Best ChOl1f.gxd

8/31/05 12:55 PM Page 1 $

Chapter

In this chapter

stopwatch

date

time

clock

gettimeofday

Performance Tuning Using GNU gprof
gcc Option Needed for gprof

kprof

Summary

Web Resources for Profiling

page 3
page 4
page 5
page 6
page 11
page 13
page 15
page 31
page 35
page 36

Best_Cholf.gxd 8/31/05 12:55 PM Page 2 $

In general, performance tuning consists of the following steps:

1. Define the performance problem.

2. Identify the bottlenecks by using monitoring and measurement
tools. (This chapter focuses on measuring from the timing aspect.)

3. Remove bottlenecks by applying a tuning methodology.

4. Repeat steps 2 and 3 until you find a satisfactory resolution.

A sound understanding of the problem is critical in monitoring and tuning the
system. Once the problem is defined, a realistic goal for improvement needs to be
agreed on. Once a bottleneck is found, you need to verify whether it is indeed a bot-
tleneck and devise possible solutions to alleviate it. Be aware that once a bottleneck
is identified and steps are taken to relieve it, another bottleneck may suddenly
appear. This may be caused by several variables in the system running near capacity.

Bottlenecks occur at points in the system where requests are arriving faster than
they can be handled, or where resources, such as buffers, are insufficient to hold
adequate amounts of data. Finding a bottleneck is essentially a step-by-step process
of narrowing down the problem’s causes.

Change only one thing at a time. Changing more than one variable can cloud
results, since it will be difficult to determine which variable has had what effect on
system performance. The general rule perhaps is better stated as “Change the min-
imum number of related things.” In some situations, changing “one thing at a time”
may mean changing multiple parameters, since changes to the parameter of inter-
est may require changes to related parameters. One key item to remember when
doing performance tuning is to start in the same state every time. Start each itera-
tion of your test with your system in the same state. For example, if you are doing
database benchmarking, make sure that you reset the values in the database to the
same setting each time the test is run.

This chapter covers several methods to measure execution time and real-time per-
formance. The methods give different types of granularity, from the program’s com-
plete execution time to how long each function in the program takes. The first three
methods (stopwatch, date, and time) involve no changes to the program that need

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 3 $

stopwatch 3

to be measured. The next two methods (clock and gettimeofday) need to be added
directly to the program’s source code. The timing routines could be coded to be on
or off, depending on whether the collection of performance measurements is need-
ed all the time or just when the program’s performance is in question. The last
method requires the application to be compiled with an additional compiler flag
that allows the compiler to add the performance measurement directly to the code.
Choosing one method over another can depend on whether the application’s source
code is available. Analyzing the source code with gprof is a very effective way to see
which function is using a large percentage of the overall time spent executing the
program.

Application performance tuning is a complex process that requires correlating
many types of information with source code to locate and analyze performance
problem bottlenecks. This chapter shows a sample program that we'll tune using
gprof and gcov.

stopwatch

The stopwatch uses the chronograph feature of a digital watch. The steps are sim-
ple. Reset the watch to zero. When the program begins, start the watch. When the
program ends, stop the watch. The total execution time is shown on the watch.
Figure 1.1 uses the file system benchmark dbench. The stopwatch starts when
dbench is started, and it stops when the program dbench is finished.

J;—

Sessibn Edit View Bookmaiks BSetlings Help

=fbl:/usr/src/dbenchsdbench-2.1 # .sdbench 15
15 clients started
0 62477 6.76 MBrssec
Throughput 6.7630Z MBr/sec 15 procs
sfbl: usrssrcsdbenchsdbench-2.1 # |

FIGURE 1.1
Timing dbench with stopwatch.

Best_Cholf.gxd 8/31/05 12:55 PM Page 4 $

4 Chapter 1 ¢ Profiling

Using the digital stopwatch method, the dbench program execution time came
out to be 13 minutes and 56 seconds, as shown in Figure 1.2.

00:13.56

FIGURE 1.2
The execution time is shown on the watch.

date

The date command can be used like a stopwatch, except that it uses the clock
provided by the system. The date command is issued before the program is run and
right after the program finishes. Figure 1.3 shows the output of the date command
and the dbench program, which is a file system benchmark program. The execution
time is 29 minutes and 59 seconds. This is the difference between the two times
shown in the figure (17:52:24 — 17:22:25 = 29 minutes 59 seconds).

B Shell- Konsole ;J;“—

Sessibn Edit View Bookmaks Settings Hap

sfbl: usr/src/dbenchsdbench-2.1 # date && .-/dbench 20 && date
Tue Jun 1 17:22:25 PDT 2004
20 clients started
0 62477 3.87 MBr/sec
Throughput 3.8724Z MB/sec 20 procs
Tue Jun 1 17:52:24 PDT 2004
sfbl:/usr/srcsdbenchsdbench-2.1 # |

FIGURE 1.3
Using date to measure dbench timing.

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 5 (E

time 5

time

The time command can be used to measure the execution time of a specified pro-
gram. When the program finishes, time writes a message to standard output, giv-
ing timing statistics about the program that was run. Figure 1.4 shows the timing
for the list directory contents command (Is) with the -R option, which recursively
lists subdirectories.

3‘_

Sesson Edit View Bookmaks Seltings Hep
sfbl: usr/src # time 1s -R
kdb linux-2.6.4-rcl.tar.gz
i kernel-modules 1sof
2.2.9 kprof 1tt
2.4.16 limon memwatch
cdrecord linux nesa
clock linux-2.4.21 nfsacl-2.6.1-0.8.67.tar.gz
dbench linux-2.4.21-99 packages
ddd linux-2.4.21-99-include patch-2.4.24-prel
ea—2.4.24-0.8.68.diff linux-2.4.21.tar.gz php
electric linux-2.4.23 ppchoot
gdb linux-2.4.23.tar.gz sanpled
get linux-2.4.26 sformat
gettime linux-2.4.26.tar.gz sused0-1inux
graphuiz linux-2.6.2 timing
hmckernel linux-2.6.2.tar.gz valgrind
insight linux-2.6.3 yand
Jfsutils linux-2.6.3.tar.gz
kbd linux-2.6.4-rcl
w2.2.9:
/2.4.16:
linux

linux-2.4.16.tar.gz
patch-1tt-linux—2.4.16-rthal5f-020415-1.14

FIGURE 1.4
Timing the Is command with time.

Best_Cholf.gxd 8/31/05 12:55 PM Page 6 $

6 Chapter 1 ¢ Profiling

Figure 1.5 shows the finishing up of the Is command and the three timings (real,
user, and sys) produced by time.

