
475

C H A P T E R 2 2

Session Management

The HTTP session API is an essential component in constructing interactive web sites. The ses-
sion API of the Java Servlet specification provides a mechanism for associating a series of
requests with a specific browser or user. This is required because the Hypertext Transfer Protocol
(HTTP) employed for web browser to web server requests is a stateless protocol. As a result, a
web server has no means of associating a series of requests with a specific browser or user.
This chapter will expand on the coverage of HTTP session from Chapter 4, “Build and Deploy
Procedures,” by providing a brief overview of HTTP session and will then discuss the WebSphere
Application Server (WAS) session management implementation, as well as the specifics of con-
figuring the various session management options that exist in WAS.

Introduction to HTTP Session
It’s almost impossible to visit any interactive web site today that does not make use of the HTTP
session API. By providing multiple options for tracking a series of requests and associating those
requests with a specific user, HTTP session allows applications to appear dynamic to application
users. The most often cited example of HTTP session is the creation of a “shopping cart” for
shoppers on a web site. In this example, information associating the user and their prior naviga-
tion through the web site and their selections are stored as objects in HTTP session. Once the
users are ready to check out from the web site and purchase their selections, the application typi-
cally constructs a page composed of all the selected items stored in the “shopping cart.”1 By
maintaining application state between browser requests, HTTP session overcomes the default
stateless behavior for HTTP requests.

1 It’s worth noting that this is actually a poor use of a session. Sessions are not designed for robust “permanent” storage.
By storing the shopping cart in a session, if there were a client failure (perhaps the browser crashed), the user would
lose his or her entire shopping cart. That’s a great way to lose a sale. Important information is better stored in a data-
base directly.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 475

The HTTP session API component of the Java Servlet specification provides a mechanism
for web applications to maintain a user’s state information, and this mechanism addresses some
of the problems with other options for maintaining state, such as those based solely on cookies.
This mechanism, known as a session, allows a web-application developer to maintain user state
information on the server, while passing minimal information back to the user to track the session
via one of three options: cookies, URL encoding, and SSL sessions.

Session Tracking
In order to associate the user’s session with a particular browser, WAS needs to maintain some
form of association with the client browser. There are several techniques available, and we’ll
detail them here. It is important to note that while WAS allows for great flexibility in choosing the
tracking mechanism, cookies are by far the best approach.

Cookies
The use of a cookie for tracking session state is the default in WAS. This option differs from a
pure cookie-based solution in that the HTTP session uses a single cookie named JSESSIONID
that contains the session ID, which is used to associate the request with information stored on the
server for that session ID, while an entirely cookie-based solution would employ multiple cook-
ies, each containing possibly sensitive user state information (account number, user ID, etc.).
With HTTP session, all attributes associated with the user’s request are stored on the server. Since
the only information transmitted between the server and the browser is the session ID cookie,
which has a limited lifetime, HTTP session can provide a much more secure mechanism than
cookies for tracking application state when configured in conjunction with SSL.

The mechanics of using a cookie for tracking session are depicted in Figure 22-1. A request
arrives at the server requiring that a session be created as the result of a getSession() method call.
The server creates a session object, associating a session ID with it. The session ID is transmitted
back to the browser as part of the response header and stored with the rest of the cookies in the
browser. On subsequent requests from the browser, the session ID is transmitted as part of the
request header, allowing the application to associate each request for a given session ID with
prior requests from that user.

The interaction between browser, application server, and application are all handled trans-
parently to the end user and the application program, aside from the getSession() method call
inside the application. The application and the user need not be, nor are they likely aware of the
session ID provided by the server.

476 Chapter 22 Session Management

27 Barcia_22.qxd 07.22.04 2:30 PM Page 476

Figure 22-1 Browser-session manager cookie interaction.

Unfortunately, not all users configure their browsers to accept cookies. Often, this is related
to security concerns over accepting a cookie into the browser. Most often the restrictions on
accepting a cookie into the browser are the result of concerns about persistent cookies. Persistent
cookies remain in the browser after the browser is closed and allow a web site to “remember” you
on ensuing visits. Most important in terms of presenting a risk, persistent cookies may contain
personal information about you, which is then accessible to any application that has access to the
cookie folder in your browser. However, WAS generates a session cookie that exists only until the
browser has been closed and is used only to ensure that you are “recognized” as you move from
page to page within the web site. This technique is not generally considered to be a security or
privacy concern. In fact, most modern browsers can be configured to accept all session cookies
while still blocking persistent cookies.

Finally, in a WAS environment with security enabled, disabling all cookies is actually
counterproductive since the most often used authentication mechanism is LTPA (Lightweight
Third Party Authentication), and LTPA relies on creating a token (cookie) that is used to represent
the identity of the authenticated user to the browser. In any event, other options exist for main-
taining an application state such as URL rewriting, although they are not recommended.

