
CHAPTER 3

Migration Strategies

This chapter defines the most important terms in migration and differentiates these

terms. In addition, it presents migration strategies, the benefits and risks of each

strategy, and the appropriateness of each strategy for various situations.

This chapter contains the following sections:

■ “Understanding the Concepts” on page 21

■ “Evaluating the Environment” on page 27

■ “Examining Strategies” on page 30

■ “Choosing a Strategy and Developing Tactics” on page 37

Understanding the Concepts

Within the context of this book, the term migration is defined as the transition of an

environment’s people, processes, or technologies from one implementation to

another. While somewhat open ended, this definition allows us to discuss migration

in a number of different contexts:

■ The migration of common off-the-shelf (COTS) software from one platform to a

larger or smaller similar platform

■ The migration of data from one database to another, possibly similar data storage

technology

■ The migration of a custom-written application from one platform to a different

platform and operating environment

These examples have different inputs, different execution strategies, and dissimilar

functional outcomes, but they are all migrations in that the IT functionality has been

moved from one platform to a different platform. It is this varied scope that affords

the term “migration” its varied interpretations.
21



Consolidation

Migration is often confused with the act of consolidation. Webster's College Dictionary
defines consolidation as, “the act of bringing together separate parts into a single or

unified whole.” As defined in the Sun BluePrints book Consolidation in the Data
Center, by David Hornby and Ken Pepple, consolidation should be thought of as a

way to reduce or minimize complexity. If you can reduce the number of devices you

have to manage and the number of ways you manage them, your data center

infrastructure will be simpler. This simplicity should contribute to efficiency, and

consistency should contribute to lower management costs in the form of a reduced

total cost of ownership (TCO).

While consolidations involve migrations as applications and business functionality

are moved to a single machine, migrations do not necessarily involve consolidation.

The value proposition realized by migration relates to improved quality of service

(QoS) and reduced TCO realized as a characteristic of the new platform,

environment, and overall IT infrastructure.

Adoption

Frequently, the release of a new edition of an operating environment might require

that the platform’s operating system (OS) be replaced with a more up-to-date

version, a practice referred to as adoption. Depending on the changes introduced in

the new version, upgrading to a new version of the current OS might be as difficult

as migrating the application to a completely different OS, even though the hardware

platform remains the same.

Usually, applications that must be moved to a newer version of the same

environment have to be tested to determine whether they provide the same

functionality in the new environment. This can be a time-consuming, as well as

expensive, process. If test suites designed to verify critical application functionality

are not available, they will need to be developed, at considerable time and expense.

Application programming interfaces (APIs) are the touch points between

applications and the operating environment. In addition to defining APIs, the Solaris

environment also supports the concept of the application binary interface (ABI), the

description of these APIs used by the application executable at a binary level. This

definition enables you to compare the API usage of an application executable created

in one version of the OS to the binary description of interfaces supported by a

different release of the OS. Consequently, compatibility between different versions of

the OS can be guaranteed without any examination of the source code used to create

the application.

In most cases, binaries created under an earlier version of the OS require no change.

However, should any incompatibilities exist, specific APIs that don’t conform to the

ABI definition of the new OS can be identified. Tools exist to support the static
22 Migrating to the Solaris Operating System



analysis of the application binary. Sun’s appcert tool identifies differences so that

they can be remediated prior to moving the application. This technology enables

migration engineers to ascertain whether an application can be moved without

problem to a newer version of the OS.

Moving applications from an older version of the Solaris OS to a newer version is

referred to as adoption rather than migration. This distinction is made because the

use of stable API standards, backward compatibility, and an ABI and tools enables

you to verify and compare application interface usage, thereby guaranteeing that an

application will run without problem in the new OS. In most cases, adoptions do not

require recompilation, although using a later version of the compiler might provide

performance benefits.

The E-Stack

Before we introduce migration and porting, consider the following figure, which

illustrates what we call the Enterprise stack or E-stack.

FIGURE 3-1 E-Stack Model for Enterprise Infrastructure

This construct is used as a model of the infrastructure of the enterprise. At the top of

the stack, the business strategy, people, and process are defined. The high-level

functions that occur here are usually controlled by an executive team. These

functions provide logistical support to enable business functions, in addition to the

Storage
platform 

Computing
platform

Application
infrastructure 

Business application

Network infrastructure

Facilities infrastructure

Business strategy,
people and process

S
ca

la
bi

lit
y

A
va

ila
bi

lit
y

S
ec

ur
ity

P
er

fo
rm

an
ce

IT process

IT tools

Simple
port

Enterprise
migration

IT people
Chapter 3 Migration Strategies 23



unique value-added functions that differentiate one enterprise from another. The

outputs of this level of the stack must be implemented by the lower levels. Typically,

applications are used to implement and execute business processes.