Session Edit View Bookmaks Setlings Hep

Makefile HMakefile.in [ilter discards filter_test_paths unused wvg_regtest.in E]

.~valgrind-valgrind-2.0.0-tests/.deps:
: true.Po

.~valgrind-valgrind-2.0.0-tests unused:

blocked_syscall.c pth_signall.c pth_simple_threads.c siguwait_all.c
iE oneparam.c pth_signal2.c pth_threadpool.c tuoparams.c
Makefile pth_cancell.c pth_signal_gober.c pth_yield.c tuoparans.s
Makefile.am pth_pause.c pth_sigpending.c signall.c

Makefile.in pth_semaphorel.c pth_simple_mutex.c signal3d.c

.2yand :
makefile memoryl.c memoryl.c”™ uyamd-0.32 yamd-0.32.tar.gz

.~yand~-yand-0.32:

READHE do-syms.o libyamd-dynamic.so tests yand-gcc .o yand .0s
ik TODO first.c libyand.a yand-g++ yamd-memoryl
COPYING dbgcom.dif first.o libyamdf .a yand-g++.0 yamd-memoryl.c
Makefile do-syms first.os run-yamd yand-gcc yand .c
NEUWS do-syms.c gdb.dif run-yand. in yand-gcc.c yamd.o

.~yand~syand-0.32-tests:
Makefile +testl.c testll.c +test13.c testlS.c testd.c testS.c test?.c test9.c
main.c test10.c testlZ.c testl4.c test2.c testd4.c testb.c testB.c

real 4m58.045s
user 0m9.520s d
sys 0m26.760s
sfbl:cusrescc # |

FIGURE 1.5
The results of timing the Is command with time.

The output from time produces three timings. The first is real, which indicates
that 4 minutes and 58.045 seconds elapsed during the execution of the Is com-
mand, that the CPU in user space (user) spent 9.520 seconds, and that 26.760
seconds were spent executing system (sys) calls.

clock

The clock() function is a way to measure the time spent by a section of a pro-
gram. The sample program shown in Listing 1.2, called sampleclock, measures two
for loops. The first for loop is on line 27 of the sampleclock program, and the sec-
ond is on line 69. The delay_time on lines 17 and 56 calculates how long the clock
() call takes. The makefile shown in Listing 1.1 can be used to build the sample-
clock program.

o

Best_Cholf.gxd 8/31/05 12:55 PM Page 7 $

clock

Listing 1.1
The Makefile for the sampleclock Program

Makefile for sampleclock program

cc

= g++

CFLAGS = -g -Wall

sampleclock: sampleclock.cc

$(CC) $(CFLAGS) sampleclock.cc -o sampleclock

clean:

rm -f *.o sampleclock

Listing 1.2

sampleclock.cc

VoI ubdwNhR

RPRRRPRRRPRRRRR
COJOUT WN RO

20
21
22
23
24
25
26
27
28

#include <iostreams>

#include <ctimex>

using namespace std;

// This sample program uses the clock() function to measure
// the time that it takes for the loop part of the program
// to execute

int main()

clock t start time ,finish time;

// get the delay of executing the clock() function

start time = clock();
finish time = clock() ;
double delay time = (double) (finish time - start time);

cout<<"Delay time:"<<(double)delay time<<" seconds."
<<endl;

// start timing
start time = clock();
// Begin the timing

for (int 1 = 0; 1 < 100000; 1+4+)

o

Best_Ch01lf.gxd

29
30
31
32
33
34
35

37
38
39
40

41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68

70
71
72
73
74
75
76
77
78
79

8/31/05 12:55 PM Page 8 (E

Chapter 1 ¢ Profiling

cout <<"In:"<<i<<" loop" << endl;

}

// End the timing
// finish timing
finish time = clock();

// compute the running time without the delay

double elapsed iter time = (double) (finish time - start
time) ;
elapsed iter time -= delay time;

// convert to second format
double elapsed time = elapsed iter time / CLOCKS PER SEC;
// output the time elapsed

cout<<"Elapsed time:"<<(double)elapsed time<<" seconds."
<<endl;

// get the delay of executing the clock() function

start time = clock();
finish time = clock();
delay time = (double) (finish time - start time);

cout<<"Delay time:"<<(double)delay time<<" seconds."<<endl;

// now see what results we get by doing the measurement
// of the loop by cutting the loop in half

// start timing

start time = clock();

// Begin the timing

for (int 1 = 0; i < 50000; i++)

cout <<"In:"<<i<<" loop" << endl;

}

// End the timing
// finish timing

finish time = clock() ;

Best_Cholf.gxd 8/31/05 12:55 PM Page 9 $

clock

80 // compute the running time without the delay

81

82 elapsed iter time = (double) (finish time - start time);

83 elapsed iter time -= delay time;

84

85 // convert to second format

86

87 elapsed time = elapsed iter time / CLOCKS PER SEC;

88

89 // output the time elapsed.

90

91 cout<<"Elapsed time:"<<(double)elapsed time<<" seconds."
<<endl;

92

93 return 0;

94

95 }

The sampleclock.cc program can be built by executing the make command.

Figure 1.6 shows the building and running of the sampleclock program.

;@—

Bession Edit View Bookmaks Settings Help

=fbl:/usrssrcsclock #t make

g++ —g -Wall sampleclock.cc -o sampleclock
=fbl:/usrrssrcsclock # . s/sampleclock

Delay time:0 seconds.

In:0 loop

In:1 loop
In:Z loop
In:3 loop
In:4 loop
In:5 loop
In:6 loop
In:? loop
In:8 loop
In:9 loop
In:10 loop
In:11 loop
In:12 loop
In:13 loop
In:14 loop
In:15 loop
In:16 loop
In:1?7 loop
In:18 loop
In:19 loop
In:Z20 loop
In:Z21 loop
In:Z2 loop
In:Z3 loop
In:Z24 loop
In:25 loop

FIGURE 1.6
Building and running sampleclock.

Best_Cholf.gxd 8/31/05 12:55 PM Page 10 $

10 Chapter 1 ¢ Profiling

Figure 1.7 shows the elapsed time for the first loop as 3.11 seconds.

B Shell- Konsole o8

Bession Edit View Bookmaks BSettings Hep

In:99992 loop
In:99993 loop
In:99994 loop
In:99995 loop
In:99996 loop
In:99997 loop
In:99998 loop
In:99999 loop
Elapsed time:3.11 seconds.
Delay time:0 seconds.
In:0 loop
In:1 loop
In:Z loop
In:3 loop
In:4 loop
In:5 loop
6
?
8

In:6 loop
In:? loop
In:8 loop
In:9 loop
In:10 loop
In:11 loop
In:12 loop
In:13 loop
In:14 loop
In:15 loop
In:16 loop
In:17 loop
In:18 loop
In:19 loop

FIGURE 1.7
The timing for loop 1.

Figure 1.8 shows the elapsed time for the second loop as 1.66 seconds.

So the sampleclock program takes 3.11 seconds to execute the first for loop of
100000 and 1.66 seconds for the second for loop of 50000, which is very close to
half of the time. Now let’s look at another API called gettimeofday that can also be
used to time functions in a program.

