page 789

its trace or log files. For information on how to read or locate WebSphere error codes and mes-
sages, please refer to chapter 24. Also, in Table 25.1, we are providing information on where to
locate additional commonly used IBM product documentation, as well as protocol error codes.

Sometimes, pertinent information can be located in different product log files, which can
be aligned by timestamp. For example, an exception occurring in the database could provoke
error messages to be logged in the application server log files, as well as the Web server logs.
Once you locate one error message, you can use its associated timestamp to cross-reference the
database, application server, Web server, log files, and so on. This is also a good technique to use
when locating the root of the error.

TIP
It is important to have the system clocks synchronized on each machine such that
time stamping cross-referencing can be easily used. If the system clocks are not syn-
chronized, the logs can still be cross-referenced; however, the times must be skewed
appropriately.

790 Chapter 25 Problem Prevention and Determination Methodology

Product or Reference
Protocol Guide Where to Locate

WebSphere Message Reference Online InfoCenter Documentation:
Application Server Section of Info

Center Documentation
www.ibm.com/software/webservers/appserv/
infocenter.html

DB2 Universal Message Reference, Online DB2 Core Documentation:
Database vol. 1 and 2 Guides

www.ibm.com/cgi-bin/db2www/data/db2/udb/
winos2unix/support/v8pubs.d2w/en_main

IBM Http Server Troubleshooting Online Infocenter Documentation:
Section of InfoCenter
Documentation

www.ibm.com/software/webservers/httpservers/
doc/v1326/manual/ibm/index.html

Apache Server Online Documentation Online Apache Documentation Project:
and FAQ

httpd.apache.org/docs-project/

Hypertext Transfer Status Code Section Online RFC 2616:
Protocol (HTTP) of RFC2616

www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Table 25.1 IBM Product and Protocol Message Reference Guides

Message

ch25.qxd 11/17/04 9:55 AM Page 790

When tackling a problem, it is always good to first assume that the error is valid before
declaring that there is a bug or a defect in the running product. The error code and associated
message can often be enough for you to diagnose and fix the problem.

For example, let us take a look at a fix pack installation problem scenario. Upon installing a
fix pack onto an existing WebSphere configuration, an error occurs preventing the installation. The
initial reaction to such a failure could be to assume that there is a defect with the installation or the
WebSphere run time. Listing 25.1 depicts a portion of a reproduced log file with the problem.

Listing 25.1 Portion of log file from failing installation of a WebSphere fix pack.

...

Results:

===

Time Stamp (End) : 2003-07-15T17:08:42-04:00

EFix Component Result : failed

EFix Component Result Message:

===

WUPD0239E: Fix removal failure: The processing of fix
WAS_WSADIE_ND_01_16-2003_5.0_cumulative, component prereq.wsadie
failed. See the log file

C:\\WebSphere\DMgr\properties\version\log\20030715_210842_WAS_WSADIE_ND
_01-16-2003_5.0_cumulative_prereq.wsadie_uninstall.log for processing
details.

===

EFix Component Installation ... Done

Exception: WUPD0223E: Fix uninstall failure: The update for component
{1} for fix pre-req.wsadie could not be installed .

...

As you can see from the log file excerpt, an exception occurred that prevented the installa-
tion. This log file also referenced an additional file for more information (see the highlighted
portion of the log file above). Upon investigation of the referenced log file, 20030715_
210842_WAS_WSADIE_ND_01-16-2003_5.0_cumulative_prereq.wsadie_uninstall.log, addi-
tional information about the problem is uncovered. Listing 25.2 shows a reproduced portion
of the referenced log file, 20030715_210842_WAS_WSADIE_ND_01-162003_5.0_
cumulative_prereq.wsadie_uninstall.log.

Listing 25.2 Portion of log file from failing installation of a WebSphere fix pack.

...

2003-07-15T17:08:42-04:00 Applying entry 1 of 5 20% complete

2003-07-15T17:08:42-04:00 Preprocessing entry (restore):

25.2 Problem Determination Methodology 791

ch25.qxd 11/17/04 9:55 AM Page 791

2003-07-15T17:08:42-04:00 No EAR processing noted.

2003-07-15T17:08:42-04:00 Next entry name: lib/jdom.jar

2003-07-15T17:08:42-04:00 entry path: C:\WebSphere\DMgr\lib\jdom
.jar

2003-07-15T17:08:42-04:00 Error 16--File could not be deleted:

C:\WebSphere\DMgr\lib\jdom.jar

2003-07-15T17:08:42-04:00 Fetching entry ...

