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C H A P T E R  3  

The PSD of TH-UWB Signals 
 

Power Spectral Density (PSD) for TH-UWB signals using PPM is derived in this 

chapter. The adopted approach (Di Benedetto and Vojcic, 2003) follows the analog PPM 
theory of the old days — practical pulse communication equipment is described in Black, 
Beyer, Grieser, and Polkinghorn as early as 1946 (Black et al., 1946) — and reconciles this 
well-known modulation method with its digital variant currently in vogue in wireless 
communications. 

3.1 BORROWING FROM PPM 

The signal of Eq. (2–4) has strong similarities with the output of a PPM modulator in its 
analog form. Given the modulating signal m(t), the PPM wave x(t) in its analog form 
consists of a train of identically shaped and strictly non-overlapping pulses that are shifted 
from nominal instances of time Ts by the signal samples m(kTs). The expression of the PPM 
analog wave is given as: 

     PPM s s s s
j j

x t p t jT m jT p t t jT m jT  (3–1) 

Equation (3–1) is commonly known as the uniform sampling representation. A 
slightly different version of analog PPM, called natural sampling, is obtained without 
explicit sampling of the modulating wave m(t). The two forms, however, differ very little if 
the maximum shift is small compared to the pulse period Ts. We should also note that the 
idea back in time behind natural sampling was to avoid sampling to simplify the equipment 
used at that time. This is the last of our worries nowadays. We can, therefore, consider 
Eq. (3–1) as a valid expression for the PPM analog wave. 

A sufficient condition for the pulses of Eq. (3–1) to be strictly non-overlapping is as 
follows: 
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max max

( ) 0 ( ) ( )
2 2

s sT T
p t for t m t m t  (3–2) 

If the condition expressed by Eq. (3–2) is verified, then the pulses are non-overlapping 
and the order of the pulses unaltered. For special modulating signals, for example, a sine 
wave at a frequency much lower than 1/Ts, weaker conditions than Eq. (3–2) can be found. 
For the purpose of generality we will suppose that Eq. (3–2) is verified in all the cases we 
will examine. 

The PSD of a PPM signal is difficult to evaluate due to the non-linear nature of PPM 
modulation. The complete derivation of this spectrum can be found in (Rowe, 1964), and is 
based on various articles by Bennett published from 1933 to 1947 (Bennett, 1933, 1944, and 
1947). We shall report here only the principal results for three particular cases that are of 
interest for understanding the spectrum of a TH-UWB signal. The three relevant cases are: 
a) sinusoidal modulating signals; b) generic periodic modulating signals; c) random 
modulating signals. 

3.1.1 Sinusoidal Modulating Signals 

Consider the sinusoidal modulating signal m(t) at frequency f0: 

 0( ) cos 2m t A f t  (3–3) 

Note that according to the sampling theorem, to be able to reconstruct m(t) from the 
modulated waveform the sampling frequency, 1/Ts, must be at least equal to 2f0. Common 
practice sets f0 << 1/Ts. 

The PPM wave of Eq. (3–1) in this case becomes: 

 0( ) ( ) cos 2PPM s s
j

x t p t t jT A f jT  (3–4) 

If one indicates by P(f) the Fourier transform of p(t): 

 2( ) ( ) j ftP f p t e dt  (3–5) 

an expansion of xPPM(t) into sinusoidal components as shown by (Rowe, 1965) can be found: 
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where Jn( ) are the Bessel functions of the first kind. Properties and curves for the Bessel 
functions can be found in many communication systems books since these functions appear 
in the computation of the spectrum of angle modulated signals (see, for example, Proakis 
and Salehi, 1994). The general expression and a few of the properties of the Bessel functions 
should be recalled here: 
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From Eq. (3–6), one can derive the PSD of xPPM(t): 
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 (3–8) 

Equation (3–8) shows that, for sinusoidal modulating signals, the PPM signal has 
discrete frequency components located at the sinewave and pulse repetition frequencies and 
their harmonics, and at their sum and difference frequencies and harmonics. The amplitude 
of the pulses in frequency is governed by two terms, P(f) and Jn(x). We will now analyze the 
effect of each of these two terms separately. 
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Effect of the |P(f)|2 Term 

The values assumed by |P(f)|2 in correspondence to the frequencies of the Dirac pulses 
contribute to determine the amplitudes of the Dirac pulses. If P(f) has a limited bandwidth, 
the bandwidth of the PPM signal is limited as well.  

Effect of the Jn(x) Term 

First, observe that for n = 0, Jn(x) = 1 if x = 0. Since x = 2 Am /Ts, one has x = 0 when m = 0. 
Recall that since m is the index referring to the harmonics of 1/Ts for all m ≠ 0, discrete 
frequency components at frequencies m/Ts are present with amplitude given by 
|Jn(2 Am/Ts)|2. Since m spans the infinite interval of summation, we can therefore assert that 
the term Jn(x) does not introduce a limitation in the bandwidth of the signal of Eq. (3–8). 
However, it regulates the presence or absence of Dirac pulses located at multiples of f0 and 
of linear combinations of f0 and 1/Ts. 

From Eq. (3–7) we know that Jn(x) approaches zero for |n|>|x|. Since J-n(x) = (-1)nJn(x) 
then |J-n(x)|2 = |Jn(x)|2; therefore, we can limit the analysis to the case, Jn(x) ≥ 0. In this case 
one has: 
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We now suppose that m > 0 since the case m < 0 can be obtained by symmetry. In this 
case, note that the condition of Eq. (3–9) becomes n > 2 A(m/Ts + nf0), which implies: 

 
0

2 /

1 2
sA T

n m
Af

 (3–10) 

Observe that A < Ts /2 and put A =  Ts /2. Equation (3–10) becomes: 

 
01 s

n m
T f

 (3–11) 

Note that since f0 << 1/Ts, the quantity (1- f0Ts) approaches 1 and the condition of 
Eq. (3–11) becomes: 

 n m  (3–12) 
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CHECKPOINT 3–1 

In this checkpoint we will use computer simulation to analyze analog PPM in the case of a 
sinusoidal modulating signal. 

Two MATLAB functions are introduced. The first, Function 3.1, generates a train of 
rectangular pulses that are analog PPM modulated by a sinusoidal wave. The second, 
Function 3.2, evaluates the spectrum of the signal generated by Function 3.1. We choose a 
rectangular waveform for the transmitted pulses to simplify the analysis in the frequency 
domain. The Fourier transform of a rectangular waveform has the well-known sin(x)/x shape. 

Function 3.1 (see Appendix 3.A) generates a PPM-UWB signal in the case of a 
sinusoidal modulating signal and rectangular pulses. Within the function, the user must set 
the following parameters: the average transmitted power in dBm Pow, the sampling frequency 
for representing the signal fc, the number of pulses to be generated np, the time duration of 
each rectangular pulse Tr, the average pulse repetition period in seconds Ts, the amplitude 
and frequency of the sinusoidal modulating signal A and f0. Function 3.1 returns two outputs: 
the generated train of pulses Stx, and the corresponding sampling frequency fc. The 
command line for generating the signal is: 

[Stx,fc]=cp0301_PPM_sin; 

We will use Function 3.1 to generate two signals. The first, signal S1, represents the 
output of the transmitter in the absence of modulation. The second, signal S2, represents the 
output of the transmitter when the PPM scheme is applied in the special case of a sinusoidal 
modulating signal. 