URL Rewriting
Most often, URL rewriting is employed when a browser is configured not to accept cookies. URL
rewriting stores the session identifier in the page returned to the user. WAS encodes the session
identifier as a parameter on any link or form the user submits from a web page. This option
requires that the Servlet code be modified to include either an encodeURL() or encodeRedirec-
tURL() method. When a browser user clicks on a link that utilizes one of these methods, the
session identifier passes into the request as a parameter, with the result shown in Figure 22-2,
where the session ID is appended to the URL for the web page.

Session Tracking 477

Web Browser

Session ID
yjC_Ttd0r6rlaqmwnKYgSeJ
Time 1064947524706

Server

Browser Cookie List
JSESSIONID Cookie
Session ID
yjC_Ttd0r6rlaqmwnKYgSeJ
Time 1064947524706

Session ID
yjC_Ttd0r6rlaqmwnKYgSeJ
Time 1064947524706

Session Cache
Session ID
yjC_Ttd0r6rlaqmwnKYgSeJ
Time 1064947524706
Session Attributes…….

27 Barcia_22.qxd 07.22.04 2:30 PM Page 477

Figure 22-3 Session tracking mechanism dialog.

Fortunately, the WAS session management implementation can recognize when a browser
is configured to accept cookies and will use this option instead of URL rewriting in cases when
both cookies and URL rewriting are enabled.

SSL ID Tracking
Another alternative tracking mechanism is the Secure Socket Layer (SSL) ID that is negotiated
between the web browser and the HTTP server. While secure, this alternative presents a number
of disadvantages. Since this ID is negotiated between the browser and the HTTP server, the fail-
ure of the HTTP server results in the loss of this ID. In a clustered environment, the IP sprayer
used to direct requests to the HTTP servers must provide some sort of affinity mechanism so that
browser requests return to the HTTP server that negotiated the ID with the browser. Additionally,
in a clustered environment with multiple application servers, either cookies or URL rewriting

478 Chapter 22 Session Management

Figure 22-2 URL rewriting example in browser.

The requirement that the application developer write additional code for a Servlet or JSP
presents a major disadvantage for URL rewriting when compared to other available session track-
ing mechanisms. Additionally, URL rewriting limits the flow of site pages exclusively to dynam-
ically generated pages (those generated by Servlets or JSPs). While WAS can insert the session
ID into dynamic pages, it cannot insert the user’s session ID into static pages (.htm or .html
pages). As a result, after the application creates the user’s session data, the user must visit dynam-
ically generated pages exclusively until he or she finishes with the portion of the site requiring
sessions. URL rewriting forces the site designer to plan the user’s flow in the site to avoid losing
his or her session ID. Lastly, the system administrator must configure WAS to enable URL rewrit-
ing by checking the box shown in Figure 22-3.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 478

must be enabled for affinity between the HTTP server and application server. Lastly, in a fashion
similar to URL rewriting, the administrator must also explicitly configure WAS to employ this
option by selecting this option on the configuration dialog (refer to Figure 22-3).

The Session API
The interface declaration of HttpSession contains over a dozen methods in all. Minimally, an
application will likely call three of these methods. The first of these is the getSession() method,
which is used to either create a session object if one does not already exist or to associate a
request with an existing session. In order to store information in the session object, the
setAttribute() method is called, and the application retrieves information that is stored via a call to
the getAttribute() method. Often overlooked in an application is the invalidate() method call.
There should also be some provision in the application to invalidate the session object once the
application no longer requires the session:

session.invalidate() ;

Unless configured to never do so, the web container will eventually invalidate the session
object once the inactive interval for the session is reached. When the application explicitly invali-
dates the session, it reduces the overhead on the runtime of tracking sessions that are no longer
required. You can also minimize the size of session objects prior to invalidation by removing
attributes no longer required by explicitly calling the removeAttribute() method in the application.

Another constraint exists for applications that implement distributable sessions, which are
sessions that can be handled by more than one web container, typically in order to provide for
failover. In this case, all objects placed into HttpSession via the setAttribute() method must
be serializable. WebSphere Application Server does provide for exceptions to this requirement
for some J2EE objects that are not serializable:

• javax.ejb.EJBObject

• javax.ejb.EJBHome

• javax.naming.Context

• javax.transaction.UserTransaction

The specifics on how WAS overcomes this restriction vary for each of these objects. Except
for UserTransaction, which requires a WebSphere specific public wrapper object, the mechanism
employed is transparent to the application.

It is best if all objects placed into HTTP session are serializable or you’ll experience a
java.io.NotSerializable Exception, as shown in Code Snippet 22-1. This provision ensures trans-
parent deployment in both non-clustered and clustered environments, without requiring applica-
tion changes for the latter. It’s also important to note that it’s not sufficient that the application
simply implement the java.io.Serializable interface; the objects must actually be serializable,
which is an important but subtle distinction that we’ll return to later.

