CHAPTER 3

Defining Directory Service
Security Architecture

This chapter discusses client-server directory service architectures and describes

what you can and cannot do to secure data transfers and authentication. The focus is
on the Secured LDAP Client, which is a core and integral component of the Solaris 9
Operating Environment.

This chapter starts by discussing the Sun ONE Directory Server software security
features such as access control and authentication mechanisms, in particular SASL

DIGEST-MD?5 and the Generic Security Services Application Programming Interface

(GSSAPI) authentication mechanisms, followed by Transport Layer Security (TLS),
and the Start TLS functionality. The server side is discussed from a system

administration and developer point of view. The final part of this chapter describes
the PAM components and modules.

This chapter is organized into the following sections:

“Understanding Directory Server Security” on page 36
“Understanding the SASL Mechanism” on page 40

“GSSAPI Authentication and Kerberos v5” on page 62
“TLSv1/SSL Protocol Support” on page 93

“Start TLS Overview” on page 152

“Enhanced Solaris OE PAM Features” on page 154

“Secured LDAP Client Backport to the Solaris 8 OE” on page 180

35

Understanding Directory Server
Security

The Sun ONE Directory Server 5.2 software provides the foundation for the new
generation of e-business applications and services.

Based on a highly advanced, carrier-grade architecture, the Sun ONE Directory
Server software delivers a high-performance, highly scalable, and highly secure
infrastructure that provides organizations with a secure directory service
implementation.

Sun ONE Directory Server 5.2 Software Security
Features

This section describes the following:
“Access Control” on page 36
= “Authentication Mechanisms” on page 38

Access Control

One of the primary reasons for using an access control mechanism is to control and
restrict access to information and to control the operations that can be performed by
users and administrators of the directory server. Operations to control access to the
directory server include the ability to restrict permissions for adding, deleting, and
modifying directory entries.

Accessing the directory service requires that the directory client authenticate itself to
the directory service. This means that the directory client must inform the directory
server who is going to be accessing the directory data so that the directory server
can determine what the directory client is allowed to view and what operations can
be performed. A directory client first authenticates itself and then performs
operations. The server decides if the client is allowed to perform the operation or
not. This process is known as access control.

Prior to the release of the Sun ONE Directory Server 5.2 software, when a directory
(LDAP) client or directory (LDAP) application authenticated to the directory server,
the directory server would determine whether or not the directory (LDAP) client or
directory (LDAP) application was in fact allowed to perform such operations (such
as add, delete, or modify a particular directory entry).

36 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Additional Security Features

The Sun ONE Directory Server 5.2 software provides additional security
functionality. The following is an introduction to this new functionality.

Get Ef fectiveRi ghts - In addition to the access control framework that is
currently used within the Sun ONE Directory Server 5.2 software version, a new
feature has been added called Get Ef f ect i veRi ght s that addresses various
needs. The Get Ef f ecti veRi ght s mechanism is used by clients to evaluate
existing access control instructions (ACIs) and to report the effective rights that
they grant for a given user on a given entry. The Get Ef f ecti veRi ght s feature
is useful for various reasons:

« Provides ACI management functionality that is used to verify that the current
ACI’s are really offering the intended access rights.

« Aids the administration of users, and retrieves their rights to directory entries
and attributes. However, note that though it can be used to determine if an
operation would succeed or fail, it cannot be used to determine if an operation
was successful.

« Enables verification of the access control policy. You can retrieve the
permissions list for a user on a given entry and its attributes.

« Enables administrators to debug access control issues.

« Allows directory-enabled applications to easily determine whether a user has
permission to perform a particular operation (for example, not give the user
the option to delete an entry if they don’t actually have permission to delete it).

Encrypted Attributes — Data in any directory service, needs to be protected. The
Sun ONE Directory Server 5.2 software has many different ways and mechanisms
for protecting access to directory data. In the context of attribute encryption, this
feature is designed to provide data privacy or protection of physical access to
data such as LDIF files, backup files, and database files. Thus, attribute encryption
allows you to specify that certain attributes will be stored in an encrypted form.
This feature is configured at a database level, and once you decide you want to
encrypt an attribute, that particular attribute will be encrypted for every entry in
the database.

Start TLS - Start Transport Layer Security (Start TLS) is a LDAPv3 extended
operation plug-in in the Sun ONE Directory Server software. This operation
provides for TLS establishment in an LDAP association, which allows the client to
initiate an encrypted connection over an existing (or opened LDAP connection.

Note — Start TLS now available on many platforms including the Windows
platform.

Scoped Password Policy — A password policy is a set of rules that control how
passwords are used in the Sun ONE Directory Server software. To improve the
security and make it difficult for password-cracking programs to break into the

Chapter 3 Defining Directory Service Security Architecture 37

directory, it is desirable to enforce a set of rules on password usage. These rules
are made to ensure that the users change their passwords periodically, the new
password meets construction requirements, the reuse of old passwords is
restricted, and to lock out users after a certain number of bad password attempts.
In earlier versions of the directory server software, the password policy was
limited in its functionality to one global policy for the entire directory. This
limitation no longer exists in the Sun ONE Directory Server 5.2 software, which
offers increased flexibility in that you can configure multiple password policies.

= Dynamically Loadable SASL Library — The Simple Authentication and Security
Layer (SASL) is a generic mechanism for providing authentication and,
optionally, integrity and privacy support to connection-based protocols. In
previous releases of the directory server software, there were two ways of
thinking of how you could add a SASL security mechanism. One mechanism was
to write a server plug-in that implemented the SASL mechanism in terms of a pre-
bind operation. The other mechanism was to write a SASL mechanism plug-in
that would be loaded by the SASL library itself. With this in mind, a shared
library, | i bsasl, and associated plug-ins (GSSAPI, DIGEST-MD5, and CRAM-
MD?5) have been developed for both the Sun ONE Directory Server 5.2 software
and Solaris OE. However, at the present time, the dynamically loadable SASL
library is private to the Sun ONE Directory Server 5.2 software. When the
integrated version of | i bsasl is introduced on the Solaris OE, the Dynamically
Loadable SASL mechanisms will be supported. However, due to U.S. government
regulations, there will only be support for authentication, but not encryption.

Authentication Mechanisms

This section discusses what authentication mechanisms are currently available, and
how these authentication mechanisms can be used by directory (LDAP) clients.

The LDAPv3 standard which defines the LDAPv3 protocol was published in 1997,
and originally proposed different mechanisms that could be used by directory
(LDAP) clients to authenticate to directory (LDAP) servers (RFC 2251). RFC 3377
“The LDAPv3 Technical Specification” was published to list all RFC’s that comprise
the full specifications of LDAPvV3. That is, RFC 2251-2256, RFC 2829 (authentication
methods) and RFC 2830 (Extension for TLS). The Sun ONE Directory Server 5.2
software conforms to the LDAPv3 Technical Specification.

