
In this chapter

� stopwatch page 3

� date page 4

� time page 5

� clock page 6

� gettimeofday page 11

� Performance Tuning Using GNU gprof page 13

� gcc Option Needed for gprof page 15

� kprof page 31

� Summary page 35

� Web Resources for Profiling page 36

1

1

Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 1

In general, performance tuning consists of the following steps:

1. Define the performance problem.

2. Identify the bottlenecks by using monitoring and measurement
tools. (This chapter focuses on measuring from the timing aspect.)

3. Remove bottlenecks by applying a tuning methodology.

4. Repeat steps 2 and 3 until you find a satisfactory resolution.

A sound understanding of the problem is critical in monitoring and tuning the
system. Once the problem is defined, a realistic goal for improvement needs to be
agreed on. Once a bottleneck is found, you need to verify whether it is indeed a bot-
tleneck and devise possible solutions to alleviate it. Be aware that once a bottleneck
is identified and steps are taken to relieve it, another bottleneck may suddenly
appear. This may be caused by several variables in the system running near capacity.

Bottlenecks occur at points in the system where requests are arriving faster than
they can be handled, or where resources, such as buffers, are insufficient to hold
adequate amounts of data. Finding a bottleneck is essentially a step-by-step process
of narrowing down the problem’s causes.

Change only one thing at a time. Changing more than one variable can cloud
results, since it will be difficult to determine which variable has had what effect on
system performance. The general rule perhaps is better stated as “Change the min-
imum number of related things.” In some situations, changing “one thing at a time”
may mean changing multiple parameters, since changes to the parameter of inter-
est may require changes to related parameters. One key item to remember when
doing performance tuning is to start in the same state every time. Start each itera-
tion of your test with your system in the same state. For example, if you are doing
database benchmarking, make sure that you reset the values in the database to the
same setting each time the test is run.

This chapter covers several methods to measure execution time and real-time per-
formance. The methods give different types of granularity, from the program’s com-
plete execution time to how long each function in the program takes. The first three
methods (stopwatch, date, and time) involve no changes to the program that need

2

Best_Ch01f.qxd 8/31/05 12:55 PM Page 2

to be measured. The next two methods (clock and gettimeofday) need to be added
directly to the program’s source code. The timing routines could be coded to be on
or off, depending on whether the collection of performance measurements is need-
ed all the time or just when the program’s performance is in question. The last
method requires the application to be compiled with an additional compiler flag
that allows the compiler to add the performance measurement directly to the code.
Choosing one method over another can depend on whether the application’s source
code is available. Analyzing the source code with gprof is a very effective way to see
which function is using a large percentage of the overall time spent executing the
program.

Application performance tuning is a complex process that requires correlating
many types of information with source code to locate and analyze performance
problem bottlenecks. This chapter shows a sample program that we’ll tune using
gprof and gcov.

stopwatch
The stopwatch uses the chronograph feature of a digital watch. The steps are sim-

ple. Reset the watch to zero. When the program begins, start the watch. When the
program ends, stop the watch. The total execution time is shown on the watch.
Figure 1.1 uses the file system benchmark dbench. The stopwatch starts when
dbench is started, and it stops when the program dbench is finished.

stopwatch 3

FIGURE 1.1
Timing dbench with stopwatch.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 3

Using the digital stopwatch method, the dbench program execution time came
out to be 13 minutes and 56 seconds, as shown in Figure 1.2.

4 Chapter 1 • Profiling

FIGURE 1.2
The execution time is shown on the watch.

date
The date command can be used like a stopwatch, except that it uses the clock

provided by the system. The date command is issued before the program is run and
right after the program finishes. Figure 1.3 shows the output of the date command
and the dbench program, which is a file system benchmark program. The execution
time is 29 minutes and 59 seconds. This is the difference between the two times
shown in the figure (17:52:24 – 17:22:25 = 29 minutes 59 seconds).

FIGURE 1.3
Using date to measure dbench timing.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 4

time 5

time
The time command can be used to measure the execution time of a specified pro-

gram. When the program finishes, time writes a message to standard output, giv-
ing timing statistics about the program that was run. Figure 1.4 shows the timing
for the list directory contents command (ls) with the -R option, which recursively
lists subdirectories.