The Session API 479

27 Barcia_22.qxd 07.22.04 2:30 PM Page 479

WAS Session Management Configuration
WebSphere Application Server V5 provides a large number of options for configuring the behav-
ior of the session manager portion of the runtime. The default is for these options to apply to all
applications running inside a given application server, but they can also be configured on a case-
by-case basis for each enterprise application running on an application server or web applications
within an enterprise application. By tuning at the application level, you ensure that the applica-
tion behaves in the same fashion, regardless of the configuration of the application server. Cus-
tomization of the session manager for a web application or enterprise application is performed by
selecting the Overwrite Session Management check box for the enterprise application or web
application, as shown in Figure 22-4.

480 Chapter 22 Session Management

Figure 22-4 Overwriting session management for an EAR or web application.

The Configuration tab depicting the Overwrite property is located on the Session Manager
dialog for both the enterprise application and web applications, which is reached from the admin-
istration console by navigating to Applications > Enterprise Applications > Additional Prop-
erties > Session Management. In cases where you want to overwrite the properties for a web
application, the dialog is reached by selecting the Web Modules > Session Management for a
specific enterprise application. All of the options described here can be configured specifically to
a web application or enterprise application, so as an example, one application in an application
server could persist session to a database, while other applications could use memory-to-memory
replication.

Local and Distributed Session Options
The default with WAS V5 is to store the HTTP session object locally as part of the application
server JVM. WAS also provides for distributed sessions that can be replicated in memory to other
application servers or persisted to a database. Distributed sessions provide for failover of the ses-
sion object to a surviving application server in the case of an application server outage. Through
the use of cookies or URL rewriting, WAS provides affinity so that requests from a specific
browser return to the application server where the session object was initially created. The con-
figuration options common to both local and distributed sessions are depicted in Figure 22-5,
though the meaning for some of these varies on whether local or distributed sessions are in use.

This dialog is reached by navigating to Application Servers > application server name >
Web Container > Session Management in the administration browser client.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 480

Figure 22-5 Session management configuration.

Maximum Session Count and Allow Overflow

The next two parameters on this dialog are for the maximum number of session objects stored in
memory and whether the maximum can be exceeded. This allows you to limit the memory foot-
print of sessions stored locally or in local cache when distributed sessions are in use. When local
sessions are in use, the session count specifies the number of sessions that are stored in memory,
assuming that you do not specify “Allow Overflow.” When Allow Overflow is specified and local
sessions are in use, a second session memory table is constructed, and all sessions greater than
the specified maximum are stored there, up to the available memory for the JVM. For distributed
sessions, when Allow Overflow is specified, the session manager employs a Least Recently Used
(LRU) algorithm so that only the most recently used sessions, up to the maximum count, are
kept in the local cache, with the remainder of the session objects either replicated in memory to
a remote application server or persisted to a database depending on your configuration. Specify-
ing Allow Overflow should probably never be configured. Doing so removes the limiting mecha-
nism that it provides. As a result, the number of session objects could grow to consume the entire
application server JVM, either as the result of a spike in load or as the result of a denial of service
attack.

WAS Session Management Configuration 481

27 Barcia_22.qxd 07.22.04 2:30 PM Page 481

Session Timeout

As its name implies, the Session Timeout parameter specifies how long an unused session exists
before it times out and is removed from the memory table for local sessions or the cache for
distributed sessions. This setting is an important one from a performance perspective because of
the memory impact that unused sessions can have on the application server JVM until they are
removed. In the same vein, specifying “No Timeout” can result in a memory leak since the ses-
sion objects are never eligible for garbage collection by the JVM, unless the application explicitly
calls session.invalidate(). As a result, No Timeout is generally not recommended, though it might
be appropriate for a small percentage of applications where the user population is very small and
stable. In order to minimize the memory impact of session objects, this setting should be set as
low as practical in order to satisfy application requirements and use patterns. For applications
with a large number of short-lived visits of perhaps a few minutes, a timeout of 5–10 minutes
would likely be appropriate. Some web sites even provide a timer to show when the current ses-
sion will expire and a logout function that invalidates the session.

Session Security Integration

When “Security Integration” is enabled, WAS checks the user ID of the HTTP request against the
user ID for the session object as part of the processing of the request.getSession() method. If the
check fails, an UnauthorizedSessionRequestException is thrown. When used in conjunction with
SSL, Security Integration can be used to prevent “man in the middle” intrusions. Thus, when
architecting a secure infrastructure, it’s recommended that this option be employed.

Serialize Session Access

This option is somewhat misnamed since, when specified, the session manager actually synchro-
nizes access to a session inside a JVM in order to provide thread-safe access to the session object.
Prior to WAS V3.5.3, this was the default for session access, but in order to improve performance,
the responsibility for thread safety was shifted from the runtime to the application developer. For
best performance, it’s recommended that applications continue to take appropriate measures
inside the application to ensure thread safety rather than relying on this option. This means that
application code must be careful when modifying a session to ensure that multiple threads don’t
simultaneously modify the same session object in conflicting ways. This is most likely to occur in
web applications that use frames where multiple Servlets are executing on behalf of the same
client simultaneously. This is fairly easy to prevent by ensuring that only one of the Servlets in the
frame modifies the session and the others only read from it.