With reference to signal S1, we set the following parameters within Function 3.1: 
Pow=-30; fc=1e11; np=10000; Tr=0.5e-9; Ts=2e-9; A=0; f0=0. The output signal is 
composed of 10,000 equally spaced rectangular pulses. The average pulse repetition period 
is 2 ns, that is, four times the length of each pulse. The command line for generating signal 
S1 is: 

[S1,fc]=cp0301_PPM_sin; 

In the case of signal S2, the PPM block is introduced within the transmission chain. The 
following parameters characterize the generated waveform: Pow=-30; fc=1e11; np=10000;
Tr=0.5e-9; Ts=2e-9; A=1e-9; f0=5e7. Note that the amplitude of the modulating signal A 
is half the value of the average pulse repetition period Ts, while the frequency f0 is ten times 
smaller than the average pulse repetition frequency 1/Ts. The command line for generating 
signal S2 is: 

[S2,fc]=cp0301_PPM_sin; 

To better understand the effect of PPM on the PSD of UWB signals, we compare S1 
and S2 in the frequency domain. This comparison is carried out by Function 3.2. 

In Function 3.2 (see Appendix 3.A), the PSD of an input signal x(t) is computed by 
dividing the ESD of x(t) derived in Checkpoint 1–1 by the length T of the time window in 
which x(t) is represented. Function 3.1 receives in input vector x representing the signal in 
the time domain, and the value of the sampling frequency fc. Function 3.1 returns two 
outputs: vector PSD containing the PSD of the input signal and the value df of frequency 
separation between the samples of the PSD. This value is useful to derive the amount of 
power P which is associated with the input signal from the PSD, 
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P = sum(PSD.*df) 

For a given signal x(t), one can thus verify the exactness of the PSD provided by 
Function 3.2 by comparing the above P value with the one that can be evaluated in the time 
domain: 

P = (1/T) * sum((x.^2).*(1/fc)) 

The command line for evaluating the PSD of signal S1 is the following; 

[PSD1,df] = cp0301_PSD(S1,fc); 

The above command line stores vector PSD1 in memory and produces the graphical 
output shown in Figures 3–1 and 3–2. 
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Figure 3–1 PSD of a train of equally spaced rectangular pulses (signal S1), in the 
absence of modulation. 
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Figure 3–2 Detail of Figure 3–1: PSD of a train of equally spaced rectangular pulses 
(signal S1). 

As expected, the PSD of signal S1 is characterized by the presence of equally spaced 
spectral lines. This result is due to the absence of modulation in the time domain. The output 
of the transmitter is a periodic signal with its period equal to the average pulse repetition 
period Ts. As a consequence, the Fourier transform of S1 is non-zero only for those 
frequencies that are integer multiples of the average pulse repetition frequency fs = 1/Ts = 
500 MHz. The envelope of the PSD in Figures 3–1 and 3–2 follows the sin(x) / x shape of the 
Fourier transform of the rectangular pulse. As shown in Figure 3–2, the PSD presents in fact 
zero values for all frequency multiples of 1/(2Tr) = 2 GHz, where Tr is the time duration of the 
rectangular pulse. 

We conclude the analysis of signal S1 with the verification of the amount of transmitted 
power. When considering S1 in the time domain, we obtain: 

P_time=(fc/length(S1))*sum((S1.^2).*(1/fc)) 
>> P_time = 1.0000e-006 

where the term (fc/length(S1)) is the inverse of the time duration of the signal. In the 
frequency domain, one has: 

P_freq=sum(PSD1.*df) 
>> P_freq = 1.0000e-006 

As expected, P_time and P_freq are identical. Moreover, these values confirm the 
input parameter Pow in Function 3.1, which was set equal to -30 dBm. 

The spectral analysis of signal S1 can be repeated in the case of the modulated 
signal S2. The following command must be executed: 
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[PSD2,df] = cp0301_PSD(S2,fc); 

which stores vector PSD2 in memory and produces the graphical output of Figures 3–3 and 
3–4: 
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Figure 3–3 PSD of a train of rectangular pulses that is PPM-modulated by a 
sinusoidal modulating signal (signal S2). 
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Figure 3–4 Detail of Figure 3–3: PSD of a train of PPM-modulated rectangular pulses 
in the case of a sinusoidal modulating signal (signal S2). 
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Figures 3–3 and 3–4 represent the PSD of signal S2 in the same frequency range of 
Figures 3–1 and 3–2. We can observe that the presence of the sinusoidal modulating signal 
has the effect of altering the sin(x)/x shape of the signal spectrum. In addition, a higher 
number of spectral lines is present in the PSD than in the preceding case. According to 
Eq. (3–8), these new lines are located at frequencies f(m,n) = (m/Ts+nf0), that is, at the sum 
and difference frequencies of the modulating signal frequency f0 and the pulse repetition 
frequency 1/Ts and their harmonics. The amplitude of the spectral line at frequency f(m,n) 
depends on two terms: the modulus of the Fourier transform of the rectangular pulse 
evaluated in f(m,n) and the modulus of the Bessel function Jn(x) of order n and argument x = 
(2 Af(m,n)). In the case under examination, that is, A = Ts/2 and f0 = 1/(10Ts), the spectral 
lines are equally spaced with frequency separation df = 0.1/Ts. In other words, the spectral 
lines of PSD2 are ten times closer compared to the PSD of signal S1. Each spectral line has 
an amplitude that depends on the Fourier transform of the pulse waveform and on the 
modulus of the following function: 

 2
2 10 10
S

n n
S S

T m n n
J J m

T T
 (3–13) 

According to Eq. (3–7), the amplitude of the Bessel function of order n and argument x 
tends to zero when |n| > |x|. As a consequence, we derive from Eq. (3–13) that the PSD of 
signal S2 is composed of “clusters” of spectral lines, each cluster being located in 
correspondence of a multiple of the average pulse repetition frequency fs = 1/Ts. This result is 
shown in Figure 3–5, which compares the PSD of signals S1 and S2. 
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Figure 3–5 Comparison of the PSD of signals S1 (solid lines) and S2 (dashed lines).  

The analysis of each cluster of spectral lines can be performed by introducing the 
MATLAB function besselj(nu,z), which computes the value of the Bessel function of the 
first kind with order nu and argument z. 

We start by considering the cluster of spectral lines located around frequency zero. 
According to Eqs. (3–8) and (3–13), this cluster consists of spectral lines at frequencies f(n) = 
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n/(10Ts). For the single cluster, we may neglect the shaping effect of the Fourier transform of 
the pulse waveform. The amplitude of the spectral line at frequency f(n) is therefore 
proportional to: 

 

2

0 10n

n
A n J  (3–14) 

Equation (3–14) can be visualized by executing the following MATLAB code: 

n=(-20:1:20); 
A0=abs(besselj(n,(pi/10).*n)).^2; 
figure(1) 
stem(n,A0) 

The above code stores vector A0 in memory and generates the plot of Figure 3–6, in 
which we can recognize the cluster of spectral lines located at the center of the PSD of 
Figure 3–5. 
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Figure 3–6 Cluster of spectral lines located around frequency zero — |Jn(n /10)|2 for 
different values of n. 

The pair of clusters located around ±1/Ts = ±500 MHz give: 



3.1 Borrowing from PPM 83

 

 

2

1 10n

n
A n J  (3–15) 

 

2

1 10n
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where A+1(n) and A-1(n) represent approximated amplitude values of the spectral lines located 
around 1/Ts and -1/Ts, respectively. The code for evaluating the expressions in Eqs. (3–15) 
and (3–16) is: 

n=(-20:1:20); 
Ap1=abs(besselj(n,pi+(pi/10).*n)).^2; 
Am1=abs(besselj(n,((pi/10).*n)-pi)).^2; 
figure(2) 
stem(n,Ap1) 
figure(3) 
stem(n,Am1) 

The graphical output generated by the above code is shown in Figures 3–7 and 3–8. 
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Figure 3–7 Cluster of spectral lines located around frequency -500 MHz — 
|Jn(- +n /10)|2 for different values of n. 
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Figure 3–8 Cluster of spectral lines located around frequency +500 MHz — 
|Jn( +n /10)|2 for different values of n. 