Best_Ch01lf.gxd

8/31/05

12:55 PM Page 11

gettimeofday

B Shell- Konsole 83

Bession Edit View Bookmaks BSettings Hep

In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In

149972
149973
149974
149975
149976
149977
149978
149979
149980
149981
149982
149983
149984
149985
149986
149987
149988
149989
149990
149991
149992
149993
149994
149995
149996
149997
149998
149999
Elapsed time:1.66 seconds.
sfbl:susrssrcsclock 4]

loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop

FIGURE 1.8
The timing for loop 2.

gettimeofday

be used to time a write call.

Listing 1.3

o

11

gettimeofday() returns the current system clock time. The return value is a list
of two integers indicating the number of seconds since January 1, 1970 and the
number of microseconds since the most recent second boundary.

The sampletime code shown in Listing 1.3 uses gettimeofday to measure the time
it takes to sleep for 200 seconds. The gettimeofday routine could be used to meas-
ure how long it takes to write or read a file. Listing 1.4 is the pseudocode that could

sampletime.c

1 #include <stdio.h>

2 #include <sys/time.h>
3

Best Cholf.gxd 8/31/05 12:55 PM Page 12 (E

12 Chapter 1 ¢ Profiling
4 struct timeval start, finish ;

5 int msec;

6

7 int main ()

8

9 gettimeofday (&start, NULL) ;

10

11 sleep (200); /* wait ~ 200 seconds */

12

13 gettimeofday (&finish, NULL) ;

14

15 msec = finish.tv _sec * 1000 + finish.tv usec / 1000;
16 msec -= start.tv_sec * 1000 + start.tv_usec / 1000;
17

18 printf ("Time: %d milliseconds\n", msec);

19

Figure 1.9 shows the building of sampletime.c and the program’s output. Using
gettimeofday, the time for the sleep call on line 11 is 200009 milliseconds.

9,—

Session Edit View Bookmaks Setlings Hsp

=fbl:/usr/src/gettime # gocc sampletime.c —o sampletime
=fbl: /usr/src/gettinme # . /sampletime

Time: 200009 nilliseconds

sfbl: usrssrcsgettine #]

FIGURE 1.9
Timing using gettimeofday.

Listing 1.4 shows pseudocode for measuring the write call with the gettimeofday
API. The gettimeofday routine is called before the write routine is called to get the
start time. After the write call is made, gettimeofday is called again to get the end
time. Then the elapse_time for the write can be calculated.

Listing 1.4

Pseudocode for Timing Write Code

/* get time of day before writing */
if (gettimeofday(&tp start, NULL) == -1)

D WN R

/* error message gettimeofday failed */

o

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 13 (F

Performance Tuning Using GNU gprof 13
5

6 /* calculate elapse time start */

7 /* write to disk */

8 for (1 = 0; 1 < count; 14+)

9

10 if (write(£d, buf, buf size) == 0)

11

12 /* error message write failed */

13

14

15 /* get time of day after write */

16 1if (gettimeofday(&tp end, NULL) == -1)

17

18 /* error message gettimeofday failed */

19

20 /* calculate elapse time new */

21 elapse time = elapse time new - elapse time start;

22 /* compute throughput */

23 printf("elapse time for write: %d \n", elapse time);

Raw timings have limited usage when looking for performance issues. Profilers
can help pinpoint the parts of your program that are using the most time.

Performance Tuning Using GNU gprof

A profiler provides execution profiles. In other words, it tells you how much time
is being spent in each subroutine or function. You can view two kinds of extreme

profiles: a sharp profile and a flat profile.

Typically, scientific and engineering applications are dominated by a few routines
and give sharp profiles. These routines are usually built around linear algebra solu-
tions. Tuning code should focus on the most time-consuming routines and can be
very rewarding if successful.

Programs with flat profiles are more difficult to tune than ones with sharp pro-
files. Regardless of the code’s profile, a subroutine (function) profiler, gprof, can
provide a key way to tune applications.

Profiling tells you where a program is spending its time and which functions are
called while the program is being executed. With profile information, you can
determine which pieces of the program are slower than expected. These sections of
the code can be good candidates to be rewritten to make the program execute faster.
Profiling is also the best way to determine how often each function is called. With
this information, you can determine which function will give the most performance
boost by changing the code to perform faster.

o

Best Cholf.gxd 8/31/05 12:55 PM Page 14 $

14 Chapter 1 ¢ Profiling

The profiler collects data during the program’s execution. Having a complete
analysis of the program helps you ensure that all its important paths are while the
program is being profiled. Profiling can also be used on programs that are very com-
plex. This could be another way to learn the source code in addition to just reading
it. Now let’s look at the steps needed to profile a program using gprof:

* Profiling must be enabled when compiling and linking the program.
* A profiling data file is generated when the program is executed.

* Profiling data can be analyzed by running gprof.

gprof can display two different forms of output:

* A flat profile displays the amount of time the program went into each
function and the number of times the function was executed.

* A call graph displays details for each function, which function(s) called it,
the number of times it was called, and the amount of time that was spent in
the subroutines of each function. Figure 1.10 shows part of a call graph.

Sample

(Function 2 }

FIGURE 1.10
A typical fragment of a call graph.

gprof is useful not only to determine how much time is spent in various rou-
tines, but also to tell you which routines call (invoke) other routines. Suppose you
examine gprof’s output and see that xyz is consuming a lot of time, but the out-
put doesn’t tell you which routine is calling xyz. If there were a call tree, it would
tell you where the calls to xyz were coming from.

o

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 15 (F

gce Option Needed for gprof 15

gcc Option Needed for gprof

Before programs can be profiled using gprof, they must be compiled with the -
pg gee option. To get complete information about gprof, you can use the command
info gprof or man gprof.

Listing 1.5 shows the benefits that profiling can have on a small program. The
samplel program prints the prime numbers up to 50,000. You can use the output
from gprof to increase this program’s performance by changing the program to sam-
ple2, shown later in Listing 1.8.

Listing 1.5

samplel.c

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 int prime (int num);

5

6 int main()

7

8 int 1i;

9 int colecnt = 0;

10 for (i=2; i <= 50000; di++)
11 if (prime(i)) {

12 colcnt++;

13 if (colcnt%9 == 0)

14 printf ("$5d\n", 1) ;
15 colcnt = 0;

16

17 else

18 printf("s5d ", 1i);
19

20 putchar ('\n"'") ;

21 return 0;

22}

23

24 int prime (int num)

25 /* check to see if the number is a prime? */
26 int 1i;

27 for (i=2; 1 < num; 1++)
28 if (num %i == 0)

29 return O;

30 return 1;

31}

Best Cholf.gxd 8/31/05 12:55 PM Page 16 :F

16 Chapter 1 ¢ Profiling

Building the sample1 Program and Using gprof

The samplel.c program needs to be compiled with the option -pg to have pro-
file data generated, as shown in Figure 1.11.