The next section of the E-stack represents the execution architecture, which is

composed of the following items:

■ Applications that support business functionality. Changes in business processes

most likely require changes in the application layer. Consequently, a rapidly

evolving business must be able to implement application change in a timely

manner. Business segments that are not subject to frequent change are less likely

to require an agile development or runtime environment to effect application

change.

■ Application infrastructure that supports the applications. Modern

implementations of this layer include web servers, application servers,

middleware, and database technology that support a typical n-tiered architecture.

For older, legacy applications, the application infrastructure layer is composed

almost entirely of the OS. Applications in this layer are written to interact with

the APIs provided by the OS vendor and software provided by independent

software vendors (ISVs).

■ Computing and storage platforms. These hardware components enable the

application infrastructure. This layer of the stack is usually composed of a

heterogeneous mix of hardware provided by a number of different vendors. As

we will see, industry consolidation within the hardware manufacturing segment

might require changes at this level of the stack. Unless the vendor has gone to

great lengths to support backward compatibility, changes to the computing and

storage platforms will require changes to the layers above them in the stack.

■ Network infrastructure. In today’s environment, the ability to communicate over

a network is critical. This infrastructure can be based on any type of networking

technology, from low-speed dial-up to fiber-optic, high-speed backbones. Many

legacy applications and their interfaces were designed and developed before the

advent of networking technology. They depend on antiquated, proprietary

interconnect technology, which might include a series of screens for data entry or

possibly thick-client technology. These applications are not web enabled.

■ Facilities infrastructure. Frequently overlooked, this layer provides critical

support to the stack elements above.

The upper portion of the E-stack that defines the execution architecture supports a

number of systemic properties that are key to any enterprise. Availability, scalability,

measurability, and security are all desirable but can be implemented only to the

extent that they are driven and supported by the execution architecture and its

components.

The lower portion of the E-stack represents the management architecture. These

tools, people, and processes implement the management infrastructure for the

enterprise and combine to control, measure, and manage the execution architecture.

Tools can be used to monitor capacity, utilization, and throughput, and to help
24 Migrating to the Solaris Operating System



ensure that service levels can be met. Processes are in place to support change,

service, deployment, and maintenance. These tools and processes are selected,

developed, and administered by the IT staff. As change is effected within the E-

stack, IT staff must be made aware of all changes. Training must take place to ensure

that people understand the management process, as well as the execution

architecture.

As you can see, all the elements of the stack support each other. If the facilities do

not provide adequate power or air conditioning, the results will manifest themselves

in the computing and storage platforms. If the computing and storage platforms do

not support the application infrastructure, the application will not be able to

function correctly and service level agreements will not be met. This would mean

that the business function and requirements mandated and defined from the top

layer of the stack could not be implemented.

The following table outlines the relationship between consolidation, migration, and

adoption.

Porting

As illustrated in the E-stack shown in FIGURE 3-1 on page 23, the term porting applies

to applications rather than infrastructures. In particular, it is usually used in

discussions about custom-written applications and refers to modifying or

normalizing the code of an application so it can be recompiled and deployed on a

new hardware platform that supports a different OS. Wherever possible, coding

standards (ANSI, POSIX, and the like) should be adopted to minimize potential

future changes that might have to be made.

Porting is inherently associated with modifying the code base of an application so

that the functionality provided by the APIs of the existing OS and supporting

software products is replicated in the new target environment. This is typically done

by developing compatibility libraries that map the older APIs to the new

environment. Vendors might provide these libraries to ease the burden of migrating

applications to their environments, but in many cases, you will have to develop

compatibility libraries yourself.

TABLE 3-1 Consolidation, Migration, and Adoption

Term Definition

Consolidation The act of reducing the complexity in a data center

Migration The act of moving technology from one platform or OS to another

Adoption The act of moving from an earlier version of the Solaris OS to a later

version
Chapter 3 Migration Strategies 25



Porting the application requires minimal understanding of the logic or functionality

of the application. It is a somewhat mechanical effort for making the application

compatible with the new environment.

A porting strategy requires you to integrate the application with a new development

environment, as well as with a new operating system. While source code, scripts,

and data are moved, compilers, source code repositories, and software tools are

replaced by new versions that are compatible with the target platform.