Figure 3–7 represents the cluster of spectral lines located around frequency 
-1/Ts = -500 MHz, while Figure 3–8 represents the cluster of spectral lines located around 
frequency 1/Ts = 500 MHz. When comparing the plots in Figures 3–7 and 3–8 with the PSD 
in Figure 3–5, we notice the agreement between theoretical analysis and simulation results. 
In addition, if we compare the plots in Figures 3–7 and 3–8 vs. Figure 3–6 , we observe that 
the clusters at ±1/Ts are composed of more spectral lines with respect to the cluster at the 
center of the PSD. The same result is verified when analyzing the pair of clusters located at 
±2/Ts = ±1 GHz. In this case, the following expressions must be considered: 
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10n

n
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which can be reproduced with the following code lines: 

n=(-20:1:20); 
Ap2=abs(besselj(n,2*pi+(pi/10).*n)).^2; 
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Am2=abs(besselj(n,((pi/10).*n)-2*pi)).^2; 
figure(4) 
stem(n,Ap2) 
figure(5) 
stem(n,Am2) 

The graphical output generated by the above code is shown in Figures 3–9 and 3–10. 
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Figure 3–9 Cluster of spectral lines located around frequency -1GHz — 
|Jn(-2 +n /10)|2 for different values of n. 
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Figure 3–10 Cluster of spectral lines located around frequency +1GHz — 
|Jn(2 +n /10)|2 for different values of n.  

Figure 3–9 represents the cluster of spectral lines located around frequency 
-2/Ts = -1 GHz, while Figure 3–10 represents the cluster of spectral lines located around 
frequency 2/Ts = 1 GHz. Once again, we observe that the number of spectral lines composing 
these clusters is increased with respect to the previous cases, that is, the number of spectral 
lines composing one cluster increases when the central frequency of the cluster increases.  

CHECKPOINT 3–1 

3.1.2 Generic Periodic Modulating Signals 

When m(t) is periodic of period Tp, that is, m(t+Tp) = m(t) for all t, the Fourier series 
representation is valid for all t and is expressed as follows: 

 
2 / pjn t T

n
n

m t m e  (3–19) 

where mn is the n-th Fourier coefficient given by: 
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If m(t) is real, then one obtains: 

 *
n nm m  (3–21) 

The Fourier series expansion shows that a periodic signal m(t) can be represented for 
all t as a sum of components of different frequencies, all multiples of the fundamental 
frequency 1/Tp. The n-th term of the summation corresponds to frequency n/Tp. 

The analysis of sinusoidal modulating waves can be expanded to periodic modulating 
signals by observing that in this last case, the modulating signal is composed of the sum of 
sinusoidal waves at frequencies that are multiples of the fundamental. Note that in this case, 
the condition A < Ts /2 becomes: 

 
2

s
n

n

T
m  (3–22) 

We put: 

 n
n

M m  (3–23) 

By applying the multiple Fourier series method as proposed by (Bennett, 1933, 1944, 
and 1947) and as further suggested by (Rowe, 1965), we find: 
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Equation (3–24) easily leads to the PSD of a periodic modulating PPM signal xPPM(t) 
which is expressed by: 
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Similar to the sinusoidal case, when the modulating signal is a periodic waveform, the 
PPM signal contains discrete frequency components located at the fundamental and pulse 
repetition frequencies and their harmonics, as well as at the sum and difference frequencies 
of the modulating signal and the pulse repetition frequency and harmonics. The amplitude of 
the pulses in frequency is governed by two terms: P(f) and Jn(x). The analysis of the effect 
of these two terms closely follows the analysis of the sinusoidal case. 

CHECKPOINT 3–2  

In this checkpoint, we will use computer simulation to analyze the spectral occupation of an 
UWB signal implementing PPM in the case of a periodic modulating signal. The modulating 
signal m(t) is chosen to have a negative exponential amplitude decay within a period Tp: 
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where A and B are two real constant terms. 
Assume, for example, Tp = 20 ns, A = 1·10–9 V, and B = 10. We can generate the 

waveform in Eq. (3–26) by using the following MATLAB code: 

A = 1e-9; 
B = 10; 
Tp = 20e-9; 
fc = 1e11; 
dt = 1 / fc; 
T = 1e-6; 
time = (0:dt:T); 
m = A.*exp(-(B/Tp).*mod(time,Tp)); 
plot(time,m); 

The above code stores in memory vector m, which contains the samples of signal m(t). 
Figure 3–11 represents m(t) in the time domain. 
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Figure 3–11 Periodic modulating signal m(t).  

Given vector m, we can isolate a single period of the periodic signal. The following code 
line extracts the first period of m(t) and stores it in vector x: 

x = m(1:floor(Tp/dt)); 

Given vector x, we can use the MATLAB function fft(x) to evaluate the coefficients 
of the Fourier series representing the periodic signal m(t): 

X = fftshift((1/length(x)).*fft(x)); 

Figure 3–12 shows the modulus of the coefficients of the Fourier series of m(t). 
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Figure 3–12 Modulus of the coefficients of the Fourier series of m(t). 

Finally, we can evaluate the value in Eq. (3–23) as follows: 

M = real(sum(X)) 
>> M = 1.0000e-009 

In the above command line, the MATLAB function real() is necessary to take into 
account the approximation errors due to the sampling of the original waveform m(t). In the 
case of no approximation errors, the summation in Eq. (3–23) is always real if m(t) is real. 

To analyze the spectral characteristics of PPM-UWB signals with periodic modulating 
signals, we must introduce a new MATLAB function. 

Function 3.3 (see Appendix 3.A) generates a train of rectangular pulses that are 
modulated in position by the signal m(t) in Eq. (3–26). Within the function, the user must set 
the following parameters: the average transmitted power in dBm Pow, the sampling frequency 
fc, the number of pulses to be generated np, the time duration of each rectangular pulse Tr, 
the average pulse repetition period in seconds Ts, and finally, parameters A, B, and Tp, which 
characterize the modulating signal. Function 3.3 returns two outputs: the generated train of 
pulses Stx and the corresponding sampling frequency fc. The command line is: 

[Stx,fc]=cp0302_PPM_periodic; 

We will use Function 3.3 for generating an UWB signal with a periodic modulating 
signal m(t) as in Figure 3–11. The following parameters are set within the function: Pow=-30;
fc=1e11; np=10000; Tr=0.5e-9; Ts=2e-9; A=1e-9; B=10; Tp=20e-9. Figure 3–13 
represents a portion of the generated signal Stx in the time domain. 
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Figure 3–13 A portion of signal Stx generated with Function 3.3. The modulating 
signal is the periodic waveform represented in Figure 3–11. 

