
339

7
PHASE 3:

GAINING ACCESS USING
APPLICATION AND

OPERATING SYSTEM
ATTACKS

At this stage of the siege, the attacker has finished scanning the target network,
developing an inventory of target systems and potential vulnerabilities on
those machines. Next, the attacker wants to gain access on the target systems.
The particular approach to gaining access depends heavily on the skill level of
the attacker, with simple script kiddies trolling for exploits and more sophisti-
cated attackers using highly pragmatic approaches.

SCRIPT KIDDIE EXPLOIT TROLLING

To try to gain access, the average script kiddie typically just takes the output from
a vulnerability scanner and surfs to a Web site offering vulnerability exploitation
programs to the public. These exploit programs are little chunks of code that
craft very specific packets designed to make a vulnerable program execute com-
mands of an attacker’s choosing, cough up unauthorized data, or even crash in a
DoS attack. Several organizations offer huge arsenals of these free, canned
exploits, with search engines allowing an attacker to look up a particular applica-
tion, operating system, or discovered vulnerability. Some of the most useful Web
sites offering up large databases chock full of exploits include the following:

• The French Security Incident Response Team (Fr-SIRT) exploit list at
www.frsirt.com/exploits

• Packet Storm Security at www.packetstormsecurity.org

PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

skoudis.book Page 339 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

340

• The Security Focus Bugtraq Archives at www.securityfocus.com/bid

• The Metasploit Project at www.metasploit.com

Some controversy surrounds the organizations distributing these exploits. Most
of them have a philosophy of complete disclosure: If some attackers know about
these exploits, they should be made public so that everyone can analyze, under-
stand, and defend against them. With this mindset, these purveyors of explicit
exploit information argue that they are merely providing a service to the Internet
community, helping the good guys keep up with the bad guys. Others take the
view that these exploits just make evil attacks easier and more prevalent.
Although I respect the arguments of both sides of this disclosure controversy, I
tend to fall into the full-disclosure camp (but you could have guessed that, given
the nature of this book).

As shown in Figure 7.1, a script kiddie can search one of the exploit databases
to find an exploit for a hole detected during a vulnerability scan. The script
kiddie can then download the prepackaged exploit, configure it to run against
the target, and launch the attack, usually without even really understanding
how the exploit functions. That’s what makes this kind of attacker a script
kiddie. Although this indiscriminate attack technique fails against well-fortified
systems, it is remarkably effective against huge numbers of machines on the
Internet with system administrators who do not keep their systems patched
and configured securely.

PRAGMATISM FOR MORE SOPHISTICATED ATTACKERS

Whereas a script kiddie utilizes these Internet searches to troll for canned
exploits without understanding their function, a more sophisticated attacker
sometimes employs far more complex techniques to gain access. Let’s focus on
these more in-depth techniques for gaining access and the ideas underlying many
of the canned exploits.

Of the five phases of an attack described in this book, Phase 3, the gaining access
phase, tends to be very free-form in the hands of a more sophisticated attacker.
Although the other phases of an attack (reconnaissance, scanning, maintaining

skoudis.book Page 340 Wednesday, November 30, 2005 10:04 PM

PRAGMATISM FOR MORE SOPHISTICATED ATTACKERS

341

access, and covering tracks) are often quite systematic, the techniques used to
gain access depend heavily on the architecture and configuration of the target
network, the attacker’s own expertise and predilections, and the level of access
with which the attacker begins. In this book, we discussed the reconnaissance
and scanning phases in a roughly chronological fashion, stepping through each
tactic in the order used by a typical attacker. However, given that gaining access is
based so heavily on pragmatism, experience, and skill, there is no such clearly
defined order for this phase of the attack. Thus, we discuss this phase by describ-
ing a variety of techniques used to gain access, without regard to the particular
order in which an attacker might apply them. Our discussion of these techniques

Figure 7.1 Searching FrSIRT for an exploit.

skoudis.book Page 341 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

342

starts with attacks against operating systems and applications in this chapter, fol-
lowed, in the next chapter, by a discussion of network-based attacks.

There are several popular operating systems and hundreds of thousands of differ-
ent applications, and history has shown that each operating system and most appli-
cations are teeming with vulnerabilities. A large number of these vulnerabilities,
however, can be attacked using variations on popular and recurring themes. In the
remainder of this chapter, we discuss some of the most widely used and damaging
application and operating system attacks, namely buffer overflow exploits, pass-
word attacks, Web application manipulation, and browser flaw exploits.

BUFFER OVERFLOW EXPLOITS

Buffer overflows are extremely common today, and offer an attacker a way to gain
access to and have a significant degree of control over a vulnerable machine.
Although the infosec community has known about buffer overflows for decades, this
type of attack really hit the big time in late 1996 with the release of a seminal paper
on the topic called “Smashing the Stack for Fun and Profit” by Aleph One. You can
find this detailed and well-written paper, which is still an invaluable read even today,
at www.packetstormsecurity.org/docs/hack/smashstack.txt. Before this paper, buffer
overflows were an interesting curiosity, something we talked about but seldom saw
in the wild. Since the publication of this paper, the number of buffer overflow vul-
nerabilities discovered continues to skyrocket, with several brand new flaws and
exploits to take advantage of them released almost every single day.

By exploiting vulnerable applications or operating systems, attackers can execute
commands of their choosing on target machines, potentially taking over the vic-
tim machines. Imagine if I could execute one or two commands on your valuable
server, workstation, or palmtop computer. Depending on the privileges I’d have
to run these commands, I could add accounts, access a command prompt,
remotely control the GUI, alter the system’s configuration … anything I want to
do, really. Attackers love this ability to execute commands on a target computer.

Buffer overflow vulnerabilities are based on an attacker sending more data to a vul-
nerable program than the original software developer planned for when writing the
code for the program. The buffer that is overflowed is really just a variable used by

skoudis.book Page 342 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

343

the target program. In essence, these flaws are a result of sloppy programming, with
a developer who forgets to create code to check the size of user input before moving
it around in memory. Based on this mistake, an attacker can send more data than is
anticipated and break out of the bounds of certain variables, possibly altering the
flow of the target program or even tweaking the value of other variables. There are a
variety of buffer overflow types, but we look at two of the most common and popu-
lar: stack-based buffer overflows and heap overflows.

STACK-BASED BUFFER OVERFLOW ATTACKS

To understand how stack-based buffer overflow attacks work, we first need to
review how a computer runs a program. Right now, if your computer is booted
up, it is processing millions of computer instructions per second, all written in
machine language code. How does this occur? Consider Figure 7.2, which high-
lights the relationship of a system’s processor and memory during execution.
When running a program, your machine’s Central Processing Unit (CPU)
fetches instructions from memory, one by one, in sequence. The whole program
itself is just a bunch of bits in the computer’s memory, in the form of a series of
instructions for the processor. The CPU contains a very special register called the

Figure 7.2 How programs run.

CPU

Register

Register

Register

Register

Register

Register

MEMORY

Process Stack

Program
Instructions

mov ecx, 100
mov eax, 200
jmp 0ED15BAD
 .
 .
 .
xor ecx, eax

Instruction
Pointer

3
2

1

4

Fetch and execute instructions, sequentially one by one.
Instruction Pointer is incremented.
At Jump, Instruction Pointer is altered to begin fetching instructions in a different location.

skoudis.book Page 343 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

344

Instruction Pointer, which tells it where to grab the next instruction for the run-
ning program. The CPU grabs one program instruction from memory by using
the Instruction Pointer to refer to a location in memory where the instruction is
located within the given segment of code. The CPU executes this instruction, and
the Instruction Pointer is incremented to point to the next instruction. The next
instruction is then fetched and run. The CPU continues stepping through mem-
ory, grabbing and executing instructions sequentially, until some type of branch
or jump is encountered. These branches and jumps are caused by if–then condi-
tions, loops, subroutines, goto statements, and related conditions in the pro-
gram. When a jump or branch is encountered, the instruction pointer’s value is
altered to point to the new location in memory, where sequential fetching of
instructions begins anew.

In my opinion, the idea of the stored-program-controlled computer illustrated
in Figure 7.2 is one of the most important technical concepts of the last century.
Sure, splitting the atom was cool, but that feat has, so far, had less impact on my
life than this idea. Let’s hope it stays that way! Putting a person on the moon was
sure nifty, but I feed my family because of the concepts in Figure 7.2, and you
probably do, too. In fact, we might not have made it to the moon had we not
already come up with this idea, given the primitive computers that were
required for the moon shots. In fact, all a computer consists of is a little engine
(the CPU) that moves data around in a memory map, based on instructions
that are located in that same memory map. And that’s where the problem is. By
carefully manipulating elements in that memory, an attacker can redirect the
flow of execution to the attacker’s own instructions loaded into memory.

Function Calls and the Stack

Now that we’ve seen the microscopic level of how programs run, we’ve got to
step up to a higher view of the system. Most modern programs aren’t written
directly in machine language, those low-level instructions we illustrated in
Figure 7.2. Instead, they are written in a higher level language, such as C, C++,
Java, or Perl. They are then converted into machine language (either by a com-
piler for languages like C and C++ or a real-time interpreter for stuff like Java
and Perl) and executed. Most high-level languages include the concept of a func-
tion call, used by programmers to break the code down into smaller pieces.
Figure 7.3 shows some sample code written in the C programming language.

skoudis.book Page 344 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

345

When the program starts to run, the main procedure is executed first. The first
thing the main procedure does is to call our sample function. All processing by
the program will now transition from the main procedure to the sample function.
The system has to remember where it was operating in the main procedure,
because after sample_function finishes running, the program flow must return
back to the main procedure. But how does the system remember where it should
return after the function call is done? The system uses a stack to remember this
information associated with function calls.

A stack is a data structure that stores important information for each process run-
ning on a computer. The stack acts kind of like a scratch pad for the system. The sys-
tem writes down important little notes for itself and places these notes on the stack, a
special reserved area in memory for each running program. Stacks are similar to
(and get their name from) stacks of dishes, in that they behave in a Last-In, First-Out
(LIFO) manner. That is, when you are creating a stack of dishes, you pile plate on top
of plate to build the stack. When you want to remove dishes from the stack, you start
by taking the top dish, which was the last one placed on the stack. The last one in is
the first one out. Similarly, when the computer puts data onto its stack, it pushes data
element after data element on the stack. When it needs to access data from the stack,
the system first takes off the last element it placed on the stack, a process known as
popping an item off of the stack. Depending on the computing architecture, the
stack may grow upward (toward higher memory addresses) or downward (toward
lower addresses) in memory. The direction of growth isn’t really important to us
here; it’s the LIFO property that matters.

Figure 7.3 Some C code.

void sample_function(void)
 {
 char buffer[10];
 printf("Happy Happy!\n");
 return;
 }

main()
 {
 sample_function();
 printf("Hello World!\n");
 }

We now return to
the main procedure.

The flow transitions to
the function here.

Execution
starts here.1

3

2

skoudis.book Page 345 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

346

Now, what types of things does a computer store on a stack? Among other things,
stacks are used to store information associated with function calls. As shown in
Figure 7.4, a system pushes various data elements onto the stack associated with
making a function call. First, the system pushes the function call arguments onto
the stack. This includes any data handed from the main procedure to the function.
To keep things simple, our example code of Figure 7.3 included no arguments in
the function call. Next, the system pushes the return pointer onto the stack. This
return pointer indicates the place in the system’s memory where the next instruc-
tion to execute in the main procedure resides. For a function call, the system needs
to remember the value of the Instruction Pointer in the main procedure so that it
knows where to go back to for more instructions after the function finishes run-
ning. The Instruction Pointer is copied onto the stack as a return pointer. That
return pointer is a crucial element, isn’t it? It later controls the flow of the program,
directing where execution resumes after the function call is completed.

Next, the system pushes the Frame Pointer on the stack. This value helps the sys-
tem refer to various elements on the stack itself. Finally, space is allocated on the
stack for the local variables that the function will use. In our example, we’ve got
one local variable called buffer to be placed on the stack. These local variables

Figure 7.4 A normal stack.

(Local Variable 1) Stack Growth
Direction

buffer

.

.

.

.

.

.

FUNCTION CALL
ARGUMENTS

SAVED FRAME PTR

RETURN POINTER

skoudis.book Page 346 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

347

are supposed to be for the exclusive use of the function, which can store its local
data in them and manipulate their values.

After the function finishes running, printing out its happy message of “Hello
World,” control returns to the main program. This transition occurs by popping
the local variables from the stack (in our example, the buffer variable). For the
sake of efficiency, the memory locations on the stack allocated to these local vari-
ables are not erased. Data is removed from the stack just by changing the value of a
pointer to the top of the stack, the so-called Stack Pointer. This Stack Pointer now
moves down to its value before the function was called. The saved Frame Pointer is
also removed from the stack and squirreled away in the processor. Then, the return
pointer is copied from the stack and loaded into the processor’s Instruction Pointer
register. Finally, the function call arguments are removed, returning the stack to its
original (pre-function-call) state. At this point, the program begins to execute in
the main procedure again, because that’s where the Instruction Pointer tells it to go.
Everything works beautifully, as function calls get made and completed. Some-
times one function calls other functions, which in turn call other functions, all the
while with the stack growing and shrinking as required.

What Is a Stack-Based Buffer Overflow?

Now that we understand how a program interacts with the stack, let’s look at
how an attacker can abuse this capability. A buffer overflow is rather like putting
ten liters of stuff into a bag that will only hold five liters. Clearly something is
going to spill out. Let’s see what happens when an attacker provides too much
input to a program. Consider the sample vulnerable program of Figure 7.5.

For this program, the main routine prints a “Hello World” greeting and then
calls the sample_function. In sample_function, we create two buffers, bufferA,
which is 50 characters in length, and bufferB, which can hold 16 characters.
Both of these are local variables of the sample_function, so they will be allo-
cated space on the stack, as shown in Figure 7.6. We then prompt the user for
input by printing “Where do you live?” The gets function (which is pro-
nounced “get-ess”) from a standard C library will pull input from the user.
Next, we encounter the strcpy library call. This routine is used to copy infor-
mation from one string of characters to another. In our program, strcpy
moves characters from bufferA to bufferB.

skoudis.book Page 347 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

348

Figure 7.5 Some very vulnerable C code.

void sample_function()
{

char bufferA[50];
char bufferB[16];

printf("Where do you live?\n");

gets(bufferA);

strcpy(bufferB, bufferA);

return;
}

main()
{

printf("Hell World!\n ");
sample_function();
printf("All Done!\n ");

}

3

4

6

5

7

1

2

8

Execution begins in the
sample_function.
Create two strings. bufferA can hold
50 characters, while bufferB can
hold 16 characters.

Ask the user where he or she lives.
Get input from the user. Note that gets
puts no restrictions on the amount of
data that can be entered!
Copy the contents of bufferA to bufferB.

Return (intended to go back to the
main program that called the function!)

Call the sample_function.

Print “Hello World!”

Figure 7.6 A view of the stack of the vulnerable program.

(Local Variable 2)
Stack Growth
Direction

bufferB

(Local Variable 1)
bufferA

.

.

.

.

.

.

FUNCTION CALL
ARGUMENTS

SAVED FRAME PTR

RETURN POINTER

skoudis.book Page 348 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

349

However, we’ve got a couple of problems here. Can you see them? First, the gets
library puts no limitation on the amount of data a user can type in. If the user
types in more than 50 characters, bufferA will be overflowed, letting the attacker
change other nearby places on the stack. In fact, the gets call is extremely dan-
gerous and should be avoided at all costs, because it doesn’t put any limitation on
user input, thereby almost guaranteeing a buffer overflow flaw.

But wait, there’s more. Beyond gets, the strcpy library call is also very sloppy,
because it doesn’t check the size of either string, and happily copies from one
string to the other until it encounters a null character in the source string. A null
character, which consists of eight zero bits in a row aligned in a single byte, usu-
ally indicates the end of a string for the various C-language string-handling
libraries. This sloppiness of strcpy is a well-known limitation found in many of
the normal C language library functions associated with strings. This is bad news
because the system will allow the strcpy to write far beyond where it’s supposed
to write. That’s one of the big problems with computers: They do exactly what we
tell them to do, no more and no less. Even if the attacker doesn’t overflow bufferA
with more than 50 characters of user input in the gets call, the attacker has a
shot at overflowing bufferB by simply typing between 17 and 50 characters into
bufferA, which will be written to bufferB. Thus, we’ve got two buffer overflow
flaws in this sample code: the gets problem indicated by item number 6, and the
strcpy indicated by item number 7 in Figure 7.5. Ouch!

Now, let’s suppose the user entering the input is an evil attacker, and types in the
capital A character a couple hundred times when prompted about where he or
she lives. What happens to the stack when the bad guy does this? Well, it gets
messed up. The A characters will spill over the end of bufferA, bufferB, or both,
running into the saved Frame Pointer, and even into the return pointer on the
stack. The return pointer on the stack will be filled with a bunch of As. When the
program finishes executing the function, it will pop the local variables and saved
Frame Pointer off of the stack, as well as the return pointer (with all the As in it).
The return pointer is copied into the processor’s Instruction Pointer, and the
machine tries to resume execution, thinking it’s back at the main program. It
tries to fetch the next instruction from a memory location that is the binary
equivalent of a bunch of As (that would be hexadecimal 0x41414141 … you can
look it up!). Most likely, this is a bogus memory location that the program

skoudis.book Page 349 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

350

doesn’t have permission to access or that contains data and not real executable
code. With a bogus Instruction Pointer value, we’ll likely get a nasty segmenta-
tion fault, an indication that the program is trying to access a place in memory
that it is not allowed to access, so the operating system shuts it down. Thus, most
likely, the program will crash.

So, after all this discussion, we’ve learned how to write a program that can be
easily crashed by a nefarious user. “Gee,” you might be thinking, “Most of the
programs I write crash anyway.” I know mine do.

But let’s look at this more closely. Although loading a bunch of As into the return
pointer made the program crash, what if an attacker could overflow bufferA or
bufferB with something more meaningful? The attacker could insert actual
machine language code into the buffers, with commands that he or she wants to
get executed. When prompted for where they live, clever attackers might type in
the ASCII characters corresponding to machine language code to run some evil
command on the victim machine.

So, in this way, the attacker can load commands on the target machine that the
attacker wants to run. But how can the bad guy get the system to execute these
commands? If only there was a way to control the flow of execution of the pro-
gram, so the bad guy could say, “When you are done with your nice stuff, Mr.
Vulnerable Program, I want you to run my evil stuff.” Now, we get to that beauti-
ful return pointer down below the local variables and saved Frame Pointer.
Remember, when the attacker’s input runs off the end of the local variables, that
extra input can modify the return pointer (as well as the saved Frame Pointer).
The bad guy could overwrite the return pointer with a value that points back into
the buffer, which contains the commands he or she wants to execute. The result-
ing recipe, as shown in Figure 7.7, is a stack-based buffer overflow attack, and
will allow the attacker to execute arbitrary commands on the system. Cha-ching!
It’s almost like the stack was designed to foster buffer overflow attacks, with that
highly important return pointer lining up nicely a little bit below the local vari-
ables on the stack!

Let’s review how the smashed stack works, focusing on just cramming too much
input into bufferA via that vulnerable gets() call. The attacker gets a program to

skoudis.book Page 350 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

351

fill one of its local variables (a buffer) with data that is longer than the space allo-
cated on the stack, overwriting the local variables themselves with machine lan-
guage code. But the system doesn’t stop at the end of the local variables. It keeps
writing data over the end of the buffer, clobbering the saved Frame Pointer, and
even overwriting the return pointer with a value that points back to the machine
language instructions the attacker loaded into the bufferA on the stack. When
the function call finishes, the local buffers containing the instructions will be
popped off the stack, but the information we place in those memory locations
will not be cleared. The system then loads the now-modified return pointer into
the processor, and starts executing instructions where the return pointer tells it
to resume execution. The processor will then start executing the instructions the
attacker had put into the buffer on the stack. Voila! The attacker just made the
program execute arbitrary instructions from the stack.