There are several authentication methods that can be used to authenticate to a
LDAPv3 directory server:

= None, no authentication, also known as anonymous — When using this method of
authentication, a directory client will not be able to, or is not intended to, perform
specific LDAP operations, such as modifications to directory entries or access to
sensitive information. Using this method means that a directory client which has
not authenticated or which has authenticated with its name but no password is
anonymously authenticated. A client which failed to authenticate is not

38 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

authenticated as anonymous but the following operations will be considered as
anonymous. In addition to a client being unauthenticated by default until a
successful bind has been performed, an anonymous bind can be performed by
using Simple authentication with no password (and typically no DN) as per RFC
2251 section 4.2.2.

Note — While it is true that all directory server (LDAPv3) implementations must
support anonymous authentication because LDAPv3 does not require a bind as the
first operation, it is perfectly legal for a directory server to be configured in such a
way that it rejects any attempt to perform an operation without first authenticating
to the server.

Simple, password-based authentication — When this method of authentication is
used, the DN (distinguished name) and password are sent over the network in
clear text (not encrypted). It should be noted however, that even with the inherent
security vulnerabilities, it is possible to use Simple authentication with transport-
layer security (like TLSv1/SSL or IPSec) in a secure manner.

SASL authentication mechanisms — The Simple Authentication and Security Layer
(SASL) is a specification and method used by the LDAPv3 protocol to support
what is known as pluggable authentication. This mechanism is used by the
directory server (LDAPv3) and directory client (LDAPv3) to identify the user,
authenticate this user to the directory server (LDAPvV3), and finally to negotiate
an optional security layer for subsequent protocol interactions. The SASL (RFC
2222) mechanism is covered in more detail later in this chapter.

Note — The LDAP v2 protocol does not support the Simple Authentication and
Security Layer (SASL).

Certificate-based authentication — Using this method, it is possible with the Sun
ONE Directory Server 5.2 software to require that when the client connects to the
directory server, the client provides a digital certificate to the directory server as
identification. Authenticating a client using a client certificate really falls under
the SASL category because a client certificate will only be used to authenticate the
client if that client performs a bind operation using the SASL EXTERNAL
mechanism.

Chapter 3 Defining Directory Service Security Architecture 39

40

Understanding the SASL Mechanism

This section explains what the Simple authentication security layer (SASL) is, how
this is implemented in Sun ONE Directory Server 5.2 software, and what
authentication methods it supports.

The Simple Authentication and Security Layer (RFC 2222) is an Internet Specification
(DRAFT standard like LDAPv3) and method for adding authentication support with
an optional security layer to connection-based protocols, such as LDAPv3. SASL also
describes a structure for authentication mechanisms. The result is an abstraction
layer between protocols and authentication mechanisms such that any SASL-
compatible authentication mechanism can be used with any SASL-compatible
protocol.

Before going into any more detail, let’s take a brief look at why SASL is so
important. Before SASL was introduced, what happened when a new protocol was
written that required authentication? The answer is similar to that of the Solaris
Operating Environment before the Pluggable Authentication Module (PAM) feature
was introduced. Developers of the protocol had to explicitly allow and define the
individual authentication mechanism. You ended up with a protocol that was
developed in such a way that it had a particular way of handling how a CRAM-MD5
login was handled, a particular way of handling how a Kerberos v4 login was
handled, and so on.

One of the biggest concerns of this model was when a new authentication method
was developed and the protocol needed to be modified to support this particular
authentication mechanism. This led to a lengthy process before the new
authentication mechanisms could be released, and if your application used more
than one protocol, for example, an email client, the developer was required to
support CRAM MDS5 for IMAP and CRAM-MDS5 for POP, which would potentially
create many different authentication mechanisms to implement and support. This
process, of course, was not desirable for the protocol or application developer in an
ever-changing environment where new authentication mechanisms are always being
developed.

What was needed was a mechanism whereby developers could simply have one
framework to write to. This is where the Simple Authentication Security Layer
(SASL) which is described in RFC 2222 comes in to its own and addresses some, but
not all, of the above issues. As an example, not all forms of SASL mechanisms can be
handled by simply linking with some external library. DIGEST-MD5 authentication
is a very good example of this because while you can use an external library to
handle all the negotiation and the work of verifying the password, it is necessary to
establish some mapping between the identity provided by the user and an account
in the directory server. SASL EXTERNAL is an even better example because in many
cases it has to be handled entirely by the server.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

The Simple Authentication and Security Layer (SASL), is a generic mechanism and
framework for protocols to accomplish authentication. Applications such as the Sun
ONE Directory Server software and Solaris OE Secured LDAP Clients use the SASL
library as a means of informing the application how to accomplish the SASL
protocol exchange, and what the results are.

SASL is a framework whereby SASL authentication mechanisms control the exact
protocol exchange. For example, if you have two protocols (such as IMAP and POP)
and a number of different ways of authenticating, SASL attempts to make it so that
only n plus m different specifications need be written instead of n times m different
specifications. With the Sun SASL library, the mechanisms need only be written
once, and they’ll work with all servers that use them.

FIGURE 3-1 shows the SASL components.

FIGURE 3-1 SASL Components

Chapter 3 Defining Directory Service Security Architecture 41

SASL DIGEST-MD5

The basic idea of the SASL DIGEST-MD5 mechanism is that both the client and
server have a shared secret which is namely the user’s password. Each side uses this
secret together with nonces (defined on page 46) to prove to the other side that they
do indeed know this shared secret without revealing the secret to the other side. If
the client uses the wrong password, the server detects it. Similarly, if the server
doesn’t know the secret, the client detects that.

The Sun ONE Directory Server version 5.2 software integrates a new SASL library
(I'i bsasl), which is based on the Cyrus CMU implementation. Through this SASL
framework, the directory server supports DIGEST-MD5 and the GSSAPI (which
implements Kerberos v5).

Note — Currently the GSSAPI is only supported on the Solaris OE.

The SASL security feature is configurable through LDAP and is accessible through
the entry cn=sasl , cn=securi ty, cn=confi g. Using this entry, you can enable
authentication mechanisms and also update the path where the SASL authentication
mechanism is loaded by | i bsasl .

To solve the issue of mapping protocol identities to LDAP identities, there is a
feature called identity mapping in the Sun ONE Directory Server 5.2 software. This
feature maps from specific authentication protocols, such as DIGEST-MD5, GSSAPI,
and HTTP, to an LDAP identity by applying mapping rules that are entirely
customizable through LDAP. By default, there is an identity mapping for DIGEST-
MDS?5 in the case where the client passes a dn as aut hi d. It is possible to define as
many mappings as you want. The identity mapping feature is described in the Sun
ONE Directory Server 5.2 software documentation.

One of the important things to remember is that there is an authentication ID and an
authorization (or proxy) ID. SASL also refers to the authorization ID as the user

name. In the case when there is no proxy, the two identities are the same. Currently,
the Sun ONE Directory Server 5.2 software does not support proxies through SASL.