FIGURE 1.4
Timing the ls command with time.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 5

Figure 1.5 shows the finishing up of the ls command and the three timings (real,
user, and sys) produced by time.

6 Chapter 1 • Profiling

FIGURE 1.5
The results of timing the ls command with time.

The output from time produces three timings. The first is real, which indicates
that 4 minutes and 58.045 seconds elapsed during the execution of the ls com-
mand, that the CPU in user space (user) spent 9.520 seconds, and that 26.760
seconds were spent executing system (sys) calls.

clock
The clock() function is a way to measure the time spent by a section of a pro-

gram. The sample program shown in Listing 1.2, called sampleclock, measures two
for loops. The first for loop is on line 27 of the sampleclock program, and the sec-
ond is on line 69. The delay_time on lines 17 and 56 calculates how long the clock
() call takes. The makefile shown in Listing 1.1 can be used to build the sample-
clock program.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 6

Listing 1.1

The Makefile for the sampleclock Program
Makefile for sampleclock program

CC = g++

CFLAGS = -g -Wall

sampleclock: sampleclock.cc

$(CC) $(CFLAGS) sampleclock.cc -o sampleclock

clean:
rm -f *.o sampleclock

Listing 1.2

sampleclock.cc
1 #include <iostream>
2 #include <ctime>
3 using namespace std;
4
5 // This sample program uses the clock() function to measure
6 // the time that it takes for the loop part of the program
7 // to execute
8
9 int main()
10 {
11 clock_t start_time ,finish_time;
12
13 // get the delay of executing the clock() function
14
15 start_time = clock();
16 finish_time = clock();
17 double delay_time = (double)(finish_time - start_time);
18
19 cout<<"Delay time:"<<(double)delay_time<<" seconds."

<<endl;
20
21 // start timing
22
23 start_time = clock();
24
25 // Begin the timing
26
27 for (int i = 0; i < 100000; i++)
28 {

clock 7

Best_Ch01f.qxd 8/31/05 12:55 PM Page 7

29 cout <<"In:"<<i<<" loop" << endl;
30 }
31
32 // End the timing
33
34 // finish timing
35
36 finish_time = clock();
37
38 // compute the running time without the delay
39
40 double elapsed_iter_time = (double)(finish_time - start_

time);
41 elapsed_iter_time -= delay_time;
42
43 // convert to second format
44
45 double elapsed_time = elapsed_iter_time / CLOCKS_PER_SEC;
46
47 // output the time elapsed
48
49 cout<<"Elapsed time:"<<(double)elapsed_time<<" seconds."

<<endl;
50
51 // get the delay of executing the clock() function
52
53
54 start_time = clock();
55 finish_time = clock();
56 delay_time = (double)(finish_time - start_time);
57
58 cout<<"Delay time:"<<(double)delay_time<<" seconds."<<endl;
59
60 // now see what results we get by doing the measurement
61 // of the loop by cutting the loop in half
62
63 // start timing
64
65 start_time = clock();
66
67 // Begin the timing
68
69 for (int i = 0; i < 50000; i++)
70 {
71 cout <<"In:"<<i<<" loop" << endl;
72 }
73
74 // End the timing
75
76 // finish timing
77
78 finish_time = clock();
79

8 Chapter 1 • Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 8

80 // compute the running time without the delay
81
82 elapsed_iter_time = (double)(finish_time - start_time);
83 elapsed_iter_time -= delay_time;
84
85 // convert to second format
86
87 elapsed_time = elapsed_iter_time / CLOCKS_PER_SEC;
88
89 // output the time elapsed.
90
91 cout<<"Elapsed time:"<<(double)elapsed_time<<" seconds."

<<endl;
92
93 return 0;
94
95 }

The sampleclock.cc program can be built by executing the make command.

Figure 1.6 shows the building and running of the sampleclock program.

clock 9

FIGURE 1.6
Building and running sampleclock.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 9

Figure 1.7 shows the elapsed time for the first loop as 3.11 seconds.

10 Chapter 1 • Profiling

Figure 1.8 shows the elapsed time for the second loop as 1.66 seconds.