This whole problem is the result of a developer not checking the size of the infor-
mation he or she is moving around in memory when making function calls.
Without carefully doing a bounds check of these buffers before manipulating

Figure 7.7 A smashed stack.

(Local Variable 2)
Stack Growth
Direction

bufferB

MACHINE CODE
EXEC A SHELL!

.

.

.

.

.

.

FUNCTION CALL
ARGUMENTS

SAVED FRAME PTR

RETURN POINTER

Buffer Space
is overwritten

with instructions

Return Pointer
is overwritten

Saved Frame Ptr is
clobbered

skoudis.book Page 351 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

352

them, a function call can easily blow away the end of the stack. Essentially, stack-
based buffer overflows are a result of sloppy programming by not doing bounds
checks on data being placed into local variables, or using a library function writ-
ten by someone else with the same problem.

Now that we understand how an attacker puts code on the stack and gets it to
execute, let’s analyze the kind of instructions that an attacker usually places on
the stack. Probably the most useful thing to force the machine to run for the
attacker is a command shell, because then the attacker can feed the command
shell (such as the UNIX and Linux /bin/sh or Windows cmd.exe) any other com-
mand to run. This can be achieved by placing the machine language code for exe-
cuting a command prompt in the user input. Most operating systems include an
exec system call to tell the operating system to run a given program. Thus, the
attacker includes machine language code in the user input to exec a shell. After
spawning a command shell, the attacker can then automatically feed a few spe-
cific system commands into the shell, running any program on the target
machine. Some attackers force their shell to make a connection to a given TCP or
UDP port, listening for the attacker to connect and get a remote command
prompt. Others prefer to add a user to the local administrator’s group on behalf
of the attacker. Still other attackers might force the shell to install a backdoor
program on the victim system.

Alternatively, instead of invoking the attacker’s code in the stack, the bad guy
could change a return pointer so that it doesn’t jump into the stack, but instead
resumes execution at another point of the attacker’s choosing. Some attackers
clobber a return pointer so that it forces the program to resume execution in the
heap, another area of memory we discuss a little later. Or, the attacker could have
the program jump into a particular C library the attacker wants to invoke, a tech-
nique known as a “return to libc” attack.

It’s important to note that the attacker’s code will run with the permissions of the
vulnerable program. Thus, if the vulnerable program is running as root on UNIX
or Linux or SYSTEM on Windows, the attacker will have complete administra-
tive control of the victim machine. Lesser privileges are still valuable, though, as
the attacker will have gotten a foot in the door with the ability to run limited
privileged commands on the target.

skoudis.book Page 352 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

353

Buffer overflow attacks are very processor and operating system dependent,
because the raw machine code will only run on a specific processor, and tech-
niques for executing a command shell differ on various operating systems.
Therefore, a buffer overflow exploit against a Linux machine with an x86 pro-
cessor will not run on a Windows 2003 box on an x86 processor or a Solaris
system with a Sparc processor, even if the same buggy program is used on all of
these systems. The attack must be tailored to the target processor and operating
system type.

EXPLOITING STACK-BASED BUFFER OVERFLOWS

This might all sound great, but how does an attacker actually exploit a target
using this technique? Keep in mind that the vast majority of useful modern pro-
grams are written with function calls, some of which do not do proper bounds
checking when handling their local variables. A user enters data into a program
by using the program’s inputs. When running a program on a local system, these
inputs could be through a GUI, command-line interface, or command-line argu-
ments. For programs accessed across the network, data enters through open
ports listening on the network, usually formatted with specific fields for which
the program is looking.

To exploit a buffer overflow, an attacker enters data into the program by typing
characters into a GUI or command line, or sending specially formatted packets
across the network. In this input to the program, the attacker includes the
machine language code and new return pointer in a single package. If the
attacker sends just the right code with the right return pointer formatted just the
right way to overflow a buffer of a vulnerable program, a function in the pro-
gram will copy the buffer to the stack and ultimately execute the attacker’s code.
Because everything has to be formatted extremely carefully for the target pro-
gram, creating new buffer overflow exploits is not trivial.

FINDING BUFFER OVERFLOW VULNERABILITIES

Simple script kiddie attackers who do not understand how their tools work carry
out most stack-based buffer overflow attacks. These attackers just scan the target
with an automated tool that detects the vulnerability, download the exploit code

skoudis.book Page 353 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

354

written by someone else, and point the exploit tool at the target. The exploit itself
was likely written by someone with a lot more experience and understanding in
discovering vulnerable programs and creating successful exploits.

Beyond these script kiddies, how does the creator of a stack-based buffer over-
flow exploit find programs that are vulnerable to such attacks? These folks usu-
ally carry out detailed analyses of programs looking for evidence of functions
that do not properly bounds-check local variables. If the attackers have the
source code for the program, they can look for a large number of often-used
functions that are known to do improper bounds checking. Alternatively, they
can peer into an executable program looking for evidence of the use of these
library calls with a good debugger. The gets and strcpy routines we saw earlier
are just some of the commonly used functions that programmers often misuse,
resulting in a buffer overflow vulnerability. Other C and C++ functions that
often cause such problems include the various string and memory handling rou-
tines like these:

• fgets

• gets

• getws

• sprintf

• strcat

• strcpy

• strncpy

• scanf

• memcpy

• memmove

Beyond these function calls, the developer of the program might have created
custom calls that are vulnerable. Some exploit developers reverse engineer exe-
cutables to find such flaws.

Alternatively, exploit creators might take a more brute force approach to finding
vulnerable programs. They sometimes run the program in a lab and configure an

skoudis.book Page 354 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

355

automated tool to cram massive amounts of data into every input of the pro-
gram. The program’s local user input fields, as well as network inputs, will be
inundated with data. When cramming data into a program looking for a vulner-
ability, the attacker makes sure the entered data has a repeating pattern, such as
the character A repeated thousands of times. Exploit creators are looking for the
program to crash under this heavy load of input, but to crash in a meaningful
way. They’d like to see their repeated input pattern (like the character A, which,
remember, in hexadecimal format is 0x41) reflected in the instruction pointer
when the program crashes. This technique of varying user input to try to make a
target system behave in a strange fashion is sometimes called fuzzing. For buffer
overflows, attackers fuzz the input by varying its size. Note that you can’t just
plop a billion characters into the input field to successfully fuzz most buffer over-
flows. It’s possible that a billion characters will be filtered, but 10,000 might not.
Therefore, for successful size fuzzing with buffer overflows, attackers typically
start with small amounts of input (such as 1,000 characters or so) and then grad-
ually increase the size in increments of 1,000 or 10,000, looking for a crash.

Consider this example of the output dump of a debugger showing the contents of a
CPU’s registers when a fuzzer triggers an overflow using a bunch of A characters.

EAX = 00F7FCC8 EBX = 00F41130

ECX = 41414141 EDX = 77F9485A

ESI = 00F7FCC0 EDI = 00F7FCC0

EIP = 41414141 ESP = 00F4106C

EBP = 00F4108C EFL = 00000246

Don’t worry about all the different values; just look at the Instruction Pointer
(called EIP on modern x86 processors). Attackers love this value! The pattern
being entered into the program (a long series of As; that is, 0x41) somehow made
its way into the instruction pointer. Therefore, most likely, user input overflowed
a buffer, got placed into the return pointer, and then transferred into the proces-
sor’s Instruction Pointer. Based on this tremendous clue about a vulnerability,
attackers can then create a buffer overflow exploit that lets them control a target
machine running this program.

Once the attackers find out that some of the user input made it into the instruc-
tion pointer, they next need to figure out which part of all those As was the element

skoudis.book Page 355 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

356

that landed on the return pointer. They determine this by playing a little game.
They first fuzz with all As, as we saw before. Then, they fuzz with an increment-
ing pattern, perhaps of all of the ASCII characters, including ABCDEF and all of
the other characters repeated again and again. I call this the ABCDEF game. They
then wait for another crash. Now, suppose that the attacker sees that DEFG is in
the return pointer slot. The attacker then fuzzes with each DEFG pattern of the
input tagged, such as DEF1, DEF2, DEF3, and so on. Finally, the attacker might
discover that DEF8 is the component of the user input that hits the return
pointer. Voila! The attacker now knows where in the user input to place the
return pointer. There are automated tools attackers can use to play this little
game, which will identify the location in the user input where the new return
pointer should be placed. Of course, the attacker still doesn’t know what value to
place there, but at least he or she knows where it will go in the user input once the
value is determined.

So how does an attacker know what value to slide into our hypothetical DEF8
slot for the return pointer so that it will jump back into the stack to execute the
attacker’s instructions? With most programs, the stack is a rather dynamic place.
An attacker usually doesn’t know for sure what function calls were made before
the vulnerable function is invoked. Thus, because the stack is very dynamic, it
can be difficult to find the exact location of the start of the executable code the
bad guy pushes onto the stack. The attacker could simply run the program 100 or
more times, and make an educated guess of the address, a reasonable approach
for some programs. However, the odds might still be 1 in 10,000 that the attacker
gets the right address to hit the top of the evil code exactly in the stack.

To address this dilemma, the attackers usually prepend their machine language
code with a bunch of No Operation (NOP) instructions. Most CPUs have one or
more NOP instruction types, which tell the processor to do nothing for a single
clock cycle. After doing nothing, execution will resume at the next instruction.
By putting a large number of NOP instructions at the beginning of the machine
language code, the attacker improves the odds that the guessed return pointer
will work. This grouping of NOP instructions is called a NOP sled. As long as the
guessed address jumps back into the NOP sled somewhere, the attacker’s code
will soon be executed. The code will do nothing, nothing, nothing, nothing, and
then run the attacker’s code to exec a shell.

skoudis.book Page 356 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

357

You can think about the value of a NOP sled by considering a dart game. When
you throw a dart at the target, you’d obviously like to hit the bull’s eye. The guess
of the return pointer is something like throwing a dart. If you guess the proper
location of the start of the machine language code on the stack, that code will
run. You’ve hit the bull’s eye. Otherwise the program will crash, something akin
to your dartboard exploding. A NOP sled is like a cone placed around the bull’s
eye on the dartboard. As long as your dart hits the cone (the NOP sled), the dart
will slide gently into the bull’s eye, and you’ll win the game!

Attackers prepend as many NOP instructions at the front of their machine lan-
guage code as they can, based on the size of the buffer itself. If the buffer is 1,024
characters long, and the machine language code the attacker wants to run takes
up 200 bytes, that leaves 824 characters for NOPs. The simplest NOP is only one
byte long for x86 processors. Thus, the bad guy can improve the odds in guessing
the return pointer value 825-fold (that’s one for each NOP, plus one for the very
start of the attacker’s machine language code to exec a shell). You don’t have to be
a gambler to realize that’s a pretty good increase in odds, and it only gets better
with bigger buffers. In fact, for this very reason, it’s far easier for an attacker to
exploit a larger buffer successfully than a smaller buffer. Remember, allocating
more space to make bigger buffers doesn’t fix buffer overflows. Bigger buffers
ironically only make it easier to attack a program with a buffer overflow exploit.
The real fix here involves checking the size of user input and managing memory
more carefully, as we discuss later.

The NOP instructions used by an attacker in the NOP sled could be imple-
mented using the standard NOP instruction for the given target CPU type,
which might be detected by an IDS when a large number of NOPs move across
the network. Craftier attackers might choose a variety of different instructions
that, in the end, still do nothing, such as adding zero to a given register, multiply-
ing a register by one, or jumping down to the next instruction in memory. Such
variable NOP sleds are harder to detect.

As we have seen, the fundamental package for a buffer overflow exploit created
by an attacker consists of three elements: a NOP sled, machine language code
typically designed to exec a shell, and a return pointer to make the whole thing
execute. This structure of a common buffer overflow exploit is shown in Figure 7.8.

skoudis.book Page 357 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

358

Note that the combined NOP sled and machine language code are sometimes
called the exploit’s egg. The entire package, including the code that alters a return
pointer, along with the egg, is formally called an exploit, and informally referred
to as a sploit.

HEAP OVERFLOWS

So far, our analysis of buffer overflow flaws has centered on the stack, the place
where a process stores information associated with function calls. However, there’s
another form of buffer overflow attack that targets a different region of memory: the
heap. The stack is very organized, in that data is pushed onto the stack and popped
off of it in a coordinated fashion in association with function calls, as we’ve seen.

The heap is quite different. Instead of holding function call information, the
heap is a block of memory that the program can use dynamically for variables
and data structures of varying sizes at runtime. Suppose you’re writing a pro-
gram and want to load a dictionary in memory. In advance, you have no idea
how big that dictionary might be. It could have a dozen words, or 6 million.
Using the heap, you can dynamically allocate memory space as your program
reads different dictionary terms as it runs. The most common way to allocate
space in the heap in a C program is to use the malloc library call. That’s short for
memory allocation, and this function grabs some space from the heap so your
program can tuck data there.

Figure 7.8 The structure of an exploit (also known as a sploit) for a buffer overflow vulnerability.

NOP
NOP
NOP
NOP
NOP

MACHINE CODE
EXEC A SHELL!

NEW POINTER TO
EXEC CODE

THE EGG

skoudis.book Page 358 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

359

So what happens if a developer uses malloc to allocate space in the heap where
user input will be stored, but again forgets to check the size of the user input?
Well, we get a heap-based buffer overflow vulnerability, as you’d no doubt expect.
To illustrate this concern, consider the code in Figure 7.9.

Our program starts to run and creates some pointers where we’ll later allocate mem-
ory to hold a user’s color preference and name, called color_pref and user_name,
respectively. We then use the malloc call to allocate ten characters in the heap to each
of these variables, as illustrated in Figure 7.10. Note that the heap typically grows in
the opposite direction as the stack in most operating systems and processors.

Next, our program uses the strncpy call, which copies a fixed number of charac-
ters into a string. We copy into the user_name a fixed value of “fred,” only four
characters in length. This user_name is hard coded, and shouldn’t be alterable by
the user in any way.

Next, we quiz our user, asking his or her favorite color. Uh-oh … the program
developer used that darned gets function again, the poster child of buffer overflow
flaws, to load the user input into the color_pref variable on the heap. Then, the
program finishes by displaying the user’s favorite color and user name on the screen.

Figure 7.9 A program with a heap-based buffer overflow vulnerability.

main()
{

char *color_pref;
char *user_name;

color_pref=malloc(10);
user_name=malloc(10);

strncpy(user_name, "fred", 4);

printf("What is your fav color?\n");

gets(color_pref);

printf("color_pref: %s\n", color_pref);
printf("user_name: %s\n", user_name);

}

We create variables that will point to
the place where we’ll store a user’s
color preference and name.

The program uses malloc to allocate
ten characters each in the heap for the
color_pref and user_name.

The strncpy call copies the four
characters “fred” to the user_name.
This hard-coded value should NOT be
alterable by the user, right?

The pogram asks the user for a
favorite color.

The gets function (uh-oh!) is used to
pull the user input into color_pref.

Finally, we print out the two variables,
the color_pref and the user’s name.

1

5

6

4

3

2

skoudis.book Page 359 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

360

To see what happens when this program runs, consider Figure 7.11, which shows
two sample runs of the program. In the first run, shown on the left of Figure 7.11,
the user types a favorite color of blue. The program prints out a favorite color of
blue and a user name of fred, just like we’d expect. For the next run, the user is an
evil attacker, who types in a favorite color of blueblueblueblueroot. That’s 16 char-
acters of blue followed by root. Check out that display! Because the developer put
no limitation on the size of the user input with that very lame gets call, the bad
guy was able to completely overwrite all space in the color_pref location on the
heap, breaking out of it and overwriting the user_name variable with the word
root! Now, this wouldn’t change the user ID of the running program itself in the
operating system, but it would allow the attacker to impersonate another user
named root within the program itself. Note that the attacker has to type in more
than just ten characters (in fact, 16 characters are required, as in blueblueblue-
blue) to scoot out of the color_pref variable, instead of just the ten characters we
allocated. That’s because the malloc call sets aside a little more space than we ask
for to keep things lined up in memory for itself. Still, by exploring with different
sizes of input using the fuzzing techniques we discussed earlier, the attacker can
change this variable and possibly others on the heap.

Figure 7.10 The heap holds the memory we malloc’ed.

THE HEAP

user_name
(10 char)

color_pref
(10 char)

Allocated
using

malloc call

Heap
Allocation
Direction

.

.

.

.

.

.

skoudis.book Page 360 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

361

THE EXPLOIT MESS AND THE RISE OF EXPLOITATION ENGINES

We’ve seen both stack- and heap-based buffer overflows and how they could let an
attacker redirect the flow of program execution or change other variables in a vul-
nerable program. However, there’s a problem for the bad guys. Historically, when a
new vulnerability was discovered, such as a buffer overflow flaw, crafting an exploit
to take advantage of the flaw was usually a painstaking manual process. Developing
an exploit involved handcrafting software that would manipulate return pointers
on a target machine, load some of the attacker’s machine language code into the
target system’s memory (the egg), and then calculate the new value of the return
pointer needed to make the target box execute the attacker’s code. Some exploit
developers then released each of these individually packaged exploit scripts to the
public, setting off a periodic script kiddie feeding frenzy on vulnerable systems that
hadn’t yet been patched. But due to the time-consuming exploit development pro-
cess, defenders had longer time frames to apply their fixes.

Also, the quality of individual exploit scripts varied greatly. Some exploit devel-
opers fine-tuned their wares, making them highly reliable in penetrating a target.

Figure 7.11 Running the vulnerable program with two different inputs.

THE HEAP

color_pref:
b
l
u
e

user_name:
f
r
e
d

.

.

.

.

.

.

color_pref:
blue

user_name:
fred

User input=
blue

THE HEAP

color_pref:
b b b b

 l l l l
u u u u
e e e e

.

.

.

.

.

.

color_pref:
blueblueblue
blue
user_name:
root

User input=
blueblueblueblueroot

user_name:
r
o
o
t

skoudis.book Page 361 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

362

Other exploit creators were less careful, turning out garbage sploits that some-
times wouldn’t work at all or would even crash a target service most of the time.
The functionality of eggs varied widely as well. Some developers would craft
exploits that created a command shell listener on their favorite TCP or UDP
port, whereas others focused on adding an administrative user account for the
attacker on the target machine, and others had even more exotic functionality
embedded in their sploits. Making matters worse, a really good egg from one
exploit wouldn’t easily interoperate with another exploit, making it hard to reuse
some really choice code. The developers and users of exploits were faced with no
consistency, little code reuse, and wide-ranging quality; in other words, the
exploit world was a fractured mess.

To help tame this mess of different exploits, two extremely gifted software develop-
ers named H. D. Moore and spoonm released Metasploit, an exploit framework for
the development and use of modular exploits to attack systems, available for free at
www.metasploit.com. Metasploit is written in Perl, and runs on Linux, BSD, and
Microsoft Windows. To run it on Windows, the user must first install a Perl inter-
preter, such as the ActiveState Perl environment, available for free at
www.activestate.com/Perl.plex. Beyond the free, open-source Metasploit tool, some
companies have released high-quality commercial exploit frameworks for sale,
such as the IMPACT tool by Core Security Technologies (www.coresecurity.com)
and the CANVAS tool by Immunity (www.immunitysec.com).