When porting an application, you must also migrate any supporting third-party

software. If the software is no longer available, you will have to find similar software

and integrate it into the application. Should the amount of integration become

excessive, the migration might begin to look less like a port and more like a

rearchitecture effort, as described later in the chapter. Ensure that you determine the

availability of third-party software used by the application before choosing a

migration strategy.

Migration

The term enterprise migration refers to the process of migrating all layers of the E-

stack, not only the application that supports business functionality. This is a very

involved exercise that will have a greater impact on the entire IT staff than other

strategies do. For example, migrations include the following changes:

■ Management policies present in the old environment must be migrated to the

new environment.

■ Tools used to monitor and manage the execution environment must be replicated.

■ Supporting software, in the form of third-party products provided by an ISV, or

locally written scripts to manage applications and data, must be integrated into

the new environment.

■ People must be trained to administer the new hardware platform and operating

environment.

■ Adding a large symmetric multiprocessor compute platform might justify the use

of a multithreaded architecture for the application.

■ Implementing a Storage Area Network (SAN) rather than attached storage might

enable other applications to fully utilize storage resources that were previously

unavailable.

■ Adding networking capabilities might eliminate the need to transport and mount

tapes.

■ Web-enabling an application might reduce the need for proprietary terminal

interfaces or thick-client technology.
26 Migrating to the Solaris Operating System



■ Changing hardware might require changes to the facilities to support more, or

possibly less, power and cooling.

■ Creating new tiers in the architecture might allow for the use of cheaper, more

cost-effective hardware to support that portion of the application, which might, in

turn, support greater availability and supportability.

■ Using a modern programming language might enable the application to leverage

more new third-party software, reducing the need for costly in-house

development.

Evaluating the Environment

The migration solution you choose should be based on how an application fits into

the overall IT environment. Consequently, you must evaluate the existing

environment to determine both how the application meets business needs and how

effective it is.

Adequacy of meeting business needs relates to the application’s ability to support

the business functionality of the enterprise. Adequacy of meeting business needs can

be defined as follows:

■ The time required to introduce new features

■ The ease of use of the application

■ The ability to support the functional requirements of the enterprise

■ The ability to support the future growth of the enterprise

Whereas the adequacy of meeting business needs relates to the application’s ability

to meet the current and projected functional needs of the enterprise, IT effectiveness

measures the application’s use of technology. IT effectiveness can be defined as:

■ Total cost of ownership (TCO)

■ Technological stability

■ Functional separation

■ Service level issues

■ Implementation technologies
Chapter 3 Migration Strategies 27



The comparison of an application’s IT effectiveness with the adequacy of meeting

business needs is represented in the following figure.

FIGURE 3-2 Effectiveness Versus Business Needs

The x axis evaluates how well the application currently fulfills its function in the

business process. The y axis rates its IT effectiveness in terms of cost, technological

stability, dependencies, and other factors. To determine a migration solution for each

of the applications within the enterprise, you should begin by plotting the

applications that have the greatest impact on the business process within this

framework.

The evaluation of the application can be formal (for example, a complete TCO

study), or it can be ad hoc. Typically, the Chief Financial Officer of the enterprise will

have to agree with the evaluation before agreeing to a budget to support the

migration. By systematically evaluating all applications with the same criteria, a

comprehensive migration strategy can be developed that will include a number of

different solutions, as illustrated in the example shown in the following figure.

TCO Issues
Technology High
Many Dependencies
Service Level Issues

Low TCO
Technology Stability
Functional Separation
No Service Level Issues

Functionality, Business Growth,
Time to Adapt, Ease of Use

Rehost Rearchitect

InteroperateIT
 e

ffe
ct

iv
en

es
s

Low

High Low
Adequacy of

meeting business needs

High

Replace
/Refront
28 Migrating to the Solaris Operating System



FIGURE 3-3 Example Evaluation of Applications

Applications with the following characteristics should be treated as follows:

■ Applications that fall in the lower-left quadrant are meeting business process

needs and are highly effective with respect to IT; they probably should be

maintained as they are.

■ Applications in the lower-right quadrant have high IT effectiveness, but are not

meeting business process needs; they should be enhanced, not migrated.

■ Applications that fall in the upper quadrants are the best candidates for

migration. If they are meeting functional business process needs but are low in IT

effectiveness (upper-left quadrant), it is probably time to move them to a new

environment. If they exhibit low IT effectiveness and lack functionality (upper-

right quadrant), it is probably time for the applications to be rearchitected.

FIGURE 3-3 illustrates how different applications (for example, payroll, inventory, and

order entry applications) map to different migration solution spaces. For example:

■ Order entry should be refronted because it relies on an antiquated user interface.