2003-07-15T17:08:42-04:00 Preprocessing entry (restore):

2003-07-15T17:08:42-04:00 No EAR processing noted.

2003-07-15T17:08:42-04:00 Next entry name: lib/marshall.jar

2003-07-15T17:08:42-04:00 entry path: C:\WebSphere\DMgr\lib\
marshall.jar

2003-07-15T17:08:42-04:00 Error 16--File could not be deleted:

C:\WebSphere\DMgr\lib\marshall.jar

2003-07-15T17:08:42-04:00 Fetching entry ...

2003-07-15T17:08:42-04:00 Preprocessing entry (restore):

...

Again, we have highlighted the errors in the log file excerpt—you can see that some of the jar
files being replaced during the installation of the fix pack could not be removed.

TIP
A log file can have a tremendous amount of information in it. Sometimes searching for
“rror” or “xception” can help pinpoint problems easily. Notice in both search string the
“E” was left off such that capitalization does not limit the search.

Since these jar files could not be removed, the installation was failing. With this information in
hand, we can begin to diagnose the problem—first assuming that the error was valid. Why
couldn’t the files be removed? The following options could all be valid possibilities:

• The jar files did not exist in the first place.

• The person running the installation did not have the appropriate permissions to remove
files on the operating system.

• The files were locked by a running process.

After validating that the jars did exist and the installer had the appropriate permissions, the
last option was investigated. A quick check of all running processes uncovered that WebSphere
was still running while the fix pack was attempting to be installed. Since WebSphere was still
running, it had locked the jar files to prevent run time corruption. So, in fact, the problem was not
a defect or bug in WebSphere’s installation of the fix pack; instead it was a valid response to an
invalid operation (note that the fix pack installation directions require all WebSphere processes to
be stopped before running the installation program). Once all WebSphere processes were
stopped, the fix pack installation was successful.

792 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 792

25.2.3 What Has Changed?
When an error occurs, another technique to help pinpoint the root of the problem is to determine
what might have changed to invoke the error. For example, did the error occur just after you ran a
new test scenario, or did the error begin after you adjusted some TCP configurations on your
operating system? Rarely does an error “just begin happening” if nothing was changed in the
environment (network, operating system, application, server configuration, etc.). Therefore, it is
an important part of problem determination to uncover what might have changed to invoke the
problem at hand.

In an earlier section, Change Control Best Practices, a change control process was detailed
as a best practice for problem prevention. If this system is in place and adhered to, determining if
something in the environment has changed becomes much easier. Also, note that when we say
“environment” we do not just mean WebSphere administration. The environment encompasses
much more than this—it includes items such as the operating system settings, application config-
uration and code, test cases, configuration of supporting products either running on WebSphere
or communicating with WebSphere, such as the Web server, back-end, authentication server, por-
tal server, edge components, and so on. Determining if something has changed can be more than
asking yourself if you have recently altered a configuration setting (unless you are the only one
with administrator privileges to every server in the environment). Communication, therefore, is
the key, especially in a complex environment. We are often surprised how, in some environments,
communication between the administrators of various components (WebSphere, Database, net-
work, etc.), as well as with application development, is minimal. Often, an administrator will call
a product support line before calling a coworker in a different department to see if they might
have altered a configuration.

Pinpointing the change does not mean that a bug does not exist, nor does it mean that the
problem is now solved. Often there is a good reason for the change that has been effected. How-
ever, knowing what the change is and how it affects the system is important in finding a solution
(whether it is a product bug fix, a configuration tweak, etc.).

25.2.4 Simplify, Simplify, Simplify
When you are running in a complex environment and an error occurs, finding the problem can
sometimes be equated to finding a “needle in a haystack.” With so many different products and
configurations involved, solving the problem becomes like solving a multiple variable algebra
problem: the greater the number of variables involved, the more complex it is to solve.

Also, there is not always just one item that causes a problem to occur. Rather, it can be a
combination of settings, coupled with a particular path through running application code, that
triggers the error. To help limit some of the variables in the problem, it is wise to strip the envi-
ronment back to the simplest possible running environment in which the error still occurs.

The best problem determination environment is one where the error can be reproduced with
the simplest test scenario, running the simplest application code, deployed in the simplest
environment. In this environment, not only is it easier to describe the problem to support (if

25.2 Problem Determination Methodology 793

ch25.qxd 11/17/04 9:55 AM Page 793

necessary), but also it limits the number of variables involved in the problem, making it easier to
determine a solution.