In a sense, Metasploit and these commercial tools act as an assembly line for the
mass production of exploits, doing about 75 percent of the work needed to create
a brand new, custom sploit. It’s kind of like what Henry Ford did for the automo-
bile. Ford didn’t invent cars. Dozens of creative hobbyists were handcrafting
automobiles around the world for decades when Ford arrived on the scene. How-
ever, Henry revolutionized the production of cars by introducing the moving
assembly line, making auto production faster and cheaper. In a similar fashion,
exploit frameworks like Metasploit partially automate the production of sploits,
making them easier to create and therefore more plentiful.

Some people erroneously think exploit frameworks are simply another take on vul-
nerability scanners, like the Nessus scanner we discussed in Chapter 6, Phase 2:
Scanning. They are not. A vulnerability scanner attempts to determine if a target

skoudis.book Page 362 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

363

machine has a vulnerability present, simply reporting on whether or not it thinks
the system could be subject to exploitation. An exploit framework goes further,
actually penetrating the target, giving the attacker access to the victim machine.

To understand how Metasploit works, let’s look at its different parts, as shown in
Figure 7.12. First, the tool holds a collection of exploits, little snippets of code
that force a victim machine to execute the attacker’s payload, typically by over-
writing a return pointer in a buffer overflow attack. Most exploit frameworks
have more than 100 different exploits today, including numerous stack- and
heap-based buffer overflow attacks, among several other vulnerability types. The
current Metasploit exploit inventory includes some of the most widespread and
powerful attacks, such as the Windows RPC DCOM buffer overflow (that was
the exploit used by the Blaster worm, by the way), the Samba trans2open Over-
flow, the War-FTPD passive flaw, and the good old WebDAV buffer overflow in

Figure 7.12 The components of Metasploit.

Send to target

An exploit framework stitches these
together and launches them...

Exploit Development
Support Tools

Payload
Collection

Payload 2
GUI

Remote Control

Payload 1
Network

Listening Shell

Payload M
Add Admin

User

Exploit 2
Overflow in

LSASS

Payload 1
Network

Listening Shell
Targeting

Info Launcher

.

.

.
Memory region
size, location,
and offset
helper tools

Vuln finding
Tools

Armoring tools
to dodge
detection and
filters

Payload
injection tools

Choose

USER INTERFACE

Exploit 2
Overflow in

LSASS

Exploit
Collection

.

.

.

Exploit 1
Overflow in
RPC DCOM

Exploit N
Overflow in

ftpd

skoudis.book Page 363 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

364

NTDLL.DLL used by the Nachi/Welchia worm. The Windows LSASS buffer
overflow exploit is a particularly nasty one as well, used by the Sasser worm.
There are several other exploits, including some that work against Solaris (the
sadmind exploit), Linux (against Real Server on Linux), and many more. It’s
important to note that the Metasploit framework can attack any type of oper-
ating system for which it has exploits and payloads, regardless of the operating
system on which Metasploit itself is running. So, for example, Metasploit run-
ning on Linux can attack Linux, Windows, and Solaris machines, and possibly
many others.

Next, Metasploit offers a huge set of payloads, that is, the code the attacker wants
to run on the target machine, triggered by the exploit itself. An attacker using
Metasploit can choose from any of the following payloads to foist on a target:

• Bind shell to current port. This payload opens a command shell listener on the
target machine using the existing TCP connection of a service on the machine.
The attacker can then feed commands to the victim system across the network
to execute at a command prompt.

• Bind shell to arbitrary port. This payload opens a command shell listener on
any TCP port of the attacker’s choosing on the target system.

• Reverse shell. This payload shovels a shell back to the attacker on a TCP port.
With this capability, the attacker can force the victim machine to initiate an
outbound connection, sent to the attacker, polling the bad guy for commands
to be executed on the victim machine. So, if a network or host-based firewall
blocks inbound connections to the victim machine, the attacker can still force
an outbound connection from the victim to the attacker, getting commands
from the attacker for the shell to execute. As we discuss in Chapter 8, Phase 3:
Gaining Access Using Network Attacks, the attacker will likely have a Netcat
listener waiting to receive the shoveled shell.

• Windows VNC Server DLL Inject. This payload allows the attacker to control
the GUI of the victim machine remotely, using the Virtual Network Computing
(VNC) tool sent as a payload. VNC runs inside the victim process, so it
doesn’t need to be installed on the victim machine in advance. Instead, it is
inserted as a DLL inside the vulnerable program to give the attacker remote
control of the machine’s screen and keyboard.

skoudis.book Page 364 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

365

• Reverse VNC DLL Inject. This payload inserts VNC as a DLL inside the run-
ning process, and then tells the VNC server to make a connection back to the
attacker’s machine, in effect shoveling the GUI to the attacker. That way, the
victim machine initiates an outbound connection to the attacker, but allows
the attacker to control the victim machine.

• Inject DLL into running application. This payload injects an arbitrary DLL of
the attacker’s choosing into the vulnerable process, and creates a thread to run
inside that DLL. Thus, the attacker can make any blob of code packaged as a
DLL run on the victim.

• Create Local Admin User. This payload creates a new user in the administrators
group with a name and password specified by the attacker.

• The Meterpreter. This general-purpose payload carries a very special DLL to
the target box. This DLL implements a simple shell, called the Metasploit
Interpreter, or Meterpreter for short, to run commands of the attacker’s
choosing. However, the Meterpreter isn’t just a tool that executes a separate
shell process on the target. On the contrary, this new shell runs inside of the
vulnerable program’s existing process. Its power lies in three aspects. First, the
Meterpreter does not create a separate process to execute the shell (such as
cmd.exe or /bin/sh would), but instead runs it inside the exploited process.
Thus, there is no separate process for an investigator or curious system admin-
istrator to detect. Second, the Meterpreter does not touch the hard drive of the
target machine, but instead gives access purely by manipulating memory.
Therefore, there is no evidence left in the file system for investigators to locate.
Third, if the vulnerable service has been configured to run in a limited envi-
ronment so that the vulnerable program cannot access certain commands on
the target file system (known as a chroot environment), the Meterpreter can
still run its built-in commands within the memory of the target machine,
regardless of the chroot limitation. Thus, this Meterpreter payload is incredi-
bly valuable for the bad guys.

To support a user in selecting an exploit and payload to launch at a target, Meta-
sploit includes three different user interface options: a command-line tool suit-
able for scripting, a console prompt with specialized keywords, and even a point-
and-click Web interface accessible via a browser. The Web interface, shown in
Figure 7.13, is probably the easiest to use of all three, letting the attacker navigate

skoudis.book Page 365 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

366

using a browser to select the components of the attack. However, my favorite Meta-
sploit interface is the console, which includes a specialized language for launching
attacks. It’s my favorite because it is the most flexible way to attack one system and
then rapidly alter the configuration to attack another system, a really useful func-
tionality when performing penetration tests. The Metasploit console includes a nifty
lingo with keywords as simple as use [exploit], set [payload], and the very lovely
exploit command, which launches the attack against a target. In the days before
Metasploit, a script kiddie often had to figure out how each individual exploit script
should be configured to hit a target, a sometimes difficult process of trial and error.
Now, the attacker merely needs to learn a single Metasploit user interface, and can
then choose, configure, and launch exploits in a consistent manner.

Metasploit users don’t even have to understand how the exploit or payload
works. They simply run the user interface, select an appropriate exploit and

Figure 7.13 Metasploit’s Web-based interface.

The attacker invokes the
Metasploit Web interface
and surfs there from a
browser on the local
machine to
127.0.0.1:55555.

This text says
“Metasploit”, in a very
nonstandard font.

The attacker chooses
from a list of exploits
and payloads.

Here, we’ve chosen
the LSASS buffer
overflow exploit
(LSASS MS04-011),
with a Windows
command shell bound to
a TCP port (win32_bind).

The attacker configures
the target address, and
a port to have a target
shell listen on.

skoudis.book Page 366 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

367

payload, and then fire the resulting package at the target. The tool bundles the
exploit and payload together, applies a targeting header, and launches it across
the network. The package arrives at the target, the exploit triggers the payload,
and the attacker’s chosen code runs on the victim machine. These are the things
of which script kiddie dreams are made.

Script kiddies aside, in addition to the exploits and payloads, Metasploit also fea-
tures a collection of tools to help developers create brand new exploits and pay-
loads. Some of these tools review potentially vulnerable programs to help find
buffer overflow and related flaws in the first place. Others help the developer fig-
ure out the size, location, and offset of memory regions in the target program
that will hold and run the exploit and payload, automating the ABCDEF game
we discussed earlier in this chapter. Some of the exploit development support
tools include code samples to inject a payload into the target’s memory, and still
others help armor the resulting exploit and payload to minimize the chance it
will be detected or filtered at the target. These pieces make up the partially auto-
mated assembly line for the creation of exploits.

And here’s the real power of Metasploit: If a developer builds an exploit or pay-
load within the Metasploit framework, it can be used interchangeably with other
payloads or exploits as well as the overall exploit framework user interfaces.
Using Perl, developers can write and then publish their new modules, and thou-
sands of exploit framework users around the globe can easily import the new
building block into their own attacks, relying on the same, consistent interface.
Right now, hundreds of developers around the world are coding new exploits
and payloads within Metasploit. Some of these people are even releasing their
new attack code, created within Metasploit, publicly.

ADVANTAGES FOR ATTACKERS

Exploit frameworks like Metasploit offer significant advantages for the bad guys,
including those who craft their own custom exploits and even the script kiddies
just looking for low-hanging fruit. For the former, exploit frameworks shorten
the time needed to craft a new exploit and make the task a lot easier. In the good
old days of the 1990s, we often had many months after finding out about a new
vulnerability before an exploit was released in the wild. Now, increasingly, we

skoudis.book Page 367 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

368

have only a couple of days before a sploit is publicly unleashed. Exploit frame-
works are helping to fuel that shorter duration. As exploit frameworks are fur-
ther refined, this time frame could shrink even more. Some researchers are
working on further automating the reverse engineering of security patches to
create an exploit for a framework within a matter of hours or minutes after a new
patch or flaw is discovered and announced. Because of these trends, we need to
patch more diligently than ever before.

Furthermore, while shortening development time and effort, exploit frameworks
like Metasploit have simultaneously increased the quality of exploit code, making
the bad guys much more lethal. Unlike the handcrafted, individual exploit scripts
of the past, the sploits written in an exploit framework are built on top of time-
tested, interchangeable modules. Some seriously gifted exploit engineers created
these underlying modules and have carefully refined their stuff to make sure it
works reliably. Thus, an attacker firing an exploit at a target can be much more
assured of a successful compromise.

At the SANS Institute’s Internet Storm Center (http://isc.sans.org), when a new
vulnerability is announced, we often see widespread port scanning for the vul-
nerable service begin immediately, even before an exploit is released publicly.
Developers who have already quickly created an exploit might cause some of this
scanning, but a lot of it is likely due to anticipatory scanning. That is, even script
kiddie attackers know that an exploit will likely soon be created and released for a
choice vulnerability, so they want an inventory of juicy targets as fast as possible.
When the exploit is then actually released, they pounce. Today, quite often, the
exploit is released as part of an exploit framework first.

BENEFITS FOR THE GOOD GUYS, TOO?

Exploit frameworks aren’t just evil. Tools like Metasploit can also help us security
professionals to improve our practices as well. One of the most valuable aspects of
these tools to infosec pros involves minimizing the glut of false positives from our
vulnerability-scanning tools. Chief Information Security Officers (CISOs) and
auditors often lament the fact that many of the high-risk findings discovered by a
vulnerability scanner turn out to be mere fantasies, an error in the tool that thinks
a system is vulnerable when it really isn’t. Such false positives sometimes comprise

skoudis.book Page 368 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

369

30 to 50 percent or more of the findings of an assessment. When a CISO turns such
an erroneous report over to an operations team of system administrators to fix the
nonexistent problems, not only does the operations team waste valuable resources,
but the CISO could lose face in light of these false reports. Getting the ops team to
do the right thing in tightening and patching systems is difficult enough, and it
only gets harder if you are wrong about half of the vulnerability information you
send them in this boy-who-cried-wolf situation.

Metasploit can help alleviate this concern. The assessment team first runs a vulner-
ability scanner and generates a report. Then, for each of the vulnerabilities identi-
fied, the team runs an exploit framework like Metasploit to verify the presence of
the flaw. The Metasploit framework can give a really high degree of certainty that
the vulnerability is present, because it lets the tester gain access to the target
machine. Real problems can then be given high priority for fixing. Although this
high degree of certainty is invaluable, it’s important to note that some exploits
inside of the frameworks still could cause a target system or service to crash. There-
fore, be careful when running such tools, and make sure the operations team is on
standby to restart a service if the exploit does indeed crash it.

In addition to improving the accuracy of security assessments, exploit frame-
works can help us check our IDS and IPS tools’ functionality. Occasionally, an
IDS or IPS might seem especially quiet. Although a given sensor might normally
generate a dozen alerts or more per day, sometimes you might have an extremely
quiet day, with no alerts coming in over a long span of time. When this happens,
many IDS and IPS analysts start to get a little nervous, worrying that their moni-
toring devices are dead, misconfigured, or simply not accessible on the network.
Compounding the concern, we might soon face attacks involving more sophisti-
cated bad guys launching exploits that actually bring down our IDS and IPS
tools, in effect rendering our sensor capabilities blind. The most insidious
exploits would disable the IDS and IPS detection functionality while putting the
system in an endless loop, making them appear to be just fine, yet blind to any
actual attacks. To help make sure your IDS and IPS tools are running properly,
consider using an exploit framework to fire some sploits at them on a periodic
basis, such as once per day. Sure, you could run a vulnerability-scanning tool
against a target network to test your detection capabilities, but that would trigger

skoudis.book Page 369 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

370

an avalanche of alerts. A single sploit will tell you if your detector is still running
properly without driving your analysis team batty.

One of the most common and obvious ways the good guys use exploit frame-
works is to enhance their penetration testing activities. With a comprehensive
and constantly updated set of exploits and payloads, a penetration tester can
focus more on the overall orchestration of an attack and analyzing results
instead of spending exorbitant amounts of time researching, reviewing, and
tweaking individual exploits. Furthermore, for those penetration testers who
devise their own exploit code and payloads, the frameworks offer an excellent
development environment. Exploit frameworks don’t completely automate
penetration test exercises, though. An experienced hand still needs to plan the
test, launch various tools including the exploit framework, correlate tool out-
put, analyze results, and iterate to go deeper into the targets. Still, if you per-
form penetration testing in-house, your team could significantly benefit from
these tools, performing more comprehensive tests in less time. If you rely on an
external penetration testing company, ask them which of the various exploit
frameworks they use, and how they apply them in their testing regimen to
improve their attacks and lower costs.

One final benefit offered by exploit frameworks should not be overlooked—
improving management awareness of the importance of good security practices.
Most security pros have to work really hard to make sure management under-
stands the security risks our organizations face, emphasizing the need for system
hardening, thorough patching, and solid incident response capabilities. Some-
times, management’s eyes glaze over hearing for the umpteenth time the impor-
tance of these practices. Yet, a single sploit is often worth more than a thousand
words. Set up a laboratory demo of one of the exploit frameworks, such as
Metasploit. Build a target system that lacks a crucial patch for a given exploit in
the framework, and load a sample text file on the target machine with the con-
tents “Please don’t steal this important file!” Pick a very reliable exploit to dem-
onstrate. Then, after you’ve tested your demo to make sure it works, invite
management to watch how easy it is for an attacker to use the point-and-click
Web interface of Metasploit to compromise the target. Snag a copy of the sensi-
tive file and display it to your observers. When first exposed to these tools, some
managers’ jaws drop at their power and simplicity. As the scales fall from their

skoudis.book Page 370 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

371

eyes, your plea for adequate security resources might now reach a far more recep-
tive audience, thanks to your trusty exploit framework.

BUFFER OVERFLOW ATTACK DEFENSES

There are a variety of ways to protect your systems from buffer overflow attacks and
related exploits. These defensive strategies fall into the following two categories:

• Defenses that can be applied by system administrators and security personnel
during deployment, configuration, and maintenance of systems

• Defenses applied by software developers during program development

Both sets of defenses are very important in stopping these attacks, and they
are not mutually exclusive. If you are a system administrator or security pro-
fessional, you should not only adhere to the defensive strategies associated
with your job, but you should also encourage your in-house software devel-
opment personnel and your vendors to follow the defenses for software devel-
opers. By covering both bases, you can help minimize the possibility of falling
victim to this type of nasty attack.

Defenses for System Administrators and Security Personnel

So what can a system administrator or security professional do to prevent buffer
overflows and similar attacks? As mentioned at several points throughout this
book, you must, at a minimum, keep your systems patched. The computer
underground and security researchers are constantly discovering new vulnerabil-
ities. Vendors are scrambling to create fixes for these holes. You must have a regu-
lar program that monitors various mailing lists, such as the Bugtraq, US-CERT,
and the SANS mailing lists we discuss in more detail in Chapter 13, The Future,
References, and Conclusions. Most vendors also have their own mailing lists to
distribute information about newly discovered vulnerabilities and their associ-
ated fixes to customers. You need to be on these lists for the vendors whose prod-
ucts you use in your environment.

In addition to monitoring mailing lists looking for new vulnerabilities, you also
must institute a program for testing newly patched systems and rolling them into

skoudis.book Page 371 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

372

production. You cannot just apply a vendor’s security fix to a production system
without trying it in a test environment first. A new security fix could impair
other system operations, so you need to work things out in a test lab first. How-
ever, once you determine that the fix operates in a suitable fashion in your envi-
ronment, you need to make sure it gets quickly deployed. Deploying fixes in a
timely manner is quite important before the script kiddie masses come knocking
at your doors trying to exploit a vulnerability recently made public. In addition
to keeping your machines patched, make sure your publicly available systems
(Internet mail, DNS, Web, and FTP servers, as well as firewall systems) have con-
figurations with a minimum of unnecessary services and software extras.

Also, you need to strictly control outgoing traffic from your network. Most orga-
nizations are really careful about traffic coming into their network from the
Internet. This is good, but it only addresses part of the problem. You will likely
require some level of incoming access to your network, at least into your DMZ,
so folks on the Internet can access your public Web server or send you e-mail. If
attackers discover a vulnerability that they can exploit over this incoming path,
they might be able to use it to send an outgoing connection that gives them even
greater access, the so-called shell shoveling technique we briefly discussed with
Metasploit in this chapter and go into more detail when we discuss Netcat in the
next chapter. To avoid this problem of reverse shells, you need to apply strict fil-
ters to allow outgoing traffic only for services with a defined business need. Sure,
your users might require outgoing HTTP or FTP, but do they really need outgo-
ing X Window System access? Probably not. You should block unneeded services
at external firewalls and routers.

A final defense against buffer overflows that can be applied by system adminis-
trators and security personnel is to configure your system with a nonexecutable
stack. If the system is configured to refuse to execute instructions from the stack,
most stack-based buffer overflows just won’t work. There are some techniques
for getting around this type of defense, including heap-based overflows and
return-to-libc attacks, but the vast majority of stack-based buffer overflows fail if
they cannot execute instructions from the stack. Solaris and HP-UX 11i have
built-in nonexecutable system stack functionality, but the system has to be con-
figured to use this capability. To set up a Solaris system so that it will never exe-
cute instructions from the stack, add the following lines to the /etc/system file:

skoudis.book Page 372 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

373

set noexec_user_stack=1

set noexec_user_stack_log=1

Similarly, in HP-UX 11i, an administrator must set the kernel tunable parameter
executable_stack to zero.

The mainstream Linux kernel does not have built-in nonexecutable system stack
functionality, but separate tools can be downloaded to give a Linux machine such
functionality. To configure a Linux system with a nonexecutable stack, you’ll have
to apply a kernel patch. Solar Designer, a brilliant individual we encounter again
later in this chapter, has written a Linux kernel patch that includes a nonexecut-
able stack as well as other security features. His handiwork can be downloaded
from www.openwall.com/linux/README. Other tweaks of the Linux kernel,
including PaX (http://pax.grsecurity.net), also alter the way the stack functions to
minimize the chance of successful buffer overflow exploitation.