■ The implementation and deployment of the payroll application is highly effective

from an IT perspective and adequately meets business needs. It should remain

where it is and be connected to new applications in the environment, as they are

implemented, using connectors or adapters.

■ The inventory application should be rehosted because the functionality it

provides meets business needs, but there are issues with the hardware when it is

implemented.

The terms “refront” and “rehost” are defined in detail in the following section.

Rehost Rearchitect

InteroperateIT
 e

ffe
ct

iv
en

es
s

Low

High Low
Adequacy of

meeting business needs

High

Replace
/Refront

xInventory

xOrder entryxPayroll

TCO Issues
Technology High
Many Dependencies
Service Level Issues

Low TCO
Technology Stability
Functional Separation
No Service Level Issues

Functionality, Business Growth,
Time to Adapt, Ease of Use
Chapter 3 Migration Strategies 29



Examining Strategies

In the following sections, we examine the various strategies available for a migration

effort, including the following:

■ Refronting

■ Replacement

■ Rehosting—technology porting

■ Rearchitecting—reverse engineering

■ Interoperation

■ Retirement

When planning a migration project, consider how your environment could benefit

from the strategies described in this section.

Refronting

Many legacy applications have excellent functionality but are not user friendly. Data

entry for the application is accomplished by means of a series of screens that

frequently contain cryptic names for fields and unintuitive menus, which result from

limited screen space. These interfaces were based on CRT technology that was

available 20 to 30 years ago.

Rather than rewriting an entire application, a programmer might be able to change

just the data entry portion of the application. Refronting, or adding a more aesthetic

interface to an existing application without changing the functionality, is an option.

Users will have access to the same data but will be able to access it in a more

efficient fashion without the use of expensive terminals, cabling, or peripheral

interconnects.

When desired and appropriate, a browser-based solution can be developed. In the

case of mainframe replacement, 3270 data entry screens can be replicated over a

network. Web-enabling an application can provide significant cost reduction.

Different approaches for refronting include screen scraping, HTML generation,

source code porting, and other techniques.

Modern graphical user interface (GUI) technology can also be integrated into a

legacy application to support a clearer representation of the required input.

Conversely, for reasons of efficiency, the data entry screens might be replicated in the

new technology “as is” to eliminate the need to train the data entry staff.
30 Migrating to the Solaris Operating System



Some of the user acceptance issues identified by this example might reveal

themselves when a rehost strategy is adopted and a COTS product upgrade involves

a change to the input form’s hosting technology (for example, when ASCII forms are

replaced by a web browser).

The refront strategy requires an architectural model so that new components can

invoke old, migrated components with minimum change to the migrated

components. Such a migration project requires the application of architectural skills.

Replacement

The refronting strategy is really a variation of the much broader replacement strategy.

With the replacement approach, the legacy application is decomposed into

functional building blocks. Once an application is broken down in this manner,

portions of a generic and often complex, custom-written legacy application can be

replaced with a COTS application. Of course, the package must be able to run on the

target OS.

When evaluating replacement strategies, consider packages that offer better

functionality and robustness than do the existing, deployed application components.

Make sure the vendor’s solution is well tested and accepted in the marketplace, and

verify that it is configurable, enhanceable, and well supported by the vendor.

Product longevity and backward compatibility must also be taken into account.

One of the key drivers for the applicability of this strategy is the competitive

dynamics of the software supply industry. Any custom (or bespoke) applications

owned by users are always competing with the market, whether the competitive

position is implicitly or explicitly evaluated. The marketplace is also driven by a

sedimentation process. ISVs are seeking to maximize the value in business terms of

their software products. Sedimentation refers to the moving of supporting

functionality from the application implementation space to middleware (or utility

software). From there, the functionality moves to the OS and often to hardware. For

example, print spoolers and job schedulers are good examples of components that

have been extracted from the application space and are now usually provided by

utility software suppliers or by infrastructure vendors. Sometimes this moves even

further, for example, in the case where web server load balancing functionality

moved from the application layer to become an OS feature and is now implemented

in networking hardware.

The sedimentation process is an opportunity for migration planners because it

enables their state-of-the-art business functionality to become available to the

enterprise. This occurs because the ISV developers can outsource the functionality

development and maintenance to alternative providers and can concentrate on

transactional logic. By migrating some functionality through the use of the

replacement strategy, this trend can be copied, and the in-house code maintenance

problem can be reduced, albeit through transfer to a third party. For example, cost
Chapter 3 Migration Strategies 31



can be reduced or developer wages can be more focused on benefits, but cost is not

eliminated. The replacement strategy enables in-house developers and maintainers

of the utility code lines to be redeployed on more business-critical code lines and

modules.