The spectral analysis of signal Stx can be carried out using Function 3.2. The following 
command must be executed: 

[PSD,df] = cp0301_PSD(Stx,fc); 

which stores vector PSD in memory and produces the graphical output in Figures 3–14 and 
3–15. 
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Figure 3–14 PSD of signal Stx (see Figure 3–13). 
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Figure 3–15 Detail of Figure 3–14: PSD of signal Stx. 
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Figures 3–14 and 3–15 show that the PSD of signal Stx is composed of spectral lines 
located at each integer multiple of the pulse repetition frequency 1/Ts, and at all the sum and 
difference frequencies of the modulating signal frequency 1/Tp and the pulse repetition 
frequency 1/Ts. According to Eq. (3–25), the amplitude of the spectral line at frequency fx = 
(m/Ts + nl/Tp) depends on both the value in fx of the Fourier transform of the rectangular pulse 
and the value of the Bessel function Jn(2 Mfx), where M is the constant term in Eq. (3–23). In 
the case under examination, we found that M = 1·10-9 = Ts/2. Moreover, since Tp = 10Ts, we 
can simplify the argument of the Bessel function as follows: 

 2
2 10 10
S

n n
S S

T m nl nl
J J m

T T
 (3–27) 

As shown in Checkpoint 3–1, we can use the MATLAB function besselj(nu,z) to 
analyze each cluster of spectral lines separately. The code for generating the cluster located 
at the zero frequency, for example, is: 

Jm0=zeros(1,51); 
for n = -5 : 5 
for l = -5 : 5 
i = n * l; 
index = i + 26; 
Jm0(index)=Jm0(index)+abs(besselj(n,n*l*pi/10))^2; 
end 
end 
abscissa = (-25:1:25); 
figure(1) 
stem(abscissa,Jm0) 

The above code lines store vector Jm0 in memory and produce the plot of Figure 3–16. 
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Figure 3–16 Cluster of spectral lines located around frequency zero 

The two clusters at ±1/Ts can be generated as follows: 

Jmp1 = zeros(1,51); 
Jmn1 = zeros(1,51); 
for n = -5 : 5 
for l = -5 : 5 
i = n * l; 
index = i + 26; 
Jmp1(index) = Jmp1(index) + abs(besselj(n,pi + ... 
   (n*l*pi/10))) ^2; 
Jmn1(index) = Jmn1(index) + abs(besselj(n,(n*l*pi/10)... 
   - pi)) ^2; 
end 
end 
abscissa = (-25:1:25); 
figure(2) 
stem(abscissa,Jmn1); 
figure(3) 
stem(abscissa,Jmp1); 

The graphical output resulting from the above code lines is shown in Figures 3–17 and 
3–18. 
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Figure 3–17 Cluster of spectral lines located around frequency -500 MHz 
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Figure 3–18 Cluster of spectral lines located around frequency +500 MHz 
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Finally, we can generate the clusters at ±2/Ts with the following code lines: 

Jmp2 = zeros(1,51); 
Jmn2 = zeros(1,51); 
for n = -5 : 5 
for l = -5 : 5 
i = n * l; 
index = i + 26; 
Jmp2(index) = Jmp2(index) + abs(besselj(n,2*pi + ... 
   (n*l*pi/10))) ^2; 
Jmn2(index) = Jmn2(index) + ... 
   abs(besselj(n,(n*l*pi/10)- pi*2)) ^2; 
end 
end 
abscissa=(-25:1:25); 
figure(4) 
stem(abscissa,Jmn2) 
figure(5) 
stem(abscissa,Jmp2) 

The output provided by the above MATLAB code is shown in Figures 3–19 and 3–20. 
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Figure 3–19 Cluster of spectral lines located around frequency -1 GHz 
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Figure 3–20 Cluster of spectral lines located around frequency +1 GHz 

Remember that the clusters represented in Figures 3–16 to 3–20 only take into 
account the effect on the amplitude of the Bessel function. The exact values of the amplitude 
of the spectral lines should also take into account the effect of the Fourier transform of the 
rectangular pulse waveform. 

CHECKPOINT 3–2 

3.1.3 Random Modulating Signals 

The derivation of the PSD of Eq. (3–1) can be performed under the hypothesis that m(kTs) is 
a strict-sense stationary discrete random process, where m(kTs) are the samples of a strict-
sense stationary continuous process m(t) and the different m(kTs) are statistically 
independent with a common probability density function w(m(kTs)).  

Since the signal of Eq. (3–1) is not wide-sense stationary, the PSD ( )
PPM

xP f  for this 

signal can be found by applying the following steps: 

1. Compute the autocorrelation function of a particular xPPM(t). 

2. Average over the ensemble to find the ensemble average. 
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3. Obtain ( )
PPM

xP f  by taking the Fourier transform of the ensemble average. 

As shown by (Rowe, 1965), ( )
PPM

xP f can be expressed as follows: 

 

2 2
2( ) ( )

( ) 1 ( ) ( )
PPMx

ns s s

P f W f n
P f W f f

T T T
 (3–28) 

where W(f) is the Fourier transform of the probability density w and coincides with the 
characteristic function of w computed in -2 f: 

 2 2 2
+

j fs j fs

-

W(f) = w s e ds e C f  (3–29) 

Equation (3–28) shows that the spectrum of a random modulating PPM signal is 
composed of a continuous part controlled by the term 1-|W(f)|2, and of a discrete part formed 
by line components at frequency 1/Ts, that is, the pulse repetition frequency and harmonics. 
The discrete part corresponds to a periodic component of the PPM signal of Eq. (3–1). 

Since W(f) is the Fourier transform of a probability density function, its value at 0 is 1, 
that is, W(0) = 1; therefore, the continuous component of the spectrum is zero at frequency 
zero and it necessarily rises at higher frequencies. The discrete components that are 
weighted by |W(f)|2 are larger at low frequencies, then decrease at high frequencies. The 
predominance of the continuous term over the discrete term depends on the values of m(kTs). 
If these are small, then the PPM signal of Eq. (3–1) resembles a periodic signal and the 
discrete components dominate the low frequencies. If, however, the m(kTs) values are large, 
then the PPM signal of Eq. (3–1) loses its resemblance with a periodic signal and the 
continuous component dominates the low frequency as well as the high frequency range of 
the spectrum. 

Finally, as in the case of sinusoidal modulating signals, the term |P(f)|2 shapes the 
overall spectrum and limits bandwidth occupation to finite values. 

When the different m(kTs) are not independent, the PSD is found to be (Rowe, 1965): 

 

2
2 2s s s

PPM

j f m l n T m lT j fnT
x

ns

P f
P f e e

T
 (3–30) 

CHECKPOINT 3–3 

In this checkpoint, we will use computer simulation to analyze the spectral occupation of a 
PPM-UWB signal in the presence of a random modulating signal. In particular, we will 
assume that the samples m(kTs) are statistically independent and Gaussian distributed 
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random variables. The transmitted UWB signal is characterized by rectangular pulses with 
duration Tr and an average pulse repetition period Ts. To simulate the generation of the UWB 
signal under examination, we will introduce Function 3.4. 

Function 3.4 (see Appendix 3.A) generates a PPM-UWB signal in the case of a 
random modulating signal. Within the function, the user must set the following parameters: 
the average transmitted power in dBm Pow, the sampling frequency for representing the 
signal fc, the number of pulses to be generated np, the time duration of each rectangular 
pulse Tr, the average pulse repetition period in seconds Ts, and the standard deviation of 
the Gaussian distributed modulating signal sigma. Function 3.4 returns three outputs: the 
generated train of pulses Stx, the corresponding sampling frequency fc, and vector M0 
containing all the time shifts applied to the transmitted pulses due to the presence of the 
modulating signal. The command line for generating the signal is: 

[Stx,fc,M0]=cp0303_PPM_random; 

We will use Function 3.4 for generating the UWB signal RS0, which is characterized by 
the following parameters: Pow=-30; fc=1e11; np=10000; Tr=0.5e-9; Ts=2e-9;
sigma=0.1e-9. The command line for generating signal RS0 is: 

[RS0,fc,M0]=cp0303_PPM_random; 

Figure 3–21 represents a fragment of the generated signal RS0 in the time domain. 
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Figure 3–21 Signal RS0 in the time domain — PPM-UWB signal in the case of a 
random modulating signal. 

Figure 3–21 shows that the effect of PPM on the position of the transmitted pulses is 
barely appreciable, due to the small value chosen for the standard deviation, 
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sigma=0.1·10-9. We can analyze the spectral characteristics of signal RS0 by using 
Function 3.2, i.e.: 

[PSD0,df]=cp0301_PSD(RS0,fc); 

The above command line stores in memory the PSD PSD0 and produces the graphical 
output in Figure 3–22. 
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Figure 3–22 PSD of signal RS0 (see Figure 3–21). 