Unfortunately, Windows 2000 does not currently support nonexecutable stack or
heap capabilities. Currently, Microsoft has added this functionality to Windows
XP Service Pack 2 and Windows 2003 Service Pack 1, a feature they call Data Exe-
cution Prevention (DEP). This capability marks certain pages in memory, such
as the stack and heap, as nonexecutable.

There are two kinds of DEP supported in Windows XP Service Pack 2 and Win-
dows 2003 Service Pack 1: hardware-based DEP and software-based DEP. The
hardware-based DEP feature works only on machines with processors that sup-
port execution protection technology (a feature advertised as NX capability, for
nonexecution), a special setting in the CPU that refuses to execute memory seg-
ments that are only supposed to hold data, such as the stack and heap. Some of
the more recent CPU products include NX functionality.

The software-based DEP, on the other hand, works on any kind of processor
Windows runs on. It is activated by default in Windows XP Service Pack 2 and
Windows 2003 Service Pack 1 for essential Windows programs and services,
those elements of the operating system itself that so often come under attack. An
administrator can increase this level of security to protect all programs and ser-
vices on the machine, but this might impact backward compatibility with some

skoudis.book Page 373 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

374

specific programs that do attempt to run code from the stack or heap, an unusual
occurrence for most programs. If you do have a few of these strange beasts, you
could even set up DEP for all programs except a list of specific programs that you
expect to run data from the stack or heap, such as unusual debuggers and pro-
grams that automatically alter their own code. You can look at your DEP settings
on Windows XP Service Pack 2 and Windows 2003 Service Pack 1 by going to
Start ➠ Settings ➠ Control Panel ➠ System ➠ Advanced. Then, under Perfor-
mance, click Settings and go to Data Execution Prevention to see the user inter-
face shown in Figure 7.14.

This software-based DEP is currently an active area of research within the com-
puter underground, as it has not been thoroughly documented by Microsoft.
Attackers are trying to reverse engineer it to see if it can be foiled. Interestingly, a
group of security researchers out of Russia released a white paper describing how
to attack the software-based DEP function using a heap overflow by carefully

Figure 7.14 Windows XP Service Pack 2 and Windows 2003 Service Pack 1 Data Execution Prevention.

skoudis.book Page 374 Wednesday, November 30, 2005 10:04 PM

BUFFER OVERFLOW EXPLOITS

375

re-creating the data structures that DEP employs within the heap to protect it.
The white paper is an amazing read, and can be found at www.maxpatrol.com/
defeating-xpsp2-heap-protection.htm.

Buffer Overflow Defenses for Software Developers

Although system administrators and security personnel can certainly do a lot
to prevent buffer overflow attacks, the problem ultimately stems from sloppy
programming. Software developers are the ones who can really stop this type of
attack by avoiding programming mistakes involving the allocation of memory
space and checking the size of all user input as it flows through their applica-
tions. Software developers must be trained to understand what buffer over-
flows are and how to avoid them. They should refrain from using functions
with known problems, instead using equivalent functions without the security
vulnerabilities. The code review component of the software development cycle
should include an explicit step to look for security-related mistakes, including
buffer overflow problems.

To help this process, there are a variety of automated code-checking tools that
search for known problems, such as the appearance of frequently misused func-
tions that lead to buffer overflows like the gets function we discussed earlier.
The following free tools accept regular C and C++ source code as input, to
which they apply heuristic searches looking for common security flaws including
buffer overflows:

• ITS4 (which stands for It’s the Software, Stupid—Security Scanner), available
at www.cigital.com/its4/

• RATS (Rough Auditing Tool for Security), available at www.securesw.com/rats/

• Flawfinder, available at www.dwheeler.com/flawfinder

Additionally, help educate your software developers by encouraging them to read
about secure programming. Some of my favorite resources for secure coding
on a Windows platform include the book Writing Secure Code 2 by Howard and
Leblanc (Microsoft Press, 2002). For those who develop on a Linux and UNIX plat-
form, you can get a great, free white paper on developing secure code on Linux
and UNIX from Dave Wheeler’s Web site (www.dwheeler.com/secure-programs).

skoudis.book Page 375 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

376

Download this and give it to your software development team. Print it out, put a
big red bow on it, and you’ve got a free gift for someone!

A final defensive technique for software developers can be implemented while
compiling programs, altering the way the stack functions. Two tools, Stack-
Guard and Stack Shield, can be invoked at compile time for Linux programs
to create stacks that are more difficult to attack with buffer overflows. You can
find StackGuard at http://immunix.org, and Stack Shield is at
www.angelfire.com/sk/stackshield.

StackGuard, available for Linux platforms for free, changes the stack by inserting
an extra field called a canary next to the return pointer on the stack. The canary
is essentially a hash of the current return pointer and a secret known by the sys-
tem. The canary operates much like its namesakes, which were used by coal min-
ers in the past. In a coalmine, if the canary died, the miner had a pretty good
warning that there was a problem with the air in the tunnel. The miners would
then evacuate the area. Similarly, if the canary on the stack gets altered, the sys-
tem knows something has gone wrong with the stack, and stops execution of the
program, thereby foiling a buffer overflow attack. When a function call finishes,
the operating system first rehashes the return pointer with its special secret. If the
hashed return pointer and secret match the canary value, the program returns
from the function call normally. If they do not match, the canary, return pointer,
or both have been altered. The program then crashes gracefully. In most circum-
stances, it is far better to crash gracefully than to execute code of an attacker’s
choosing on the machine.

Stack Shield, which is also free and runs on Linux, handles the problem in a
slightly different way than StackGuard. Stack Shield stores return pointers for
functions in various locations of memory outside of the stack. Because the
return pointer is not on the stack, it cannot be overwritten by overflowing
stack-based variables. Both Stack Shield and StackGuard offer significant pro-
tection against buffer overflows, and are definitely worth considering to pre-
vent such attacks. However, they aren’t infallible. Some techniques for creating
buffer overflows on systems with StackGuard and Stack Shield were docu-
mented by Bulba and Kil3r in Phrack 56 at http://phrack.infonexus.com/
search.phtml?issueno=56&r=0.

skoudis.book Page 376 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

377

Microsoft also added canary functionality to prevent the alteration of return
pointers in the Windows 2003 stack. This feature, which is built in and turned on
by default, does not require any activation or configuration by a system adminis-
trator. That’s the good news. Unfortunately, security researchers have discovered
techniques for thwarting this canary. In particular, researcher David Litchfield
has developed some techniques for inserting code that makes it look like the canary
is intact, even though it has been altered, in effect tricking the system into running
the attacker’s code. This technique is described in detail at www.nextgenss.com/
papers/defeating-w2k3-stack-protection.pdf.

Although none of the techniques discussed in this section for preventing buffer
overflows is completely foolproof, the techniques can, if applied together in a
judicious manner, be used to minimize this common and nasty type of attack.

PASSWORD ATTACKS

Passwords are the most commonly used computer security tool in the world
today. In many organizations, the lowly password often protects some of the
most sensitive secrets imaginable, including health care information, confiden-
tial business strategies, sensitive financial data, and so on. Unfortunately, with
this central role in security, easily guessed passwords are often the weakest link in
the security of our systems. By simply guessing hundreds or thousands of pass-
words, an attacker could gain access to very sensitive information or shut down
critical computing systems.

Compounding this problem with passwords is the fact that every user has at least
one password, and many users have dozens of passwords. Users are forced to
remember and maintain passwords for logging into the network, signing on to
numerous applications, accessing frequently used external Web sites, logging into
voice mail, and even making long-distance phone calls with a calling card. On
almost all systems, the users themselves choose the passwords, placing the bur-
den of security on end users who either do not know or sometimes do not care
about sound security practices. Users often choose passwords that are easy to
remember, but are also very easily guessed. We frequently encounter passwords
that are set to days of the week, the word password, or simple dictionary terms. A
single weak password for one user on one account could give an attacker a foothold

skoudis.book Page 377 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

378

on a system. Most users manually synchronize their passwords for every pass-
word-protected system they access. Sadly, therefore, a user who has a password in
your high-security environment might be using the same password for that
external e-commerce application over which your organization has no control.
After guessing one weak password in the low-security environment, the attacker
can take over an account on the supposedly higher security system. Indeed, the
plague of passwords is quite widespread.

Why, then, do we continue to rely on them so much? We do so because password-
authentication mechanisms are really cheap. Most operating systems and applica-
tions have built-in password authentication, so their users and administrators have
simply applied the least expensive (and often least secure) tool in place.

For even a low-skill attacker, guessing such passwords and gaining access can be
quite trivial. Numerous freely available tools automatically guess passwords at
relatively high speeds, looking for a weak password to enter a system. Let’s
explore how these password-guessing tools work.

GUESSING DEFAULT PASSWORDS

Many applications and operating systems include built-in default passwords
established by the vendor. Often, overworked, uninformed, or lazy adminis-
trators fail to remove default passwords from systems. Attackers can quickly
and easily guess these default passwords to gain access to the target. The Phe-
noelit hacking group out of Germany maintains a huge database of default
passwords for a variety of platforms, available at www.phenoelit.de/dpl/
dpl.html. This Web site, shown in Figure 7.15, includes default passwords for
systems ranging from 3COM switches to Zyxel’s modem routers, and every-
thing in between.

Password Guessing Through Login Attacks

What if none of the default passwords works? Another technique for guessing
weak passwords is to run a tool that repeatedly tries to log in to the target system
across the network, guessing password after password. The attacker configures a
password-guessing tool with a common or known user ID on the target system.
The password-guessing tool then guesses a password, perhaps using a wordlist

skoudis.book Page 378 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

379

from a dictionary. The attacker points the tool at the target machine, which
might have a command-line login prompt, Web front-end login dialog box, or
other method of requesting a password. The attacker’s tool transmits its user ID
and password guess to the target, trying to log in, and then automatically deter-
mines if the guess was successful. If not, another guess is tried. Guess after guess
is launched until the tool discovers a valid password.

One of the most fully functional and easy-to-use tools for automating this password-
guessing attack is Brutus, available for free at www.hoobie.net/brutus. It runs on

Figure 7.15 An online database of default passwords.

skoudis.book Page 379 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

380

Windows, has a point-and-click GUI, shown in Figure 7.16, and is remarkably
effective.

The attacker configures Brutus with the following information:

• The target system address or domain name

• The source of password guesses, which can be a file of words or a brute-force
selection of all possible character combinations

• The protocol to use when interacting with the target, which could be HTTP
with Basic Authentication, HTTP with an HTML form, Post Office Protocol 3
(POP3) e-mail, FTP, Windows authentication and file sharing with Server
Message Block (SMB) protocol, and Telnet

• The text that Brutus will receive if authentication is successful

• The text the application generates when authentication fails

Then, the attacker simply clicks the Start button. Brutus grinds away for between
minutes and weeks, and starts popping back with answers.

Figure 7.16 Brutus in action.

skoudis.book Page 380 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

381

It’s important to note that Brutus often yields many false positives due to bugs in
the code, not problems with this overall type of attack. Keep that in mind if you
ever run Brutus: Not all of your discovered accounts will be accurate!

If you want a more UNIX/Linux-friendly password-guessing tool with better
accuracy, you should check out THC Hydra, available for free at http://thc.org/
thc-hydra. This fine tool, written by van Hauser, includes a command-line inter-
face and a GUI option if you really want it. Hydra runs on Linux and many fla-
vors of UNIX, and even works on Windows, provided that you’ve installed the
free Cygwin environment, an amazing UNIX-like world that runs on top of Win-
dows. You can get the Cygwin environment for free at www.cygwin.com.

The nicest part about Hydra is its generous protocol support. It can guess passwords
for more than a dozen different application-level protocols, including Telnet, FTP,
HTTP, HTTPS, HTTP-PROXY, LDAP, SMB, SMBNT, MS-SQL, MYSQL, REXEC,
SOCKS5, VNC, POP3, IMAP, NNTP, PCNFS, ICQ, SAP/R3, Cisco auth, Cisco
enable, and Cisco AAA. Whew! That’s a lot of different applications, making it
highly useful in password-guessing attacks. Also, Hydra doesn’t suffer from the false
positive problems of Brutus, making it my personal favorite for password guessing.

Password guessing can be a slow process. Each login attempt could take a few sec-
onds. To go through an entire 40,000-word dictionary could take days, and
guessing random combinations of characters could require weeks or months
before a usable password is discovered. However, the greatest asset the attackers
have is time. They can be very determined when focused on a given target, and
often don’t mind spending many months trying to gain access.

Beyond being time consuming, this password-guessing technique has addi-
tional limitations. The constant attempts to log in to the target generate a sig-
nificant amount of regular network traffic and log activity, which could easily
be noticed by a diligent system administrator or an IDS. An additional challenge
an attacker faces when trying to guess a password is account lockout. Some
systems are configured to disable a user account after a given number of
incorrect login attempts with faulty passwords. The account is reenabled only
by a user calling the help desk, or through an automated process after a
period of time expires. Either way, the attacker’s guessing can be detected or

skoudis.book Page 381 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

382

at least slowed down significantly. Account lockout features are a good idea in
preventing password-guessing attacks. However, with account lockout in
place, an attacker could conduct a DoS attack by purposely locking out all of
your accounts using a script, so be careful to fine-tune your account lockout
policies based on the threats you face.

THE ART AND SCIENCE OF PASSWORD CRACKING

Guessing default passwords usually doesn’t work, because many administrators
change the defaults. Password guessing with an automated tool could take a very
long time, and, at its worst, it could get an attacker detected or lock out accounts.
A much more sophisticated approach to determining passwords that avoids these
problems is password cracking, an approach totally separate from password
guessing. However, to analyze how password cracking works, you first need to
understand how passwords are stored on most systems.

When you log in to most machines, whether they are Linux systems, Windows
boxes, Novell servers, Cisco routers, or any other type of machines, you typically
provide a user ID and password to authenticate. The system has to check whether
your authentication information is accurate to make the decision whether to log
you in or not. The computer could base this decision on the contents of a local
file of the passwords for all users, comparing the password you just typed in with
your password in the file. Unfortunately, a file with every user’s password in clear
text would be an incredible security liability, a sitting duck waiting for the bad
guys to harvest it. An attacker gaining access to such a password file would be
able to log in as any user of the system.

System designers, realizing this dilemma of requiring a list of passwords to com-
pare to for user login without having a huge security hole, decided to solve the
problem by applying cryptographic techniques to protect each password in the
password file. Thus, for most systems, the password file contains a list of user IDs
and representations of the passwords that are encrypted or hashed. I use the
words encrypted or hashed, because a variety of different cryptographic algo-
rithms are applied. Some systems use pure encryption algorithms, like the Data
Encryption Standard (DES), which require a key for the encryption. Others use
hash algorithms, such as Message Digest 4 (MD4), which are one-way functions

skoudis.book Page 382 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

383

that transform data with or without a key. Either way, the password is altered
using the crypto algorithm so that an attacker cannot determine the password by
directly looking at its encrypted or hashed value in the password file.

When a user wants to log in to the system, the machine gathers the password
from the user, applies the same cryptographic transformation used to generate
the password file, and compares the results. If the encrypted or hashed value of
your password matches the encrypted or hashed value in the file, you are allowed
to log in. Otherwise, you are denied access. The process works beautifully, allow-
ing you to log in successfully, turning away attackers, and never keeping a clear
text file of password.

LET’S CRACK THOSE PASSWORDS!

Lather. Rinse thoroughly. Repeat. These are directions from a shampoo
bottle, which, if followed literally, would leave you in the shower for eternity.

Most systems include a password file that contains encrypted or hashed repre-
sentations of the passwords. Password cracking involves stealing the encrypted
password representations and trying to recover the original clear text password
using an automated tool. A password-cracking tool operates by setting up a sim-
ple loop, as shown in Figure 7.17.

A password-cracking tool can form its password guesses in a variety of ways. Per-
haps the simplest method is to just throw the dictionary at the problem, guessing
one term after another from a dictionary. A large number of dictionaries are

Figure 7.17 Password cracking is really just a loop.

• Create a password guess
• Encrypt the guess
• Compare encrypted guess with
 encrypted value from the stolen
 password file
• If match, you’ve got the password!
 Else, loop back to the top.

skoudis.book Page 383 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

384

available online, in many languages, including English, Russian, Japanese,
French, and, for you Star Trek fans, even Klingon! Most password-cracking tools
come with a small but effective wordlist. For example, John the Ripper’s list
includes approximately 2,000 words, whereas the Cain wordlist includes a whop-
ping 306,000 entries!

For other wordlists that are quite effective, check out two sources: the CERIAS
wordlist collection (http://ftp.cerias.purdue.edu/pub/dict/dictionaries/), and the
Moby wordlist (www.dcs.shef.ac.uk/research/ilash/Moby/). Both lists are free, and
include hundreds of thousands of words from a variety of languages. Of course, if
the target’s passwords are not dictionary terms, this technique will fail. Happily
for attackers, it almost always succeeds.

Beyond guessing dictionary terms, many password-cracking tools support brute-
force cracking. For this type of attack, the tool guesses every possible combina-
tion of characters to determine the password. The tool might start with alphanu-
meric characters (a–z and 0–9), and then progress to special characters (!@#$,
and so on). Even for a fast password-cracking tool, this brute-force guessing pro-
cess can take an enormous amount of time, ranging from hours to centuries. It
all depends on the strength of the password crypto algorithm and how difficult
the user’s password is to guess.

Hybrid password-cracking attacks are a nice compromise between quick but lim-
ited dictionary cracks and slow but effective brute-force cracks. In a hybrid
attack, the password-cracking tool starts guessing passwords using a dictionary
term. Then, it creates other guesses by appending or prepending characters to the
dictionary term. By methodically adding characters to words in a brute-force
fashion, these hybrid attacks are often extremely successful in determining a
password. The best hybrid generators even start to shave characters off of dictio-
nary terms in their guess-creating algorithms.

From an attacker’s perspective, password cracking is fantastic, because the cracking
loop does not have to run on the victim machine. If the attackers can steal the
encrypted or hashed password file, they can run the password-cracking tool on their
own systems, in the comfort of their own homes or on any other machine that suits
their fancy. This makes password cracking much faster than password guessing

skoudis.book Page 384 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

385

through trying to log in to the target machine. Although using a password-guessing
tool to log in across the network requires many valuable seconds to evaluate each
guess, a password-cracking tool can guess thousands or tens of thousands of pass-
words per second! The password cracker only has to operate on the stolen password
file stored locally, applying quick and optimized cryptographic algorithms. Every
word in a 50,000-word dictionary can be attempted in only a few minutes.

Furthermore, the more CPU cycles the attackers throw at the problem, the more
guesses they can make and the faster they can recover passwords. So an attacker
who has taken over dozens of machines throughout the world and is looking to
crack the passwords of a new victim can divide up the password-cracking task
among all of these machines to set up a password-cracking virtual supercom-
puter. Or, if an attacker has compromised 100,000 machines using a bot for
remote control of these victims, the attacker can harvest the processing power of
a 100,000-node network to make the password cracking operation really fly! We
discuss the nefarious bots that can support such a feat in more detail in
Chapter 10, Phase 4: Maintaining Access.