When considering replacement as a strategy, you might be attracted to the option to

replace the application’s code with a new third-party software product. If this

approach is chosen, the migration project must do the following:

■ Document the current business process and data model.

■ Perform a gap analysis between the proposed application and the current state

with respect to business process.

■ Create a transformational data model, where appropriate.

These steps require traditional systems and business analysis skills.

A more powerful option might be to adopt a new application solution and change

the organization’s business logic when it no longer yields competitive advantage to

match the package’s optimum business process. This approach leaves migrators with

the problem of identifying the still-used legacy data and migrating it to the new

software solution. It also requires the development of a rollout plan that

encompasses the enterprise’s user community. Such a rollout is likely to be

expensive, so the cost/benefit analysis of this approach needs to be solid and

substantial. This analysis involves data modeling skills and, potentially, programs

for transforming the data into the target data model and populating the new

database. The latter approach allows the enterprise to transform applications built to

deliver functional competitive advantage to software built to allow the user

organization to compete through superior cost advantage. This goal mandates that

the replacement product be competitively inexpensive to deploy and run.

Replacement can be a quick, low-risk solution, although the replacement of complete

applications will have large implications in terms of business acceptance and rollout.

However, replacing a homegrown solution with a COTS package can also take

upward of two years. Effort is required to ensure that business processes and logic

now conform to the capabilities of the COTS component, rather than the other way

around. For some applications, the cost of acquiring custom logic for these software

packages can be equivalent to maintaining and modifying a custom code base,

depending on the function provided by that package, which is why it might be more

appropriate to adopt the COTS vendors’ assumed business process. Not all business

processes, and hence not all applications, are designed to enable functional

competitive advantage. For instance, a customer relationship management (CRM)

package deployed to replace a specific business function will require more

maintenance than configuring a replacement print spooler. If the proposed source

modules for the migration are only a subset of the target package’s functionality, it

might make more sense to identify additional business processes to encapsulate

within the CRM solution. For example, you might replace more code and increase

the potential benefits case. This example shows the trade-offs available when

replacement strategy-based migrations are being planned.
32 Migrating to the Solaris Operating System



There are three clear options within the replacement strategy:

■ Use a COTS package to replace or retire the source modules.

■ Use a COTS/utility package to replace sedimented functionality.

■ Use operating system functionality to replace sedimented application

functionality.

The last option in the preceding list uses functionality that has been integrated into

the existing OS. Examples of this include complicated memory management

schemes that have been implemented because of older memory limitations, coarse-

grained parallelism that is used instead of threading models, or shared memory that

is used as an improved IPC shared memory.

The advantages of moving from a homegrown solution to a COTS-based solution

include the following:

■ Integration with other internal and third-party external applications

■ The release of the budget associated with inflexible development resources

■ An improved opportunity to tap skilled resources from established labor markets

supporting both the business and IT communities

Replacement can act as a strategy on its own, and it can also be applied to

components within an alternative strategy. Interestingly, as a strategy, it potentially

yields the highest benefits and involves the highest degree of cost, yet when applied

to components within an alternative strategy, it can be a quick and low-risk strategy.

Rehosting—Technology Porting

Rehosting involves moving complete applications from a legacy environment with no

change in functionality. There are several ways this can be accomplished for custom-

written applications:

■ Recompilation. As previously mentioned, an application can be ported to the

new environment. There are two approaches for doing this. The first approach is

primarily associated with developing or acquiring a compatibility library that

provides identical functionality to that of the APIs found on the original OS and

that supports third-party products. For example, Sun provides compatibility

libraries for some of the major competing operating systems such as HP/UX. An

alternative approach is to use intelligent code transformation tools to alter the

original source code to correctly call the new operating system’s APIs. Both

approaches have the benefit of capturing the changes required during the

migration, although the second might limit backward compatibility.

■ Emulation. This approach introduces an additional software layer to emulate the

instruction set used in the source binaries. While introducing another software

layer between the application and the hardware can affect performance, the new

layer eliminates the need for recompilation. When adopting this strategy, it is
Chapter 3 Migration Strategies 33



important to understand that the old environment has not really been left behind.

The application will be developed and compiled using the old environment and

will execute only in the new environment. By their nature, emulation solutions

incur additional cost above that of the target platform environment. This results

from the need to supplement the OS with the emulator, which is rarely free.