The LDAPv3 Technical Specification (particularly RFC 2829), mandates the support
of SASL DIGEST-MD5. Authenticating clients using the Digest authentication
mechanism does not provide a strong authentication mechanism when compared to
public key based mechanisms, but does prevent the much weaker and even more
dangerous use of plain text passwords. In addition, the DIGEST-MD?5 offers no
confidentiality protection beyond protecting the actual password during the
authentication phase. This means that the rest of the challenge and response,
including the user’s name and authentication realm, are available to an
eavesdropper. However, the DIGEST-MD5 method can be used to provide integrity
and confidentiality on the connection after the authentication process has been
completed.

42 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

The MD5 message-digest algorithm is primarily used in three areas of the Solaris 9
Operating Environment. The Secured LDAP Client, the kernel (TCP and IPsec), and
the User (SLP and PPP). Ronald Rivest, who was at the time working at the
Laboratory for Computer Science at the Massachusetts Institute of Technology,
published MD5 as an RFC (RFC 1321) in April 1992.

When you send data over the wire, you are concerned with three general issues:
security, authenticity, and integrity. The security of your data ensures that no one else
can read your data. This issue is important in many organizations that have
information that cannot be exposed to external sources. Authenticity guarantees
knowledge of the originator of the data; in other words, where the data source is
from. This issue is important in areas such as the legal world where authentication
issues (like digital signatures) are of great importance. Lastly, integrity guarantees
that the data has not been tampered with in any way when it was transmitted, thus
determining whether the data you received was the same data that was actually
sent.

It is also very important to understand that MD5 hashing only guarantees the
integrity of the data if it is possible to guarantee the integrity and/or authenticity of
the MD5 digest itself. That is, if you use an MD5 digest to guarantee the integrity of
a file, you should not store the digest with the file because if the file data is
compromised it is very easy for a new MD?5 digest to be generated. Alternately (and
this is the way that DIGEST-MD5 works), all or part of the digest can include some
shared secret that is known only by the originator and valid recipients, but not by
untrusted third parties.

The MD?5 algorithm guarantees the integrity of your data by taking a bit pattern of
arbitrary but finite length and producing a 128-bit fingerprint or message digest of
that pattern. This pattern is always 128-bit, regardless of the length of the bit pattern.
It is extremely unlikely for two different files to produce the same fingerprint, but
because an MD5 hash only consists of 128 bits, there are theoretically an infinite
number of bit sequences that when hashed using MD5 will produce the same digest.
The MD?5 algorithm is not complex and does not require large substitution tables.
Security experts estimate that the difficulty of finding two-bit patterns having the
same digest is 264 operations, and the difficulty of finding a bit pattern having
predetermined digest is 2128 operations. It is computationally possible to determine a
file based on its fingerprint, but it is not feasible based on current technology and
techniques. This means that it is not possible for someone to figure out your data
based on its MD5 fingerprint. Before we look at an example, we need to be aware
that the Solaris 9 OE does not ship with the MD5 binary.

Take a look at an example of the output produced by MD5 on the binary file
/usr/bin/crypt.

md5-sparc /usr/bin/crypt

Chapter 3 Defining Directory Service Security Architecture 43

You should see output similar to the following:

MD5 (/usr/bin/crypt) = ¢c54740de32d1903b78322a9be712a31d

In particular, the string c54740de32d1903b78322a9be712a31d is the fingerprint of
[usr/bin/crypt:.

What happened in the above example is that the MD5 message-digest algorithm
applied a mathematical algorithm to the binary cr ypt and produced the fingerprint.
What you see is that you get the exact same fingerprint; if you do not, then you
know that the binary has been altered in some way. Finally, since MD5 does not
encrypt data, it is not restricted by any exportation laws, so you can distribute this
tool freely anywhere in the world.

Note — In the Solaris 9 OE, there is no nd5 binary. What you will find is the

/ pl at f or m sun4u/ ker nel / m sc/ nd5 and

/ pl at f or m sun4u/ ker nel / m sc/ spar cv9/ nd5 kernel modules, which export
the standard MDS5 calls to a user program. To obtain the nd5 binary, download the
following file:

http://sunsol ve. Sun. COM nd5/ nd5. tar. Z

Now that we have taken a look into what the MD5 message-digest is and how it
works, it is time to apply this to how this actually translates and works in the Sun
ONE Directory Server 5.2 software environment. This section introduces a new
element that is discussed later in this chapter and called the Secured LDAP Client,
which supports, and thus can be used to authenticate using DIGEST-MD?5, to the
Sun ONE Directory Server 5.2 software.

The following process describes how the Secured LDAP Client authenticates to the
Sun ONE Directory Server 5.2 software using the SASL DIGEST-MD5 authentication
mechanism.

1. Initial Authentication

This process starts with the Secured LDAP Client sending a bind request with
either the SIMPLE or SASL method. In this context, if it’'s SASL, the DIGEST-MD5
mechanism is specified. The DIGEST-MD5 authentication is a two-step bind
operation.

The Secured LDAP Client issues a SASL DIGEST bind request, as well as
requesting a SASL DIGEST-MDS5 bind. While it is possible to specify the bind DN
in the initial request, the DN should not be sent, but if it is, if should be ignored.
Rather, the authorization ID (which may be a DN, but may also be basically any
other kind of ID provided that it can be uniquely resolved to a user entry using
the directory server’s identity mapping API) is provided by the client in the
second stage of the bind request.

44 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

In this process, both sides can compute a shared secret, Al. Al consists of a hash
of the user nane, realm and password, which is concatenated with the directory
server nonce and the directory client nonce. It is assumed that both the Secured
LDAP client and directory server can obtain this hash, given the user nane and

realm.

Note — Although the directory server does need to have access to the clear text

password in order for the client to use DIGEST-MD?5 authentication, the attribute

encryption feature of the Sun ONE Directory Server 5.2 software can at least
somewhat mitigate the risk of having clear text passwords in the server by ensuring
that they are not stored on disk in clear text (and therefore would not show up
clearly in most backups or LDIF exports).