Password-cracking tools have been around for a couple of decades, and an enor-
mous number of them are available. Some of the most notable password-cracking
tools in widespread use today include the following:

• Cain, a fantastic free tool available from Massimiliano Montoro at
www.oxid.it/cain.html

• John the Ripper, a powerful free password cracker for UNIX/Linux and some
Windows passwords, written by Solar Designer, available at www.open-
wall.com/john

• Pandora, a tool for testing Novell Netware, including password cracking, writ-
ten by Simple Nomad, and available at www.nmrc.org/project/pandora

• LC5, the latest incarnation of the venerable L0phtCrack password cracker, an
easy-to-use but rather expensive commercial password cracker at
www.atstake.com/products/lc/purchase.html

To understand how these tools work in more detail, let’s explore two of the most
powerful password crackers available today, Cain and John the Ripper.

skoudis.book Page 385 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

386

Cain and Abel: Cracking Windows (and Other) Passwords with a
Beautiful GUI

Cain and Abel are a dynamic duo of security tools that can be used for either
attacking systems or administering them. Their name is a nod to the biblical
brothers who didn’t get along all that well. The Cain and Abel tools, happily,
work together far better than those ancient brothers ever did. Typically, a user
relies on Cain to gather information about systems and to manipulate them
directly, while Abel usually runs as a background process a user can access
remotely to dump information about a target environment. In other words, Cain
is highly interactive, with a fancy GUI offering all kinds of interesting attack
functionality. Abel runs in the background, and can be remotely accessed to
dump data from its host system.

Frankly, the Cain and Abel pair of tools is hard to categorize. This amazing software
contraption, created by Massimiliano Montoro, includes more than a dozen differ-
ent useful capabilities that we discuss throughout this book. Although we’re cover-
ing Cain and Abel here in the section on password cracking, Cain and Abel are not
designed just for cracking passwords. They are extremely feature rich, including just
about everything and the kitchen sink, as a final touch! Montoro constantly scours
the Internet for useful ideas included in white papers and other tools, and then adds
such capabilities to Cain and Abel, making the duo a powerful collection of various
computer attack widgets. Cain includes the following functionalities:

• Automated WLAN discovery, in essence a war-driving tool that looks quite
similar to NetStumbler, the tool we discussed in Chapter 6.

• A GUI-based traceroute tool, using the same traceroute techniques we discussed
in Chapter 6 in the context of the traceroute, tracert, and Cheops-ng tools.

• A sniffer for capturing interesting packets from a LAN, including a variety of
user IDs and passwords for several protocols. We discuss sniffers in more
detail in Chapter 8.

• A hash calculator, which takes input text and calculates its MD2, MD4, MD5,
SHA-1, SHA-2, and RIPEMD-160 hashes, as well as the Microsoft LM, Win-
dows NT, MySQL, and PIX password representation of that text. That way, an
attacker can quickly verify assumptions associated with specific information
discovered on a target system.

skoudis.book Page 386 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

387

• A network neighborhood exploration tool to scan for and find interesting
Windows servers available on the network.

• A tool to dump and reveal all encrypted or hashed passwords cached on the
local machine, including the standard Windows LM and NT password repre-
sentations, as well as the application-specific passwords for Microsoft Out-
look, Outlook Express, Outlook Express Identities, Outlook 2002, Microsoft
Internet Explorer, and MSN Explorer.

• An ARP cache poisoning tool, which can be used to redirect traffic on a LAN
so that an attacker can more easily sniff in a switched environment, a tech-
nique we discuss in more detail in Chapter 8.

• A remote promiscuous mode checker, to try to test whether a given target
machine is running a sniffer that places the network interface in promiscu-
ous mode.

• Numerous other features, with new functionality added on a fairly regular basis.

Cain integrates each of these functions into a nice GUI, which, although com-
plex, sorts out the individual features quite nicely. The Abel tool, on the other
hand, has no GUI. Instead, it runs as a service in the background, giving remote
access capabilities to a lot of functionality, including the following:

• A remote command shell, rather like the backdoor command shells we discuss
in Chapter 10.

• A remote route table manager, so an administrator can tweak the packet rout-
ing rules on a Windows machine.

• A remote TCP/UDP port viewer that lists local ports listening on the system
running Abel, rather like the Active Ports and TCPView tools we discussed in
Chapter 6.

• A remote Windows password hash dumper, which an attacker can use to
retrieve the encrypted and hashed Windows password representations from
the Security Accounts Manager (SAM) database, suitable for cracking by …
you guessed it … the Cain tool.

In this section, however, we’re going to focus on one of the most useful capabili-
ties of Cain, namely its extremely functional password cracker. Cain is able to

skoudis.book Page 387 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

388

crack passwords for more than a dozen different operating system and protocol
types. Just for the Windows operating system, Cain can crack the following pass-
word representations:

• Microsoft LM, the really weak Windows password authentication also known
as LanMan, still included by default in all Windows NT, 2000, XP, and 2003
systems in the local SAM database

• The LM challenge passed across the network, which is a challenge–response
authentication protocol based on the underlying LM hash, but includes spe-
cial features for network authentication to a Windows domain or a file server

• Windows NT hash, a form of Windows password storage stronger than LM,
supported in Windows NT, 2000, XP, and 2003 machines and stored in the
local SAM database, as we discussed in Chapter 4, Windows NT/2000/XP/2003
Overview.

• NTLMv1, a challenge–response protocol passed across the network, offering
slightly better security than the LM challenge passed across the network

• NTLMv2, an even stronger form of challenge–response authentication across
a Windows network

• MS-Kerberos5 Pre-Auth, the Microsoft Kerberos authentication deployed in
some Windows environments

RETRIEVING THE PASSWORD REPRESENTATIONS FROM WINDOWS To use Cain to
crack Windows operating system passwords, the attacker usually first grabs a
copy of the password representations stored in the SAM database of the target
machine. To accomplish this, Cain includes a built-in feature to dump password
representations from the local system or any other machine on the network.
However, this built-in password dump capability requires administrator privi-
leges on the system with the target SAM database. These administrator rights are
required because the password dump function must attach to the running Win-
dows authentication processes to extract the SAM database right from their
memory space, a process that requires administrative privileges. It’s interesting to
note that dumping the SAM database from memory allows Cain to bypass Win-
dows Syskey protection, which adds an extra 128 bits of cryptographic protection
around the SAM database while it resides on the hard drive only. When in the
memory of running authentication processes, Cain can easily grab it with

skoudis.book Page 388 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

389

administrative rights. Besides Cain, an alternative program for getting these
password representations using the same memory-dumping technique is the free
Pwdump3 program, available at www.openwall.com/passwords/nt.shtml. As with
Cain, to use Pwdump3 to extract password representations, the attacker must
have administrative privileges on the target system.

Besides dumping the SAM, attackers also have many other options for getting a
copy of the password representations. They could search the system looking for
files used during a system backup and steal the password representations. For
example, when an administrator backs up a system using the built-in Windows
tool Ntbackup.exe, by default, a copy of the SAM database with the password
representations is usually placed in the %systemroot%\repair\sam._ file.

Another option for getting the password representations is to steal the adminis-
trator recovery floppy disks. When a Windows system is built, a good adminis-
trative practice is to create floppy disks that can be used to recover the machine
more quickly if the operating system gets corrupted. These floppy disks include a
copy of the SAM database with at least a representation of the administrator’s
password. Alternatively, an attacker with physical access to the target machine
could simply boot the system from a Linux CD-ROM and retrieve the SAM data-
base by dumping it from the local registry image on the hard drive. A handy tool
for retrieving and altering Windows passwords using a Linux boot disk can be
found at http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.html. This tool can
be used to change the administrator or other user’s password, even if Syskey is
installed. It’s important to note, however, that changing a user’s password by
booting to a Linux CD-ROM causes the system to lose access to the EFS keys for
that user on Windows XP and 2003. Thus, on those versions of Windows, if you
use the password-changing boot disk, you’ll lose all EFS-protected data in the
accounts for which you change passwords. On Windows 2000, the EFS keys are
stored differently, letting this Linux boot disk change the passwords without los-
ing EFS-encrypted files.

Cain offers one final option for getting password representations: sniffing them
off of the network. Cain includes a very powerful integrated network capture tool
that monitors the LAN looking for Windows challenge–response authentication
packets, which Windows will send in a variety of different formats, depending on

skoudis.book Page 389 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

390

its configuration, including LM Challenge–Response, NTLMv1, NTLMv2, and
Microsoft Kerberos. Whenever users try to authenticate to a domain or mount a
remote file share or print server, their Windows machine authenticates to the
server using one of these protocols. Taken together, the challenge and response
associated with each protocol are based cryptographically on the user’s password.
After grabbing the challenge and response from the network using its integrated
sniffing tool, Cain can crack them to determine the user’s password. We discuss
sniffers and how they manipulate LAN traffic in more detail in Chapter 8. But for
now, keep in mind that Cain can sniff a variety of Windows authentication pro-
tocols and crack the passwords associated with them.

CONFIGURING CAIN Cain is very easy to configure, as shown in Figure 7.18. The
attacker can set up the tool to do dictionary attacks (using any wordlist of the
attacker’s choosing as a dictionary, or the integrated 306,000-word dictionary Cain
includes). Cain also supports hybrid attacks that reverse dictionary guesses, apply
mixed case to guesses, and even append the numbers 00 through 99 to dictionary

Figure 7.18 Configuration options for Cain.

Load dictionary
files here.

Configure guess
permutation
modes here.

Current status of
the cracking

attack is
shown here.

skoudis.book Page 390 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

391

words. It also offers complete brute-force password-cracking attacks, attempting all
possible character combinations to form password guesses.

Finally, instead of forming, encrypting, and comparing the password guesses in
real time, Cain supports a password-cracking concept sometimes called Rainbow
tables, in honor of the first tool that implemented this attack, RainbowCrack, by
Zhu Shuanglei. With a Rainbow-like attack, the bad guy computes an encrypted
dictionary in advance, storing each password along with its encrypted form in
memory or in a file on the hard drive. This table is typically indexed for fast
searching based on the encrypted password representation. Then, when mounting
a password-cracking attack, the bad guy bypasses the guess–encrypt–compare
cycle, instead just grabbing the cryptographic password representation from the
victim machine and looking it up in the Rainbow table. After spending the initial
time and energy to create the Rainbow tables, all subsequent cracking is much
quicker, because the tool simply has to look up the password representations
in the table. In effect, we preload most of the password-cracking work. For
Cain, the attacker can generate the Rainbow tables using a separate tool called
Winrtgen.exe, available at the Cain Web site (www.oxid.it). Then, once the
encrypted wordlist is developed, the attacker can point Cain to it to perform the
comparisons to determine the passwords.

CRACKING PASSWORDS WITH CAIN After loading the password representations,
selecting a dictionary, and configuring the options, the attacker can run Cain by
clicking the Start button. Cain generates and tests guesses for passwords very
quickly. Table 7.1 depicts the amount of time necessary to crack the very weak
LM hashes using a quad-processor 2.4-GHz machine, a pricy machine, but not
out of range for some attackers. Of course, with Moore’s law resulting in faster
computers every other year, these numbers are plummeting. Keep in mind, how-
ever, that Table 7.1 illustrates the times for LM hash cracking. NT hashes are sev-
eral orders of magnitude stronger than the incredibly weak LM hashes, for
reasons described in Chapter 4.

That’s pretty impressive performance! A full brute-force attack (every possible
keystroke character) against the weak LM representations takes less than 120
hours, or 5 days, to recover any password, regardless of its value of normal alpha-
numeric and special characters (those that you can form using the SHIFT key).

skoudis.book Page 391 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

392

And, if the attacker has more processing horsepower, the attack requires even less
time. It’s important to note, though, that Windows allows users to choose pass-
words that include the upper-end ASCII characters by holding down the ALT key
and typing numbers to represent such characters. Although these ALT characters
significantly drive up password cracking times, most users don’t rely on them,
instead favoring the easier-to-type alphanumeric and special characters.

The main Cain screen, illustrated in Figure 7.19, shows the information
dumped from the target’s SAM database (including User Name, LM represen-
tation, and NT Hash). As Cain runs, each successfully cracked password is
highlighted in the display. There is one especially interesting column in
Figure 7.19: the “<8” notation. This column is checked for each password
with an LM representation that ends in AAD3B43… That’s because, as we
discussed in Chapter 4, the original password was seven characters or less,
padded to be exactly 14 characters by the LM algorithm. When LM splits the
resulting string into two seven-character pieces, the high end will always be
entirely padding. Encrypted padding, with no salts, always has the same
value, AAD3B43 and so on. Salts, those little random numbers used to boost
the difficulty of cracking passwords, are described in more detail in Chapter
4. Of course, if Windows used salts to force some nonpredictability into the
password crypto scheme, the same encrypted padding would indeed have dif-
ferent results. So, the presence of this “<8” column illustrates two things: that
the passwords are split into two seven-character pieces by LM, and that no
salts are used in Windows.

USING CAIN’S INTEGRATED SNIFFER As we discussed earlier, Cain allows an
attacker to sniff challenge–response information off of the network for cracking.

Table 7.1 Approximate LM Cracking Times with Cain, Using a Quad-Processor Machine

Character Set Time

Alphanumeric < 2 hours

Alphanumeric, some special characters < 10 hours

Alphanumeric, all special characters (except high-end ASCII typed with the ALT key) < 120 hours (5 days!)

skoudis.book Page 392 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

393

But how can an attacker force users to send this information across the network?
Well, attackers could position their machine or take over a system on the network
at a point where they will see all traffic for users authenticating to the domain or
a very popular file server. In such a strategic position, whenever anyone authenti-
cates to the domain or tries to access a share, the attacker can run Cain in sniffing
mode to snag user authentication information from the network.

Of course, it might be very difficult for attackers to insert themselves in such a
sensitive location. To get around this difficulty, an attacker can trick a user via
e-mail into revealing his or her password hashes. Consider the e-mail shown in
Figure 7.20, which was sent by an attacker, pretending to be the boss. Note that
the message includes a link to a file share on the machine SOMESERVER, in the
form of file://SOMESERVER. On this SOMESERVER machine, the attacker has
installed Cain and is running the integrated sniffing tool.

Figure 7.19 Successful crack using Cain.

Cain can determine which passwords are seven characters or
less by observation, because encrypted padding is always
AAD3B43... with no salts.

Different
cracking tools
for numerous
different
password
representations

User IDs
dumped from
the SAM
database

Cracked LM and NT password
representations (the question marks
indicate that the upper seven characters
of an LM hash haven’t yet been cracked)

The original LM and
NT representations
dumped from the SAM

skoudis.book Page 393 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

394

When the victim clicks the file:\\ link, the victim’s machine attempts to
mount the share on the attacker’s server, interacting with the server using a
Windows challenge–response protocol such as LM Challenge, NTLMv1,
NTLMv2, or Kerberos, depending on the system’s configuration. Once the
victim clicks the link, the attacker’s sniffer displays the gathered challenge and
response, as shown in Figure 7.21.

To complete the attack, the attacker can save this captured data and feed it into
Cain to retrieve the user’s password, as shown in Figure 7.22. This technique,
which combines social engineering via e-mail, sniffing data from the network,
and password cracking, really demonstrates the power of several aspects of Cain.

CAIN DOESN’T DO JUST WINDOWS Beyond these Windows operating system
password-cracking capabilities, Cain can also crack Cisco-IOS Type-5 enable
passwords, Cisco PIX enable passwords, APOP-MD5 hashes, CRAM-MD5
hashes, RIPv2-MD5 hashes, OSPF-MD5 hashes, VRRP-HMAC-96 hashes,
VNC’s 3DES passwords, RADIUS Shared Secrets, Password List (PWL) files from

Figure 7.20 Would you trust this e-mail?

skoudis.book Page 394 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

395

Windows 95 and Windows 98, Microsoft SQL Server 2000 passwords,
MySQL323 passwords, MySQLSHA1 hashes, and even IKE preshared keys.
Whew! That’s quite an exhaustive list. That last item in the list, associated with
the IKE protocol, is especially useful for the bad guys in a VPN environment.
Many IPSec implementations use IKE to exchange and update their crypto keys.
Most systems and VPN gateways, by default, use IKE in a manner called aggres-
sive mode, designed to exchange new keys quickly across the network. Many
organizations have deployed their IPSec products using a preshared key as an

Figure 7.21 Cain’s integrated sniffer captures the challenge–response from the network for cracking.

Figure 7.22 A sniffed Windows challenge–response successfully cracked.

We’re running
the Cain sniffer.

We captured the LM and NTLMv1
Challenge and Responses, which we can crack.

skoudis.book Page 395 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

396

initial secret to exchange the first set of session keys via aggressive mode IKE.
This preshared key is usually just a password typed by an administrator into the
IPSec clients and VPN gateway. Unfortunately, if an attacker sniffs the aggressive
mode IKE exchange using Cain’s built-in sniffer, the bad guy can crack this pre-
shared key. Using this information, the attacker can then load the preshared key
into the attacker’s own IPSec client, and ride in through the VPN gateway,
impersonating the original user. This preshared key IKE cracking capability orig-
inated in a tool called IKE Crack, but the functionality has been nicely imported
into both Cain’s sniffer and password-cracking features.

Cracking UNIX (and Other) Passwords Using John the Ripper

Despite its ability to attack other operating systems, Cain still runs just on Win-
dows. Another free, high-quality password cracker that can run on more envi-
ronments is John the Ripper, one of the best tools today focused only on
password cracking. John the Ripper (called John for short) is a free tool devel-
oped by Solar Designer, the gentleman we discussed earlier in this chapter who
wrote the nonexecutable kernel patch for Linux to defend against stack-based
buffer overflows. Although John is focused on cracking UNIX and Linux pass-
words, it has some extended modules that can crack other password types,
including Windows LM representations and NT hashes.

John runs on a huge variety of platforms, including Linux, UNIX, Windows of
all kinds, and even the ancient DOS platform. Yes, you can dust off that old
DOS system and use it to crack passwords. To boost its speed, John even
includes optimized code to take advantage of various specific CPU capabilities,
such as Intel’s MMX technology.

Further showing its great flexibility, John can be used to crack passwords from a
variety of UNIX variants, including Linux, FreeBSD, OpenBSD, Solaris, Digital
UNIX, AIX, HP-UX, and IRIX. Although it was designed to crack UNIX pass-
words, John can also attack LM hashes from Windows machines. Also, Dug
Song, the author of the FragRouter IDS and IPS evasion tool that we discussed in
Chapter 6, has written modular extensions for John that crack files associated
with the S/Key one-time-password system and AFS/Kerberos Ticket Granting
Tickets, which are used for cryptographic authentication. Finally, a developer

skoudis.book Page 396 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

397

named Olle Segerdahl has written an NT hash-cracking module for John, freely
available at www.openwall.com//john/contrib/john-ntlm-v03.diff.gz.

RETRIEVING THE ENCRYPTED PASSWORDS As described in Chapter 3, Linux and
UNIX Overview, UNIX systems store password information in the /etc directory.
Older UNIX systems store encrypted passwords in the /etc/passwd file, which can
be read by any user with an account on the system. For these types of machines, an
attacker can grab the encrypted passwords very easily, just by copying /etc/passwd.

Most modern UNIX variants include an option for using shadow passwords. In
such systems, the /etc/passwd file still contains general user account informa-
tion, but all encrypted passwords are moved into another file, usually named
/etc/shadow or /etc/secure. Figures 7.23 and 7.24 show the /etc/passwd and
/etc/shadow files, respectively, from a system configured to use shadow pass-
words. A shadow password file (/etc/shadow or /etc/secure) is only readable by
users with root-level privileges. To grab a copy of a shadow password file, an
attacker must find a root-level exploit, such as a buffer overflow of program that
runs as root or a related technique, to gain root access. After achieving root-level
access, the attacker makes a copy of the shadow password file to crack.