Shared Session Context

Before leaving the session management options, there is one additional option that can be config-
ured in the Application Server Toolkit (ASTK), WebSphere Studio, or the Application Assembly
Tool (AAT). This is a J2EE extension that allows for the session object to be shared across the
multiple Servlet contexts inside a single enterprise application. While this is a useful option when

482 Chapter 22 Session Management

27 Barcia_22.qxd 07.22.04 2:30 PM Page 482

migrating pre-J2EE applications (Servlet 2.1) to J2EE compliance, we recommend that this be
avoided if at all possible. Sharing session in this fashion tends to lead to large session objects that
in turn are usually detrimental to application performance. This option is enabled in the ASTK or
Studio by selecting the check box indicated in Figure 22-6.

WAS Session Management Configuration 483

Figure 22-6 Session sharing option in ASTK.

Distributed Sessions
As previously noted, distributed sessions provide for failover in case of application server outage,
allowing an end user to continue using a web site without any loss of an application state that
could require a re-login or navigation through previously viewed pages. While local sessions only
provide for a single copy of the session object, distributed sessions provide at least one copy of
the session object in addition to the local copy that is cached in the application server JVM. It’s
worth mentioning that aside from ensuring that the information placed into the HTTP session is
serializable, there’s no impact to application development when choosing to use this option.

Session Affinity

Strictly speaking, session affinity isn’t an option; it’s the default behavior for WAS, but before
discussing the other session-management settings in WAS, it’s important to have some under-
standing of how WebSphere Application Server implements this feature. Session affinity allows
WAS to return requests associated with a given browser and session object back to the same
application server instance in a clustered environment. This in turn aids performance by allowing
sessions to be accessed from the cache in the application server when distributed sessions are in

27 Barcia_22.qxd 07.22.04 2:30 PM Page 483

use and allows local sessions to be utilized in cases where session failover is not a requirement.
Without affinity, browser requests would be distributed across all application servers in a cluster.
The impact of requests being distributed in this fashion would depend on whether distributed or
local sessions were in use. In an environment using distributed sessions, the application server
would make an out-of-process request to retrieve the session object from the copy of the session
object stored either in memory in another application server or in a database. In an environment
employing local sessions, the getSession() method call in the application code would result in the
creation of a new session object, with the loss of any data previously stored in session for that
client.

In a clustered environment, WAS provides affinity to a server by appending the server ID to
the session ID that is contained in the JSESSIONID cookie or URL rewrite. This information is
used by the HTTP server plug-in to dispatch the request to the correct server. This can be seen by
looking at the request header for the HTTP request via a programmatic call to request.
getHeader(“Cookie”), which will return the JSESSIONID cookie with a result similar to
0001kJLEJhMoitCnI0QTgAo5z8z:v1efc643. The first four characters are the cache ID, fol-
lowed by the session ID, then a “:” for a separator, followed by the server clone ID. In this case,
v1efc643 is the server clone ID, which corresponds to the application server defined in the plugin-
cfg.xml file with the Server CloneID=“v1efc643” property.

Distribution Mechanisms

In order to maintain session state across multiple application servers, some mechanism for
distribution of the session object is required. That way, if one application server should fail, when
the request is routed to another application server, that server can obtain the state from a remote
persistent store. In looking at the link to the Distributed Environment Settings dialog (see Figure
22-7), you’ll note the word “persistence,” which is probably not the best term for this, but it has
been used historically, so we continue to use it here, even though only one of the options provides
persistence. Keep in mind that sessions are not intended for long-term stable storage. The lifetime
of their “persistence” is essentially the lifetime of the client browser. In any case, WAS provides
two persistence mechanisms for maintaining session state: database and memory to memory. The
dialog for configuration of Distributed Sessions is accessed from Distributed Environment Set-
tings under the Additional Properties heading at the bottom of the session configuration
dialog, as shown in Figure 22-7.

484 Chapter 22 Session Management

Figure 22-7 Link to Distributed Environment Settings dialog.

This in turn leads to the dialog depicted in Figure 22-8, where the options for Distributed
Sessions are specified.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 484

Figure 22-8 Session distribution options.

The default of “None” is depicted, with options for “Database” and “Memory to Memory
Replication.” If your web site requires that application state be maintained in the event of a server
outage, you will want to provide for failover by selecting one of the two options. The decision on
which option is appropriate for your environment will depend on several factors, which we’ll
explore, but first let’s discuss how each of these options is implemented and configured.

Database Session Persistence

When a database is used for session failover, the WAS session manager uses a database table to
store a copy of the session object. This is depicted in Figure 22-9. Each application server main-
tains a local cache of the session object with a copy maintained in the database.