The PSD in Figure 3–22 is composed of discrete contributions only. The discrete terms 
in Eq. (3–28) are thus predominant over the continuous term. This result is due to the 
presence of very small values for the randomly generated PPM shifts. We also observe that 
the envelope of the PSD is considerably different from the sin(x)/x shape since no side lobes 
are visible in the plot of Figure 3–22. This result can be analyzed by taking into account the 
statistical characteristics of the modulating signal. Given vector M0, resulting from the 
execution of Function 3.4, we can evaluate the probability density function of the time shifts, 
introduced within the signal by executing the following code lines: 

dt = 1/fc; 
NI = ((2e-9)-(0.5e-9))/dt; 
h = hist(M0,NI); 
h0 = (1/sum(h)).*h; 
time=linspace(0,2e-9,length(h))-(2e-9/2); 
stem(time,h0) 

The above code makes use of the MATLAB function H=hist(Y,N), which groups the 
elements of vector Y into N equally spaced containers and returns vector H, which contains 
the number of elements in each container. The above set of commands also produces the 
plot in Figure 3–23, which represents the probability density function of the PPM shifts for 
signal RS0. The shape of this function resembles the well-known bell shape of a Gaussian. 
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Figure 3–23 Probability density function of the PPM shifts for signal RS0. 

We can now apply Function 3.2 to vector h0: 

fcx=1/((2e-9)/length(h)); 
[W,df]=cp0301_PSD(h0,fcx); 

The above commands store in memory vector W, which represents a function in the 
frequency domain that is proportional to the term |W(f)|2 of Eq. (3–28). The graphical output 
provided by the above commands is represented in Figure 3–24. 
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Figure 3–24 PSD of vector h0 — squared modulus of the Fourier transform of the 
probability density function of the PPM shifts. 

The result shown in Figure 3–24 confirms the effect of the Fourier transform W(f) on 
the PSD of the generated UWB signal. When comparing Figures 3–24 and 3–22, we 
conclude that in the present case, the bandwidth of the transmitted signal is limited by the 
Fourier transform W(f) of the probability density of the PPM shifts, not by the Fourier 
transform P(f) of the pulse waveform. 

To verify the presence of a continuous part in the PSD of PPM-UWB signals modulated 
with a random signal, we can consider the case of signal RS1 with an increased variability in 
the PPM shifts. To better exploit the variability of the PPM shift, we choose higher values for 
both standard deviation sigma and average pulse repetition period Ts. The following 
parameters are set within Function 3.4: Pow=-30; fc=1e11; np=10000; Tr=0.5e-9;
Ts=10e-9; sigma=4e-9. The command line for generating signal RS1 is: 

[RS1,fc,M1]=cp0303_PPM_random; 

Figure 3–25 represents a section of the generated signal RS1 in the time domain. 
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Figure 3–25 Signal RS1 in the time domain. 

Figure 3–25 shows that the effect of PPM is considerable in the case of signal RS1. We 
can analyze the spectral characteristics of signal RS1 by executing the following command 
line: 

[PSD1,df]=cp0301_PSD(RS1,fc); 

The graphical output that results from the above command is shown in Figure 3–26. 
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Figure 3–26 PSD of signal RS1 (see Figure 3–25). 

 Figure 3–26 shows that the PSD of signal RS1 is dominated by a strong peak at zero 
frequency. We also observe that the PSD is not composed of spectral lines only, since we 
notice a few spurious contributions between these lines. This observation is confirmed by 
zooming in on Figure 3–26 in the region of frequencies included between ±200 MHz (see 
Figure 3–27). 
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Figure 3–27 Details of the PSD of signal RS1. 

In the case of signal RS1, we can recognize the presence of a continuous part in the 
PSD, which is controlled by the function W(f). 

Note that a similar effect is not observed if one tries to zooming in on Figure 3–22, as 
can be easily checked by the interested reader. 

CHECKPOINT 3–3 

3.2 THE PPM-TH-UWB CASE  

We can now refer back to the PPM-TH-UWB signal, as expressed by Eq. (2–4), and 
establish a correspondence with the PPM signal of Eq. (3–1), that is, between the m(kTs) 
process and the  time dither process, which, as previously defined, incorporates the time 
shift introduced by the TH code  and the time shift introduced by the PPM modulator . 

Since  is much smaller than ,  is quasi-periodic and closely follows the periodicity 
of the TH code. We can, as a reasonable first approximation, make the hypothesis that the 
effect of the  shift on the PSD is not significant with respect to . Therefore, the signal of 
Eq. (2–4) is modulated by a periodic signal and its PSD follows Eq. (3–25). In other words, 
the PSD is discrete and contains discrete frequency components located at the fundamental. 
In addition, it contains components at pulse repetition frequencies and their harmonics, and 
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at linear combinations. In the present case, the period of the modulating periodic waveform 
corresponds to the period of the code Np multiplied by the pulse interval Ts, that is, Tp = NpTs; 
therefore, the fundamental frequency of the modulating waveform is fp = 1/Tp. 

We shall first note that the pulse repetition frequency 1/Ts = Np /Tp is a multiple of the 
fundamental frequency of the periodic waveform; therefore, the PSD is composed of lines 
occurring at 1/Tp and its harmonics (see Checkpoint 3–2).  

The case Np = 1 corresponds to the actual absence of coding and generates a signal 
with a PSD composed of lines at 1/Ts and harmonics. Power concentrates on spectrum lines 
with the undesirable effect of presenting spectral line peaks. This is not a surprise since 
having neglected the effect of , Eq. (2–4) forms a periodic train of pulses occurring at 
multiples of Ts. 

If, as common practice, Np is set equal to Ns, that is, the periodicity of the code 
coincides with the number of pulses per bit, spectrum lines occur at 1/Tb and its harmonics, 
where Tb =  NsTs = NpTs is the bit interval. Although the spectrum is still discrete, spectrum 
lines occur at frequencies that are more numerous than in the previous case for equal 
bandwidth since 1/Tb<1/Ts. The whitening effect of the code is visible in that power 
distributes over a larger number of spectrum lines and spectral peaks are less accentuated. 

When we make Np larger than Ns, the above effect is more prominent, and if Np is not 
a multiple of Ns, several spectral lines generated by linear combination of 1/Tp and 1/Ts fill 
up the power spectrum with a beneficial smoothing effect. 

The extreme case Np  corresponds to a lack of periodicity in the signal of Eq. (2–
4). In this case, the time dither process can be assimilated to the random modulating signal 
m(kTs) and its power spectrum is given by Eq. (3–28). All comments made on Eq. (3–28) are 
valid here, that is, the spectrum has two components, one continuous and one discrete. The 
discrete term corresponds to a periodic component of the signal, which reduces with 
increasing variance in the position of the pulses. In addition, note that in the present case, 
the TH code generates time shifts that span over the entire Ts interval. Therefore, the  
values cannot be considered as small, and we can expect a reduction of the periodic 
component in the signal, that is, of the discrete component in the spectrum. 

In the presence of many such signals, or in the case of a multi-user system, we can 
expect that the resulting signal shows little periodicity, and the comments corresponding to 
the random modulating case apply. 

The case of a system composed of a few users using the same value for Np could 
possibly be considered as of a periodic type, with the resulting cumulative signal having a 
discrete spectrum if all users were synchronized. Note, however, that under the realistic 
hypothesis of asynchronous users we can expect that, as is the case for several users, the 
multi-user signal looses its periodicity and its spectrum is well represented by Eq. (3–28). 