Although emulation is a useful approach, if source code is available, it is more

common for an application to be recompiled to the native instruction set because

native code runs faster. Emulation is most useful when migrating applications

that are written in interpreted languages or when the original execution

environment was tightly coupled within the OS. BASIC, PICK, or MUMPS are

examples of environments that are suitable for emulation solutions.

Most emulators are for interpreted languages; therefore, the source code is

available to the organization. However, source code engineering and reverse

engineering rights might not have been granted in the right-to-use license. If you

intend to use an emulation solution or reverse engineer a solution, ensure that

you are licensed to do so in the environment where it will be used.

■ Technology porting. Technology porting is a technique that supplements the

target environment with the capability to execute code (usually interpreted) that

runs natively on the original system. Many applications are developed and

written in a superstructure software environment that is installed as a layered

product on the source system. The most common types of these applications are

created by relational database management system (RDBMS) vendors, many of

whom support an array of hardware platforms and guarantee a common API

across those platforms. The advantage of this approach is that one common API

owner, the software ISV, owns the API on both the source and target systems.

While the discovery stages of a migration project are still required, the APIs on

the source and target systems remain the same.

The leveraging of the ISV solution is often an opportunity to upgrade the ISV

product version to obtain new functionality or to obtain superior support from

the ISV. For instance, the transaction processing system known as CICS relies on a

well-understood series of APIs. These APIs and their functionality have been

ported or reimplemented on the new target Solaris OS. Applications using these

APIs are compiled to run native instructions on the new system.

Rehosting offers the advantage of low development risk and enables familiar legacy

applications to be quickly transferred to a more cost-effective platform that exhibits

lower TCO and a faster return on investment (ROI). Extensive retraining of users is

not needed because the architecture, interface, and functionality do not change.

Rehosting is an excellent approach for companies desiring to decrease their

maintenance and support costs.

Rehosting is, by definition, a quick fix. Rehosting does not change the application or

the architecture. This means that new technology that is available in the target

environment might not be properly utilized without some modification of the

application. Rehosting is a preferred solution when the current business logic and
34 Migrating to the Solaris Operating System



business process remain competitive in the enterprise’s markets and are worth

preserving. Rehosting offers the possibility of using cost savings accrued through

switching development and runtime environments to fund full rearchitecture

projects, when warranted.

Rearchitecting—Reverse Engineering

Rearchitecting is a tailored approach that enables the entire application architecture to

migrate to the new OS, possibly using new programming paradigms and languages.

Using this approach, applications are developed from scratch on a new platform,

enabling organizations to significantly improve functionality and thereby take full

advantage of the full potential of a target system.

Applications poor in IT effectiveness and functionality are the best candidates for

rearchitecting. This approach is best used when time is not a major factor in the

decision. Most rearchitecture projects require a skilled development staff that is well

versed in the new technology to be implemented.

The downside to this approach is that it requires new or additional training for

users, developers, and technical staff. In addition, rearchitecting requires the most

time and is the most error prone of all the possible solutions. Sometimes, business

rules can be well hidden in user interface or database management systems. For

example, this was the case with DECforms, DEC FMS, and any RDBMS triggers. The

ability to extract all the necessary business logic from the application’s source can be

severely inhibited by poor coding methodology and practice. An example is the

hard-coding of business parameters.

Despite these problems, it remains that rearchitecture and reverse engineering are

perceived to be the correct strategies and these problems become project risks. These

risks can be mitigated by the application of appropriate business acceptance testing

with internal and external users.

Rearchitecting does, however, open the opportunity to improve the business logic

and processes and to change the developer productivity model.

A technique particularly appropriate to rearchitecture is reverse engineering. It is an

axiom that the business logic encapsulated in the source code is the business logic

implemented, and thus the source code is the most accurate place to discover the

business logic. One of the key problems of software development is that most

usability errors in software are introduced by poor business-process documentation

and even poorer translation into software idioms. Some software environments have

embedded dictionary or repository functionality. Where these exist, they may be

supplemented with original author or third-party tools to enable the extraction of

business logic and the recreation of that business logic in new environments. With

these tools, the process can be reversed, the dictionary can be parsed, the user world

view can be generated, and the implementation source code can be generated. A
Chapter 3 Migration Strategies 35



classic example is the RDBMS world in which data definition language scripts for a

database implementation can be generated from the database implementation itself.

This is tool based, and tools might be proprietary to a single RDBMS or

environment, or they might be open, running across multiple environments.

Database schema generators are particularly useful for migrating from one RDBMS

to another, such as from Microsoft’s SQL Server to Oracle or Sybase.