WAS Session Management Configuration 485

ID Attribute

bxykbpul7kIeu8AW5hEXVjd CustName John Doe

g5Bm9rLONiiUlR5Q5g5Cpmd CustName Bob Smith

ID Attribute

g5Bm9rLONiiUlR5Q5g5Cpmd CustName Bill Jones

vDJ0qC6G_WE6GIuHlzOm2rO CustName Jane Doe

Session Cache

Session Cache

Application Server

Application Server

Sessions Table

ID Attribute
bxykbpul7kIeu8AW5hEXVjd CustName John Doe

Mb_A9pLac_tNRvqodlkJnij CustName Bill Jones

g5Bm9rLONiiUlR5Q5g5Cpmd CustName Bob Smith

vDJ0qC6G_WE6GIuHlzOm2rO CustName Jane Doe

Figure 22-9 Database session persistence.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 485

In the event that one of the application servers were to go offline, requests would be
directed to the surviving application servers, and when the application calls the getSession()
method, the session object is retrieved from the database and placed in the local cache.

By selecting the Database option shown in Figure 22-8, the session database dialog is
displayed, as shown in Figure 22-10.

486 Chapter 22 Session Management

Figure 20-10 Configuring a database for session persistence.

At a minimum, you need to supply a JNDI name for a data source that corresponds to a
database to be used, as well as the database user ID and password to be used for accessing the
database. Note that when specifying the data source, it should be a non-XA data source. This is
because the session manager runs with the JDBC “autocommit on” parameter, and some XA data
sources don’t support the use of “autocommit on.” Additionally, the update of the session data-
base is not transactional, nor will the session database participate in transactions with other
resources, so there is no need for using an XA data source with the session manager.

The default maximum pool size of 10 is a good starting point when sizing the connection
pool for database persistence. Unless the session object is quite large or your site is handling
thousands of concurrent users, it’s unlikely that the pool will need to be much larger. In most
cases, the default maximum will suffice, or perhaps a moderate increase (to 22–30) may be
required. Recall that a connection pool is created for each application server instance, so three or
four application servers result in three to four times that many total connection objects that are
accessing the database.

Depending on the size of the session object, you may find it beneficial to use one of the
other options available on this dialog. We’ll discuss determining the size of the session object
later in this chapter, but for large session objects, meaning those greater than 4KB in size, the
options available can be used to improve performance.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 486

When DB2 is used as the database, the page size can be adjusted from the default of 4KB to
8KB, 16KB, and 32KB. This allows the varchar database column used for the session object to
fit onto a single database page. The result is faster performance for session objects that are
approximately 7KB, 15KB, and 31KB in size.

The multi-row schema option can be employed to improve performance in some cases for
large session objects, regardless of the database in use. With multi-row sessions, each attribute in
the session object is stored in its own row in the database, instead of the default of storing all
attributes in one column in a single row. This can be used to improve performance in two ways.
The first is for non-DB2 databases, where WAS makes no provision to adjust the table page size.
If each attribute stored in session is smaller than the page or block size for the database, specify-
ing multi-row allows each row to be contained in a single database block. This can be combined
with the optional write setting “only updated attributes” so that only the rows corresponding to
each updated attribute are written to, instead of a write to all rows.

The other advantage to using multi-row sessions is that they allow you to have a session
object larger than 2MB in size. Such extremely large session objects are most definitely not rec-
ommended from a performance and failover perspective, but WAS does provide a mechanism for
dealing with objects of this size.

Memory-to-Memory Replication

As implied by the name, memory-to-memory replication stores a copy of the session object in the
memory of one or more application server processes. In this mode, the WAS Distributed Replica-
tion Service (DRS) is used to replicate session information among application servers. Since
DRS is used by multiple WAS runtime components, there’s a discussion of the DRS architecture
and configuration options in Chapter 20, “WAS Network Deployment Architecture,” including
instructions that walk through configuring DRS as a failover mechanism for HTTP session. As a
result, if you plan to use DRS/Internal Messaging for an HTTP session failover, you should refer
to that chapter. In order not to duplicate content, all we’ll provide here is a brief review of the
components in DRS and their role in HTTP session management:

• Replicator—The data transfer component of DRS running in an application server.

• Replication domain—The set of replicators that are connected together to share data.

• Session manager—The web container component that manages HTTP session objects.

• Replication mode—A server is a “client” if it only forwards changes to other session
managers, while it is considered a “server” if it only receives changes from other session
managers, and “both” (or peer to peer) if it does both.

• Group—A session object is assigned to a group; by default, all session managers listen
to all groups, but you can partition where a session object is replicated to.

• Single replica—An alternative to groups in which, as the name implies, the session
object is only replicated once.

WAS Session Management Configuration 487

27 Barcia_22.qxd 07.22.04 2:30 PM Page 487

There are four configuration options for memory to memory replication:

• Peer-to-peer, where each application server has a “replicator” process and stores a copy
of the session object for all other application servers in the domain.

• Peer-to-peer with standalone replicators, where each application server stores a copy of
the session object for all other application servers in the domain, but additional dedi-
cated application servers run the replicator process.

• Client-server, where the application servers running the application have just a local
copy of the session object for requests to that application server, and dedicated applica-
tion servers store session copies and run the replicator process.