Another popular technique used on systems with or without shadow passwords
involves causing a process that reads the encrypted password file to crash, gener-
ating a core dump file. On UNIX machines, the operating system will often write
a core file containing a memory dump of a dying process that might have been a
victim of a buffer overflow that simply crashed the target process. The core file is
generated for debugging purposes and to store unsaved data. After retrieving a
copy of a core file from a process that read the encrypted passwords before it
died, an attacker can comb through it to look for the encrypted passwords. This
technique of mining core dumps is particularly popular in attacking FTP servers.
If attackers can crash one instance of the FTP server, causing it to create a core
dump, they can then use another instance of the FTP server to transfer the core
file from the target machine. They’ll then pore through the core file looking for
passwords to crack to gain access to the FTP server.

CONFIGURING JOHN THE RIPPER Although it doesn’t have a fancy GUI like Cain,
the command-line John tool is still trivially easy to configure. The attacker must

skoudis.book Page 397 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

398

feed John a file that includes all user account and password information. On a
UNIX system without shadow passwords, all of this information is available in
the /etc/passwd file itself, so that’s all John requires. On a system with shadow
passwords, this information is stored in /etc/passwd and /etc/shadow (or /etc/
secure). To merge these two files into a single file for input, John includes a pro-
gram called, suitably enough, unshadow, which is shown in Figure 7.25.

Another very nice feature of John is its ability to detect automatically the particu-
lar encryption algorithm to use during a cracking exercise, differentiating vari-
ous UNIX and Linux password encryption techniques from each other, as well as

Figure 7.23 When password shadowing is used on a system, the /etc/passwd file contains user information, but no
passwords.

The /etc/passwd
file holds user
account information,
including
login name,
User ID number,
GroupID number,
user comment
(called the GECOS
field), home
directory and shell.

Here are the user accounts that
aren’t associated with the
operating system but are
instead assigned to
people (uid>500).

skoudis.book Page 398 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

399

the Windows LM representation. This autodetect capability is based on the char-
acter set, length, and format of the given file containing the passwords. In this
way, John practically configures itself automatically. Although the autodetect
function is nifty, the absolute greatest strength of John is its ability to create many
permutations quickly for password guesses based on a single wordlist. Using a
wordlist in a hybrid-style attack, John appends and prepends characters, and
attempts dictionary words forward, backward, and typed in twice. It even trun-
cates dictionary terms and appends and prepends characters to the resulting
strings. This capability lets the tool create many combinations of password
guesses, foiling most users’ attempts to create strong passwords by slightly

Figure 7.24 The corresponding /etc/passwd file contains the encrypted passwords.

Uh-oh! Robert has a blank password!

Here are the encrypted passwords.

skoudis.book Page 399 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

400

modifying dictionary terms. Quite simply, John has the best hybrid guessing
engine available publicly today.

With all of this slicing and dicing of words to create password guesses, John
acts like a dictionary food processor. The process of creating permutations for
password guesses is defined in a user-configurable rule set. The default rules
that John ships with are exceptionally good, and most users won’t have to
tinker with them.

When conducting a password-cracking attack, John supports several different
modes of operation, including the following:

Figure 7.25 Running the unshadow script from John the Ripper.

I merged together
/etc/passwd and
/etc/shadow using
John’s unshadow
script.

skoudis.book Page 400 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

401

• “Single-crack” mode. This mode is the fastest and most limited mode sup-
ported by John. It bases its guesses only on information from the user account,
including the account name and General Electric Computer Operating System
(GECOS) field, a block of arbitrary text associated with each account.

• Wordlist mode. As its name implies, this mode guesses passwords based on a
dictionary, creating numerous permutations of the words using the rule set.

• Incremental mode. This is John’s mode for implementing a complete brute-
force attack, trying all possible character combinations as password guesses. A
brilliant feature of this mode is to use character frequency tables to ensure the
most widely used characters (such as e in English) have a heavier weighting in
the guessing.

• External mode: You can create custom functions to generate guesses using this
external mode.

By default, John starts using single-crack mode, moves onto wordlist mode, and
finally tries incremental mode. Even in the face of all of this flexibility, John’s
default values are well tuned for most password-cracking attacks. By simply exe-
cuting the John program and feeding it an unshadowed password file, the
attacker can quickly and easily crack passwords, as shown in Figure 7.26.

While John is running, it displays successfully cracked passwords on the screen,
and stores them in a local file called john.pot. If you ever run John, make sure
you clean up after yourself by removing john.pot! Whenever I’m doing a security
assessment, I always look for leftover john.pot files that a lazy system adminis-
trator or auditor forgot to destroy. Using a remnant john.pot, I can rely on the
password-cracking work having been done by another user, making my attack go
much more quickly. Also, while John is running, the attacker can press any key
on the keyboard to get a one-line status check, which displays the amount of time
John has been running, the percentage of the current mode that is completed, as
well as the current password guess John has just created.

DEFENSES AGAINST PASSWORD-CRACKING ATTACKS

Cain and John the Ripper represent the best of breed password-cracking tools,
and can quickly determine passwords in most environments. In my experience at

skoudis.book Page 401 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

402

numerous organizations, Cain or John often return dozens of passwords after
running for a couple of minutes. Given the obvious power of these cracking
tools, together with the widespread use of passwords as security tools, how can
we successfully defend our systems? To defend against password-cracking
attacks, you must make sure your users do not select passwords that can be easily
guessed by an automated tool. Carefully apply several defensive techniques that
work together to help eliminate weak passwords, starting with establishing an
effective password policy.

Strong Password Policy

A strong password policy is a crucial element in ensuring the security of your
systems. Your organization must have an explicit policy regarding passwords,
specifying a minimum length and prohibiting the use of dictionary terms.
Passwords should be at least nine characters long, and should be required to
include nonalphanumeric characters. In fact, I prefer having a minimum pass-
word length of at least 15 or even more characters. I know what you are think-
ing: “There’d be riots in the cubicles if I configured a minimum password
length of 15 characters!” However, we need to get our users out of the mindset
of having passwords, and move them into the notion of passphrases. For exam-
ple, a password of “Gee, I think I’ll buy another copy of Counter Hack!” is a lot

Figure 7.26 Running John the Ripper to crack passwords.

Status
checks

Successfully
cracked

passwords

skoudis.book Page 402 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

403

harder to crack than a password of #dx92!$XA, and the former is a lot easier to
type as well. Also, I didn’t arbitrarily choose that 15-character minimum. As it
turns out, on Windows 2000 and later, if you set a password to 15 characters or
more, the system will not store a LM hash at all for that password, instead rely-
ing solely on the stronger NT hash in the SAM database. That automatically
gets rid of the scourge of LM hashes for such accounts, significantly improving
your password security in a Windows environment. We look at an additional
LM purging capability shortly.

Furthermore, passwords should have a defined maximum lifetime of 90, 60, or
30 days, depending on the particular security sensitivity and culture of your
organization. I tend to recommend a 60- or 90-day policy, because, in my experi-
ence, users nearly always write down passwords that expire every 30 days on
sticky notes. Of course, your culture might vary. Finally, make sure that your
password policy is readily accessible by employees on your internal network and
through employee orientation guides.

User Awareness

To comply with your password policy, users must be aware of the security
issues associated with weak passwords and be trained to create memorable, yet
difficult-to-guess passwords. A security awareness program covering the use of
passwords is very important. Such a program could take several forms, ranging
from posters in the workplace to explicit training for users in how to create good
passwords and protect them.

In your password awareness program (as well as your password policy), tell
users how to create good difficult-to-guess passwords. If you don’t opt for
passphrases, you should alternatively recommend that users rely on the first
letters of each word from a memorable phrase, mixing in numbers and special
characters. When training users in selecting good passwords, I like to use an
example from the theme song from the television show Gilligan’s Island: “Just
sit right back, and you’ll hear a tale, a tale of a fateful trip.” A password
derived from this phrase would be Jsrb,Ayhat,atoaft. As you might recall,
there were seven stars in the TV program, so, we can add that information to
the password, coming up with Jsrb,Ayhat,atoaft7*, which would be reason-
ably difficult to guess, as it contains alphabetic and numeric characters, mixed

skoudis.book Page 403 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

404

cases, and special characters. Using the same technique, your users should be
able to create their own memorable passwords. Of course, if you use this
example from Gilligan’s Island in your own awareness initiatives, make sure to
warn your users not to set their password to the example Jsrb,Ayhat,atoaft7*,
because if you don’t warn them, a large number of them will just use the pass-
word from your example!

Password Filtering Software

To help make sure users do not select weak passwords, you can use password fil-
tering tools that prevent them from setting their passwords to easily guessed val-
ues. When a user establishes a new account or changes his or her password on a
system, these filtering programs check the password to make sure that it meets
your organization’s password policy (i.e., the password is sufficiently complex
and is not just a variation of the user name or a dictionary word). With this kind
of tool, users are far less able to create passwords that are too easily guessed.
However, by being creative enough, some users will be able to come up with
something that gets through the password filter yet is still easily crackable. How-
ever, the vast majority of your user population will have strong passwords, signif-
icantly improving the security of your organization.

For filtering software to be effective, it must be installed on all servers where
users establish passwords, including UNIX servers, Windows Domain Controllers,
and other systems. Many modern variants of UNIX include password-filtering
software. For those that do not, you can use a variety of third-party tools to
add this capability, including a pluggable authentication module (PAM) tool
written by Solar Designer, the author of John the Ripper. This module is
available for Linux, Solaris, and FreeBSD systems for free at www.openwall.com/
passwdqc.

For Windows environments, you can select from numerous password filtering
tools as well, including the following:

• Password Guardian, a commercial tool available for sale at www.georgiasoft-
works.com

• Strongpass, a free tool available at http://ntsecurity.nu/toolbox

skoudis.book Page 404 Wednesday, November 30, 2005 10:04 PM

PASSWORD ATTACKS

405

Where Possible, Use Authentication Tools Other Than Passwords

Of course, one of the main reasons we have this password-cracking problem in
the first place is our excessive use of traditional reusable passwords. If you get rid
of access through passwords, you deal a significant blow to attackers trying to
utilize password-cracking programs. For particularly sensitive systems or
authentication across untrusted networks, you should avoid using traditional
password authentication. Instead, consider one-time password tokens or smart
cards for access. Or, utilize biometric authentication to augment passwords, such
as handprint, fingerprint, or retina scanners.

Conduct Your Own Regular Password-Cracking Tests

To make sure your users are selecting difficult-to-guess passwords and to find
weak passwords before an attacker does, you should conduct your own periodic
password-cracking assessments. Using a high-quality password-cracking tool,
like Cain or John the Ripper, check for crackable passwords every month or every
quarter. As always, avoid using programs from untrusted sources.

Before conducting this type of assessment, make sure you have explicit permis-
sion from management. Otherwise, you could damage your career path by crack-
ing the password of some very cranky employees, possibly in senior management
positions. When weak passwords are discovered, make sure you have clearly
defined, management-approved procedures in place for interacting with users
whose passwords can be easily guessed. Don’t e-mail or call them on the phone
to tell such users to change their passwords, because you’d then make them more
subject to social engineering attacks. Instead, configure their accounts to require
a password change the next time they log in.

Protect Your Encrypted or Hashed Password Files

A final very important technique for defending against password-cracking tools is
to protect your encrypted or hashed passwords. If the attackers cannot steal your
password file or SAM database, they will not be able to crack your passwords en
masse. You must carefully protect all system backups that include password files (or
any other sensitive data, for that matter). Such backups must be stored in locked
facilities and possibly encrypted. Similarly, lock up any system recovery floppy
disks in a safe location.

skoudis.book Page 405 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

406

On all of your UNIX systems that support it, make sure that you activate
password shadowing, which stores the password representations in the
/etc/shadow file, readable only by root. On Windows machines, if you do not have
to support backward compatibility for Windows for Workgroups or Windows
95 or 98 clients, disable the incredibly weak LM authentication. In an environ-
ment that includes only Windows NT and later machines, you can get rid of
the weak LM representations by defining the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Con-
trol\Lsa\NoLMHash on all systems. This registry key tells the system not to
store the LM representation when each user next changes his or her password.
Thus, with this key defined, your LM hashes will gradually disappear as each user’s
password expires over the next 90, 60, or 30 days. Furthermore, the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\LMCom-
patibilityLevel can be set to a value of three on Windows NT and later clients
to force them to send the more difficult-to-crack NTLMv2 representations
across the network. This same registry key can be set on servers to a value of
five to force them to accept only NTLMv2 authentication, again breaking
backward compatibility with Windows for Workgroups, Windows 95, and
Windows 98, but significantly improving your security.

Finally, whenever you make a backup using the Ntbackup.exe program, remem-
ber to delete or alter the permissions on the copy of the SAM database stored in
the %systemroot%\repair\sam._ file. Using these techniques, you can significantly
lower the chances of an attacker grabbing your password hashes.

WEB APPLICATION ATTACKS

Now that we understand how the frequently exploited buffer overflow and
password-cracking attacks operate, let’s turn our attention to a class of attacks
that is rapidly growing in prominence: World Wide Web application exploits.
More and more organizations are placing applications on the Internet for all
kinds of services, including electronic commerce, trading, information retrieval,
voting, government services, and so on. New applications are being built with
native Web support, and legacy applications are being upgraded with fancy new
Web front ends. As we “webify” our world, the Web has proven to be a particu-
larly fruitful area for attackers to exploit.

skoudis.book Page 406 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

407

In my investigations of a large number of Web sites, I have frequently encoun-
tered Web applications that are subject to account harvesting, undermining ses-
sion tracking mechanisms, and SQL injection. The concepts behind these
vulnerabilities are not inherently Web-specific, as these same problems have
plagued all kinds of applications for decades. However, because Web applications
seem particularly prone to these types of errors, it is important to understand
these attacks and defend against them.

All of the Web attack techniques described in this section can be conducted even
if the Web server uses the SSL protocol. So often, I hear someone say, “Sure, our
Web application is secure … we use SSL!” SSL can indeed help by strongly
authenticating the Web server to the browser and preventing an attacker from
intercepting traffic, when it is used properly. In other words, SSL supports
authentication, and protects data in transit. You should definitely employ SSL to
protect your Web application. However, SSL doesn’t do the whole job of protect-
ing a Web application. There are still a large number of attacks that function per-
fectly well over an SSL-encrypted connection. When the data is located in the
browser, SSL doesn’t prevent changes to that data by the person sitting at the
browser. If an attacker is browsing your Web application, he or she might just
change some crucial data in the browser. If your Web application trusts whatever
comes back, the bad guy might be able to undermine your Web application com-
pletely. Remember, the browser is potentially enemy territory, with an attacker
sitting at its controls, so you can’t trust what comes back from it unless you
explicitly validate that data. Let’s look at such attacks in more detail, starting with
account harvesting.

ACCOUNT HARVESTING

Account harvesting is a good example of a technique that has been applied to all
kinds of systems for decades, but now seems to be a particular problem with Web
applications. Using this technique, an attacker can determine legitimate user IDs
and even passwords of a vulnerable application. Account harvesting is really a
simple concept, targeting the authentication process when an application
requests a user ID and password. The technique works against applications that
have a different error message for users who type in an incorrect user ID than for
users who type a correct user ID with an incorrect password.

skoudis.book Page 407 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

408

Consider the error message screens for the application shown in Figure 7.27 and
Figure 7.28. These screens are from a proprietary Web application called Mock
Bank, written by Arion Lawrence, a brilliant colleague of mine. We use Mock
Bank internally to show common real-world problems with Web applications to
our clients, as well as to train new employees in the methods of ethical hacking.
The first screen shows what happens when a user types in a wrong user ID, and
the second shows the output from a correct user ID and an incorrect password.
The actual HTML and appearance of the browser in both pages are identical.
However, look at the location line in the browser of each figure a bit more closely.
Notice that when the user ID is incorrect, error number 1 is returned, as in
Figure 7.27. When the user ID is valid and the password is wrong, error number
2 is returned, as in Figure 7.28. This discrepancy is exactly what an attacker looks
for when harvesting accounts.

Figure 7.27 Mock Bank’s error message when a nonvalid (i.e., bad) user ID is entered.

HTML is
identical to the
next figure

But check out
that error
number

Bad User ID, with Bad Password

skoudis.book Page 408 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

409

Based on this difference in error messages in the URL, an attacker can write a
custom script to interact with the Web application, conducting a dictionary or
brute-force attack guessing all possible user IDs, and using an obviously false
password (such as zzzzz). The script will try each possible user ID. If an error
message is returned indicating that the user ID is valid, the attacker’s script writes
the user ID to a file. Otherwise, the next guess is tested. This is pure user ID
guessing through scripting, adding a bit of intelligence to discriminate between
invalid and valid user IDs. In this way, an attacker can harvest a large number of
valid user IDs from the target application. In this Mock Bank example, the
parameter called error is the differentiating point between the two conditions. Of
course, any element of the returned Web page, including the HTML itself, com-
ments in the HTML, hidden form elements, cookies, or anything else, could be

Figure 7.28 Mock Bank’s error message when a valid (i.e., good) user ID is entered with a bad password. Note the change in
the URL error number parameter.

HTML is
identical to the
previous figure

But check out
this error
number. An
attacker can use
this to differentiate
good user IDs
from bad ones

Good User ID, with Bad Password

skoudis.book Page 409 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

410

the differentiator between the bad user ID and good user ID conditions. The
attacker will choose a suitable differentiating point to include in the logic check
of the login attack script.

After running a script to harvest good user IDs, the attacker can try to harvest
passwords. If the target application doesn’t lock out user accounts due to a given
number of invalid password attempts, the attacker can write another script or use
the Brutus or Hydra tools we discussed earlier in this chapter to try password
guessing across the network. The attacker takes the user IDs previously harvested
and tries guessing all passwords for that account using login scripting. If the tar-
get application does lock out accounts, the attacker can easily conduct a DoS
attack using the harvested user ID information.

ACCOUNT HARVESTING DEFENSES

For all of your Web applications (or any other application, for that matter), you
must make sure that you use a consistent error message when a user types in an
incorrect user ID or password. Rather than telling the user, “Your user ID was
incorrect,” or “Your password was incorrect,” your application should contain a
single error message for improper authentication information. You could display
a message saying, “Your user ID or password was incorrect. Please enter them
again, or call the help desk.” Note that all accompanying information sent back to
the browser must be completely consistent for the two scenarios, including the
raw HTML, URL displayed in the browser, cookies, and any hidden form ele-
ments. Even a single space or period that is different between the two authentica-
tion error conditions could tip off an attacker’s script.

UNDERMINING WEB APPLICATION SESSION TRACKING
AND OTHER VARIABLES

Another technique commonly used to attack Web applications deals with under-
mining the mechanisms used by the Web application to track user actions. After
a user authenticates to a Web application (by providing a user ID and password,
or through a client-side certificate on an HTTPS session), most Web applications
generate a session ID to track the user’s actions for the rest of the browsing ses-
sion of that site. The Web application generates a session ID and passes it to the

skoudis.book Page 410 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

411

client’s browser, essentially saying, “Here, hold this now and give it back to me
every time you send another request for the rest of this session.” This session ID
is passed back and forth across the HTTP or HTTPS connection for all subse-
quent interactions that are part of the session, such as browsing Web pages,
entering data into forms, or conducting transactions. The application uses this
information to track who is submitting the request. In essence, the session ID
allows the Web application to maintain the state of a session with a user.

Note that a session ID can have any name the application developer or the devel-
opment environment used to create the Web application assigned to it. It does not
have to be called sessionID, sid, or anything else in particular. A Web application
developer could call the variable Joe, but it would still be used to track the user
through a series of interactions.

Furthermore, a session ID is completely independent of the SSL connection in
the vast majority of applications. The session ID is application-level data, gener-
ated by the application and exchanged by the Web browser and Web server.
Although it is encrypted by SSL as it moves across the network, the session ID
can be altered at the browser by the browser user without impacting the underly-
ing SSL connection.