Interoperation

In certain cases, it might be advantageous to leave an application where it is and

surround it with new technology when it is required by an enterprise. Interoperability
is a strategy that should be considered in the following cases:

■ If business requirements are being met and IT effectiveness is high, it might be

desirable to leave the application in its current environment, provided that

environment is capable of interacting with current technology.

■ Unfortunately, business drivers—for example, the existence of a leasing or

outsourcing contract—might dictate that an application should stay where it is for

some period of time. This is one of the risks of abandoning your IT environment

to a third party. Over time, outsourced applications become orphans within the IT

infrastructure. They are not fully integrated into the IT environment, most likely

do not have a development staff, and run on outdated hardware that is no longer

cost effective.

Many ISVs provide technology that enables legacy applications and storage

technology to interoperate with newer technology. Intelligent adapters exist that

support interactions between the mainframe and modern computing alternatives. It

is also possible to compile an older language such as COBOL or PL/1 into Java™

bytecode, enabling it to seamlessly interact with a modern application server and

other components of a Java™ 2 Enterprise Edition (J2EE™) environment.

When you choose this strategy, it is important to understand the vendor’s

commitment to the existing product line, as well as any future maintenance and

product licensing costs. In addition, consider the availability of third-party software

and current technological trends. When possible, open standards should be favored

to allow a wide choice of competitive options.

Retirement

Changes in technology can obviate the need for specific functionality in an

application or an overall solution. As middleware or third-party products mature,

they might render the functionality implemented in the application obsolete. In this

case, legacy utilities or legacy application functionalities can be retired because they

are no longer required or are implemented elsewhere in the solution.
36 Migrating to the Solaris Operating System



Choosing a Strategy and Developing
Tactics

The ideal migration solution incorporates a number of the strategies listed in this

chapter, where appropriate. Each of the strategies identified in the preceding section

has a number of closely aligned supporting techniques. The selection of a strategy

will define the obvious and most effective technique, but it might need to be

supplemented with techniques more appropriate to other strategies.

The following table summarizes the strong alignments of particular migration

techniques with the migration strategies.

As with the migration decision itself, the tactical approach used to solve a problem

or to provide functionality must be evaluated in terms of its effectiveness, its impact

on the ability to meet business needs, and its cost. Tactical decisions made to resolve

technical issues might impact the overall project, either beneficially or adversely, in

terms of systemic qualities, manageability, training, and cost.

As described in the preceding sections, there are a number of migration solutions for

you to choose from. Each has its own benefits, as well as its own drawbacks.

Selecting the correct solution should realize the associated value proposition.

Decision Factors

One factor in your decision should be based on your application architecture. Most

modern application architectures are now based on n-tier models. This

decomposition allows for different strategies to be applied to different tiers, when

appropriate. This might mean that more than one strategy will drive your migration.

TABLE 3-2 Strategy and Technique Alignment

Strategy Complementary Technique

Refronting Redeveloping, reverse engineering, source code porting

Replacement Reverse engineering

Rehosting Source code porting, technology porting

Rearchitecting Reverse engineering, redeveloping

Interoperation Technology porting, emulation

Retirement Reverse engineering
Chapter 3 Migration Strategies 37



Conversely, older legacy applications might be monolithic or client-server in design

and implementation, which offers the opportunity to rearchitect to an n-tier model.

The following table outlines some common (not exclusive) approaches for each tier.

Another factor to consider is the relationship between value and effort, as shown in

the following figure. Typically, value is proportional to the amount of effort that is

expended on a project. In the following paragraphs, we examine each of the

proposed migration solutions as they relate to value versus effort.

TABLE 3-3 n-Tier Migration Strategies

Tier Purpose Common Approaches

Presentation Hosts the processing that adapts the

display and interaction as appropriate for

the accessing client device, be it a

desktop computer, a cell phone, a PDA,

or any other device.

Refronting, rehosting,

interoperating, and

replacing

Application

or Business

Logic

Hosts the logic that embodies the rules of

the enterprise, irrespective of access

device or resource implementation.

Rehosting, interoperating,

and replacing

Integration Allows for the connection of disparate

applications and data sources.

Rehosting, interoperating,

and replacing

Resource or

Database

Consists of legacy systems, relational

databases, data warehouses, or any other

back-end or external processing system

that accesses and organizes data.

Rehosting and replacing

Persistence Holds the permanent data for the

enterprise. In the past, this was

considered part of the Resources tier, but

with the growth of intelligent storage

(SANs, NAS, and intelligent arrays), it

has become a tier in itself.