• Client-server with dedicated replicators and dedicated stores, where each application
server maintains just the session object for requests to that application server, with
application servers running the replicator process and additional application servers
storing copies of the session objects for the replication domain.

Memory-to-memory replication provides failover in much the same manner as with data-
base persistence. When a request arrives at an application server and the session object is not in
the local cache, the session manager component of the runtime will attempt to retrieve it from the
local or remote replica.

In order to configure the session manager to use memory-to-memory replication, a replica-
tion domain must be defined. This is somewhat analogous to creating a database when database
persistence is to be employed and must be performed prior to specifying “Memory to Memory
Replication” in the Distributed Session dialog shown in Figure 22-8.

Once you specify memory to memory as the mechanism for distributing sessions, the steps
for configuring and tuning DRS are the same as those described in Chapter 20.

Before leaving the topic of distribution mechanisms, let’s give some consideration to what
might lead you to choose one option over the other. Performance will not be a factor since 95% of
the cost of replicating session is serialization/deserialization of the session object, which must
occur regardless of how the session is distributed (memory to memory or database). Additionally,
as the size of the session object increases, performance degrades, again about equally for both
session distribution options. Instead, the decision will be based partially on how the two tech-
nologies differ:

• With a database, you actually persist the data (to disk), so a highly available database
server can survive a cascading failure, while using application servers as session stores
and replicators for this purpose may not.

488 Chapter 22 Session Management

27 Barcia_22.qxd 07.22.04 2:30 PM Page 488

• In the case of a “gold standard” (two identical cells/domains), a highly available data-
base can pretty much assure session failover between domains, while with memory to
memory, there can only be a single replicator common to the two cells; hence, it
becomes a single point of failure (SPOF).2

Thus, for configurations where cross-cell session failover is a requirement, a highly avail-
able database is the only option for eliminating a SPOF. Note that while sharing sessions across
cells is supported, this is not generally recommended. By sharing state between cells, it makes it
significantly more difficult to independently upgrade components (application and WAS) in the
two cells.

In the end, the decision then becomes based on what technology you are most comfortable
with and which delivers the required quality of service for your availability requirements.

Custom Tuning Parameters for HTTP Session

The Custom Tuning Options dialog controls the frequency and type of updates that the session
manager makes to either the database or to memory-to-memory replicas. This dialog is reached
by selecting Custom Tuning Parameters on the bottom of the Distributed Environment Set-
tings dialog (Figure 22-8) and is depicted in Figure 22-11. In prior versions of WebSphere Appli-
cation Server, the default was to update the session object at the end of the Servlet service
method, and while this remains an option in V5 (“medium tuning” in the Tuning dialog), the
default in WAS V5 is for a time-based write of the session updates. As of V5.02 (and above), the
default time interval is every 10 seconds; earlier WAS V5 releases defaulted to 120 seconds.3

While time-based writes offer better performance than writing at the end of the Servlet ser-
vice method, they also introduce the possibility of inconsistent application state. By deferring
updates to the end of the specified time interval, an application could appear to move “backward”
in state in the event of an application server failure during the specified update interval. Session
changes made between updates will be lost while the end user will continue to use the web site. It
is possible that the application’s session state could move backward in time while the web page
being viewed does not reflect this, potentially resulting in problems. Tests by the WebSphere per-
formance lab have shown that a 10-second interval provides essentially all of the performance
benefit of longer intervals, while limiting the vulnerability of inconsistent session state.

While requiring more resources (CPU, I/O), the update of the session object at the end of
each Servlet service method ensures data consistency in the event of the failover of requests from
one application server to another.

WAS Session Management Configuration 489

2 This is because all the application servers (in both cells) must be defined as “clients” to that server, and the admin con-
sole only gives you the ability to provide one replicator IP address and port at a time on a server, so if that replicator
were to go down, then it would amount to a SPOF (single point of failure). This differs from the default behavior in
a single cell, where the multiple application servers in a replication domain can be configured in a “client server”
configuration.

3 The longer default interval was simply the result of limited testing and development resources that were available
prior to the V5.0 release. The 10-second interval is a recommended starting point in V5.0 and V5.01, though you may
want to tune it for your application and environment.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 489

Figure 22-11 Session Write Frequency Tuning dialog.

In order to avoid possible application state inconsistencies, the authors favor the Medium
tuning setting shown in Figure 22-11 since it minimizes the cost of writing updates by only writ-
ing the session attributes that have been updated.

You can further refine the tuning levels depicted by selecting Custom Settings, which
invokes the dialog shown in Figure 22-12.