So the sampleclock program takes 3.11 seconds to execute the first for loop of
100000 and 1.66 seconds for the second for loop of 50000, which is very close to
half of the time. Now let’s look at another API called gettimeofday that can also be
used to time functions in a program.

FIGURE 1.7
The timing for loop 1.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 10

gettimeofday
gettimeofday() returns the current system clock time. The return value is a list

of two integers indicating the number of seconds since January 1, 1970 and the
number of microseconds since the most recent second boundary.

The sampletime code shown in Listing 1.3 uses gettimeofday to measure the time
it takes to sleep for 200 seconds. The gettimeofday routine could be used to meas-
ure how long it takes to write or read a file. Listing 1.4 is the pseudocode that could
be used to time a write call.

Listing 1.3

sampletime.c
1 #include <stdio.h>
2 #include <sys/time.h>
3

gettimeofday 11

FIGURE 1.8
The timing for loop 2.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 11

4 struct timeval start, finish ;
5 int msec;
6
7 int main ()
8 {
9 gettimeofday (&start, NULL);
10
11 sleep (200); /* wait ~ 200 seconds */
12
13 gettimeofday (&finish, NULL);
14
15 msec = finish.tv_sec * 1000 + finish.tv_usec / 1000;
16 msec -= start.tv_sec * 1000 + start.tv_usec / 1000;
17
18 printf("Time: %d milliseconds\n", msec);
19 }

Figure 1.9 shows the building of sampletime.c and the program’s output. Using
gettimeofday, the time for the sleep call on line 11 is 200009 milliseconds.

12 Chapter 1 • Profiling

FIGURE 1.9
Timing using gettimeofday.

Listing 1.4 shows pseudocode for measuring the write call with the gettimeofday
API. The gettimeofday routine is called before the write routine is called to get the
start time. After the write call is made, gettimeofday is called again to get the end
time. Then the elapse_time for the write can be calculated.

Listing 1.4

Pseudocode for Timing Write Code
1 /* get time of day before writing */
2 if (gettimeofday(&tp_start, NULL) == -1)
3 {
4 /* error message gettimeofday failed */

Best_Ch01f.qxd 8/31/05 12:55 PM Page 12

5 }
6 /* calculate elapse_time_start */
7 /* write to disk */
8 for (i = 0; i < count; i++)
9 {
10 if (write(fd, buf, buf_size) == 0)
11 {
12 /* error message write failed */
13 }
14 }
15 /* get time of day after write */
16 if (gettimeofday(&tp_end, NULL) == -1)
17 {
18 /* error message gettimeofday failed */
19 }
20 /* calculate elapse_time_new */
21 elapse_time = elapse_time_new - elapse_time_start;
22 /* compute throughput */
23 printf("elapse time for write: %d \n", elapse_time);

Raw timings have limited usage when looking for performance issues. Profilers
can help pinpoint the parts of your program that are using the most time.

Performance Tuning Using GNU gprof
A profiler provides execution profiles. In other words, it tells you how much time

is being spent in each subroutine or function. You can view two kinds of extreme
profiles: a sharp profile and a flat profile.

Typically, scientific and engineering applications are dominated by a few routines
and give sharp profiles. These routines are usually built around linear algebra solu-
tions. Tuning code should focus on the most time-consuming routines and can be
very rewarding if successful.

Programs with flat profiles are more difficult to tune than ones with sharp pro-
files. Regardless of the code’s profile, a subroutine (function) profiler, gprof, can
provide a key way to tune applications.

Profiling tells you where a program is spending its time and which functions are
called while the program is being executed. With profile information, you can
determine which pieces of the program are slower than expected. These sections of
the code can be good candidates to be rewritten to make the program execute faster.
Profiling is also the best way to determine how often each function is called. With
this information, you can determine which function will give the most performance
boost by changing the code to perform faster.

Performance Tuning Using GNU gprof 13

Best_Ch01f.qxd 8/31/05 12:55 PM Page 13

The profiler collects data during the program’s execution. Having a complete
analysis of the program helps you ensure that all its important paths are while the
program is being profiled. Profiling can also be used on programs that are very com-
plex. This could be another way to learn the source code in addition to just reading
it. Now let’s look at the steps needed to profile a program using gprof:

• Profiling must be enabled when compiling and linking the program.