I —

Bession Edit View Bookmaks BSettings Hep

=fbl: usrssrcssamplel # gocc -pg —o samplel samplel.c
=fbl:/usrrssrcssamplel # .szamplel

2 3 5 ? 11 13 17 19 23

29 31 37 41 43 47 53 59 61

67 71 73 79 83 89 97 101 103
167 109 113 12?7 131 137 139 149 151
15?7 163 167 173 1?9 181 191 193 197
199 211 223 227 229 233 239 241 251
257 263 269 2971 27?7 281 283 293 307
311 313 31?7 331 337 347 349 353 359
36? 3?3 3v9 383 389 397 401 409 419
421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523
541 547 557 563 S69 571 597 587 593
599 601 607 613 617 619 631 641 643
64?7 653 659 661 673 677 683 691 701
709 7?19 Y27 7?33 7?39 V43 51 757 761
769 7?3 V8?7 797 809 811 821 823 827
829 839 853 857 859 863 87Y? 881 883
88?7 907 911 919 929 937 941 947 953
967 971 97?7 983 991 997 1009 1013 1019
1621 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129
1151 1153 1163 1171 1181 1187 1193 1201 1213
1217 1223 1229 1231 1237 1249 1259 1277 1279
1283 1289 1291 1297 1301 1303 1307 1319 1321
1327 1361 1367 1373 1381 1399 1409 1423 1427
1429 1433 1439 1447 1451 1453 1459 1471 1481
1483 1487 1489 1493 1499 1511 1523 1531 1543
1549 1553 1559 1567 1571 1579 1583 1597 1601

FIGURE 1.11
Building and running sample1.

When the samplel program is run, the gmon.out file is created.

To view the profiling data, the gprof utility must be on your system. If your sys-
tem is rpm-based, the rpm command shows the version of gprof, as shown in

Figure 1.12.

Best_Cholf.gxd 8/31/05 12:55 PM Page 17 $

gce Option Needed for gprof 17

Session Edit View Bookmaks Settings Hep

=fbl:™ # rpn —qf Ausr/binsgprof
binutils-2.14.90.0.5-43
sfbh1:™ # ||

FIGURE 1.12
The version of gprof.

gprof is in the binutils package. For you to use the utility, the package must be
installed on your system. One useful gprof option is -b. The -b option eliminates
the text output that explains the data output provided by gprof:

gprof -b ./samplel

The output shown in Listing 1.6 from gprof gives some high-level information
like the total running time, which is 103.74 seconds. The main routine running
time is 0.07 seconds, and the prime routine running time is 103.67 seconds. The
prime routine is called 49,999 times.

Listing 1.6

Output from gprof for samplel
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
99.93 103.67 103.67 49999 2.07 2.07 prime
0.07 103.74 0.07 main
Call graph

granularity: each sample hit covers 4 byte(s) for 0.01% of
103.74 seconds

index % time self children called name
<spontaneous>
[1] 100.0 0.07 103.67 main [1]
103.67 0.00 49999/49999 prime [2]

Best Cholf.gxd 8/31/05 12:55 PM Page 18 CE

18

103.67 0.00 49999/49999
[2] 99.9 103.67 0.00 49999

Index by function name

[1] main [2] prime

Chapter 1 ¢ Profiling

main [1]
prime [2]

Next we can use the gcov program to look at the actual number of times each
line of the program was executed. (See Chapter 2, “Code Coverage,” for more

about gcov.)

We will build the samplel program with two additional options—-fprofile-arcs
and -ftest-coverage, as shown in Figure 1.13. These options let you look at the pro-

gram using gcov, as shown in Figure 1.14.

_qx—

Session Edit View Bookmaks Settings Hep

=fbl: - usrrssrcssamplel # .szamplel

2 3] ? 11 13 17 19 23

29 31 37 11 413 47 53 59 61

67 71 73 79 83 a9 97 101 103
107 109 113 127 131 137 139 149 151
157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 211 251
257 263 269 271 277 281 283 293 307
311 313 31?7 331 337 347 349 353 389
36? 3?3 3Iv9 383 389 397 401 409 419
421 431 433 439 443 49 457 461 463
467 479 487 491 499 503 509 521 S23
541 547 557 563 S69 571 597 58Y 593
599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 P01
709 719 Y27 733 7?39 43 v51 ?5Y 761
769 7?3 v8? 797 809 811 821 823 827
829 839 853 857 6859 863 8Y? 881 883
88?7 907 911 919 929 937 941 947 953
967 971 97?7 983 991 997 1009 1013 1019
1021 1631 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129
1151 1153 1163 1171 1181 1187 1193 1201 1213
1217 1223 1229 1231 1237 1249 1259 1277 1279
1283 1289 1291 1297 1301 1303 1307 1319 1321
1327 1361 1367 1373 1381 1399 1409 1423 1427
1429 1433 1439 1447 1451 1453 1459 1471 1481
1483 1487 1489 1493 1499 1511 1523 1531 1543
1549 1553 1559 1567 1571 1579 1583 1597 1601

=fbl:-usrssrcssamplel # gecc —pg —fprofile-arcs —ftest-coverage —o samplel samplel.c

FIGURE 1.13
Building sample1 with gcov options.

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 19

gce Option Needed for gprof 19

T . —|

Bession Edit View Bookmaks BSettings Hep

47777 47779 47791 47797 47807 47809 47819 47837 47843
47857 47869 47881 47903 47911 47917 47933 47939 47947
47951 47963 47969 47977 47981 48017 48023 48029 48049
48073 48079 48091 48109 48119 48121 48131 48157 48163
48179 48187 48193 48197 48221 48239 48247 48259 48271
48281 48299 48311 48313 48337 48341 48353 48371 48383
48397 48407 48409 48413 48437 48449 48463 48473 48479
48481 48487 48491 48497 48523 48527 48533 48539 48541
48563 48571 48589 48593 48611 48619 48623 48647 48649
48661 48673 48677 48679 48731 48733 48751 48757 48761
48767 48779 48781 48787 48799 48809 48817 48821 48823
48847 48857 48859 48869 48871 48883 48889 48907 48947
48953 48973 48989 48991 49003 49009 49019 49031 49033
49037 49043 49057 49069 49081 49103 49109 49117 49121
49123 49139 49157 49169 49171 49177 49193 49199 49201
49207 49211 49223 49253 49261 49277 49279 49297 49307
49331 49333 49339 49363 49367 49369 49391 49393 49409
49411 49417 49429 49433 49451 49459 49463 49477 49481
49499 49523 49529 49531 49537 49547 49549 49559 49597
49603 49613 49627 49633 49639 49663 49667 49669 49681
49697 49711 49727 49739 49741 49747 49757 49783 49787
49789 49801 49807 49811 49823 49831 49843 49853 49871
49877 49891 49919 49921 49927 49937 49939 49943 49957
49991 49993 49999

=fbl: usrssrcssamplel #f gocou samplel.c

File “samplel.c’

Lines executed:100.00x of 18

samplel.c:creating “samplel.c.gcou’

sfbl:susrssrcssamplel o |

FIGURE 1.14
Running sample1 and creating gcov output.