Implementing Session IDs in Web Applications

So how do Web applications implement session IDs? Three of the most popular
techniques for transmitting session IDs are URL session tracking, hidden form
elements, and cookies. For URL session tracking, the session ID is written right
on the browser’s location line, as shown in Figure 7.29, and passed as a parameter
in an HTTP GET request. For all subsequent Web requests, the URL is passed

Figure 7.29 Session tracking using the URL.

This Session ID
is included in the URL

skoudis.book Page 411 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

412

back to the server, which can read the session ID from this HTTP field and deter-
mine who submitted the request.

A second technique for tracking session IDs involves putting the session ID
information into the HTML itself, using hidden form elements. With this tech-
nique, the Web application sends the browser an HTML form with elements that
are labeled as hidden. One of these form elements includes the session ID. When
it displays the Web page, the browser does not show the user these hidden ele-
ments, but the user can readily see them simply by invoking the browser’s view
source function for the page. In the raw HTML, a hidden form element will have
the following appearance:

<INPUT TYPE="HIDDEN" NAME="Session" VALUE="34112323">

Cookies are the most widely used session tracking mechanisms. A cookie is sim-
ply an HTTP field that the browser stores on behalf of a Web server. A cookie
contains whatever data the server wants to put into it, which could include user
preferences, reference data, or a session ID. There are two types of cookies: per-
sistent cookies and nonpersistent cookies. A persistent cookie is written to the
local file system when the browser is closed, and will be read the next time the
browser is executed. Persistent cookies, therefore, are most often used to store
long-term user preferences. A nonpersistent cookie, on the other hand, is stored
in the browser’s memory and is deleted when the browser is closed. This type of
cookie has a short but useful life, and is often used to implement session IDs.

ATTACKING SESSION TRACKING MECHANISMS

Many Web-based applications have vulnerabilities in properly allocating and
controlling these session IDs. An attacker might be able to establish a session, get
assigned a session ID, and alter the session ID in real time. For applications that
don’t handle session tracking properly, if the attacker changes the session ID to a
value currently assigned to another user, the application will think the attacker’s
session belongs to that other user! In this way, the attacker usurps the legitimate
user’s session ID, a process sometimes referred to as session cloning. As far as the
application is concerned, the attacker becomes the other user. Of course, both
the legitimate user and the attacker are using the same session ID at the same

skoudis.book Page 412 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

413

time. Still, many Web-based applications won’t even notice this problem, accept-
ing and processing transactions from both the attacker and the legitimate user.

In fact, it’s pretty hard for an application to even figure out that this has hap-
pened. Suppose the application associates a session ID number with the IP
address of the user. Well, there’s a problem in that many users might be surfing
from behind a single proxy or a many-to-one dynamic NAT device, so all such
users will have the same apparent IP address. One user on the other side of the
proxy could still clone the session of another user of the proxy. Furthermore, try-
ing to nail the session ID to the IP address is bad because sometimes a user who
surfs through a large ISP will have a changed apparent source IP address, right in
the middle of a surfing session! Because of some complex routing and proxying
that some ISPs perform, a completely legitimate user might get a different IP
address in real time. Web applications that check session credentials against the
IP addresses would think that such users are really being attacked, when they
aren’t. They were just given a different IP address.

An application with predictable session credentials allows an attacker to do any-
thing a legitimate user can do. In an online banking application, the attacker
could transfer funds or possibly write online checks. For online stock trading, the
attacker could make trades on behalf of the user. For an online health care appli-
cation … well, you get the idea.

To perform this kind of attack, the bad guy first needs to determine another
user’s session ID. To accomplish this, the attacker logs in to the application using
a legitimate account assigned to the attacker, and observes the session ID
assigned to that session. The attacker looks at how long the session ID is and the
types of characters (numeric, alphabetic, or others) that make it up. The attacker
then writes a script to log in again and again, gathering hundreds of session IDs
to determine how they change over time or to see if they are related in any way to
the user ID. Then, applying some statistical analysis to the sampled session IDs,
the attacker attempts to predict session IDs that belong to other users.

So how does an attacker actually manipulate the session ID? First, the attacker
logs in to the application using his or her own account to be assigned a session
ID. Then, the attacker attempts to modify this session ID to clone the session of

skoudis.book Page 413 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

414

another user. For many session tracking mechanisms, such modifications are
trivial. With URL session tracking, the attacker simply types over the session ID
in the URL line of the browser. If hidden form elements are used to track ses-
sions, the attacker can save the Web page sent by the server to the local file sys-
tem. The attacker then edits the session ID in the hidden form elements of the
local copy of the Web page, and reloads the local page into the browser. By simply
submitting the form back to the server, the attacker can send the new session ID
and could clone another user’s session.

If sessions are tracked using persistent cookies, the attacker can simply edit the
local cookie file. In Mozilla Firefox and Netscape browsers, all persistent cookies
are stored in a single file called cookies.txt. For Internet Explorer, cookies from
different servers are stored in their own individual files in the Temporary Inter-
net Files directory for each user. An attacker can edit these persistent cookies
using any text editor, as shown in Figure 7.30. To exploit a session ID based on a
persistent cookie, the attacker can log in to the application to get a session ID,
close the browser to write the cookie file, edit the cookies using his or her favorite

Figure 7.30 Editing nonpersistent cookies using Notepad.

skoudis.book Page 414 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

415

text editor, and relaunch the browser, now using the new session ID. The browser
must be closed and relaunched during this process because persistent cookies are
only written and read when the browser is closed and launched.

Editing persistent cookies is trivial. But how can an attacker edit nonpersis-
tent cookies, which are stored in the browser’s memory and are not written to
the local file system? Many Web application developers just assume that a user
cannot view or alter nonpersistent cookies, especially those passed via SSL, so
they don’t bother worrying about protecting the information stored in such
cookies. Unfortunately, bad guys use very powerful techniques for altering
nonpersistent cookies.

To accomplish this feat, Web application attackers most often rely on a special-
ized Web proxy tool designed to manipulate Web applications. A Web applica-
tion manipulation proxy sits between the browser and the server, as shown in
Figure 7.31. All HTTP and HTTPS gets channeled through the proxy, which
gives the attacker a window to view and alter all of the information passed in the
browsing session, including nonpersistent cookies. Thus, the bad guy has a very
fine-grained level at which to modify any cookies that are passing by. What’s
more, these specialized proxies let the attacker edit any raw HTTP/HTTPS fields
and HTML information including cookies, hidden form elements, URLs, frame
definitions, and so on.

Figure 7.31 A Web application manipulation proxy lets the attacker alter the HTTP and HTTPS elements
passing through it, including nonpersistent cookies.

WEB
BROWSER

Web Application
Manipulation Proxy

INTERNET

VICTIM
WEB SERVER

Belong to attacker

HTTP/HTTPS HTTP/HTTPS

Edit session here.

skoudis.book Page 415 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

416

It is crucial to note that these Web application manipulation attacks are not
person-in-the-middle attacks where a bad guy changes another user’s data going
to the application. In these Web application manipulation attacks, the bad guy
controls both the browser and the proxy. Attackers use the proxy to alter their
own data going to and from the Web application, including session ID numbers
and other variables. That way, any victim Web server that trusts the information
that comes from the browser will be tricked. The attacker applies the browser and
Web application manipulation proxy in tandem: The browser browses, while the
proxy lets the attacker change the elements inside the HTTP and HTML itself.

Because this proxy concept is so powerful in attacking Web applications, various
security developers have released a large number of these Web application
manipulation proxies, both on a free and a commercial basis. Table 7.2 shows
some of the most useful Web application manipulation proxies, as well as their
claims to fame.

Table 7.2 Web Application Manipulation Proxies

Tool Name
Licensing
Terms Platform Claim to Fame Location

Achilles Free Windows First to be released and easiest
to use

www.mavensecurity.com/
achilles

Paros Proxy Free Java Incredibly feature rich; my
favorite among the free tools

www.parosproxy.org

Interactive TCP
Relay

Free Windows Supports HTTP/HTTPS and
any other TCP protocol

www.imperva.com/
application_defense_center/
tools.asp

WebScarab Free Java Free, open source, and actively
updated, with a modular inter-
face for adding new tools and
features

www.owasp.org

SPI Dynamics
SPIProxy/
WebInspect

Commercial Windows Records browsing and then
automates attacks, integrates
with other SPI Dynamics tools

www.spidynamics.com

Web Sleuth Commercial Windows Excellent filtering capabilities www.sandsprite.com/Sleuth/

skoudis.book Page 416 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

417

To launch this kind of attack, the bad guy runs the browser and the Web applica-
tion manipulation proxy, either on separate systems or on a single machine. To
get a feel for how these tools work, let’s look at the one with the simplest user
interface, Achilles, which is shown in Figure 7.32. In the main Achilles window,
all information from the HTTP or HTTPS session is displayed for the attacker to
view. When the browser or server sends data, Achilles intercepts it, allowing it to
be edited before passing it on. In this way, Achilles pauses the browsing session,
giving the attacker a chance to alter it. The attacker can simply point to and click
any information in this session in the main window and type right over it. The
attacker then clicks the Send button, which transfers the data from Achilles to the
server or browser.

Most Web application manipulation proxies support HTTPS connections, which
are really just HTTP connections protected using SSL. To accomplish this, as dis-
played in Figure 7.33, the proxy sets up two SSL connections: one session
between the browser and the proxy, and the other between the proxy and the
Web server. All data is encrypted at the browser and sent to the proxy. At the

Figure 7.32 The Achilles screen, one of the easiest to use Web application manipulation proxies.

Allows editing
of any cookies,

persistent or
per-session

Intercepts either
direction—

browser to server
or server to browser

Includes a built-in certificate
for server-side SSL—Nice touch!

Editing of any HTTP or
HTML field

skoudis.book Page 417 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

418

proxy, the data is decrypted and displayed to the attacker, letting the bad guy alter
it. Then, the data is encrypted across another, separate SSL session and sent to
the victim Web server. When a response is served up by the server, the same pro-
cess is applied in the opposite direction. Most of the proxies even come with a
built-in digital certificate for server-side SSL to establish the connection with the
Web browser. The Web server never knows that there is a proxy in the connec-
tion. The attacker’s browser might display a warning message saying that the cer-
tificate from the server isn’t signed by a trusted certificate authority, because the
proxy inserts its own certificate in place of the Web server’s certificate. However,
the attacker is running both the browser and the proxy, so the warning message
can be ignored by the attacker.

Although Achilles is the easiest to use of the Web application manipulation prox-
ies, it isn’t the most powerful. My current favorite Web application manipulation
proxy is Paros Proxy, shown in Figure 7.34. Originally developed by the fine folks
at ProofSecure, the Paros proxy maintains an excellent history of all HTTP
requests and responses as the attacker surfs a given site through the proxy. Later,
the attacker can review all of the action, with every page, variable, and other ele-
ment recorded. Further, in addition to supporting server-side SSL, like most of
the Web application manipulation proxies already do, Paros also allows its user to
import a client-side SSL certificate that can be used to authenticate to a Web site
that requires a client certificate. This client-side support is a strong differentiator
among the free tools. Paros also features a built-in automated Paroweb spider

Figure 7.33 Handling HTTPS (that is, HTTP over SSL) with a Web application manipulation proxy.

INTERNET

One
SSL session

Another, separate
SSL session

WEB
BROWSER

Web Application
Manipulation Proxy

VICTIM
WEB SERVER

HTTPS HTTPS
Edit session here.

skoudis.book Page 418 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

419

that can surf to every linked page on a target Web site, storing its HTML locally
for later inspection, all the while harvesting URLs, cookies, and hidden form
elements for later attack.

Another nice touch in Paros is a built-in point-and-click tool for calculating the
SHA1, MD5, and Base64 value of any arbitrary text typed in by its user or pasted in
from the application. When attacking Web applications, the attacker sometimes
has a hunch about the encoding or hashing of a specific data element that is
returned. Using this calculator, the attacker can quickly and easily test such
hunches. The tool also includes automated vulnerability scanning and detection
capabilities for some of the most common Web application attacks, including SQL
injection, an issue we discuss later in this chapter. Finally, the Paros find and filter
features let an attacker focus on specific aspects of the target Web application, such
as certain cookie names, HTTP request types, or other features. What a great tool!

Figure 7.34 The Paros Proxy is one of the best freely available Web application manipulation proxies.

The built-in spider
retrieved all of these
pages automatically.

Here is the HTTP request,
which can be edited as
required.

This handy
tool calculates
various hashes
and encoding
values, a
useful item to
test hunches.

skoudis.book Page 419 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

420

As we’ve seen, an attacker can modify session credentials using these Web appli-
cation manipulation proxies, but session credentials only scratch the surface.
Many Web applications send a great deal of additional variables to the browser for
temporary or permanent storage in cookies or hidden form elements. Using a Web
application manipulation proxy, the attacker can also view or edit any of these very
enticing items passed to the browser. Some applications pass back account num-
bers, balances, or other critical information in cookies, expecting that they will
remain unchanged and trusting them when they return from the browser.

Of particular interest are Web applications that pass back a price to the browser,
such as an e-commerce shopping cart. Of course, an e-commerce application has
to pass back a price so that customers can see on the screen how much they are
spending, but that price should only be displayed on the screen. In addition to
displaying the price on the screen, some applications use a cookie or a hidden
form element to pass a price back to the browser for a shopping cart.

In such applications, the server sends the price to the browser in the form of a
cookie or hidden form element, and the browser sends the price back to the
server for each subsequent interaction to maintain the shopping cart or add to it.
There is nothing to say that the user can’t edit the price in the cookie or hidden
form element while it’s at the browser or in a Web application manipulation
proxy. An attacker can watch the price go through a Web application manipula-
tion proxy, edit it at the proxy, and pass it back to the server. The question here is
this: Does the server trust that modified price? I’ve seen several e-commerce
applications that trust the price that comes back from the user in the cookie or
hidden form element.

For example, consider a Web application that sells shirts on the Internet. Suppose
for this company, shirts should be priced at $50.00. This price is displayed on the
screen in HTML, but is also passed in a cookie in a shopping cart. The attacker
can use a Web application manipulation proxy to edit that cookie to say, “The
$50.00 shirt is now changed to ten cents,” or even zero. The price will be sent to
the Web application, and if the Web application is vulnerable, the attacker will
get a shirt for ten cents, or even for free. The attacker might even lower the price
to a negative number, and perhaps the shirt will arrive in the mail with a check
for the attacker’s troubles! Quite frankly, the Web application doesn’t need to

skoudis.book Page 420 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

421

send the price in the cookie. It should only send a product stock-keeping unit
(SKU) number or some other reference to the product, but not its price. Further-
more, it shouldn’t trust the integrity of data received from the browser, as an
attacker can alter any data using a Web application manipulation proxy.

DEFENDING AGAINST WEB APPLICATION SESSION TRACKING AND
VARIABLE ALTERATION ATTACKS

To defend your Web applications from this type of attack, you must ensure the
integrity of all session tracking elements and other sensitive variables stored at
the browser, whether they are implemented using URLs, hidden form elements,
or cookies. To accomplish this, use the following techniques for protecting vari-
ables sent to the browser:

• Digitally sign or hash the variables using a cryptographic algorithm, such as a
Hash-Based Message Authentication Code (HMAC), as shown in Figure 7.35.
When the application needs to pass a variable back to the browser, it creates a
hash of the variable using a secure hash algorithm with a secret key known only
to the Web application on the Web server. The variable and this hash are sent to
the user. Evil users who try to change the data (and even the hash itself) will not
be able to create a matching hash of their changed data, because they don’t know
the secret key. Thus, the application can perform an integrity check of all
returned values to make sure their data and hashes match, using that secret key.

Figure 7.35 Applying an integrity check to a variable passed to a browser using the HMAC algorithm.

variable,hash

altered_variable,hash

does hash == HMAC(altered_variable,key)?
if not, attacker has changed it!

print error;
drop session;

hash = HMAC(variable,key);
send variable,hash;

What’s
this?

WEB SERVERChange
It!

skoudis.book Page 421 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

422

• If you are passing multiple variables in a single cookie, be careful when con-
catenating all of them together and loading them into a single cookie. Suppose
you want to pass one variable that has a value of dogfood and another variable
that has the value court. If you just concatenate these before hashing, the value
dogfood and court will have the same hash as dog and foodcourt (as well as dogfoo
and dcourt, I suppose). That gives the attacker a slightly better chance at figuring
out what you are mixing together in your hashing algorithm. To minimize this
chance, you should separate the values in the cookie with a delimiter character
that won’t be included in the variable values themselves. For example, include a
separation character when concatenating, such as “&”, as in dogfood&court.

• Encrypt the information in the URL, hidden form element, or cookie. Don’t
just rely on SSL, which protects data in transit. In addition to SSL, use some
form of encryption of sensitive variables.

• Make sure your session IDs are long enough to prevent accidental collision. I
recommend that session credentials be at least 20 characters (that’s 160 bits)
or longer.

• Consider making your session IDs dynamic, changing from page to page
throughout your Web application. That way, an attacker will have a harder
time crafting specific session ID numbers for specific users.

When applying these mechanisms to secure the variables passed to the browser,
you have to make sure that you cover the entire application. Sometimes, 99.9
percent of all session tracking information in an application is securely handled,
but on one screen, a single variable is passed in the clear without being encrypted
or hashed. Perhaps the Web developer got lazy on one page, or had a raucous
night before writing that particular code. Alternatively, maybe the page was
deemed unimportant, so an inexperienced summer intern wrote the code.
Regardless, if a session ID is improperly protected on a single page, an attacker
could find this weakness, clone another user’s session on that page, and move on
to the rest of the application as that other user. With just one piece of unpro-
tected session tracking information, the application is very vulnerable, so you
have to make sure you are protected throughout the application.

Additionally, you need to give your users the ability to terminate their sessions by
providing a logout feature in your Web application. When a user clicks the

skoudis.book Page 422 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

423

Logout button, his or her session should be terminated and the application
should invalidate the session ID. Therefore, an attacker will not be able to steal
the session ID, because it’s no longer valid. Also, if a user’s session is inactive for a
certain length of time (e.g., for 15 minutes), your application should automati-
cally time out the connection and terminate the session ID. That way, when users
close their browsers without gracefully logging out of the session, an attacker will
still not be able to usurp a live session after the time-out period expires.

Additionally, defenders can use specialized Web proxy tools to help defend
against these attacks. The commercial products AppShield from Watchfire and
InterDo by Kavado sit in front of a Web application and look for incoming
requests in which an attacker manipulated a cookie or other state element that is
supposed to remain static for a given browsing session. They also look for other
suspicious behavior.

SQL INJECTION

Another weakness of many Web applications involves problems with accepting
user input and interacting with back-end databases. Most Web applications are
implemented with a back-end database that uses Structured Query Language
(SQL). Based on interactions with a user, the Web application accesses the back-
end database to search for information or update fields. For most user actions, the
application sends one or more SQL statements to the database that include search
criteria based on information entered by the user. By carefully crafting a statement
in a user input field of a vulnerable Web application, an attacker could extend an
application’s SQL statement to extract or update information that the attacker is
not authorized to access. Essentially, the attacker wants to piggyback extra infor-
mation onto the end of a normal SQL statement to gain unauthorized access.