• A profiling data file is generated when the program is executed.

• Profiling data can be analyzed by running gprof.

gprof can display two different forms of output:

• A flat profile displays the amount of time the program went into each
function and the number of times the function was executed.

• A call graph displays details for each function, which function(s) called it,
the number of times it was called, and the amount of time that was spent in
the subroutines of each function. Figure 1.10 shows part of a call graph.

14 Chapter 1 • Profiling

Caller 1 Caller 2

Function 1 Function 3

Function 2

Sample

FIGURE 1.10
A typical fragment of a call graph.

gprof is useful not only to determine how much time is spent in various rou-
tines, but also to tell you which routines call (invoke) other routines. Suppose you
examine gprof ’s output and see that xyz is consuming a lot of time, but the out-
put doesn’t tell you which routine is calling xyz. If there were a call tree, it would
tell you where the calls to xyz were coming from.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 14

gcc Option Needed for gprof
Before programs can be profiled using gprof, they must be compiled with the -

pg gcc option. To get complete information about gprof, you can use the command
info gprof or man gprof.

Listing 1.5 shows the benefits that profiling can have on a small program. The
sample1 program prints the prime numbers up to 50,000. You can use the output
from gprof to increase this program’s performance by changing the program to sam-
ple2, shown later in Listing 1.8.

Listing 1.5

sample1.c
1 #include <stdlib.h>
2 #include <stdio.h>
3
4 int prime (int num);
5
6 int main()
7 {
8 int i;
9 int colcnt = 0;
10 for (i=2; i <= 50000; i++)
11 if (prime(i)) {
12 colcnt++;
13 if (colcnt%9 == 0) {
14 printf("%5d\n",i);
15 colcnt = 0;
16 }
17 else
18 printf("%5d ", i);
19 }
20 putchar('\n');
21 return 0;
22 }
23
24 int prime (int num) {
25 /* check to see if the number is a prime? */
26 int i;
27 for (i=2; i < num; i++)
28 if (num %i == 0)
29 return 0;
30 return 1;
31 }

gcc Option Needed for gprof 15

Best_Ch01f.qxd 8/31/05 12:55 PM Page 15

Building the sample1 Program and Using gprof
The sample1.c program needs to be compiled with the option -pg to have pro-

file data generated, as shown in Figure 1.11.

16 Chapter 1 • Profiling

FIGURE 1.11
Building and running sample1.

When the sample1 program is run, the gmon.out file is created.

To view the profiling data, the gprof utility must be on your system. If your sys-
tem is rpm-based, the rpm command shows the version of gprof, as shown in
Figure 1.12.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 16

gprof is in the binutils package. For you to use the utility, the package must be
installed on your system. One useful gprof option is -b. The -b option eliminates
the text output that explains the data output provided by gprof:

gprof -b ./sample1

The output shown in Listing 1.6 from gprof gives some high-level information
like the total running time, which is 103.74 seconds. The main routine running
time is 0.07 seconds, and the prime routine running time is 103.67 seconds. The
prime routine is called 49,999 times.

Listing 1.6

Output from gprof for sample1
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
99.93 103.67 103.67 49999 2.07 2.07 prime
0.07 103.74 0.07 main

Call graph

granularity: each sample hit covers 4 byte(s) for 0.01% of
103.74 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.07 103.67 main [1]
103.67 0.00 49999/49999 prime [2]

gcc Option Needed for gprof 17

FIGURE 1.12
The version of gprof.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 17

103.67 0.00 49999/49999 main [1]

[2] 99.9 103.67 0.00 49999 prime [2]

Index by function name

[1] main [2] prime

Next we can use the gcov program to look at the actual number of times each
line of the program was executed. (See Chapter 2, “Code Coverage,” for more
about gcov.)

We will build the sample1 program with two additional options—-fprofile-arcs
and -ftest-coverage, as shown in Figure 1.13. These options let you look at the pro-
gram using gcov, as shown in Figure 1.14.