490 Chapter 22 Session Management

Figure 22-12 Session Tuning Custom Settings.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 490

The primary options of interest here are the ability to specify a manual update, though this
requires that the application code use the IBMSession class, which is an extension to the HTTP
session API, for managing sessions. With a manual update, the session manager only writes the
session data and last access time to the session replica when the application invokes the sync()
method in the IBMSession class. The session data that is written out to the replica is controlled by
the write contents option selected. If the Servlet or JSP terminates without invoking the sync()
method, the session manager saves the contents of the session object into the session cache (if
caching is enabled) but does not update the modified session data in the session replica. The ses-
sion manager will only update the last access time in the replica asynchronously at a later time.
While this option requires using a non-J2EE extension and, as a result, is not portable to other
application servers, it does provide the most control over writing updates of the session object.
Use of this option is most beneficial for applications that only read or update the session object
rarely. If changes in the session object don’t occur on every browser interaction, the manual
update will likely outperform the use of end-of-service method updates.

The other setting of interest is the ability to schedule session cleanup at certain times of day
instead of when the session times out. While in some cases, such as where sessions are extremely
long-lived, this option might be of value, however it’s best to remove unneeded sessions as soon
as they are no longer needed in order to minimize the impact of managing and tracking the ses-
sions that are no longer needed.

Session Tuning and Troubleshooting

Session Object Size

As noted previously, the information contained in HTTP session is stored in the application
server JVM, which is a limited resource that is shared by all applications and users. As a result,
the more information that is stored in session, the greater the memory footprint for HTTP session,
with a proportional decrease in JVM memory available for creation and execution of application
objects. In turn, performance can degrade as the decreased heap memory leads to frequent
garbage collection (GC). Another factor is the amount of time it takes to serialize and deserialize
HTTP session as it is being written to a remote copy—the authors know of cases where the write
of the updated session objects from the application server to the database server could not com-
plete due to the size of the session object as the application server was failing, thus negating any
failover. Keeping these factors in mind, as well as the primary purpose of HTTP session, which is
simply to maintain state between browser invocations, you should strive to keep session objects
small so that HTTP session serves as a bookmark and not as a library. How small, you ask? Ide-
ally, the session object should be less than 4KB in size, which coincidentally is also the size limit
for a cookie. Of course, it’s not always possible to architect an “ideal application,” so with this in
mind, you should strive to maintain an upper size limit in the 30–60KB in range. In this range,
there will be performance degradation, but it will not be as severe as with much larger sessions.

WAS Session Management Configuration 491

27 Barcia_22.qxd 07.22.04 2:30 PM Page 491

With the size of the session object serving as a primary contributor to application perfor-
mance, it’s fortunate that WAS V5 provides a mechanism for determining session size via the
WAS Performance Monitoring Infrastructure (PMI). By configuring the maximum monitoring
level in the Tivoli Performance Viewer, as shown in Figure 22-13, you can monitor the size of the
session object, as shown in Figure 22-14. The size is shown in bytes. Those of you not familiar
with PMI and the Tivoli Performance Viewer will want to see Chapter 25, “Performance Tuning
Tools,” for a more comprehensive discussion of these two subjects.

492 Chapter 22 Session Management

Figure 22-13 Session Manager PMI Monitoring Level Settings.

Figure 22-14 Session object size in the Tivoli Performance Viewer.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 492

Non-Serializable Objects in Session

Another common issue deals with the application placing an object in HTTP session that’s not
serializable. This typically shows up in an application server SystemErr file, as shown in Code
Snippet 22-1.

Code Snippet 22-1 Session exception example from logs

[3/17/02 10:16:44:253 PST] 61602dc6 SessionContex X SESN0058E:
➥BackedHashtableMR: a problem occurred inserting a new session into
➥the database. If a SQLException has occurred then refer to the
➥appropriate database documentation for your environment. Also, assure
➥that you have properly configured a datasource for Session Manager.

java.io.NotSerializableException:
➥com.ibm.servlet.engine.webapp.WebApp...

In most cases, you can turn on session trace to determine the non-serializable session
object, but in some cases such as Code Snippet 22-2, this still is not definitive (you can see that
the “non-serializable stanza” is empty).

Code Snippet 22-2 Non-serializable stanza from logs

[3/17/03 10:16:55:940 PST] 61602dc6 SessionContex >
SessionContext:getIHttpSession - leaving and returning session of

Session Object Internals: id : LE0W4B1E0SPCR2TT4AI1BZA

<omitted for brevity>

non-serializable app specific session data : {}

serializable app specific session data :

{webControler=com.sun.j2ee.blueprints.petstore.control.web.
➥ShoppingClientControllerWebImpl@69246dcc, currentScreen=MAIN,

profilemgr=com.sun.j2ee.blueprints.petstore.control.web.
➥ProfileMgrWebImpl@1e272dcc,

customer=com.sun.j2ee.blueprints.petstore.control.web.CustomerWebImpl@
➥2d572dcc,

cart=com.sun.j2ee.blueprints.petstore.control.web.ShoppingCartWebImpl@
➥33292dcc,

mm=com.sun.j2ee.blueprints.petstore.control.web.ModelManager@20bbedcc,
➥language=en_US}

<omitted for brevity

This is because the object implements serializable but isn’t actually serializable.