25.2.4.1 The Simplest Test Scenario

Evaluate the test scenario that prompts the error to occur. If the test scenario is testing multiple
conditions, can the test be limited to only the condition that fails? By narrowing what is tested
until you have located the simplest test scenario that still causes the failure, you can save time
when rerunning the test scenario, as well as narrow the number of variables when reproducing the
test. You might discover that it is the sequence in which the tests are run that causes the problem,
and/or eliminate the components that appear to not related to the failure.

Additionally, if the failure is occurring during load testing, try to find the minimum amount
of load that still reproduces the problem. For example, if the test does not fail with a single user,
but fails with two users, there might be a thread synchronization error. If the tests only fail under
high load, it might be that your application or environment needs to be tuned for performance
(please see chapters 21 through 23 of this book to learn about performance as relates to
WebSphere).

25.2.4.2 The Simplest Application

When running a complex application, it is often difficult to determine whether the source of the
error resides in the running application, in the WebSphere run time, or in some other area. If you
can eliminate the running application in the simplified environment by reproducing the error with
an alternate, much simpler application, that is very beneficial. You can eliminate the enterprise
application as the source of the problem by attempting to reproduce the error with one of the IBM
WebSphere sample applications that are installed with WebSphere or by creating a very simple
application that forces the error to occur.

TIP
The technique of using an IBM WebSphere sample application or a simple sample
application that can reproduce the problem is especially beneficial when working with
IBM support. If using a created simple application, include it with any documentation
that is provided to WebSphere support, with a description of what it does and the error
it causes. This can help expedite support’s interaction in determining the problem.

25.2.4.3 The Simplest Environment

To locate the origin of the problem, either a product or a WebSphere component level, it is best to
reproduce the problem with the simplest configuration possible. For example, if the problem is
occurring with a Web application, remove the Web server from the environment by accessing the
application directly via WebSphere’s embedded HTTP server. If the problem is with persistent
Enterprise Java Beans (EJBs), try to manually invoke some of the update or select queries on the
back-end to validate that they run correctly. Some other suggestions for simplifying the problem
determination environment include

794 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 794

• Disabling work load management (distributed only)

• Disabling security

• Disabling the JIT compiler

• Moving the test clients onto a machine that has a direct route to WebSphere (rather than
having to go through firewalls or edge components)

25.2.5 Do You Have Enough System Resources?
When failures begin to occur during load tests, sometimes it is not due to a run time failure, but
rather a potential performance issue. Please refer to the Part 5, WebSphere Performance, of this
book for additional information on performance monitoring and tuning. However, do remember
that every machine will have its limits. In some situations, additional hardware will be needed to
support particular load requests.

Performance monitoring can also uncover problems such as memory leaks that can
severely impact application performance. It is highly recommended to tune your application
before releasing it in a production environment.

25.2.6 What to Do If the Problem Is in Production
When a failure occurs in a production environment, it is often a critical situation. If you believe the
problem to be a WebSphere run time defect, it will be important to contact IBM WebSphere support
(1-800-IBM SERV) immediately so they can begin investigating the problem. It is also important to
make sure that no information surrounding the failure is lost. It is a best practice to backup all log
files, including database and Web server logs, if applicable, so they can be referred to later, if neces-
sary. Until a solution is found, rollback or disable any change or update that might have invoked the
problem. In parallel, it is pertinent to try to reproduce the problem in a test environment. A problem
that can be reproduced in test will lend itself to easier problem determination since detailed traces
and logging can be enabled without fear of affecting performance or up-time in the production envi-
ronment. It also provides an experimental environment for being able to freely alter configuration
parameters, as well as providing a simpler, less complex problem determination environment.

TIP
When the cause of the problem is determined, use it as a lesson learned. It is impor-
tant that the failing scenario works its way back into the test suite that is run before any
application is released in production. This way, the problem can be prevented in the
future. Be sure to update procedures and test cases to avoid this problem in the future.

25.2.7 Where to Go for Help
IBM has an extensive WebSphere support Web site that contains self-help and problem sub-
mission information. This page should always be used before contacting IBM support. The
WebSphere support Web site is accessible at http://www.ibm.com/software/webservers/
appserv/was/support/.