18 Chapter 1 • Profiling

FIGURE 1.13
Building sample1 with gcov options.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 18

Running gcov on the source code produces the file sample1.c.gcov. It shows the
actual number of times each line of the program was executed. Listing 1.7 is the
output of gcov on sample1.

Listing 1.7

Output from gcov for sample1
-: 0:Source:sample1.c
-: 0:Graph:sample1.bbg
-: 0:Data:sample1.da
-: 1:#include <stdlib.h>
-: 2:#include <stdio.h>
-: 3:
-: 4:int prime (int num);
-: 5:
-: 6:int main()
1: 7: {

gcc Option Needed for gprof 19

FIGURE 1.14
Running sample1 and creating gcov output.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 19

1: 8: int i;
1: 9: int colcnt = 0;

50000: 10: for (i=2; i <= 50000; i++)
49999: 11: if (prime(i)) {
5133: 12: colcnt++;
5133: 13: if (colcnt%9 == 0) {
570: 14: printf("%5d\n",i);
570: 15: colcnt = 0;
-: 16: }
-: 17: else

4563: 18: printf("%5d ", i);
-: 19: }
1: 20: putchar('\n');
1: 21: return 0;
-: 22: }
-: 23:

49999: 24:int prime (int num) {
-: 25: /* check to see if the number is a prime?

*/
49999: 26: int i;

121337004: 27: for (i=2; i < num; i++)
121331871: 28: if (num %i == 0)

44866: 29: return 0;
5133: 30: return 1;

-: 31: }
-: 32:

There are 5,133 prime numbers. The expensive operations in the routine prime
are the for loop (line 27) and the if statement (line 28). The “hot spots” are the loop
and the if test inside the prime routine. This is where we will work to increase the
program’s performance. One change that will help this program is to use the sqrt()
function, which returns the nonnegative square root function of the number passed
in. sample2, shown inListing 1.8, has been changed to use the sqrt function in the
newly created function called faster.

Listing 1.8

sample2.c
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4
5 int prime (int num);
6 int faster (int num);
7
8 int main()
9 {

20 Chapter 1 • Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 20

10 int i;
11 int colcnt = 0;
12 for (i=2; i <= 50000; i++)
13 if (prime(i)) {
14 colcnt++;
15 if (colcnt%9 == 0) {
16 printf("%5d\n",i);
17 colcnt = 0;
18 }
19 else
20 printf("%5d ", i);
21 }
22 putchar('\n');
23 return 0;
24 }
25
26 int prime (int num) {
27 /* check to see if the number is a prime? */
28 int i;
29 for (i=2; i <= faster(num); i++)
30 if (num %i == 0)
31 return 0;
32 return 1;
33 }
34
35 int faster (int num)
36 {
37 return (int) sqrt((float) num);
38 }

Now you can build the sample2 program (see Figure 1.15) and use gprof to check
how long the program will take to run (see Figure 1.16). Also, the gcov output
shows the reduced number of times each line needs to be executed. In Listing 1.9,
the total running time has been reduced from 103.74 seconds to 2.80 seconds.

Listing 1.9 shows the output of gprof for the sample2 program.

Listing 1.9

Output from gprof for sample2
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
52.68 1.48 1.48 1061109 1.39 1.39 faster
46.61 2.78 1.30 49999 26.10 55.60 prime
0.71 2.80 0.02 main

gcc Option Needed for gprof 21

Best_Ch01f.qxd 8/31/05 12:55 PM Page 21

Call graph

granularity: each sample hit covers 4 byte(s) for 0.36% of 2.80
seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.02 2.78 main [1]
1.30 1.48 49999/49999 prime [2]

1.30 1.48 49999/49999 main [1]

[2] 99.3 1.30 1.48 49999 prime [2]
1.48 0.00 1061109/1061109 faster [3]

1.48 0.00 1061109/1061109 prime [2]

[3] 52.7 1.48 0.00 1061109 faster [3]

Index by function name

[3] faster [1] main [2]
prime

22 Chapter 1 • Profiling

FIGURE 1.15
Building and running sample2.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 22

gcc Option Needed for gprof 23

FIGURE 1.16
Using gprof on sample2.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 23

24 Chapter 1 • Profiling

Now we’ll run gcov on the sample2 program, as shown in Figures 1.17 and 1.18.