Rehosting and replacing
38 Migrating to the Solaris Operating System



FIGURE 3-4 Relationship of Value to Effort

■ Interoperation. This solution requires the least amount of effort but also provides

the least amount of benefit. The existing architecture and infrastructure stay in

place and simple connector technology is deployed to support the interaction

with new applications or hardware that might be deployed. Because no new

functionality is introduced, this effort requires minimal time and expense.

■ Rearchitecting. This solution occupies the other end of the scale. Rearchitecting

the application has great benefits: it supports tailored functionality; modular,

tiered design; and a modern implementation language. However, the amount of

effort (and associated cost) can be significant. As well as incurring significant

expense, time, and effort, this solution can also introduce errors, so it requires a

rigorous validation and verification effort.

■ Refronting or replacement. This solution is targeted toward enhancing an

application that has already been deemed to be somewhat unacceptable in

meeting business needs. This solution is targeted to applications that are not

meeting business needs but that do not have any IT-related problems relating to

Service Level Agreements (SLAs), QoS, TCO, and the like. Enhancing the

application by adding a presentation layer will add new functionality, but given

that the application has already been found to be somewhat unacceptable, this

enhancement adds minimal overall benefit compared with the amount of effort

that it requires.

■ Rehosting. As illustrated in FIGURE 3-4, rehosting is the solution that provides the

most value for the least effort. Rehosting typically involves modifying the source

code and build environment for an application so that it compiles and runs on the

new target system. During this process, new features and functionality are not

added. Many companies often want to add new features or functionality when

they migrate, but these steps should take place after the application has been

migrated.

Rehost Rearchitect

Interoperate
V

al
ue

Low

HighLow
Effort

High

Replace
/Refront
Chapter 3 Migration Strategies 39



Business logic remains the same when an application is rehosted. The only

application changes usually relate to the APIs of the target OS. Over time,

standards (SVR4, POSIX, and the like) have converged so that differences between

versions of UNIX are minimal; therefore, migrations of applications between

different versions of UNIX require minimal effort.

Rehosting applications from proprietary, non-UNIX environments that do not

adhere to open standards can prove to be more challenging.

In certain cases, an application must be changed to not only adhere to the APIs of

the OS but to interact with third-party product code as well. For example,

consider the rehosting of a CICS application from MVS to MTP/MBM application

running on the Solaris OS. The application’s interaction with the MVS

environment must be recoded in such a way that similar calls and functionality

are used in the Solaris OS, but the CICS interaction requires minimal conversion

because the CICS functionality and APIs have been redeveloped under the Solaris

OS by the MTP and MBM product set.

Rehosting has the following characteristics:

■ Least expensive and requires the least effort. Rehosting requires minimal

changes to applications to enable them to run under the new environment.

Therefore, the cost and effort involved in this strategy are minimal.

■ Quickest implementation. Because little or no code is written and no new

functionality is added, this solution can be completed in minimal time,

compared with the other migration solutions.

■ Business logic remains the same. Rehosting doesn’t typically include the

addition of new features or functionality. Consequently, the business logic

remains the same, meaning that minimal or no staff training is required and

few, if any, changes have to be made to the organizational structure.

Case Studies

In the last three chapters of this book, we examine three case studies, each of which

uses a different migration strategy.

■ Case 1: Small business, Linux. This example is based on a small software and

services development company that is looking to move from Linux to the Solaris

OS. Approximately 20 servers are being used: 10 for production, 5 for

development and testing, and 5 for office support tasks. Their application is

mostly Java-based, but they use MySQL for the database. Significant shell

scripting has also been used for utilities in the product.
40 Migrating to the Solaris Operating System



■ Case 2: Custom application, Tru64. In this example, we examine the migration of

a mythical inventory application implemented in the C programming language.

The application is integrated with a Sybase database running under the Tru64

environment. The exercise involves porting the application so that it runs under

the Solaris environment and replacing the Sybase database with an Oracle

relational database.

■ Case 3: General ledger, HP-UX. In this example, an insurance company planned

to move its accounting, risks, and claims software from HP/UX to the Solaris OS

to achieve superior scalability against planned business and system growth. This

exercise employs the rehost strategy, in which the technology porting approach is

used to minimize risk and cost.
Chapter 3 Migration Strategies 41


	Migration Strategies
	Understanding the Concepts
	Consolidation
	Adoption
	The E-Stack
	Porting
	Migration

	Evaluating the Environment
	Examining Strategies
	Refronting
	Replacement
	Rehosting—Technology Porting
	Rearchitecting—Reverse Engineering
	Interoperation
	Retirement

	Choosing a Strategy and Developing Tactics
	Decision Factors
	Case Studies