25.2 Problem Determination Methodology 795

ch25.qxd 11/17/04 9:55 AM Page 795

The self-help section of the WebSphere support Web site contains links to several online
resources meant to help you troubleshoot a WebSphere problem. Using this site, you can search
on keywords to find Frequently Asked Questions (FAQs), Technotes, Hints and Tips, and other
documents that address existing WebSphere problems. FAQs document common problems and
solutions. Hints and Tips contain information about installing, configuring, and troubleshooting
WebSphere. Technotes are documents containing customer-reported problems and solutions. You
can also download WebSphere tools and utilities, as well as WebSphere fix packs and interim
fixes. The support page also contains links to educational material such as IBM online publica-
tions, redbooks, and white papers.

The WebSphere InfoCenter is another resource for self-help. The InfoCenter is available
online at http://www.ibm.com/software/webservers/appserv/infocenter.html or it can be down-
loaded as a PDF file. The local version of the InfoCenter is also available as an Eclipse
documentation plug-in and can be downloaded from http://www.ibm.com/software/webservers/
appserv/infocenter.html. To view the local documentation, you also need to install the IBM
WebSphere Help System, which is a viewer for displaying product or application information
developed as Eclipse documentation plug-ins. The IBM WebSphere Help System is built on open
source software developed by the Eclipse Project. The InfoCenter contains a problem determina-
tion section, and you can also search the InfoCenter using keywords.The developerWorks Web
site contains very good information for WebSphere developers in the section dedicated to
WebSphere, which is available at http://www.ibm.com/developerworks/websphere/. The
WebSphere developerWorks is a great source for articles and best practices related to WebSphere
products. The site also provides other features like code downloads, technology previews, and
forums.

Other helpful WebSphere resources are the WebSphere newsgroups and WebSphere user-
group forums. There are several such newsgroups and forums, and they usually contain very
useful information provided by WebSphere users. Some of these newsgroups are monitored by
IBM personnel, helping to ensure the integrity of information included within those news-
groups.

WebSphere Studio Application Developer and Site Developer V5.1 have a new feature that
allows you to search on keywords for several products, including WebSphere Application Server.
This new feature is provided in the form of several product-specific plug-ins. The search is per-
formed on resources like the WebSphere support Web site, the WebSphere InfoCenter, and
Google newsgroups. Access to these resources is provided from one central product-specific
page. Besides search capabilities, the plug-ins also provide a collection of local documents for
self-support. These documents are copies of FAQs, Technotes, Hints and Tips, and other
resources that are frequently used by WebSphere support personnel. One advantage of having
these local documents is that they are searched when you perform a search through the
WebSphere Studio Application Developer or Site Developer Help menu. To access the product
plug-ins, select Help → Help Contents from the main menu, and then click on Support informa-
tion of the left side of the page. Please see Figure 25.2.

796 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 796

25.3 Working with IBM WebSphere Support
There are times when you need to work with IBM WebSphere support personnel to troubleshoot
a WebSphere problem. The goal of this section is to familiarize you with the process of resolving
a WebSphere problem with the help of IBM WebSphere support. We will tell you how to open a
Problem Management Record (PMR), what information to have ready, and when you should
involve IBM support to resolve a WebSphere problem.

25.3.1 When to Involve WebSphere Support
You have already tried to solve the problem by yourself. By now, you have searched the
WebSphere support Web site, newsgroups, WebSphere Developer Domain, and other resources
in order to determine if this is a known problem. You have also checked the latest WebSphere fix
packs and interim fixes. Unfortunately you haven’t found a match. It’s time to engage IBM
WebSphere customer support.

25.3.2 How to Open a PMR
There are two ways to open a Problem Management Record (PMR). You can submit an electronic
PMR using the Electronic Service Request (ESR) tool, or you can call IBM customer support
(1-800-IBM-SERV). ESR is a Web-based problem submission tool and is available from the

25.3 Working with IBM WebSphere Support 797

Figure 25.2 WebSphere Studio Application Developer Support information.

ch25.qxd 11/17/04 9:55 AM Page 797

problem submission page at http://www.ibm.com/software/support/probsub.html. In order to use
the ESR tool, you have to be enrolled in the IBM Passport Advantage Program and be registered
as an authorized caller. Authorized callers are registered by the site technical contact, a person in
your company who is responsible for maintaining the list of persons (in your company) author-
ized to use the ESR tool for problem submission. Once your site technical contact adds you as an
authorized caller, you will be able to use the problem submission page to create a user ID and
password. The user ID and password will be required to access the ESR tool. The ESR tool
allows you to open new PMRs, as well as work with your existing PMRs.