FIGURE 1.17
Building sample2 with gcov and running sample2.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 24

Listing 1.10 shows gcov output for the sample2 program.

Listing 1.10

Output of sample2.c.gcov
-: 0:Source:sample2.c
-: 0:Graph:sample2.bbg
-: 0:Data:sample2.da
-: 1:#include <stdlib.h>
-: 2:#include <stdio.h>
-: 3:#include <math.h>
-: 4:
-: 5:int prime (int num);
-: 6:int faster (int num);
-: 7:
-: 8:int main()
1: 9:{
1: 10: int i;
1: 11: int colcnt = 0;

50000: 12: for (i=2; i <= 50000; i++)

gcc Option Needed for gprof 25

FIGURE 1.18
Running sample2 and getting gcov output.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 25

49999: 13: if (prime(i)) {
5133: 14: colcnt++;
5133: 15: if (colcnt%9 == 0) {
570: 16:printf("%5d\n",i);
570: 17:colcnt = 0;
-: 18: }
-: 19: else

4563: 20: printf("%5d ", i);
-: 21: }
1: 22: putchar('\n');
1: 23: return 0;
-: 24: }
-: 25:

49999: 26:int prime (int num) {
-: 27: /* check to see if the number is a

prime? */
49999: 28: int i;

1061109: 29: for (i=2; i <= faster(num); i++)
1055976: 30: if (num %i == 0)

44866: 31: return 0;
5133: 32: return 1;

-: 33: }
-: 34:
-: 35:int faster (int num)

1061109: 36: {
1061109: 37: return (int) sqrt((float) num);

-: 38: }
-: 39:

The for loop in the prime routine has been reduced from 121 million executions
to 1 million executions. Therefore, the total time has been reduced from 103.74
seconds to 2.80 seconds.

The tools gprof and gcov helped find the “hot spots” in this sample program.
After the “hot spots” were found, the program was changed to increase its overall
performance. It is interesting how changing a few lines of code can have a great
impact on a program’s performance.

Listing 1.11, sample3.cpp, has three different functions (1, 2, and 3). It shows a
more complex use of profiling, with both flat and graphic profiles. We’ll also use
kprof, which can use gprof output. It presents the information in list or tree views,
which make the information easier to understand when programs are more com-
plicated. Let’s start by building the sample3.cpp program and displaying the flat and
graphic profiles and then displaying the data using kprof.

26 Chapter 1 • Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 26

Listing 1.11

sample3.cpp
1 #include <iostream>
2
3 void function1(){
4 for(int i=0;i<1000000;i++);
5 }
6
7 void function2(){
8 function1();
9 for (int i=0;i<2000000;i++);
10 }
11
12 void function3(){
13 function1();
14 function2();
15 for (int i=0;i<3000000;i++);
16 function1();
17 }
18
19 int main(){
20 for(int i=0;i<10;i++)
21 function1();
22
23 for (int i=0;i<5000000;i++);
24
25 for(int i=0;i<10;i++)
26 function2();
27 for(int i=0; i<13;i++);
28 {
29 function3();
30 function2();
31 function1();
32 }
33 }

Figure 1.19 shows the commands used to build and run the sample3 program.
gprof is also run on sample3 to get the profile data from sample3.

gcc Option Needed for gprof 27

FIGURE 1.19
Building and capturing gprof output for sample3.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 27

We won’t use the -b option on the gprof output on the sample3 program so that
we can see all the descriptive information that gprof can display.

The sample3.gprof should look similar to this:
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
43.36 4.21 4.21 12 0.35 0.52 function2()
42.84 8.37 4.16 25 0.17 0.17 function1()
8.65 9.21 0.84 main
5.15 9.71 0.50 1 0.50 1.35 function3()
0.00 9.71 0.00 1 0.00 0.00 global constructors

keyed to function1()
0.00 9.71 0.00 1 0.00 0.00
__static_initialization_and_destruction_0(int, int)

Field Description

% time The percentage of the program’s total running time used by
this function.

cumulative seconds A running sum of the number of seconds accounted for by
this function and those listed above it.

self seconds The number of seconds accounted for by this function
alone. This is the major sort for this listing.

calls The number of times this function was invoked if this func-
tion is profiled; otherwise, it is blank.

self ms/call The average number of milliseconds spent in this function
per call if this function is profiled; otherwise, it is blank.

total ms/call The average number of milliseconds spent in this function
and its descendents per call if this function is profiled; oth-
erwise, it is blank.

name The function’s name. This is the minor sort for this listing.
The index shows the location of the function in the gprof
listing. If the index is in parentheses, it shows where it
would appear in the gprof listing if it were to be printed.

Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 0.10% of 9.71 seconds
index % time self children called name

<spontaneous>
[1] 100.0 0.84 8.87 main [1]

3.86 1.83 11/12 function2() [2]

28 Chapter 1 • Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 28

1.83 0.00 11/25 function1() [3]
0.50 0.85 1/1 function3() [4]

0.35 0.17 1/12 function3() [4]
3.86 1.83 11/12 main [1]

[2] 63.9 4.21 2.00 12 function2() [2]
2.00 0.00 12/25 function1() [3]

0.33 0.00 2/25 function3() [4]
1.83 0.00 11/25 main [1]
2.00 0.00 12/25 function2() [2]

[3] 42.8 4.16 0.00 25 function1() [3]

0.50 0.85 1/1 main [1]
[4] 13.9 0.50 0.85 1 function3() [4]

0.35 0.17 1/12 function2() [2]
0.33 0.00 2/25 function1() [3]

0.00 0.00 1/1 __do_global_ctors_aux [13]

[11] 0.0 0.00 0.00 1 global constructors keyed to
function1() [11]

0.00 0.00 1/1
__static_initialization_and_destruction_0(int, int) [12]

0.00 0.00 1/1 global constructors keyed to
function1() [11]
[12] 0.0 0.00 0.00 1
__static_initialization_and_destruction_0(int, int) [12]

This table describes the program’s call tree. It is sorted by the total amount of
time spent in each function and its children.

Each entry in this table consists of several lines. The line with the index number
at the left margin lists the current function. The lines above it list the functions that
called this function, and the lines below it list the functions this one called.

You see the following:

Field Description

index A unique number given to each element of the table. Index numbers
are sorted numerically. The index number is printed next to every
function name so that it is easier to look up the function in the table.

% time The percentage of the total time that was spent in this function and
its children. Note that due to different viewpoints, functions exclud-
ed by options, and so on, these numbers do not add up to 100%.

gcc Option Needed for gprof 29

Best_Ch01f.qxd 8/31/05 12:55 PM Page 29

Field Description

self The total amount of time spent in this function.

children The total amount of time propagated into this function by its
children.

called The number of times the function was called. If the function called
itself recursively, the number includes only nonrecursive calls and is
followed by a + and the number of recursive calls.

name The name of the current function. The index number is printed
after it. If the function is a member of a cycle, the cycle number is
printed between the function’s name and the index number.

For the function’s parents, the fields have the following meanings:

Field Description

self The amount of time that was propagated directly from the function
into this parent.

children The amount of time that was propagated from the function’s chil-
dren into this parent.

called The number of times this parent called the function and the total
number of times the function was called. Recursive calls to the func-
tion are not included in the number after the /.

name The parent’s name. The parent’s index number is printed after it. If
the parent is a member of a cycle, the cycle number is printed
between the name and the index number.

If the function’s parents cannot be determined, the word <spontaneous> is printed
in the name field, and all the other fields are blank.

For the function’s children, the fields have the following meanings:

Field Description

self The amount of time that was propagated directly from the child
into the function.

children The amount of time that was propagated from the child’s children
to the function.

30 Chapter 1 • Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 30

called The number of times the function called this child and the total
number of times the child was called. Recursive calls by the child are
not listed in the number after the /.

name The child’s name. The child’s index number is printed after it. If the
child is a member of a cycle, the cycle number is printed between
the name and the index number.