Running gcov on the source code produces the file samplel.c.gcov. It shows the
actual number of times each line of the program was executed. Listing 1.7 is the
output of gcov on samplel.

Listing 1.7
Output from gcov for samplel

:Source:samplel.c
:Graph:samplel.bbg
:Data:samplel.da
:#include <stdlib.h>
:#include <stdio.h>

:int prime (int num) ;

:int main ()

{

I
NOoOUTdkdWNDEHE OOO

Best_Ch01lf.gxd

20

1:

1:
50000:
49999:
5133:
5133:
570:
570:

4563 :

1:
1:
49999

49999:
121337004:
121331871:

44866 :

5133:

8/31/05

12:55 PM Page 20

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
:int prime
25:

24

26:
27 :
28:
29:
30:
31:
32:

}

int

int colcnt =

for
if

ij;

(i=2; 1 <=

0;

(prime (1))

colcnt++;
if

o

50000;

(colcnt%9

{

printf ("$5d\n",1i) ;

colcnt =

else

0;

printf ("%5d ",

i);

putchar ('\n'") ;

return 0;

(int num)

{

i++4)

Chapter 1 ¢ Profiling

/* check to see if the number is a prime?

*
i
f
i

/
nt 1i;
or (i=2; 1

f (num %i
return 0;

return 1;

<

num;
0)

i++)

There are 5,133 prime numbers. The expensive operations in the routine prime
are the for loop (line 27) and the if statement (line 28). The “hot spots” are the loop
and the if test inside the prime routine. This is where we will work to increase the
program’s performance. One change that will help this program is to use the sqrt()
function, which returns the nonnegative square root function of the number passed
in. sample2, shown inListing 1.8, has been changed to use the sqrt function in the
newly created function called faster.

Listing 1.8

sample2.c

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4

5 int prime (int num) ;
6 int faster (int num) ;
7

8 int main ()

9

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 21 (F

gce Option Needed for gprof 21

10 int 1i;
11 int colcnt = 0;
12 for (i=2; 1 <= 50000; i++)

13 if (prime(i)) {

14 colcnt++;

15 if (colcnt%9 == 0)

16 printf ("$5d\n", 1) ;

17 colcnt = 0;

18 }

19 else

20 printf ("%5d ", 1i);

21

22 putchar ('\n'") ;

23 return O0;

24 }

25

26 int prime (int num)

27 /* check to see if the number is a prime? */
28 int 1i;

29 for (i=2; i <= faster(num); i++)
30 if (num %i == 0)

31 return O0;

32 return 1;

33}

34

35 int faster (int num)

36

37 }return (int) sqgrt((float) num);
38

Now you can build the sample2 program (see Figure 1.15) and use gprof to check
how long the program will take to run (see Figure 1.16). Also, the gcov output
shows the reduced number of times each line needs to be executed. In Listing 1.9,
the total running time has been reduced from 103.74 seconds to 2.80 seconds.

Listing 1.9 shows the output of gprof for the sample2 program.
Listing 1.9

Output from gprof for sample2
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call wus/call name
52.68 1.48 1.48 1061109 1.39 1.39 faster
46.61 2.78 1.30 49999 26.10 55.60 ©prime
0.71 2.80 0.02 main

Best Cholf.gxd 8/31/05 12:55 PM Page 22

22 Chapter 1 ¢ Profiling

Call graph

granularity: each sample hit covers 4 byte(s) for 0.36% of 2.80

seconds
index % time self children called name
<spontaneous>
[1] 100.0 0.02 2.78 main [1]
1.30 1.48 49999/49999 prime [2]
1.30 1.48 49999/49999 main [1]
[2] 99.3 1.30 1.48 49999 prime [2]
1.48 0.00 1061109/1061109 faster [3]
1.48 0.00 1061109/1061109 prime [2]
[3] 52.7 1.48 0.00 1061109 faster [3]
Index by function name
[3] faster [1] main [2]

prime

4

Sessibn Edit View Bookmaks Seftings Hep

sfbl: usrssrcesampleZ # gec —pg -o sampleZ sampleZ.c —1m
sfbl: usrssrcosampleZ # ./sample2

2 3 5 ? 11 13 17 19 23

29 kil 37 41 43 47 53 59 61

67 71 73 79 83 89 97 101 103
o7 109 113 127 131 137 139 149 151
157 163 16Y 1?3 1v9 181 191 193 197
199 211 223 227 229 233 239 241 251
257 263 269 2Y1 2¢vy 281 283 293 307
311 313 317 331 337 347 349 33 359
3?7 3?3 3¥9 383 389 397 401 409 419
421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593
599 601 6OY 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701
09 P19 PEY P33 39 v43 Y61 57 Y61
9 7?3 78Y 797 809 811 821 823 827
829 839 853 857 859 863 48Y? 881 883
887 907 911 919 929 937 941 947 953
967 971 9¢¢? 983 991 997 1009 1013 1019
1621 1631 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129
1151 1153 1163 1171 1181 1187 1193 1201 1213
1217 1223 1229 1231 1237 1249 1259 1277 1279
1283 1289 1231 1297 1361 1303 1307 1319 1321
1327 1361 136Y 1373 1381 1399 1409 1423 1427
1429 1433 1439 1447 1451 1453 1459 1471 1481

Bl Nm:[|] shet

FIGURE 1.15
Building and running sample2.