TIP
The IBM Customer Number or Customer ID consists of 7 or 10 digits and is used to
identify an IBM Passport Advantage support contract for a customer. Your company
may have several contracts. Check with your site technical contact to determine the
correct IBM Customer Number or Customer ID to use.

The following steps are required to submit a new PMR:

1. Click on your customer number.

2. Click on the Report a New Problem button.

3. Select the product for which you want the PMR to be created.

4. Select a component from the drop down list.

5. If necessary, edit the contact information in the Report a New Problem page.

6. Complete the rest of the fields in the Report a New Problem: Environment, Severity,
Problem description, etc.

7. Click on Submit Problem Report. A page confirming that your PMR has been submitted
to a support queue will be displayed.

Once the queued PMR is processed, a PMR number will be assigned to it and e-mailed to you.
Keep this PMR number handy since you will need it every time you update the PMR or talk to
IBM support.

TIP
The list of products and the list of components for which you can open PMRs can be
quite long. You can use the Product Search and Component Search functions to find a
specific product or component.

TIP
You can create and update a user profile in the ESR tool, with personal information like
your phone number, e-mail, pager, and so forth. This profile will be used when you
submit a PMR via the ESR tool. To access your profile, go to Update Maintenance
Agreements from the main support page.

Figure 25.3 illustrates the ESR page that allows you to create a new PMR.

798 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 798

The other way to submit a PMR is to call IBM customer support (1-800-IBM-SERV).
When you call IBM customer support, you will also need information such as your company’s
customer number, product, component, and so forth, similar to the information required by the
ESR tool.

25.3.3 What Information to Have Ready
No matter how you open the PMR, electronically or by phone, you will need to provide informa-
tion that will help the support personnel resolve your problem. Needless to say, you should be as
specific as possible when describing the details of the problem. If you can re-create the problem,
make sure you document the steps for IBM support. Also, gather as much background informa-
tion as possible. For example, don’t forget to specify what your environment is, what WebSphere
fix packs you have installed, what Operating System and version you run, what changes you
made to the system, and so on. If any messages or errors were logged, send these logs to IBM
support. Any relevant information will help the IBM support personnel resolve your problem as
quickly as possible. Basic background information is often missing from the PMR description,
and this can significantly increase problem resolution time.

25.3 Working with IBM WebSphere Support 799

Figure 25.3 ESR page for creating a new PMR.

ch25.qxd 11/17/04 9:55 AM Page 799

Another important piece of information you will be required to provide is the severity of
the problem. Use the business impact as measure for determining the problem severity. For
example, the most severe problems, those having a critical business impact, should be assigned a
severity 1, while minor problems should have a severity 4.

It may also be useful to run the collector tool and have the output jar file ready to send to the
IBM support personnel. For more information about the collector tool, refer to chapter 7, Getting
Started with WebSphere—An Overview.

25.3.4 What to Expect
If a WebSphere defect is found, then an Authorized Program Analysis Report (APAR) is created for
this problem. If a workaround can be implemented while the APAR is resolved, and before the fix is
delivered, then IBM Support will provide instructions on how to do this. Note that making a fix
available requires time-consuming operations such as comprehensive testing, packaging, and so on.

25.4 Summary
You should now be familiar with the following concepts:

• How to create an appropriate test. Specifically, it should be a scale model of the produc-
tion environment.

• Which test types should be run to minimize the risk of encountering a problem in the pro-
duction environment. These test types are correctness tests, performance tests, stress
tests, and endurance tests.

• How to generate realistic test scenarios and proper workload mixes. These should be
derived from real-world users.

• How to enact proper change control by restricting administrative privileges, logging
administrative accesses, regularly creating backups of your configuration, keeping a log
history, and documenting procedures.

• When locating an error in a complex environment, it is useful to diagram the path of the
request, beginning with the client all the way to the back-end.

• Once an error has been located, first assume that the error is valid until it can be verified
that it happened under erroneous circumstances.

• When an error occurs, try to determine what, if anything, might have changed in the envi-
ronment that could have contributed to the condition which promoted the error.

• Try to re-create the error with the simplest test scenario, the simplest application, and the
simplest environment.

• WebSphere interim fixes and fix packs.

• What resources are available for WebSphere support.

• Working with IBM WebSphere support to resolve a WebSphere problem.

800 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 800