A more detailed analysis requires relaxing the hypothesis of an inconsequential effect 
of the PPM time shift . A straightforward solution to this problem corresponding to the 
common case Np = Ns is to consider Eq. (2–4) in which we first neglect the effect of , that 
is, we define a signal v(t) given by: 

 
1

( )
sN

s j
j

v t p t jT  (3–31) 
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The Fourier transform of the above signal is: 

 
2

1

s
s m

N
j f mT

v
m

P f P f e  (3–32) 

If we now consider v(t) as the basic multi-pulse used for transmission and apply the  
PPM shift, we obtain the following expression for the transmitted signal: 

 b j
j

s t v t jT b  (3–33) 

which is a PPM modulated waveform in which the shift is ruled by the sequence of data 
symbols b, that is, the b process emitted by the source. Note that the repetition code is now 
incorporated in the multi-pulse. If we can assume that b is a strict-sense stationary discrete 
random process, and the different extracted random variables bk are statistically independent 
with a common probability density function w, then the signal of Eq. (3–33) has the PSD of 
Eq. (3–28) in which the Fourier transform of the pulse waveform P(f) is substituted by the 
PSD of the multi-pulse given by Eq. (3–32). 

Given that the multi-pulse repetition rate is Tb, one obtains the following spectrum of a 
PPM-TH-UWB signal: 

 

2 2
2

1v
s

nb b b

P f W f n
P f W f f

T T T
 (3–34) 

Equation (3–34) shows the double effect on one side of the TH code through Pv(f), and 
on the other side of the time shift introduced by the PPM modulator which has 
characteristics following the statistical properties of the source. Note that the discrete 
component of the spectrum has lines at 1/Tb. The amplitude of the lines is weighted by the 
statistical properties of the source represented by |W(f)|2. If p indicates the probability of 
emitting a 0 bit (no shift) and 1-p the probability of emitting a ‘1’ bit (  shift), one can write: 

 
2 21 2 1 cos 2 2 1 cos 2W f p f p f  (3–35) 

If the source emits equiprobable symbols 0 and 1, then Eq. (3–35) simplifies as 
follows: 

 
2 1

1 cos 2
2

W f f  (3–36) 

Note here that the time shift is small and therefore the discrete components dominate 
the spectrum. In the simplifying hypothesis made in the beginning of this paragraph that  is 
negligible, Eq. (3–34) is periodic with period 1/Tb. Note that Eq. (3–34) can also be applied  
to any type of source, not necessarily binary. 
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CHECKPOINT 3–4 

In this checkpoint, we will use computer simulation to analyze the spectral occupation of a 
PPM-TH-UWB signal. The MATLAB functions that are required for such an analysis have 
already been introduced in previous checkpoints: Function 2.6 in Checkpoint 2–1 for 
generating the PPM-TH-UWB signal and Function 3.2 in Checkpoint 3–1 for representing the 
PSD. Different simulations will be performed to analyze the effect of the main parameters of 
the UWB signal under examination on the PSD. 

In the first simulation, we consider the case of an UWB signal with no PPM and no TH 
coding, denoted as signal u0. To generate signal u0, we execute Function 2.6 with the 
following parameters: Pow=-30; fc=50e9; numbits=1000; Ts=10e-9; Ns=5; Tc=1e-9;
Nh=10; Np=1; Tm=0.5e-9; tau=0.25e-9; dPPM=0; G=0. The command line for generating 
signal u0 is: 

[bits,THcode,u0,ref]=cp0201_transmitter_2PPM_TH; 

The above command line stores vector u0 in memory, to represent the signal under 
examination. This signal is characterized by the transmission of five pulses per bit. All pulses 
are equally spaced in time with a pulse repetition period Ts. Because of the value Np=1, all 
pulses occupy the same position inside each Ts interval. Each pulse has the second 
derivative Gaussian shape with a maximum length of 0.5 ns. 

We can analyze signal u0 in the frequency domain by executing the command: 

[PSDu0,df]=cp0301_PSD(u0,50e9); 

 The above command stores vector PSDu0 in memory, to represent the PSD of signal
u0 and produce Figure 3–28. An enlarged version of Figure 3–28 is shown in Figure 3–29. 
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Figure 3–28 PSD of signal u0 — no PPM and no TH coding, and Np = 1. 
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Figure 3–29 Detail of  Figure 3–28 — PSD of signal u0.

As expected, Figures 3–28 and 3–29 show that the PSD of signal u0 is composed of 
spectral lines occurring at 1/Ts = 0.1 GHz and harmonics, that is, the transmitted power is 
concentrated at multiples of the pulse repetition frequency. The envelope of the PSD has the 
shape of the Fourier transform of the second derivative Gaussian waveform. 

In the second simulation, we consider the same parameters characterizing signal u0,
but with an increased periodicity Np of the TH code. In particular, we set Np=Ns, that is, 
Np=5. The resulting signal u1 can be generated as follows: 

[bits,THcode,u1,ref] = cp0201_transmitter_2PPM_TH; 

The above command line stores vector u1 in memory, to represent the signal under 
examination. This signal is characterized by the transmission of five pulses per bit. The 
position of the pulse within each Ts interval depends on the corresponding coefficient of the 
TH code. 

We can analyze signal u1 in the frequency domain by executing the following 
command: 

[PSDu1,df] = cp0301_PSD(u1,50e9); 

The above command stores vector PSDu1 in memory, to represent the PSD of signal 
u1 and produce the plot in Figure 3–30 (see the detailed plot in Figure 3–31). 
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Figure 3–30 PSD of signal u1 — no PPM and with TH coding, and Np = 5. 
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Figure 3–31 Detail of Figure 3–30 — PSD of signal u1. 

Figures 3–30 and 3–31 show that the PSD of signal u1 is composed of spectral lines at 
distances of 1/(NsTs) = 20 MHz, that is, the transmitted power is concentrated at multiples of 
the bit repetition frequency (the bit rate). This result is justified by the periodicity of the TH 
code, which coincides with Ns. Signal u1 is, therefore, periodic with a period equal to the bit 
period. The envelope of the PSD still resembles the Fourier transform of the second 
derivative Gaussian waveform. When comparing the PSD of signal u1 with the PSD of signal 
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u0, we can verify that the TH code has the effect of diminishing the number of peaks with the 
highest power contribution since the same power is distributed over a larger number of 
spectral lines. This effect should be more prominent when one further increases the Np value. 
This analysis can be performed by generating a new signal u2, with Np equal to the total 
number of transmitted pulses. In the case being examined, we run Function 2.6 with the 
same parameters of signal u1, but we set Np = 5000. The command line for generating the 
signal is: 

[bits,THcode,u2,ref]=cp0201_transmitter_2PPM_TH; 

which stores vector u2 in memory, representing the signal under examination. This signal is 
still characterized by five pulses per bit. Each pulse, however, occupies a position that is 
given by a discrete random variable uniformly distributed between 0 and Nh-1. We can 
analyze signal u2 in the frequency domain by executing: 

[PSDu2,df]=cp0301_PSD(u2,50e9); 

The above command stores vector PSDu2 in memory, to represent the PSD of signal 
u2 and produce the plot of Figure 3–32 . 
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Figure 3–32 PSD of signal u2 — no PPM and with TH coding, and Np = 5000. 

Figure 3–32 shows that the PSD is still composed of a discrete part. The number of 
peaks, however, is smaller with respect to signals u0 and u1. These peaks are located at 
multiples of frequency 1/Tc = 1 GHz. Although the TH code is not periodic, the positions of the 
pulses inside each Ts interval are not random. Each Ts interval is, in fact, divided into Nh slots 
with length Tc, and the pulses are forced to locations at the beginning of these intervals. In 
the case under examination, Nh = 10, there are only ten possible positions for each pulse 
within one Ts interval. One can conclude, therefore, that the loss of periodicity of the TH code 



112 Chapter 3 The PSD of TH-UWB Signals 

 

does not guarantee by itself the possibility of removing all peaks in the PSD. The number of 
peaks, however, is definitely reduced. Figure 3–33 shows the detail of the PSD of signal u2 
in the range between 2 and 3 GHz. We can verify the presence of a continuous part with 
smaller peaks at distances 1/(NsTs) = 20 MHz. 
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Figure 3–33 Detail of Figure 3–32 — PSD of signal u2. 