Best Cholf.gxd 8/31/05 12:55 PM Page 23

gce Option Needed for gprof

B Shell- Konsole <2~ e —

Bession Edit View Bookmaks Settings Help

47309 47317 47339 47351 47353 47363 47381 47387 47389
47407 47417 47419 47431 47441 47459 47491 47497 47501
47507 47513 47521 47527 47533 47543 47563 47569 47581
47591 47599 47609 47623 47629 47639 47653 47657 47659
47681 47699 47701 47711 47713 47717 47737 47741 47743
47777 47779 47791 47797 47807 47809 47819 47837 47843
47857 47869 47881 47903 47911 47917 47933 47939 47947
47951 47963 47969 47977 47981 48017 48023 48029 48049
48073 48079 48091 48109 48119 48121 48131 48157 48163
48179 48187 48193 48197 48221 48239 48247 48259 48271
48281 48299 48311 48313 48337 48341 48353 48371 48383
48397 48407 48409 48413 48437 48449 48463 48473 48479
48481 48487 48491 48497 48523 48527 48533 48539 48541
48563 48571 48589 48593 48611 48619 48623 48647 48649
48661 48673 48677 48679 48731 48733 48751 48757 48761
48767 48779 48781 48787 48799 48809 48817 48821 48823
48847 48857 48859 48869 48871 48883 48889 48907 48947
48953 48973 48989 48991 49003 49009 49019 49031 49033
49037 49043 49057 49069 49081 49103 49109 49117 49121
49123 49139 49157 49169 49171 49177 49193 49199 49201
49207 49211 49223 49253 49261 49277 49279 49297 49307
49331 49333 49339 49363 49367 49369 49391 49393 49409
49411 49417 49429 49433 49451 49459 49463 49477 49481
49499 49523 49529 49531 49537 49547 49549 49559 49597
49603 49613 49627 49633 49639 49663 49667 49669 49681
49697 49711 49727 49739 49741 49747 49757 49783 49787
49789 49801 49807 49811 49823 49831 49843 49853 49871
49877 49891 49919 49921 49927 49937 49939 49943 49957
49991 49993 49999

=fbl:/usrssrcssampleZ # gprof -b sampleZ

FIGURE 1.16
Using gprof on sample2.

Best Cholf.gxd 8/31/05 12:55 PM Page 24

24 Chapter 1 ¢ Profiling

Now we'll run gcov on the sample2 program, as shown in Figures 1.17 and 1.18.

_4‘—

Session Edit View Bookmaks Seftings Hap

=fbl: usrssrcesampleZ #t goc —fprofile-arcs -ftest-coverage -o sampleZ sampleZ.c -1m
=fbl: usr/srcosample #t . /sampled

2 3 5 ? 11 13 1?7 19 23

29 3 37 41 43 47 53 59 61

67 71 73 79 83 89 97 101 103
o7 109 113 127 131 137 139 149 151
157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251
257 263 269 271 27?7 281 283 293 307
311 313 317 331 337 347 349 353 359
367 373 379 383 389 397 401 409 419
421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593
599 601 607 613 617 619 631 641 643
647 653 659 661 6?3 677 683 691 701
709 719 27 733 7?39 M43 1 Y57 Y61
Y69 Y73 @7 797 BO9 B11 821 B23 82?7
B29 839 853 B57 B59 863 877 881 883
Bg? 907 911 919 929 937 941 947 953
967 971 977 983 991 997 1009 1013 1019
1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129
1151 1153 1163 1171 1181 1187 1193 1201 1213
1217 1223 1229 1231 1237 1249 1259 1277 1279
1283 1289 1291 1297 1301 1303 1307 1319 1321
1327 1361 1367 1373 1381 1399 1409 1423 1427
1429 1433 1439 1447 1451 1453 1459 1471 1481
1483 1487 1489 1493 1499 1511 1523 1531 1543
1549 1553 1559 1567 1571 1579 1583 1597 1601

FIGURE 1.17
Building sample2 with gcov and running sample2.

Best_Ch01lf.gxd

8/31/05

12:55 PM Page 25

gce Option Needed for gprof

Bl shell_Konsole <2 8

Session Edit View Bookmaks BSettings Hep

47777 47779
47857 47869
47951 47963
48073 48079
48179 48187
48281 48299
48397 48407
48481 48487
48563 48571
48661 48673
48767 48779
48847 48857
48953 48973
49037 49043
49123 49139
49207 49211
49331 49333
49411 49417
49499 49523
49603 49613
49697 49711
49789 49801
49877 49891
49991 49993

47791
47881
47969
48091
48193
48311
48409
48491
48589
48677
48781
48859
48989
49057
49157
49223
49339
49429
49529
49627
49727
49807
49919
49999

47797
47903
47977
48109
48197
48313
48413
48497
48593
48679
48787
48869
48991
49069
49169
49253
49363
49433
49531
49633
49739
49811
49921

=fbl:/usrssrcssampleZ #
File “sample2.c’
Lines executed:100.00x of 20

sample?.c:creating “sampleZ.c.gcou’

47807 47809 47819 47837 47843
47911 47917 47933 47939 47947
47981 48017 48023 48029 48049
48119 48121 48131 48157 48163
48221 48239 48247 48259 48271
48337 48341 48353 48371 48383
48437 48449 48463 48473 48479
48523 48527 48533 48539 48541
48611 48619 48623 48647 48649
48731 48733 48751 48757 48761
48799 48809 48817 48821 48823
48871 48883 48889 48907 48947
49003 49009 49019 49031 49033
49081 49103 49109 49117 49121
49171 49177 49193 49199 49201
49261 49277 49279 49297 49307
49367 49369 49391 49393 49409
49451 49459 49463 49477 49481
49537 49547 49549 49559 49597
49639 49663 49667 49669 49681
49741 49747 49757 49783 49787
49823 49831 49843 49853 49871
49927 49937 49939 49943 49957

gcou sampleZ.c

sfbl:susrssrcssamplez o |

FIGURE 1

18

Running sample2 and getting gcov output.

Listing 1.10 shows gcov output for the sample2 program.

Listing 1.10

Output of sample2.c.gcov

WooOoJOUTd WNRE OOO

10:
11:
12:

:Source:sample2.c
:Graph:sample2.bbg
:Data:sample2.da
:#include <stdlib.hs>
:#include <stdio.hs>
:#include <math.h>

:int prime (int num) ;
:int faster (int num) ;

:int main ()

int 1i;
int colcnt = 0;
for (i=2; 1 <= 50000; i++)

Best Cholf.gxd 8/31/05 12:55 PM Page 26 $

26 Chapter 1 ¢ Profiling
49999: 13: if (prime(i)) {
5133: 14: colcnt++;
5133: 15: if (colent%9 == 0) {
570: 16:printf ("%$5d\n",1i) ;
570: 17:colcnt = 0;
- 18: }
-: 19: else
4563 : 20: printf("s5d ", 1i);
- 21:
1: 22: putchar ('\n'") ;
1: 23: return O0;
- 24: }
- 25:
49999: 26:int prime (int num)
- 27 : /* check to see if the number is a
prime? */
49999 28: int 1i;
1061109: 29: for (i=2; i <= faster(num); i++)
1055976: 30: if (num %i == 0)
44866 : 31: return O0;
5133: 32: return 1;
- 33: }
- 34 :
- 35:int faster (int num)
1061109: 36: {
1061109: 37: return (int) sqgrt((float) num);
- 38: }
- 39:

The for loop in the prime routine has been reduced from 121 million executions
to 1 million executions. Therefore, the total time has been reduced from 103.74
seconds to 2.80 seconds.

The tools gprof and gcov helped find the “hot spots” in this sample program.
After the “hot spots” were found, the program was changed to increase its overall
performance. It is interesting how changing a few lines of code can have a great
impact on a program’s performance.