2. Digest Challenge Stage

The directory server starts by sending a challenge, whereby the data encoded in
the challenge contains a string formatted according to the rules for a di gest -
chal | enge which is shown in the following example:

di gest-chal l enge =
1#(real m|
al gorithm| cipher-opts |

real m

real mval ue
nonce
nonce-val ue
gop-opti ons
gop- i st
gop-val ue

stale

maxbuf

maxbuf - val ue
char set

al gorithm

ci pher-opts
ci pher-val ue

aut h- param

nonce |

From RFC 2831 "Di gest SASL Mechani snf

gop-options | char set

aut h- param)

stal e | maxbuf |

= "realn "=" <"> real mvalue <">

= qdstr-va

= "nponce" "=" <"> nonce-val ue <">

= qdstr-va

= "qop" "=" <"> qop-list <">

= l1#qop-val ue

= "auth" | "auth-int" | "auth-conf"
t oken

= "stale" "=" "true"

= "maxbuf" "=" maxbuf-val ue

= 1*DIAT

= "charset" "=" "utf-8"

= "algorithnt "=" "nd5-sess"

= "ci pher" "=" <"> 1#ci pher-val ue <">

= "3des" | "des" | "rc4-40" | "rc4"
"rc4-56" | token

= token "=" (token | quoted-string)

As you can see in this example, there are various directives and values declared.
The following is a short description of what each directive value means:

Chapter 3 Defining Directory Service Security Architecture

45

= real m- A string which enables users to know which user name and password to
use, in the event that they have different ones for different servers. Conceptually,
it is the name of a collection of accounts that might include the user’s account.
This string should contain at least the name of the host performing the
authentication and might additionally indicate the collection of users who might
have access. An example might be
regi st ered_user s@ot ham news. exanpl e. com This directive is optional; if
not present, the client should solicit it from the user or be able to compute a
default. A plausible default might be the realm supplied by the user when they
logged in to the client system. Multiple realm directives are allowed, in which
case the user or client must choose one as the realm for which to supply to
user nane and password.

Note — In the Sun ONE Directory Server 5.2 software, the realm is always the FQDN
host name of the server that appears in the value of the nssl apd-| ocal host
attribute in the cn=confi g entry.

= nonce - The server’s nonce is a random 32-byte (256-bit) random number, which
is platform dependent. The server-specified data string which must be different
each time a di gest - chal | enge is sent as part of initial authentication. It is
recommended that this string be base64 or hexadecimal data. Because the string is
passed as a quoted string, the double-quote character is not allowed unless
escaped. The contents of the nonce are implementation dependent. The security
of the implementation depends on a good choice. It is recommended that it
contain at least 64 bits of entropy. The nonce is opaque to the client. This
directive is required and must appear exactly once; if not present, or if multiple
instances are present, the client should abort the authentication exchange.

= op-opti ons — A quoted string of one or more tokens indicating the quality of
protection values supported by the server. The value aut h indicates
authentication; the value aut h-i nt indicates authentication with integrity
protection; the value aut h- conf indicates authentication with integrity
protection and encryption. This directive is optional; if not present it defaults to
aut h. The client must ignore unrecognized options; if the client recognizes no
option, it should abort the authentication exchange.

Note — At present, the Sun ONE Directory Server software only supports aut h qop.

= stal e - The st al e directive is not used in initial authentication. This directive
may appear at most once; if multiple instances are present, the client should abort
the authentication exchange.

46 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

Note — At present, the Sun ONE Directory Server software does not support
r eaut h, thus the server will not report a reauthentication stale because of a nonce
timeout.

maxbuf — A number indicating the size of the largest buffer the server is able to
receive when using aut h-i nt or aut h- conf . If this directive is missing, the
default value is 65536. This directive may appear at most once; if multiple
instances are present, the client should abort the authentication exchange.

Note — maxbuf is only used if confidentiality or integrity is specified. The Sun ONE
Directory Server software sets this to 65535.

char set — This directive, if present, specifies that the server supports UTF-8
encoding for the user nanme and password. If not present, the user nane and
password must be encoded in 1ISO 8859-1 (of which US-ASCII is a subset). The
directive is needed for backwards compatibility with HTTP Digest, which only
supports ISO 8859-1. This directive may appear at most once; if multiple instances
are present, the client should abort the authentication exchange.

Note — Only UTF-8 is supported. Any other charset will be rejected.

al gori t hm- This directive is required for backwards compatibility with HTTP
Digest, which supports other algorithms. This directive is required and must
appear exactly once; if not present, or if multiple instances are present, the client
should abort the authentication exchange.

Note — Only md5- sess is supported. Any other algorithm is rejected.

ci pher - opt's — A list of ciphers that the server supports. This directive must be
present exactly once if aut h- conf is offered in the gop- opti ons directive, in
which case implementation of the 3des and des modes is mandatory. The client
must ignore unrecognized options; if the client recognizes no option, it should
abort the authentication exchange.

« des - Data Encryption Standard (DES) cipher [FIPS] in cipherblock chaining
(CBC) mode with a 56-bit key.

« 3des - the triple DES cipher in CBC mode with EDE with the same key for
each E stage (aka “two keys mode”) for a total key length of 112 bits.

« rcd,rc4-40,rc4-56 — the RC4 cipher with a 128-bit, 40-bit, and 5-bit key,
respectively.

Chapter 3 Defining Directory Service Security Architecture 47

Note — No ciphers are currently offered by the Sun ONE Directory Server software
because confidentiality is not yet supported.

= aut h- par am- This construct allows for future extensions; it may appear more
than once. The client must ignore any unrecognized directives. The size of a
di gest - chal | enge must be less than 2048 bytes.

Note — No aut h- par amis sent by Sun ONE Directory Server software at this time.

3. Digest Response Stage

The Secured LDAP Client makes note of the di gest - chal | enge and responds
with a string formatted and computed according to the rules for a di gest -
response. The Secured LDAP Client performs two MD5 hashes of the password
with the challenge, and the realm. The challenge is the nonce; the realm is the
realm containing the user’s account. This directive is required if the server
provided any realms in the di gest - chal | enge, in which case it may appear
exactly once and its value should be one of those realms. If the directive is missing,
realm value is set to the empty string when computing. The way to understand
this, is to think of Al which is the shared secret, whereby Al is not sent over the
wire, but where just a one way hash of it is. Time is not used in the response, but
it is possible to generate a random nonce. In the Solaris 9 OE, use

/ dev/ ur andom For SASL, users are considered to be located in a realm. It is an
organizational item. In this case, the server’s specified realm (if there is one) is
returned.

48 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

From RFC 2831 "Di gest SASL Mechani sni

di gest-response = 1#(usernane | realm| nonce | cnonce |
nonce-count | qop | digest-uri | response |
maxbuf | charset | cipher | authzid |

aut h- param)

user nane = "usernane" "=" <"> usernane-val ue <">
user nane-val ue = qdstr-val
cnonce = "cnonce" "=" <"> cnonce-value <">
cnhonce-val ue = qdstr-val
nonce- count = "nc" "=" nc-val ue
nc-val ue = 8LHEX
qop = "qgop" "=" qop-val ue
di gest-uri = "digest-uri" "=" <"> digest-uri-value <">
digest-uri-value = serv-type "/" host ["/" serv-nane]
serv-type = 1*ALPHA
host = 1*(ALPHA | DA T | "-" | ".")
serv-name = host
response = "response" "=" response-val ue
response-val ue = 32LHEX
LHEX ="0" | "a" | "2" | "3" |

4" | "5" | "6 | "T" |

"8" | "9" | "a" | "b" |

"c" | "d" | "e" | "f"
ci pher = "cipher" "=" cipher-val ue
aut hzid = "authzid" "=" <"> authzid-value <">
aut hzi d- val ue = qdstr-val

In this example, there are various directives and values declared. Below is a short
description of what each directive value means:

user nanme — The user’s name in the specified realm, encoded according to the

value of the char set directive. This directive is required and must be present

exactly once; otherwise, authentication fails.

r eal m- The realm containing the user’s account. This directive is required if

the server provided any realms in the di gest - chal | enge, in which case it
may appear exactly once and its value should be one of those realms. If the

directive is missing, r eal m val ue sets to th
Al

e empty string when computing

Note — If the same realm is not specified in the response as was in the challenge (the

server’s FQDN), then the authentication will fail.