WAS Session Management Configuration 493

27 Barcia_22.qxd 07.22.04 2:30 PM Page 493

Code Snippet 22-3 contains the source code for a JSP, SessionObjects.jsp, which iterates
through all the attributes in the session object, actually tries to write/read all the objects out as a
“true” test of serialization, and then displays the results, as shown in Figure 22-15. The JSP dis-
plays, left to right:

• The attribute name

• The attribute value

• The results of reading the object after serialization/deserialization

Any attribute that displays “read object null” is in fact not serializable and should not be
placed into session if you intend to use distributed sessions.

You simply can drop the JSP into the installedApps directory for the application, <wasin-
stallroot/installedApps\installedapp.ear\installed app.war, along with the rest of the JSPs. Next,
create a session object in the application though normal application flow and then invoke the JSP
by invoking the appropriate URL: <webapp URL>/SessionObjects.jsp. This will show the
offending object(s). You’ll also note that this shows the size of each session attribute, so this can
be helpful in determining if multi-row sessions would be of value. Please note that the JSP uses a
large amount of Java scriptlet and, as a result, is not necessarily representative of “application
best practices.” Instead, it was developed rather quickly as a debugging aid.

494 Chapter 22 Session Management

Figure 22-15 Session Object JSP.

27 Barcia_22.qxd 07.22.04 2:30 PM Page 494

Code Snippet 22-3 Session Object List JSP

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

<HTML>

<HEAD>

<%@ page

language=”java”

contentType=”text/html; charset=ISO-8859-1”

pageEncoding=”ISO-8859-1”

%>

<META http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>

<META name=”GENERATOR” content=”IBM WebSphere Studio”>

<TITLE>SessionObjects.jsp</TITLE>

</HEAD>

<BODY>

<H1>Session Object List JSP</H1>

This JSP will dump information about the current HTTPSession.

<%@ page import=”java.io.*,java.util.*,javax.servlet.*” session=”false” %>

<%! public void dumpSession(HttpServletRequest request, JspWriter out)
➥throws IOException {

HttpSession session = request.getSession(false);

Object ro = null ;

out.println(“Session ID from session.getID : “

+ session.getId() + “
”);

out.println(“Session ID from getHeader: “

+ request.getHeader(“Cookie”) + “
”);

Enumeration enum = session.getAttributeNames();

if (enum.hasMoreElements())

{

WAS Session Management Configuration 495

27 Barcia_22.qxd 07.22.04 2:30 PM Page 495

int totalSize = 0;

out.println(“<h3>Session Objects:</h3>”);

out.println(“<TABLE Border=\”2\” WIDTH=\”65%\” BGCOLOR=\
➥”#DDDDFF\”>”);

out.println(“<tr><td>Name</td><td>Object.toString()</td>”);

out.println(“<td>Raw Bytes</td><td>Size (bytes)</td></tr>”);

while (enum.hasMoreElements())

{

String name = (String)enum.nextElement();

Object sesobj = session.getAttribute(name) ;

ObjectOutputStream oos = null;

ByteArrayOutputStream bstream = new
➥ByteArrayOutputStream();

try {

oos = new ObjectOutputStream(bstream);

oos.writeObject(sesobj);

}

catch (Exception e) {

e.printStackTrace();

}

finally {

if (oos != null) {

try {oos.flush();}

catch (IOException ioe) {}

try {oos.close();}

catch (IOException ioe) {}

}

}

496 Chapter 22 Session Management

27 Barcia_22.qxd 07.22.04 2:30 PM Page 496

ObjectInputStream ois = null;

ro = null ;

try {

ois = new ObjectInputStream(new
➥ByteArrayInputStream(bstream.toByteArray()));

ro = ois.readObject();

}

catch (Exception e) {

e.printStackTrace();

}

finally {

if (ois != null) {

try {ois.close();}

catch (IOException ioe) {}

}

}

totalSize += bstream.size();

out.println(“<tr><td>” + name + “</td><td>” +
➥session.getAttribute(name) +

“</td><td>” + ro + “</td>”);

out.println(“<td>” + bstream.size() + “ bytes </td></tr>”);

}

out.println(“</table>
”);

out.println(“Total Bytes: “ + totalSize + “

”);

} else {

out.println(“No objects in session”);

}

}

%>

<%

WAS Session Management Configuration 497

27 Barcia_22.qxd 07.22.04 2:30 PM Page 497

response.setHeader(“Pragma”, “No-cache”);

response.setHeader(“Cache-Control”, “no-cache”);

response.setDateHeader(“Expires”,0);

HttpSession session = request.getSession(false);

if (session == null) {

out.println(“No session”);

} else {

dumpSession(request, out);

}

%>

</BODY>

</HTML>

Conclusion
In this chapter, we have examined the basics of HTTP session management and outlined some
options for maintaining application state with HTTP session. We’ve seen how WAS implements
HTTP session and covered the two approaches for persisting session data to a database and
memory to memory. We also covered some of the performance implications of the session man-
agement configuration options and discussed some troubleshooting approaches.

498 Chapter 22 Session Management

27 Barcia_22.qxd 07.22.04 2:30 PM Page 498