Listing 1.11, sample3.cpp, has three different functions (1, 2, and 3). It shows a
more complex use of profiling, with both flat and graphic profiles. We'll also use
kprof, which can use gprof output. It presents the information in list or tree views,
which make the information easier to understand when programs are more com-
plicated. Let’s start by building the sample3.cpp program and displaying the flat and
graphic profiles and then displaying the data using kprof.

Best_Cholf.gxd 8/31/05 12:55 PM Page 27 (E

gce Option Needed for gprof 27

Listing 1.11
sample3.cpp

1 #include <iostream>

2

3 void functionl ()

4 for(int i=0;1<1000000;i++) ;
5

6

7 void function2 () {

8 functionl () ;

9 for (int 1=0;1<2000000;1i++) ;
10 }

11

12 void function3 () {

13 functionil () ;

14 function2 () ;

15 for (int 1=0;i<3000000;i++) ;
16 functionl () ;

17 }

18

19 int main () {

20 for(int i=0;i<10;i++)

21 functionl () ;

22

23 for (int 1=0;1<5000000;1i++) ;
24

25 for(int i1=0;i<10;1i++)

26 function2 () ;

27 for(int 1=0; i<13;i++);
28

29 function3 () ;

30 function2 () ;

31 functionil () ;

32

33 }

Figure 1.19 shows the commands used to build and run the sample3 program.
gprof is also run on sample3 to get the profile data from sample3.

)_

Session Edit View Bookmaks Sefitings Hap

=fbl: usrssrcosample3d #t g++ sample3.cpp —py -0 sample3
=fbl: usr/srcosampled #t . /sampled

=fbl: usrssrcosample3d #t gprof ./sample3 > sampled.gprof
sfbl:susrssrcosanple3 # |

FIGURE 1.19
Building and capturing gprof output for sample3.

o

Best_Cholf.gxd 8/31/05 12:55 PM Page 28 (E

28 Chapter 1 ¢ Profiling

We won't use the -b option on the gprof output on the sample3 program so that
we can see all the descriptive information that gprof can display.

The sample3.gprof should look similar to this:

Flat profile:
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
43 .36 4.21 4.21 12 0.35 0.52 function2 ()
42 .84 8.37 4.16 25 0.17 0.17 functioni ()
8.65 9.21 0.84 main
5.15 9.71 0.50 1 0.50 1.35 function3 ()
0.00 9.71 0.00 1 0.00 0.00 global constructors
keyed to functionl ()
0.00 9.71 0.00 1 0.00 0.00

__static_initialization and destruction 0 (int, int)

Field Description

% time The percentage of the program’s total running time used by
this function.

cumulative seconds A running sum of the number of seconds accounted for by
this function and those listed above it.

self seconds The number of seconds accounted for by this function
alone. This is the major sort for this listing.

calls The number of times this function was invoked if this func-
tion is profiled; otherwise, it is blank.

self ms/call The average number of milliseconds spent in this function
per call if this function is profiled; otherwise, it is blank.

total ms/call The average number of milliseconds spent in this function
and its descendents per call if this function is profiled; oth-
erwise, it is blank.

name The function’s name. This is the minor sort for this listing.
The index shows the location of the function in the gprof
listing. If the index is in parentheses, it shows where it
would appear in the gprof listing if it were to be printed.

Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 0.10% of 9.71 seconds

index % time self children called name
<spontaneous>
[1] 100.0 0.84 8.87 main [1]
3.86 1.83 11/12 function2 () [2]

o

Best_Ch01lf.gxd

8/31/05 12:55 PM Page 29

gce Option Needed for gprof

o

11/25
1/1

1/12
11/12
12
12/25

2/25
11/25
12/25
25

1/1
1
1/12
2/25

[2] 63.9
[3] 42.8
[4] 13.9
[11] 0.0

functionl () [11

.00
__static initialization and destruction 0 (int,

.00

1/1
1

1/1

functionl () [11
[12]

]

0.
_ static_initialization and destruction 0 (int,

0

0.

00

1/1

0.00

functionl () [3]
function3 () [4]

function3 () [4]
main [1]
function2 () [2]
functionl () [3]

function3 () [4]

main [1]

function2 () [2]
functionl () [3]

main [1]
function3 () [4]

function2 () [2]

functionl () [3]

__do _global ctors_aux [13]
global constructors keyed to

int) [12]

29

global constructors keyed to

1

int) [12]

This table describes the program’s call tree. It is sorted by the total amount of

time spent in each function and its children.

Each entry in this table consists of several lines. The line with the index number
at the left margin lists the current function. The lines above it list the functions that
called this function, and the lines below it list the functions this one called.

You see the following:

Field

index

% time

Description

A unique number given to each element of the table. Index numbers

are sorted numerically. The index number is printed next to every

function name so that it is easier to look up the function in the table.

The percentage of the total time that was spent in this function and
its children. Note that due to different viewpoints, functions exclud-
ed by options, and so on, these numbers do 7ot add up to 100%.

o

Best_Cholf.gxd 8/31/05 12:55 PM Page 30 $

30 Chapter 1 ¢ Profiling
Field Description
self The total amount of time spent in this function.
children The total amount of time propagated into this function by its
children.
called The number of times the function was called. If the function called

itself recursively, the number includes only nonrecursive calls and is
followed by a + and the number of recursive calls.

name The name of the current function. The index number is printed
after it. If the function is a member of a cycle, the cycle number is
printed between the function’s name and the index number.

For the function’s parents, the fields have the following meanings:

Field Description

self The amount of time that was propagated directly from the function
into this parent.

children The amount of time that was propagated from the function’s chil-
dren into this parent.

called The number of times this parent called the function and the total
number of times the function was called. Recursive calls to the func-
tion are not included in the number after the /.

name The parent’s name. The parent’s index number is printed after it. If
the parent is a member of a cycle, the cycle number is printed
between the name and the index number.

If the function’s parents cannot be determined, the word <spontaneous> is printed
in the name field, and all the other fields are blank.

For the function’s children, the fields have the following meanings:

Field Description

self The amount of time that was propagated directly from the child
into the function.

children The amount of time that was propagated from the child’s children
to the function.

Best_Cholf.gxd 8/31/05 12:55 PM Page 31 (E

kprof 31

called The number of times the function called this child and the total
number of times the child was called. Recursive calls by the child are
not listed in the number after the /.

name The child’s name. The child’s index number is printed after it. If the

child is a member of a cycle, the cycle number is printed between
the name and the index number.

If the call graph has any cycles (circles), there is an entry for the cycle as a whole.
This entry shows who called the cycle (as parents) and the members of the cycle (as
children). The + recursive calls entry shows how many function calls were internal
to the cycle. The calls entry for each member shows, for that member, how many
times it was called from other members of the cycle.