Chapter 3 Defining Directory Service Security Architecture

49

« nonce - The server-specified data string received in the preceding di gest -
chal | enge. This directive is required and must be present exactly once;
otherwise, authentication fails.

The following is an example of what would be returned in the digest response:

From RFC 2831 "Di gest SASL Mechani snf

HEX(KD (HEX(H(Al)),
{ nonce-value, ":" nc-value, ":"
cnonce-val ue, ":", qop-value, ":", HEX(H(A2)) }))

This is where SASL digest-md5 will support authzid. NOTE: If the
userid and authzid do not match, then the Sun ONE Directory Server
policy is to refuse the authentication.

Al = { H({ usernane-value, ":", realmvalue, ":", passwd }),

, nonce-value, ":", cnonce-val ue }

Here the user name (which must be UTF-8) is in the form that the directory server
will map. For example: dn: ldap_dn or u: username or any other form for which you
have matching rules defined.

The realm must be the FQDN of the directory server specified, which is sent to the
client in the initial challenge stage, and the passwd would be the user’s password.
H(x) is the DIGEST-MD5 hash of the string, and nonce value is supplied by the
directory server. The cnonce is a nonce generated by the Secured LDAP Client.

From RFC 2831 "Di gest SASL Mechani sni

A2 = { "AUTHENTI CATE: ", digest-uri-value }

Let { a, b, ... } be the concatenation of the octet strings a, b,
Let H(s) be the 16 octet MD5 hash [RFC 1321] of the octet string s.

Let KD(k, s) be H({k, ":", s}), i.e., the 16 octet hash of the
string k, a colon and the string s.

Let HEX(n) be the representation of the 16-octet MD5 hash n as a string of 32 hex
digits (with alphabetic characters always in lower case, because MD5 is case
sensitive).

50 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Example: (S==Directory Server and C==Secured LDAP d i ent

S: real me"exanpl e. coni', nonce=" QA6 M3t EQG2hh", gop="aut h",
al gori t hmend5- sess, charset =utf-8

This is the directory server reply, indicating r eal m nonce, quality of protection it
offers, mechanisms, and a specified character set.

Note — The Secured LDAP Client implementation only supports UTF-8.

C. charset =utf8, username="ni chael h", r eal n¥"exanpl e. cont',
nonce=" CA6M=>t EQG12hh", nc=00000001, cnonce=" CA6MHXh6VqTr RK" ,
di gest-uri="I| dap/ exanpl e. conf',
response=d388dad90d4bbd760a152321f 2143af 7, qop=aut h

We reconfirm a number of elements, and add additional ones, such as cnonce
and di gest - uri . These are needed by the directory server to confirm the
Secured LDAP Client’s password, which the directory server must know. The
directory server has all the elements to be able to recompute the response.

The following step can be done if the directory server authentication is desired.
However, The Secured LDAP Client currently does not check this, but instead
retrieves this information from the server. Future versions of the Secured LDAP
Client will check this.

S: rspaut h=ea40f 60335¢c427b5527b84dbabcdf f f

The directory server calculates a new digest based on the above algorithm, to
prove to the Secured LDAP Client that it knows the Secured LDAP Client
password.

Note — The size of a di gest - r esponse is 2048 bytes, which is the limit for all
authentication exchanges for DIGEST-MD5.

4. The authentication exchange is completed once the directory server has sent the
r eaut h packet.

Additionally, the DIGEST-MD5 authentication can be used for integrity and
confidentiality. Currently neither the Sun ONE Directory Server 5.x software or
the Secured LDAP Client supports this functionality.

Chapter 3 Defining Directory Service Security Architecture 51

52

It is important to understand that in the final exchange from the directory server to
the client, the server is indicating that it too can calculate the shared secret Al. This
will prove that this is a trusted server because it knows how to compute our shared
secret.

Note — The DIGEST-MDS5 details are buried deep in the underlying | i bl dap. so. 5
library, which is used by the Secured LDAP Client (I i bsl dap. so. 1) library. In

I i bsl dap, we just call the LDAP client C API (which is currently a private Solaris
OE interface), to bind. The rest is handled by the | i bl dap library.

In summary, it is important to emphasize and understand that digests are one-way
functions that are relatively easy to compute, but are extremely difficult to determine
the possible inverses.

Setting up the SASL DIGEST-MD5 Authentication
Mechanism

This procedure in this section uses the | dapsear ch utility to authenticate against
the Sun ONE Directory Server version 5.2 software, using the SASL DIGEST-MD5
authentication mechanism.

Before we get into the step-by-step instructions, it’'s worth discussing how SASL
DIGEST-MDS5 is configured because it can be a little tricky.

The DIGEST-MD5 authentication mechanism is now a loadable authentication
plug-in in the Sun ONE Directory Server version 5.2 software. Now the LDAP tools
(such as | dapsear ch) rely on the LDAP C-SDK that relies on the | i bsasl to
perform a SASL bind. This means that the | i bsasl has to be aware of where to load
the DIGEST-MDS5 plug-in. When you install the Sun ONE Directory Server version
5.2 software, the plug-ins are copied under

root_server/ | i b/ sasl /1i bdi gest nd5. so (for 32-bit plug-ins), and

root_server/ | i b/ sasl / 64/1i bdi gest md5. so (for 64-bit plug-ins). The directory
server needs to be able to load these plug-ins, and know where to get the plug-ins.
To achieve this, the directory server looks at the attribute value

dsSasl Pl ugi nsPat h under the config entry cn=sasl , cn=security, cn=config
in the dse. | di f. By default, the dsSas| Pl ugi nsPat h is set up to point to
root_server/ | i b/ sasl . You can update this multi-valued attribute if you want to
load plug-ins that are stored in another location.

On the client side, it’s a little bit different. First, a client might not be aware of where
the directory server is installed. But the client needs to retrieve the SASL plug-ins
anyway (at least the DIGEST-MD?5 plug-in). In the Sun ONE Directory Server 5.2
software (on Solaris OE), the sasl| library looks at / usr/ i b/ nmps/ sasl 2 (for 32-
bit plug-ins) and / usr/ | i b/ nps/ spar cv9 (for 64-bit plug-ins).