To accomplish these so-called SQL injection attacks, the bad guys first explore how
the Web application interacts with the back-end database by finding a user-supplied
input string that they suspect will be part of a database query (e.g., user name,
account number, product SKU, etc.). The attacker then experiments by adding quo-
tation characters (i.e., ‘, “, and `) and command delimiters (i.e., ;) to the user data to
see how the system reacts to the submitted information. In many databases, quota-
tion characters are used to terminate string values entered into SQL statements.

skoudis.book Page 423 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

424

Additionally, semicolons often act as separating points between multiple SQL state-
ments. Using a considerable amount of trial and error, the attacker attempts to
determine how the application is interacting with the SQL database. A trial-and-
error process is involved because each Web application formulates queries for a
back-end database in a unique fashion. Interestingly, the Paros Web application
manipulation proxy tool we discussed in the previous section has an automated
SQL injection flaw detection capability, based on fuzzing user input. In the section
on buffer overflows at the beginning of this chapter, we discussed fuzzing input for
size by continually varying the amount of data sent until the application behaves in
a strange fashion. Paros fuzzes user input not based on size, but instead focuses on
altering all variables passed to a Web application, including information sent in the
URL, elements of forms (both displayed and hidden form elements), and cookies.
Paros looks for SQL injection flaws by sending quotes, semicolons, and other mean-
ingful elements of SQL to the target application to make it generate a strange error
message that could be a sign of an SQL injection flaw.

To get a feel for how SQL injection works, let’s look at a specific example from a
tool called WebGoat, a free Web application available for download from
www.owasp.org. WebGoat implements a simulated e-commerce application,
where users can pretend to buy HDTV equipment and other items. However, like
the Mock Bank application we looked at earlier in this chapter, WebGoat is full of
various Web vulnerabilities. By downloading WebGoat and experimenting with
it in your lab on a Windows or Linux machine, you can improve your Web appli-
cation assessment skills in a mock environment. If you can learn to find the flaws
of WebGoat, you can apply the same skills in other applications and help make
the world a more secure place.

WebGoat is an ideal tool for learning, as shown in Figure 7.36. It includes complete
lesson plans, a report card on the users’ progress so far, and almost two dozen dif-
ferent common Web application flaws (including SQL injection issues, as well as
authentication and session tracking flaws similar to those we discussed earlier).
Along the way, the tool offers hints for conquering each individual vulnerability,
ranging from very ambiguous guidance to explicit directions for attacking a spe-
cific flaw. The Web-based user interface can be tweaked to make the Web applica-
tion display all HTTP parameters, HTML, cookies, and even Javascript in-line for
convenient analysis by the would-be attacker. Finally, to help apprentices make sure

skoudis.book Page 424 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

425

that they are absorbing the material, there’s even a final challenge, a hintless com-
ponent of the application the users must master on their own.

One of the flaws designed into WebGoat involves SQL injection. The application
lets users review their credit card numbers stored in the application, based on
their account numbers. As illustrated in Figure 7.37, the user Joe Snow has two
credit card numbers entered into the application.

Figure 7.36 WebGoat is a great environment for learning Web application security assessment techniques.

A lesson plan for going through all
vulnerabilities and attack methods.

Hints for exploiting
each type of flaw.

A report card showing
progress so far.

In-line display of various
aspects of the Web site.

skoudis.book Page 425 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

426

Now, suppose this Joe Snow user is evil. For SQL injection attacks, this bad guy
might start out by entering quotation characters into the application as part of
an account number. Remember, many SQL environments treat quotation char-
acters as important terminators of strings. By sending an additional quotation
character, the attacker might be able to generate an error message from the back-
end database.

In Figure 7.38, the evil Joe Snow has submitted an account number of 101”.
Those closed quotes at the end are going to cause problems in the application. As
a helpful hint about what’s going on, WebGoat displays the SQL statement that
will be used to query the back-end WebGoat database:

SELECT * FROM user_data WHERE userid = 101

Figure 7.37 In WebGoat, user Joe Snow reviews his credit card numbers via his account number.

skoudis.book Page 426 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

427

Of course, real-world applications wouldn’t display the SQL itself, but WebGoat
does for training purposes. Unfortunately, the application blindly takes anything
entered by the attacker in the HTML form and puts it after the userid = portion
of the SQL statement. If Joe Snow just enters a number, the application performs
as expected, looking up the account information for that account number. How-
ever, if the attacker enters quotation marks, the resulting SQL becomes:

SELECT * FROM user_data WHERE userid = 101"

Those quotation marks at the end are the problem. Databases don’t like to see
such things, because they are syntax errors in SQL. Thus, the application indi-
cates this error to Joe Snow by printing out that ugly ODBC Microsoft Access
Driver message. Although that error might be ugly to most users, for evil Joe
Snow, it’s like gold. Any time an application responds with a syntax, SQL, SQL

Figure 7.38 The evil user types in an account number of 101” and gets an error message.

Attackers love to see
such error messages!

skoudis.book Page 427 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

428

Syntax, ODBC, or related error message, we’ve got a major sign the application is
vulnerable to SQL injection.

Now, to really attack this application, the bad guy injects a little SQL logic into
the target application. This time, the bad guy types an account number of 101 or
‘TRUE’. The resulting SQL created by the application will be:

SELECT * FROM user_data WHERE userid = 101 or ‘TRUE’

Let’s consider that WHERE clause in the SQL SELECT statement. We’re looking for
data where the userid has the value 101 or ‘TRUE’. Based on the rudimentary log-
ical operator OR, anything OR ‘TRUE’ is true. “The sky is purple” or ‘TRUE’ is a
true statement, based on the nature of OR. So, this WHERE clause is true for every-
thing in the user_data table. Thus, the application looks up all data in that table
and displays it to the attacker. As shown in Figure 7.39, the bad guy now has a list
of credit card numbers for other users, obtained via SQL injection.

Our example from WebGoat showed injection techniques for SQL query statements
(a SELECT command in particular). Injected UPDATE commands can allow an
attacker to modify data in the database. Ultimately, if attackers carefully construct
commands within SQL, they can get raw access to the back-end database.

DEFENSES AGAINST SQL INJECTION

To defend against SQL injection and related attacks through user input, your Web
application must be developed to filter user-supplied data carefully. Remember, the
application should never trust raw user input. It could contain injected commands
and all kinds of general nastiness. Wherever a user enters data into the application,
the application must strongly enforce the content type of data entered. A numerical
user input should really only be an integer; all non-numerical characters must be
filtered. Furthermore, the application must remove unneeded special characters
before further processing of the user input. In particular, the application should
screen out the following list of scary characters:

• Quotes of all kinds (‘, ’, “, ”, and `)—String terminators

• Semicolons (;)—Query terminators

skoudis.book Page 428 Wednesday, November 30, 2005 10:04 PM

WEB APPLICATION ATTACKS

429

• Asterisks (*)—Wildcard selectors

• Percent signs (%)—Matches for substrings

• Underscore (_)—Matches for any character

• Other shell metacharacters (&\|*?~<>^()[]{}$\n\r), which could get passed
through to a command shell, allowing an attacker to execute arbitrary com-
mands on the machine

Figure 7.39 The evil user enters an account number of 101 or ‘TRUE’ to get all account information via
SQL injection.

Attackers
like grabbing
these credit
card numbers
even more!

skoudis.book Page 429 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

430

Your best bet is to define which characters your application requires (usually just
alphanumeric) and filter out the rest of the riff-raff users send you.

For those characters that might be dangerous but really necessary, introduce an
escape sequence or substitute. One popular method of substituting innocuous
replacements involves using an & and two letters to represent an otherwise scary
character. For example, an apostrophe (’) can be changed to &ap, less than (<)
can become <, and so on.

Furthermore, your input filtering code in the Web application can look for and
remove potentially damaging SQL statements, including such SQL-relevant
words as SELECT, INNER, JOIN, UNION, UPDATE, and TRUE.

These potentially damaging characters and statements should be filtered out or
substituted on the server side of the Web application. Many Web application
developers filter input on the client side, using Javascript or other techniques,
mistakenly thinking that will stop SQL injection and related attacks. Yet, an
attacker can bypass any client-side filtering using a Web application manipula-
tion proxy like Achilles or Paros to inject arbitrary data into the HTTP or HTTPS
connection. Remember, the browser is potentially enemy territory, so any filter-
ing that occurs there can be subverted by the attacker. Even pull-down menus
can be subverted using a proxy, as an attacker adds further options to the menu
via a proxy that can include SQL injection and related attacks.

Another level of defense against SQL injection involves limiting the permissions
of the Web application when accessing the database. Don’t let your Web applica-
tion have database administrator capabilities on your database! That’s incredibly
dangerous. Build the Web application and configure the database so that the Web
application logs in with a very limited permission account, with the ability to
view and update only those fields of those tables that are absolutely required.
Clamping down on these permissions won’t eliminate SQL injection attacks, but
it can really limit the attacker’s ability to explore the database fully.

Finally, Web application developers should consider the use of parameterized stored
procedures in their applications. In the examples we’ve discussed here, the Web
application gathers user input and uses it to compose database query strings, which

skoudis.book Page 430 Wednesday, November 30, 2005 10:04 PM

EXPLOITING BROWSER FLAWS

431

it then forwards to the database for execution. Composing these queries on the fly at
the Web application results in SQL injection when attackers provide SQL-relevant
commands or operators in user input. A Web architecture that uses parameterized
stored procedures, on the other hand, doesn’t feed raw SQL statements generated by
the Web application into the database. Instead, this architecture relies on stored pro-
cedures, code that runs on the database server itself, to interact with the database. By
moving the logic for interacting with the database to the database server, the Web
application can provide the stored procedure a set of discrete parameters drawn
from user input that are used in queries defined within the stored procedure itself.
The stored procedure breaks down the user input into the individual parameters that
need to be fed into the database search. Because the query logic isn’t created on the
fly, but is instead coded into the stored procedure relying on user input merely as a
set of parameters, stored procedures help minimize the chance of SQL injection.

In this section, we’ve looked at three of the most common attacks against Web
applications, namely account harvesting, state manipulation, and SQL injection.
These are three of the biggest Web application attacks, but there are many other
vulnerabilities that Web applications could face, including cross-site scripting
(which involves bouncing a malicious browser script off of a Web site) and com-
mand injection (which lets an attacker inject operating system commands in user
input), among many others. To learn more about such flaws, the single best
source freely available on the Internet is the Open Web Application Security
Project (OWASP) at www.owasp.org. Everything created by the team at OWASP is
free and open source. They are the people behind WebGoat, as well as numerous
other tools for testing and securing Web applications.

Their Guide to Building Secure Web Applications and Web Services is quite compre-
hensive, including details associated with design, architecture, implementation,
event logging, and more! It really is a must-read for any Web developer today.

EXPLOITING BROWSER FLAWS

Thus far, we’ve focused on attacking Web applications involving bad guys under-
mining the logic that lives on Web servers for nefarious purposes. However, a signif-
icant and scary trend involves attackers coopting e-commerce sites and using them
as a delivery mechanism for malicious code to vulnerable Web browsers.

skoudis.book Page 431 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

432

Numerous browser vulnerabilities are discovered on a regular basis, especially
(but not exclusively) in Internet Explorer. There are several types of browser
holes, including buffer overflows, flaws that let an attacker escape the security
restrictions on scripts or other active Web content (such as the Java runtime
environment), exploits that let malicious code bypass cryptographic signature
checks, and problems that let malicious code execute in a different security zone
than it should. All of these problems could be triggered if the victim surfs to the
wrong Web site with a vulnerable browser.

Microsoft, as well as other vendors, has historically not rated such browser flaws
as critical, because they say that the victim user must be tricked into surfing to
the attacker’s Web site. If users surf only to trusted sites, they should be unaf-
fected by such problems, or so the thinking goes.

However, this assumption is false, as we saw in several major attacks, with many
more likely in the future. In these attacks, the bad guys first undermined trusted
midsized e-commerce sites. The attackers installed code on these Web sites that
would exploit browser vulnerabilities when an unsuspecting, but trusting, user
surfed to these e-commerce sites. Later, when users surfed to the e-commerce sites,
their browsers were exploited, and malicious code was inserted on their machines.

In June 2004, this attack was pulled off using the Download.Ject flaw in Internet
Explorer that let a Javascript run arbitrary code on a vulnerable browser that surfed
to a site hosting Download.Ject exploitation software. Attackers took over a dozen
e-commerce sites using various buffer overflow attacks, and installed browser-
exploiting code there. When a user surfed to one of the infected Web sites, the
Download.Ject flaw in the user’s browser was triggered, causing the victims to
download a keystroke logger program called berbew from a Russian Web site. This
keystroke logger grabbed financial information from the browser, including
account numbers and passwords for e-commerce sites and banks, as illustrated in
Figure 7.40. Here is the flow of these increasingly common types of attacks:

1. The attacker takes over some e-commerce or other trusted site on the Internet.
The attacker installs code on this site that can exploit browser vulnerabilities.

2. An innocent victim surfs to the infected Web site.

skoudis.book Page 432 Wednesday, November 30, 2005 10:04 PM

EXPLOITING BROWSER FLAWS

433

3. The infected Web site responds with a Web page that exploits the browser.

4. Based on the exploitation of Step 3, the browser connects to the attacker’s
site and grabs some malicious code from it, such as a keystroke logger, a
bot, or a worm.

5. The evil code on the victim’s machine now runs, doing nasty stuff to the user,
such as stealing his or her keystrokes.

In November 2004, we saw a similar attack, this time exploiting an at-that-time-
unpatched buffer overflow in Internet Explorer called the IFRAME flaw. This
time, the attackers took over some advertising sites that posted banner ads on a
variety of other news and e-commerce Web sites. If you viewed any of these ads
at any of these sites with a vulnerable browser, you’d get a worm called Bofra
installed on your machine. Bofra would steal sensitive information and try to
take over other nearby systems.

Figure 7.40 Compromising an e-commerce site and using it to deliver keystroke loggers to victims with
vulnerable browsers.

VICTIM WITH
VULNERABLE

BROWSER

ATTACKER

INNOCENT
E-COMMERCE

SITE

Victim’s keystrokes

Keystroke logger
retrieved

Response with
browser exploit

Victim requests
Web page

Attacker takes over
Web site

ATTACKER’S
WEB SITE

1

2

3

4

5

skoudis.book Page 433 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

434

As users increasingly deploy personal firewalls to block the automated propaga-
tion of malicious code to their machines, such browser-based attacks will likely
grow in prominence. By riding through a user’s normal Web surfing and exploit-
ing browser holes, the attacker’s actions bypass the personal firewall on a
machine. The vast majority of personal firewalls are configured to allow one or
more Web browsers to access the Internet, thus poking a significant hole in the
protection offered by the firewall if the browser itself is vulnerable.

DEFENDING AGAINST BROWSER EXPLOITS

These browser-based exploits are an increasing threat, but how do you defend
against such attacks?

First, keep your browsers patched. If there’s a new hole reported in a browser,
make sure to patch it immediately. Unfortunately, both the June and November
2004 attacks exploited holes for which there was no patch yet released. Still, it’s a
good idea to keep your systems patched.

Next, utilize an up-to-date antivirus tool on all systems, especially those
machines that browse the Internet. Happily, the code used in most of these
attacks so far was detectable with antivirus tools by the time the attack was wide-
spread, which prevented many users from being compromised.

Furthermore, you might want to consider using a browser other than Internet
Explorer. I don’t want to start a product war here. However, Internet Explorer is a
major target for these types of attacks, given its market dominance. Other brows-
ers have holes, too, but they are less likely to be targeted by attackers, simply
because fewer people use them. The attackers are looking for lots of easy prey,
and Internet Explorer users sure are a large population. However, please do not
underestimate the amount of work needed to transition to another browser. For
personal users, learning a new browser might take some time. In enterprise envi-
ronments, a different browser might break some of your critical applications.
Recoding those applications could take significant resources, thus making a tran-
sition to another browser financially impossible.

skoudis.book Page 434 Wednesday, November 30, 2005 10:04 PM

SUMMARY

435

CONCLUSION

Throughout this chapter, we’ve seen powerful techniques an attacker can use to
gain access to a target machine by attacking operating systems and applications.
New vulnerabilities in these areas are being discovered on a daily basis and are
widely shared within the computer underground. Therefore, it is important that
you consider the defenses highlighted in this chapter in your own security pro-
gram to protect your systems and vital information.

Now that we understand the most common operating system and application
attacks, let’s move down the protocol stack to analyze network-based attacks.

SUMMARY

Using information gained from the reconnaissance and scanning phases, attack-
ers attempt to gain access to systems. The techniques employed during Phase 3,
gaining access, depend heavily on the skill level of the attacker. Less experienced
attackers use exploit tools developed by others, available at a variety of Web sites.
More sophisticated attackers write their own customized attack tools and employ
a good deal of pragmatism to gain access. This chapter explores techniques for
gaining access by manipulating applications and operating systems.

Buffer overflows are among the most common and damaging attacks today. They
exploit software that is poorly written, allowing an attacker to enter input into
programs to execute arbitrary commands on a target machine. When a program
does not check the length of input supplied by a user before entering the input
into memory space on the stack or heap, a buffer overflow could result. Without
this proper bounds checking, an attacker can send input that consists of execut-
able code for the target system to run, along with a new return pointer for the
stack. By rewriting the return pointer on the stack, the attacker can make the tar-
get system run the executable code. For heap-based buffer overflows, an attacker
can manipulate other variables in the heap, and possibly execute malicious code.

Exploitation frameworks like Metasploit help automate the production and use
of exploits, such as stack-based and heap-based buffer overflows. These tools

skoudis.book Page 435 Wednesday, November 30, 2005 10:04 PM

CHAPTER 7 PHASE 3: GAINING ACCESS USING APPLICATION AND OS ATTACKS

436

let attackers write modular exploits and payloads, tying the two together in an
easy-to-use interface.

Defenses against buffer overflow attacks include applying security patches in a
timely manner, filtering incoming and outgoing traffic, and configuring systems
so that their stacks cannot be used to store executable code. Software developers
can also help stop buffer overflows by utilizing automated code-checking and
compile-time stack protection tools.

Password attacks are also very common. Attackers often try to guess default pass-
words for systems to gain access, by hand or through using automated scripts.
Password cracking involves taking the encrypted or hashed passwords from a sys-
tem and using an automated tool to determine the original passwords. Password-
cracking tools create password guesses, encrypt or hash the guesses, and compare
the result with the encrypted or hashed password. The password guesses can
come from a dictionary, brute-force routine, or a hybrid technique. Cain is one
of the best tools for cracking passwords on Windows machines. On UNIX sys-
tems (as well as Windows), John the Ripper is excellent.

To defend against password attacks, you must have a strong password policy that
requires users to have nontrivial passwords. You must make users aware of the
policy, employ password filtering software, and periodically crack your own
users’ passwords (with appropriate permission from management) to enforce the
policy. You might also want to consider authentication tools stronger than pass-
words, such as hardware tokens.

Attackers employ a variety of techniques to undermine Web-based applications.
Some of the most popular techniques are account harvesting, undermining Web
application session tracking and variables, and SQL injection. Account harvesting
allows an attacker to determine account numbers based on different error messages
returned by an application. To defend against this technique, you must make sure
your error messages regarding incorrect user IDs and passwords are consistent.

Attackers can undermine Web application session tracking by manipulating URL
parameters, hidden form elements, and cookies to try to clone another user’s ses-
sion. To defend against this technique, make sure your applications use strong

skoudis.book Page 436 Wednesday, November 30, 2005 10:04 PM

SUMMARY

437

session tracking information that cannot easily be determined by an attacker and
protect all variables passed to a browser.

SQL injection allows attackers to extend SQL statements in an application by
appending SQL elements to user input. The technique allows attackers to extract
or update additional information in a back-end database behind a Web server. To
protect your applications from this technique, you must carefully screen special
characters from user input and make sure your Web application logs in to a data-
base with minimal privileges.

Numerous browser-based vulnerabilities let an attacker take over a browsing
machine that surfs to an infected Web server. By compromising trusted Web
servers, attackers can spread their browser exploits to a large population. To
defend against such attacks, keep your browsers patched, and utilize up-to-date
antivirus tools.

skoudis.book Page 437 Wednesday, November 30, 2005 10:04 PM

skoudis.book Page 438 Wednesday, November 30, 2005 10:04 PM