The spectral analysis of signal u2 showed that it is not possible to remove all the peaks 
of the PSD by only increasing the periodicity of the TH code. To decrease the peaks, we 
should allow each pulse to assume random positions inside each Ts interval. In the following 
simulation, we generate an UWB signal with the same parameters of signal u2, but with an 
increased cardinality of the TH code, that is, we divide the Ts interval into a higher number of 
Tc intervals. In particular, we consider the following parameters: Pow=-30; fc=50e9;
numbits=1000; Ts=10e-9; Ns=5; Tc=0.1e-9; Nh=100; Np=5000; Tm=0.5e-9;
tau=0.25e-9; dPPM=0; G=0. The number of slots per frame is increased tenfold, with a 
higher variance in the position of the pulses. We generate the resulting signal, signal u3, by 
executing the following command: 

[bits,THcode,u3,ref] = cp0201_transmitter_2PPM_TH; 

which stores vector u3 in memory, representing the signal under examination. The PSD of 
signal u3 is obtained as follows: 

[PSDu3,df] = cp0301_PSD(u3,50e9); 

The above command stores vector PSDu3 in memory and provides the plot of Figure 
3–34. 
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Figure 3–34 PSD of signal u3 — no PPM and with TH coding. Effect of an increased 
cardinality of the TH code, Nh. 

When comparing the PSD in Figure 3–34 with the PSD in Figure 3–32, we conclude 
that the increased Nh value has the effect of removing the strong peaks in the PSD. As a 
matter of fact, these lines have been simply moved out of the bandwidth of the Fourier 
transform of the pulse waveform, that is, 1/Tc= 10 GHz. 

A final simulation can be performed to take into account the effect of the PPM. The 
following parameters are set within Function 2.6: Pow=-30; fc=50e9; numbits=1000;
Ts=10e-9; Ns=5; Tc=0.1e-9; Nh=100; Np=5000; Tm=0.5e-9; tau=0.25e-9;
dPPM=0.25e-9; G=0. The resulting signal, signal u4, is generated as follows: 

[bits,THcode,u4,ref] = cp0201_transmitter_2PPM_TH; 

The above command stores vector u4 in memory. The PPM block is included within 
the transmission chain with a PPM shift of 0.25 ns for representing 1 bits. The spectral 
analysis of signal u4 is performed as follows: 

[PSDu4,df] = cp0301_PSD(u4,50e9); 

The above command stores vector PSDu4 in memory and provides the plot of Figure 
3–35, which shows the PSD of a PPM-TH-UWB signal. This PSD is composed of a 
continuous part plus spectral lines located at multiples of 1/Tb. 

Figure 3–36 compares this PSD with that of signal u0. We can verify that the 
introduction of both TH coding and PPM has the effect of distorting the original Gaussian 
shape of the PSD. Figure 3–36 also shows that the PSD of a PPM-TH-UWB signal is fully 
contained within the envelope of the PSD, which results from the transmission of equally 
spaced pulses with the same shape and same average repetition frequency, that is, with the 
same average power. 
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Figure 3–35 PSD of signal u4 — with PPM and TH coding. 

-8 -6 -4 -2 0 2 4 6 8

x 109

0

1

2

3

4

5

6

7

8

9
x 10-13

Frequency [Hz]

Po
w

er
 S

pe
ct

ra
l D

en
si

ty
 [V

2 /H
z]

 

Figure 3–36 Comparison between the PSD of signal u0 (black), that is, no PPM and 
no TH coding, and the PSD of signal u4 (gray), that is, with PPM and TH 
coding. 

CHECKPOINT 3–4 
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FURTHER READING 

A PSD for PPM-TH-UWB following a different approach of the one adopted here can be 
found in (Kissik, 2001) and (Win, 2002), in which a unified spectral analysis for TH-SS in 
the presence of timing jitter is introduced. A recent paper by (Lehman and Haimovich, 
2003) includes several PSD analytical expressions for TH-IR signals. The work by (Padgett, 
2003) assimilates dithering to a modulation of the pulse repetition frequency. 
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APPENDIX 3.A 

Function 3.1    Analogue PPM with Sinusoidal Modulating 
Signals 

Function 3.1 is composed of two steps. Step Zero contains all the parameters characterizing 
the signal to be generated: the average transmitted power in dBm Pow, the sampling 
frequency for representing the signal fc, the number of pulses to be generated np, the time 
duration of each rectangular pulse Tr, the average pulse repetition period in seconds Ts, the 
amplitude and frequency of the sinusoidal modulating signal, A and f0. Step One contains 
the code for generating the PPM signal. PPM is implemented in Function 3.1 by introducing 
vector Mtot, which collects all the time shifts that must be applied to the pulses. 

%
% FUNCTION 3.1 : "cp0301_PPM_sin" 
%
% Generation of a PPM-UWB signal in the case of a  
% sinusoidal modulating signal and rectangular pulses 
%
% Transmitted power is fixed at 'Pow' 
% The signal is sampled with frequency 'fc' 
% 'np' is the number of generated pulses 
% 'Ts' is the average pulse repetition period 
% Each rectangular pulse has time duration 'Tr' 
% The modulating signal is a sinusoid with 
% amplitude 'A' and frequency 'f0' 
%
% The function returns the generated signal 'Stx' 
% and the corresponding sampling frequency 'fc' 
%
% Programmed by Guerino Giancola 
%

function [Stx,fc]=cp0301_PPM_sin; 

% ---------------------------- 
% Step Zero - Input parameters 
% ---------------------------- 

Pow = -30;  % average transmitted power (dBm) 
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fc = 1e11;  % sampling frequency 

np = 10000; % number of pulses 

Tr = 0.5e-9;% time duration of the rectangular pulse [s] 

Ts = 2e-9;  % average pulse repetition period [s] 
A = Ts/2;   % maximum time shift provided by the 
            % modulation [s] 
f0 = 5e7;   % frequency of the modulating signal [Hz] 

% ---------------------------------------- 
% Step One - Simulating transmission chain 
% ---------------------------------------- 

dt = 1 / fc;         % sampling period 
sTs = floor(Ts/dt);  % number of samples per frame  
sTot = sTs * np;     % total number of samples 
Stx = zeros(1,sTot); % output vector 

% pulse position modulation 
j = (0:1:np-1); 
M0 = A.*cos((2*pi*f0).*(j.*Ts)); 
M1 = j.*Ts; 
Mtot = M0 + M1; 
for k = 1 : np 
  Stx(1+floor(Mtot(k)/dt))=1; 
end 

% shaping filter 
sP = floor(Tr/dt);   % number of samples per pulse 
                     
p0 = (1/sqrt(Tr)).*ones(1,sP); % energy normalized rect 
power = (10^(Pow/10))/1000;    % average transmitted power 
                               % (watt) 
Ex = power * Ts;        % energy per pulse 
ptx= p0 .* sqrt(Ex);    % pulse waveform 

Stx = conv(Stx,ptx); 
Stx = Stx(1:sTot); 
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Function 3.2    PSD 

Function 3.2 is composed of two steps. Step One contains the code for evaluating the PSD. 
Step Two contains the code for the graphical representation of the PSD. Note that Function 
3.2 makes use of the MATLAB function fftshift(x), which shifts zero frequency 
components of x to the center of the spectrum. The command fftshift(x) is useful for 
visualizing double-sided Fourier transforms. 