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

To Set up the SASL DIGEST-MD5 Authentication
Mechanism

Note — This procedure refers to the installation of the unbundled version of the Sun
ONE Directory Server 5.2 software. On future versions of Solaris OE, the Sun ONE
Directory Server 5.2 software might include a set of SVR4 packages that you install
using the pkgadd command, and configure using the di r ect or yser ver utility. If
you are installing the directory server from SVR4 packages, your installation steps
are different than those listed here. Refer to the product documentation, and to
“Differentiating Server and Client Versions” on page 191 for details.

. Download the Sun ONE Directory Server version 5.2 software product from the
http://ww. sun. comweb site.

. Uncompress and extract the Sun ONE Directory Server software.

Extract in a directory other than the directory where you intend to install the server
(not Ser ver Root).

. Run the i dskt une utility

The i dskt une utility is located in the root of the directory server distribution.
Apply any necessary patches and modifications that are reported by i dskt une.
Once this is done, rerun the i dskt une utility to confirm that all is as it should be
before running the set up command.

. Install and Configure the Sun ONE Directory Server version 5.2 software.

Refer to the product documentation for details.

Chapter 3 Defining Directory Service Security Architecture 53

5. Create user accounts in the directory server.

Use either the Sun ONE Directory Server Console or the MakeLDI F utility (this
utility is available for download. See “Creating LDIF for Benchmarks” on page 479).
This example uses the Java MakelLDl F utility.

lusr/ccs/ bi n/ nake

Bui | di ng. .

Processed 1000 entries

1002 entries witten to exanple-1k.ldif
Witing filters to exanple-1k-filter-file.ldif
Wote 1000 equality filters for uid

Wote 1000 equality filters for givennane
Wote 1000 equality filters for sn

Wote 2479 substring filters for cn

dn: enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com
t el ephoneNunber: 1-510-315-4801
depar t nent Nunber: 1000

sn: Ruble

enpl oyeeType: Enmpl oyee

enpl oyeeNunber: 1000

obj ectclass: top

obj ect cl ass: person

obj ectcl ass: organi zati onal Person
obj ectcl ass: inetO gPerson

obj ectcl ass: nail Reci pi ent

obj ectcl ass: nsCal User

gi venName: Lucille

mai | Del i veryOption: mail box

cn: Lucille Ruble

initials: LR

uid: lucyr

mai | : Lucy. Rubl e@xanpl e. com

user Password: secret 123

I: Menlo Park, United States

st: CA

description: This is the description for Lucille Ruble
mai | host: mail host. exanpl e. com
nsCal Host: cal host. exanpl e. com

54 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

6. Add the newly created user accounts to the directory server.

Example using the | di f 2db utility using the default database back end:

./ stop-sl apd

R R]

./start-slapd

cd /var/ Sun/ nps/ sl apd- instance

./1dif2db -n userRoot -i LDIF file

Example output from | di f 2db:

i mporting data ...
[08/ Jan/ 2003: 15: 46:

[08/ Jan/ 2003: 15: 46:
job...

[08/ Jan/ 2003: 15: 46:
"$(LD F_FILE)”

[08/ Jan/ 2003: 15: 46:

[08/ Jan/ 2003: 15: 46:
cl eaning up. ..

[08/ Jan/ 2003: 15: 46:
up.

[08/ Jan/ 2003: 15: 46:
producer thread...
[08/ Jan/ 2003: 15: 46:
Post processi ng. . .

[08/ Jan/ 2003: 15: 46:
[08/ Jan/ 2003: 15: 46:
[08/ Jan/ 2003: 15: 46:

enabl ed with bucket size 16

file "$(LDIF_FILE)"

Processed 9002 entries in 10 seconds. (900.20 entries/sec)

27 +0000] i mport userRoot: Index buffering

27 +0000] - inport userRoot: Beginning inport

27 +0000] - inport userRoot: Processing file

32 +0000] - inport userRoot: Finished scanning
(1002 entries)

33 +0000] - inport userRoot: Workers finished;
36 +0000] - inport userRoot: Wrkers cleaned

36 +0000] - inport userRoot: C eaning up

36 +0000] - i nport userRoot: | ndexi ng conpl ete.

36 +0000] - inport userRoot: Flushing caches...

36 +0000] - inport userRoot: Cosing files...
37 +0000] - inport userRoot: Inport conpl ete.

Example using the | dapnodi fy utility:

Make sure that you use the | dapnodi fy command from the
/var/ Sun/ nps/ shar ed/ bi n directory, or some of the options may not be
recognized because there are other versions of the | dapnodi fy command in the

Solaris OE.

$ cd /var/ Sun/ nps/ shared/ bin

$. /1 daprodify -a -c -h directoryserver_hostname -p Idap_port
-D "cn=Directory Manager" -w "password" -f LDIF_file

-e /var/tnp/ldif.rejects 2> /var/tnp/ldapnodify. | og

Chapter 3 Defining Directory Service Security Architecture 55

56

Note — If the | dapnodi fy command is not executed as . / | daprodi fy from the
server-root/ shar ed/ bi n directory, you must have LD _LI BRARY_PATH set to server-
root/ | i b so that | daprodi fy finds the appropriate dynamic libraries.

Note — In this example, the -e /var/tnp/ldif.rejects 2>
/var/tnp/ | dapnodi fy. | og string is redirecting messages to a log file.

Example output from | dapnodi fy:

addi ng new entry enpl oyeeNunber =8995, ou=Peopl e, dc=exanpl e, dc=com
addi ng new entry enpl oyeeNunber =8996, ou=Peopl e, dc=exanpl e, dc=com
addi ng new entry enpl oyeeNunber =8997, ou=Peopl e, dc=exanpl e, dc=com
addi ng new entry enpl oyeeNunber =8998, ou=Peopl e, dc=exanpl e, dc=com
addi ng new entry enpl oyeeNunber =8999, ou=Peopl e, dc=exanpl e, dc=com

addi ng new entry enpl oyeeNunber =9000, ou=Peopl e, dc=exanpl e, dc=com

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

Example output from the access log:

err=0 tag=105 nentries=0 etine=0

err=0 tag=105 nentries=0 eti me=0

err=0 tag=105 nentries=0 eti me=0

err=0 tag=105 nentries=0 etine=0

err=0 tag=105 nentries=0 eti me=0

err=0 tag=105 nentries=0 etine=0

Ul

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 o0p=999 nsgl d=1000 -
"enpl oyeeNunber =8997, ou=Peopl e, dc=exanpl e, dc=cont'

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1000 nsgl d=1001 -
"enpl oyeeNunber =8998, ou=Peopl e, dc=exanpl e, dc=cont

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 0p=999 nsgl d=1000 -

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1000 nsgl d=1001 -

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1001 nsgl d=1002 -
"enpl oyeeNunber =8999, ou=Peopl e, dc=exanpl e, dc=cont'
[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1001 nsgl d=1002 -