If the call graph has any cycles (circles), there is an entry for the cycle as a whole.
This entry shows who called the cycle (as parents) and the members of the cycle (as
children). The + recursive calls entry shows how many function calls were internal
to the cycle. The calls entry for each member shows, for that member, how many
times it was called from other members of the cycle.
Index by function name
[11] global constructors keyed to function1() [3] function1() [4] function3()
[12] __static_initialization_and_destruction_0(int, int) [2] function2() [1]
main

kprof
kprof is a graphical tool that displays the execution profiling output generated by

the gprof profiler. kprof presents the information in list or tree view, which makes
the information easy to understand.

kprof has the following features:

• Flat profile view displays all functions and methods and their profiling
information. (See Figure 1.22 for a view of this functionality.)

• Hierarchical profile view displays a tree for each function and method with
the other functions and methods it calls as subelements. (See Figure 1.23
for a view of this functionality.)

• Graph view is a graphical representation of the call tree. It requires
Graphviz to work. (See Figure 1.24 for a view of this functionality.)

• Right-clicking a function or method displays a pop-up with the list of
callers and called functions. You can go to one of these functions directly
by selecting it in the pop-up menu. (See Figure 1.22 for a view of this
functionality.)

kprof 31

Best_Ch01f.qxd 8/31/05 12:55 PM Page 31

Installation
We’ve nstalled the kprof-1.4.2-196.i586.rpm that comes with the distribution.

The following rpm command displays the version of the kprof application:
% rpm -qf /opt/kde3/bin/kprof

kprof-1.4.2-196

Building Graphviz, the Graph Feature
kprof supports a graph feature, but before it can be used, the Graphviz program

must be built. See the Graphviz URL in the section “Web Resources for Profiling”
at the end of this chapter to download the source code for Graphviz.

The version of source code for Graphviz that will be built for this section is ver-
sion 1.12. The tar file graphviz-1.12.tar.gz can be downloaded.

The next steps expand the source tree. Then, using the make and make install
commands, the program is built and installed to the proper location on your sys-
tem, as shown in Figure 1.20.

32 Chapter 1 • Profiling

FIGURE 1.20
Building and installing Graphviz.

After Graphviz is installed, kprof uses it to create the Graph View that can be
seen in Figure 1.24.

To use kprof, the -b option is needed. The following command uses gprof with
the -b option on the sample3 program. gprof ’s output is saved to the sample3.prof1
file:

% gprof -b sample3 >sample3.prof1

The next step is to start kprof:

% kprof

Best_Ch01f.qxd 8/31/05 12:55 PM Page 32

After kprof loads, select File, Open to bring the sample3 gprof output into kprof.
Figure 1.21 shows the open dialog box.

kprof 33

FIGURE 1.21
The open dialog box.

Figure 1.22 shows the flat profile view of the sample3 program. This screen shot
also shows that function1 is called by function2, function3, and main.

FIGURE 1.22
The flat profile view.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 33

Figure 1.23 shows the hierarchical profile view of the sample3 program.

34 Chapter 1 • Profiling

FIGURE 1.23
The hierarchical profile view.

Figure 1.24 shows the graph view of the sample3 program. The graph view uses
Graphviz. This view shows that function1 is called by main, function2, and func-
tion3. It also shows that function2 is called by main and function3 and that
function3 is called only by main.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 34

Summary
This chapter covered five methods of timing programs or functions inside of pro-

grams. The first three methods were stopwatch, date, and time. These three meth-
ods are ways to measure the total time that the program takes to execute. These
methods require no modifications to the program to measure the time spent by the
program. The clock and gettimeofday routines can be added to parts of a program
to measure the time spent doing a section of the program. Finally, the gprof profil-
er and kprof can be used to profile sample programs.

Summary 35

FIGURE 1.24
The graph view.

Best_Ch01f.qxd 8/31/05 12:55 PM Page 35

Web Resources for Profiling

URL Description

http://www.gnu.org/software/binutils/manual/
gprof-2.9.1/gprof.html Documentation for gprof

http://kprof.sourceforge.net/ kprof home page

http://www.research.att.com/sw/tools/graphviz/
download.html graphviz home page

http://samba.org/ftp/tridge/dbench/ dbench download page

36 Chapter 1 • Profiling

Best_Ch01f.qxd 8/31/05 12:55 PM Page 36