%
% FUNCTION 3.2 : "cp0301_PSD" 
%
% Evaluates the PSD of the 
% signal represented by the input vector 'x' 
% The input signal is sampled with frequency 'fc' 
%
% This function returns the PSD ('PSD') 
% and the corresponding frequency resolution ('df') 
%
% Programmed by Guerino Giancola 
%

function [PSD,df]=cp0301_PSD(x,fc) 

% -------------------------------- 
% Step One - Evaluation of the PSD 
% -------------------------------- 

dt=1/fc; 
N=length(x); 
T=N*dt; 
df=1/T; 
X = fft(x); 
X = X / N; 
mPSD=abs(X).^2/(df^2); 
PSD = fftshift(mPSD); 
PSD = (1/T).*PSD; 

% ----------------------------------- 
% Step Two - Graphical representation 
% ----------------------------------- 

frequency = linspace(-fc/2,fc/2,length(PSD)); 
PF=plot(frequency,PSD); 
set(PF,'LineWidth',[2]); 
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AX=gca; 
set(AX,'FontSize',12); 
X=xlabel('Frequency [Hz]'); 
set(X,'FontSize',14); 
Y=ylabel('Power Spectral Density [V^2/Hz]'); 
set(Y,'FontSize',14); 
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Function 3.3    Analog PPM with Generic Periodic 
Modulating Signals 

Function 3.3 is composed of two steps. Step Zero contains all the parameters characterizing 
the signal to be generated, that is, the average transmitted power in dBm Pow, the sampling 
frequency fc, the number of pulses to be generated np, the time duration of each rectangular 
pulse, Tr, the average pulse repetition period in seconds Ts, and finally, parameters A, B, and 
Tp, characterizing the modulating signal (see Checkpoint 3–2). Step One contains the code 
for generating the PPM signal. Similarly to Function 3.1, the PPM scheme is implemented 
by introducing vector Mtot which collects all the time-shifts that must be applied on the 
transmitted pulses (see also Function 3.1). 

%
% FUNCTION 3.3 : "cp0302_PPM_periodic" 
%
% Generation of a PPM-UWB signal in the case of a generic 
% periodic modulating signal and rectangular pulses 
% Modulating signal is chosen to be characterized by 
% an exponential decay exp(-t) 
%
% Transmitted power is fixed at 'Pow' 
% The signal is sampled with frequency 'fc' 
% 'np' is the number of generated pulses 
% 'Ts' is the average pulse repetition period 
% Each rectangular pulse has time duration 'Tr' 
% The periodic signal is characterized by 
% shape parameters 'A' and 'B', and period 'Tp' 
%
% The function returns the generated signal 'Stx' 
% and the corresponding sampling frequency 'fc' 
%
% Programmed by Guerino Giancola 
%

function [Stx,fc]=cp0302_PPM_periodic; 

% ---------------------------- 
% Step Zero - Input parameters 
% ---------------------------- 

Pow = -30;    % average transmitted power (dBm) 

fc = 1e11;    % sampling frequency 
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np = 10000;   % number of pulses 

Tr = 0.5e-9;  % time duration of the rectangular pulse [s] 

Ts = 2e-9;    % average pulse repetition period [s] 

A = 1e-9;     % first shape parameter 
B = 10;       % second shape parameter  
Tp = 20e-9;   % period of the modulating signal [s] 

% ---------------------------------------- 
% Step One - Simulating transmission chain 
% ---------------------------------------- 

dt = 1 / fc;        % sampling period 
sTs = floor(Ts/dt); % number of samples per frame  
sTot = sTs * np;    % total number of samples 
Stx = zeros(1,sTot);% output vector 

% PPM 
j = (0:1:np-1); 
M0 = A.*exp(-(B/Tp).*mod(j*Ts,Tp)); 
M1 = j.*Ts; 
Mtot = M0 + M1; 
for k = 1 : np 
  Stx(1+floor(Mtot(k)/dt))=1; 
end 

% shaping filter 
sP = floor(Tr/dt);       % number of samples per pulse 
                          
p0 = (1/sqrt(Tr)).*ones(1,sP); % energy normalized rect 
power = (10^(Pow/10))/1000;    % average transmitted power 
                               % (watt) 
Ex = power * Ts;        % energy per pulse 
ptx= p0 .* sqrt(Ex);    % pulse waveform 

Stx = conv(Stx,ptx); 
Stx = Stx(1:sTot);  
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Function 3.4    Analog PPM with Random Modulating 
Signals 

Function 3.4 is composed of two steps. Step Zero contains all the parameters characterizing 
the signal to be generated, that is, the average transmitted power in dBm Pow, the sampling 
frequency for representing the signal fc, the number of pulses to be generated np, the time 
duration of each rectangular pulse Tr, the average pulse repetition period in seconds Ts, and 
the standard deviation of the Gaussian distributed modulating signal sigma. Step One 
contains the code for generating the PPM signal. The PPM scheme is implemented by 
introducing vector Mtot, which collects all time shifts that must be applied on the 
transmitted pulses (see also Functions 3.1 and 3.3). The generation of the random shifts is 
performed by means of the MATLAB function randn(1,N), which generates a vector of N 
random entries, chosen from a normal distribution with mean zero, variance one, and 
standard deviation one. To avoid pulse overlapping, the values of the random shifts are 
limited within the range [0,Ts-Tr]. 

%
% FUNCTION 3.4 : "cp0303_PPM_random" 
%
% Generation of a PPM-UWB signal in the case of 
% a random modulating signal and rectangular pulses 
% The modulating signal is characterized by 
% a normal distribution 
%
% Transmitted Power is fixed at 'Pow' 
% The signal is sampled with frequency 'fc' 
% 'np' is the number of generated pulses 
% 'Ts' is the average pulse repetition period 
% Each rectangular pulse has time duration 'Tr' 
% The random modulating signal is characterized 
% by standard deviation 'sigma' 
%
% The function returns the generated signal 'Stx', 
% the corresponding sampling frequency 'fc', 
% and vector 'M0' of all the PPM time shifts 
%
% Programmed by Guerino Giancola 
%

function [Stx,fc,M0]=cp0303_PPM_random; 

% ---------------------------- 
% Step Zero - Input parameters 
% ---------------------------- 
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Pow = -30;    % average transmitted power (dBm) 

fc = 1e11;    % sampling frequency 

np = 10000;   % number of pulses 

Tr = 0.5e-9;  % time duration of the rectangular pulse [s] 

Ts = 2e-9;    % average pulse repetition period [s] 

sigma = 0.1e-9;  % standard deviation of the modulating 
signal 

% ---------------------------------------- 
% Step One - Simulating transmission chain 
% ---------------------------------------- 

dt = 1 / fc;            % sampling period 
sTs = floor(Ts/dt);     % number of samples per frame  
sTot = sTs * np;        % total number of samples 
Stx = zeros(1,sTot);    % output vector 

% PPM 
j = (0:1:np-1); 
M0 = max(zeros(1,np), min((Ts -Tr).*... 
   ones(1,np),((Ts/2)+sigma.*randn(1,np)))); 
M1 = j.*Ts; 
Mtot = M0 + M1; 
for k = 1 : np 
  Stx(1+floor(Mtot(k)/dt))=1; 
end 

% shaping filter 
sP = floor(Tr/dt);             % number of samples per 
                               % pulse 
p0 = (1/sqrt(Tr)).*ones(1,sP); % energy normalized rect 
power = (10^(Pow/10))/1000;    % average transmitted power 
                               % (Watt) 
Ex = power * Ts;        % energy per pulse 
ptx= p0 .* sqrt(Ex);    % pulse waveform 

Stx = conv(Stx,ptx); 
Stx = Stx(1:sTot); 

 