Index by function name

[11] global constructors keyed to functionl() [3] functionl() [4] function3()
[12] _ static_initialization_and destruction 0 (int, int) [2] function2() [1]
main

kprof

kprof is a graphical tool that displays the execution profiling output generated by
the gprof profiler. kprof presents the information in list or tree view, which makes
the information easy to understand.

kprof has the following features:

* Flat profile view displays all functions and methods and their profiling
information. (See Figure 1.22 for a view of this functionality.)

* Hierarchical profile view displays a tree for each function and method with
the other functions and methods it calls as subelements. (See Figure 1.23
for a view of this functionality.)

* Graph view is a graphical representation of the call tree. It requires
Graphviz to work. (See Figure 1.24 for a view of this functionality.)

* Right-clicking a function or method displays a pop-up with the /isz of
callers and called functions. You can go to one of these functions directly
by selecting it in the pop-up menu. (See Figure 1.22 for a view of this
functionality.)

Best Cholf.gxd 8/31/05 12:55 PM Page 32 (E

32 Chapter 1 ¢ Profiling

Installation

We've nstalled the kprof-1.4.2-196.1586.rpm that comes with the distribution.
The following rpm command displays the version of the kprof application:

% rpm -gf /opt/kde3/bin/kprof

kprof-1.4.2-196

Building Graphviz, the Graph Feature

kprof supports a graph feature, but before it can be used, the Graphviz program
must be built. See the Graphviz URL in the section “Web Resources for Profiling”
at the end of this chapter to download the source code for Graphviz.

The version of source code for Graphviz that will be built for this section is ver-
sion 1.12. The tar file graphviz-1.12.tar.gz can be downloaded.

The next steps expand the source tree. Then, using the make and make install
commands, the program is built and installed to the proper location on your sys-
tem, as shown in Figure 1.20.

l@IHHEHHHHH!bEg-------------------------ﬁ!ﬂgﬂ

Session Edit View Bookmaks Ssttings Hep

sfbl: usr/srcographuiz ##f tar zxuf graphuiz-1.12.tar.gz &% cd graphviz-1.12 &% .,configure && makeﬁiﬁ

&% make installl

FIGURE 1.20
Building and installing Graphviz.

After Graphviz is installed, kprof uses it to create the Graph View that can be
seen in Figure 1.24.

To use kprof, the -b option is needed. The following command uses gprof with

the -b option on the sample3 program. gprof’s output is saved to the sample3.profl
file:

% gprof -b sample3 >sample3.profl

The next step is to start kprof:

% kprof

Best Cholf.gxd 8/31/05 12:55 PM Page 33 $

kprof 33

After kprof loads, select File, Open to bring the sample3 gprof output into kprof.
Figure 1.21 shows the open dialog box.

. mmpled.prof
[%] mmpleap

T e

@ | Lacation; LlB"P‘EG-P'D” L ® (V oK }
ﬂl'_| e Fillar: LIAHFiIas B3 Lx Cancel |

Text File Format:

=) GNUgpmf () Function Check (") PaimOS Emukior

FIGURE 1.21
The open dialog box.

Figure 1.22 shows the flat profile view of the sample3 program. This screen shot
also shows that functionl is called by function2, function3, and main.

I sample3.proft1-KProf 53

Fie Took Ssttings Help
ERE)

[Fht Pofile | Hiemmhical Pmofile Object Pmfile GmEph View Msthod View -]

Fiter |
Function/Mathod + | Count Tot@l (s) 9% Sell i) Total mefcall Salf ma'call
__slatc_initalzation... 1 9.700 0.000 0.000 0.000 0.000
function1 5 I
function2 12 4210 43400 4210 0520 functianap)
functiond 1 9.700 5.150 0.500 1350

main
glbal canstructors k... 1 9.700 0.000 0.000 0.000

function2()
main o 9.200 B.660 0.840 0.000

—_—

FIGURE 1.22
The flat profile view.

Best Cholf.gxd 8/31/05 12:55 PM Page 34 $

34 Chapter 1 ¢ Profiling

Figure 1.23 shows the hierarchical profile view of the sample3 program.

;\,—

Fie Took Settings Hep
=

EetPrfle | Himmehical Prfis [Object Pofie |E_|aph\l'law |Methd\|'law]

Function/Method w | Count [Total (s) % | self (s) | Total ms/call Self mscall [

static_initializa... 1| 9,700, 0.000 0.000 0.000 0.000
-function? 25| B.360 42780 4.150 0.170 0.170
-function2 12| 4.210| 43.400 4.210 0.520 0.350

| ‘efunctiont 25| B.360| 42.780 4.150 0.170 0170
é-funcuona 1| 9700/ 5150 0.500 1.350 0.500
: +-function2 12] 4.210| 43.400 4.210 0.520 0.350
—-global constructo., 1| 9,700/ 0.000 0.000 0.000 0.000
| L static_initia... 1| 9,700/ 0.000 0.000 0.000 0.000
L main o 9.200) 8.660 0.840 0.000 0.000
L. tunction2 12] 4.210| 43.400 4.210 0.520 0.350
| Ltunctiont 25| 8.360/ 42.780 4,150 0.170 0170
L. functiona 1| 9700/ 5150 0.500 1.350 0.500

FIGURE 1.23
The hierarchical profile view.

Figure 1.24 shows the graph view of the sample3 program. The graph view uses
Graphviz. This view shows that functionl is called by main, function2, and func-
tion3. It also shows that function2 is called by main and function3 and that
function3 is called only by main.

Best_Ch01lf.gxd

8/31/05

Summary

12:55 PM Page 35

o

P sampled.pof1- KProt <2> 83

File Took BSeftings Hep

E¢

Fiat Pofile | Hiemmrhical Pmofie

Object Pmfile Gm@Eph View

Method View]

BEES

:imain

N

-

::function2

i

::functionl

_ t:function3

::global constructors keyed to functionl

i

::__static_initialization_and_destruction_0

A OE 5

FIGURE 1.24
The graph view.

Summary

35

This chapter covered five methods of timing programs or functions inside of pro-
grams. The first three methods were stopwatch, date, and time. These three meth-
ods are ways to measure the total time that the program takes to execute. These
methods require no modifications to the program to measure the time spent by the
program. The clock and gettimeofday routines can be added to parts of a program
to measure the time spent doing a section of the program. Finally, the gprof profil-
er and kprof can be used to profile sample programs.

Best Cholf.gxd 8/31/05 12:55 PM Page 36 $

36 Chapter 1 ¢ Profiling

Web Resources for Profiling

URL Description
hitp:/fwww.gnu.orglsoftware/binutils/manuall

gprof-2.9. 1/gprof-html Documentation for gprof
http://kprof.sourceforge.netl kprof home page
hitp:/fwww.research.att.com/switools/graphviz/

download.html graphviz home page
http:/fsamba.org/fip/tridge/dbench/ dbench download page