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1002 nsgl d=1003 -
"enpl oyeeNunber =9000, ou=Peopl e, dc=exanpl e, dc=cont'
[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1002 nsgl d=1003 -

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1003 nsgl d=1004 -
[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 op=1003 nsgld=-1 - closing -

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 0p=997 nsgl d=998 - ADD dn=
"enpl oyeeNunber =8995, ou=Peopl e, dc=exanpl e, dc=cont'
[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 o0p=997 nsgl d=998 - RESULT

[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 o0p=998 nsgl d=999 - ADD dn=
"enpl oyeeNunber =8996, ou=Peopl e, dc=exanpl e, dc=cont'
[08/ Jan/ 2003: 14: 57: 49 +0000] conn=24 0p=998 nsgl d=999 - RESULT

ADD dn=

ADD dn=

RESULT

RESULT

ADD dn=

RESULT

ADD dn=

RESULT

UNBI ND

[08/ Jan/ 2003: 14: 57: 50 +0000] conn=24 op=-1 msgld=-1 - cl osed

7. Confirm the current value of the passwor dSt or ageSchene attribute value.

The SASL DIGEST-MD5 authentication mechanism is a two-stage bind operation. In
the first stage, the client issues a SASL DIGEST bind request (as previously
mentioned, the bind DN is not typically included in the first request issued by the
client when authenticating using DIGEST-MD?5). The directory server returns a
challenge. The client performs two DIGEST-MD5 hashes of the password with the
Challenge, and the Real m The client sends the result to the directory server. The
directory server performs the same hashes and compares the results. Because the

Chapter 3 Defining Directory Service Security Architecture 57

58

directory server must perform the hashes, the server requires a clear text password.
Before changing the passwor dSt or ageSchen® attribute value, you can confirm the
current value using the | dapsear ch command.

Example output from | dapsear ch:

$ cd /usr/sunone/ servers/shared/ bin

$. /1 dapsearch -h directoryserver_hostname - p ldap_port

-D "cn=Directory Manager" -w password

-b “cn=Password Policy, cn=config” "(objectclass=*)"
passwor dSt or ageSchene

cn=Password Policy, cn=config

passwor dSt or ageSchenme=SSHA

. Run | dapsear ch to verify the user, and to verify a successful bind.

When you create directory user accounts, the passwords are stored in the default
password storage mechanism (Salted Secure Hashing Algorithm (SSHA)). Using one
of these accounts, you must change the userpassword to be in the clear. Before
changing the user passwor d of an entry, you should run | dapsear ch to verify that
the user exists in the directory server, (also note the format of the user passwor d
attribute value) and that you can bind successfully with the password.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

Example running | dapsear ch to verify a user entry:

$. /1 dapsearch -h directoryserver_hostname - p Idap_port
-b "dc=exanpl e, dc=cont uid=lucyr 1.1
dn: enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com

Example of searching for the user entry | ucyr and displaying the current
user passwor d attribute value:

$. /1 dapsearch -h directoryserver_hostname - p Idap_port

-b "dc=exanpl e, dc=conf -D "cn=Di rectory Manager" -w password ui d=
| ucyr userpassword

dn: enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com

user passwor d: { SSHA} zDGUDF2HHAMzhelj j XSNSen? NS2YSm t dXh8c Q==

Example of binding to the directory server as user | ucyr using the correct
credentials:

$. /1 dapsearch -h directoryserver_hostname - p Idap_port

-b "dc=exanpl e, dc=conf -D "enpl oyeeNunber =1000, ou=Peopl e, dc=
exanpl e, dc=cont" -w password ui d=lucyr 1.1

dn: enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com

If the preceding | dapsear ch was not successful, you will see something similar to
the following output:

| dap_sinple_bind: Invalid credentials

Note — The correct way in LDAPV3 to request that no attributes be returned is to
specify an attribute list of 1. 1 as specified in RFC 2251.

. Change the passwor dSt or ageSchene attribute value to { CLEAR} .

It is not necessary to set the default storage scheme to cl ear in the directory server in
order to store passwords in clear text. Passwords can be stored in clear text
regardless of the default password storage scheme by prefixing the clear text
password with { CLEAR} . This can be beneficial if there are only a few special
accounts in the server for which authentication will be performed using DIGEST-

Chapter 3 Defining Directory Service Security Architecture 59

MD?5 and it is not desirable to store passwords for those other accounts in clear text.
However, you will not be able to use pam uni x for authentication if you store
passwords in clear text.

Example changing the passwor dSt or ageSchen® attribute value:

$ cd /usr/sunone/ servers/shared/ bin
$./l dapnodi fy -h directoryserver_hostname - p Idap_port
-D "cn=Directory Manager" -w password

You are now in the | dapnodi fy interactive mode. Enter the information, and when
you are done, use Control-d to exit | dapnodi fy.

Example:

dn: cn=Password Policy, cn=config

changetype: nodify

repl ace: passwor dSt or ageSchene

passwor dSt or ageSchene: cl ear

nodi fyi ng entry cn=Password Policy, cn=config

10. Confirm the passwor dSt or at eSchen®e attribute value change.

When you verify this attribute change, you see that an entry has been added to cn=
Password Policy, cn=confi g which looks like this:

$. /1 dapsearch -h directoryserver_hostname - p ldap_port

-D "cn=Directory Manager" -w password

-b “cn=Password Policy, cn=config” “(objectclass=*)"
passwor dSt or ageSchene

cn=Password Policy, cn=config

passwor dSt or ageSchene: cl ear

In this particular example, we loaded the directory user entries with the

passwor dSt or ageSchene attribute value set to { SSHA} . It is possible to make the
modification to the passwor dSt or ageSchen® attribute prior to loading your
directory entries, however, in practice this is never really the case.

60 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

11. Change the user passwor d attribute value to be in the clear for a user.
Example:

$. /1 dapnodify -h directoryserver_hostname - p ldap_port

-D "cn=Directory Manager" -w password

dn: enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com

changetype: nodify

repl ace: userPassword

user Passwor d: passwordl123

nodi fying entry enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com
(Note: use contol-d to exit interactive node)

12. Verify that the password for the user is now in the clear.

When you search the directory server for the user entry | ucyr and return the
user passwor d attribute value, you should see the clear text value of the password.

Example:

$. /1 dapsearch -h directoryserver_hostname - p Idap_port

-b "dc=exanpl e, dc=conf -D "cn=Directory Manager" -w password ui d=
| ucyr userpassword

dn: enpl oyeeNunber =1000, ou=Peopl e, dc=exanpl e, dc=com

user password: {cl ear}passwordl23

Example of authenticating using SASL DIGEST-MD?5:

$. /1 dapsearch -h directoryserver_hostname -p Idap_port -D "" -w password
-0 mech=DI GEST- MD5 -0 aut hi d="dn: enpl oyeeNunber =1000, ou=

Peopl e, dc=exanpl e, dc=com' - o aut hzi d="dn: enpl oyeeNunber =1000, ou=
Peopl e, dc=exanpl e, dc=con!’

-b "dc=exanpl e, dc=coni -s base "(uid=lucyr)"

Note — Because of the way the Solaris OE packages install the SASL plug-ins, it is
necessary to specify a value for the SASL_PATH environment variable that points to
the server-root/ | i b/ sasl directory.

Chapter 3 Defining Directory Service Security Architecture 61

GSSAPI Authentication and Kerberos v5

This section discusses the GSSAPI mechanism, in particular, Kerberos v5 and how
this works in conjunction with the Sun ONE Directory Server 5.2 software and what
is involved in implementing such a solution. Please be aware that this is not a trivial
task.

It’s worth taking a brief look at the relationship between the Generic Security
Services Application Program Interface (GSSAPI) and Kerberos v5.

The GSSAPI does not actually provide security services itself. Rather, it is a
framework that provides security services to callers in a generic fashion, with a
range of underlying mechanisms and technologies such as Kerberos v5. The current
implementation of the GSSAPI only works with the Kerberos v5 security
mechanism. The best way to think about the relationship between GSSAPI and
Kerberos is in the following manner: GSSAPI is a network authentication protocol
abstraction that allows Kerberos credentials to be used in an authentication
exchange. Kerberos v5 must be installed and running on any system on which
GSSAPI-aware programs are running.

The support for the GSSAPI is made possible in the directory server through the
introduction of a new SASL library, which is based on the Cyrus CMU
implementation. Through this SASL framework, DIGEST-MDS5 is supported as
explained previously, and GSSAPI which implements Kerberos v5. Additional
GSSAPI mechanisms do exist. For example, GSSAPI with SPNEGO support would
be GSS-SPNEGO. Other GSS mechanism names are based on the GSS mechanisms
OID.

Note — The Sun ONE Directory Server 5.2 software only supports the use of GSSAPI
on Solaris OE. There are implementations of GSSAPI for other operating systems (for
example, Linux), but the Sun ONE Directory Server 5.2 software does not use them
on platforms other than the Solaris OE.

Understanding GSSAPI

The Generic Security Services Application Program Interface (GSSAPI) is a standard
interface, defined by RFC 2743, that provides a generic authentication and secure
messaging interface, whereby these security mechanisms can be plugged in. The
most commonly referred to GSSAPI mechanism is the Kerberos mechanism that is
based on secret key cryptography.

62 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

One of the main aspects of GSSAPI is that it allows developers to add secure
authentication and privacy (encryption and or integrity checking) protection to data
being passed over the wire by writing to a single programming interface. This is
shown in FIGURE 3-2.

FIGURE 3-2 GSSAPI Layers

The underlying security mechanisms are loaded at the time the programs are
executed, as opposed to when they are compiled and built. In practice, the most
commonly used GSSAPI mechanism is Kerberos v5. The Solaris OE provides a few
different flavors of Diffie-Hellman GSSAPI mechanisms, which are only useful to
NIS+ applications.

What can be confusing is that developers might write applications that write directly
to the Kerberos API, or they might write GSSAPI applications that request the
Kerberos mechanism. There is a big difference, and applications that talk Kerberos
directly cannot communicate with those that talk GSSAPI. The wire protocols are not

Chapter 3 Defining Directory Service Security Architecture 63

compatible, even though the underlying Kerberos protocol is in use. An example is
t el net with Kerberos is a secure t el net program that authenticates at el net user
and encrypts data, including passwords exchanged over the network during the

t el net session. The authentication and message protection features are provided
using Kerberos. The t el net application with Kerberos only uses Kerberos, which is
based on secret-key technology. However, at el net program written to the GSSAPI
interface can use Kerberos as well as other security mechanisms supported by
GSSAPI.

The Solaris OE does not deliver any libraries that provide support for third-party
companies to program directly to the Kerberos API. The goal is to encourage
developers to use the GSSAPI. Many open-source Kerberos implementations (MIT,
Heimdal) allow users to write Kerberos applications directly.

Note — On the wire, the GSSAPI is compatible with Microsoft’s SSPI and thus
GSSAPI applications can communicate with Microsoft applications that use SSPI and
Kerberos.

The GSSAPI is preferred because it is a standardized API, whereas Kerberos is not.
This means that the MIT Kerberos development team might change the
programming interface anytime, and any applications that exist today might not
work in the future without some code modifications. Using GSSAPI avoids this
problem.

Another benefit of GSSAPI is its pluggable feature, which is a big benefit, especially
if a developer later decides that there is a better authentication method than
Kerberos, because it can easily be plugged into the system and the existing GSSAPI
applications should be able to use it without being recompiled or patched in any
way.

Understanding Kerberos v5

Kerberos is a network authentication protocol designed to provide strong
authentication for client/server applications by using secret-key cryptography.
Originally developed at the Massachusetts Institute of Technology, it is included in
the Solaris OE to provide strong authentication for Solaris OE network applications.

In addition to providing a secure authentication protocol, Kerberos also offers the
ability to add privacy support (encrypted data streams) for remote applications such
astel net,ftp,rsh, rlogin, and other common UNIX network applications. In
the Solaris OE, Kerberos can also be used to provide strong authentication and
privacy support for Network File Systems (NFS), allowing secure and private file
sharing across the network.

64 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

Because of its widespread acceptance and implementation in other operating
systems, including Windows 2000, HP-UX, and Linux, the Kerberos authentication
protocol can interoperate in a heterogeneous environment, allowing users on
machines running one OS to securely authenticate themselves on hosts of a different
0sS.

The Kerberos software is available for Solaris OE versions 2.6, 7, 8, and 9 in a
separate package called the Sun Enterprise Authentication Mechanism (SEAM)
software. For Solaris 2.6 and Solaris 7 OE, Sun Enterprise Authentication Mechanism
software is included as part of the Solaris Easy Access Server 3.0 (Solaris SEAS)
package. For Solaris 8 OE, the Sun Enterprise Authentication Mechanism software
package is available with the Solaris 8 OE Admin Pack.

For Solaris 2.6 and Solaris 7 OE, the Sun Enterprise Authentication Mechanism
software is freely available as part of the Solaris Easy Access Server 3.0 package
available for download from:

http://ww. sun. com sof tware/ sol ari s/ 7/ ds/ ds- seas.

For Solaris 8 OE systems, Sun Enterprise Authentication Mechanism software is
available in the Solaris 8 OE Admin Pack, available for download from:
http://ww. sun. con bi gadmi n/ cont ent/ adm nPack/ i ndex. htmi .

For Solaris 9 OE systems, Sun Enterprise Authentication Mechanism software is
already installed by default and contains the following packages listed in TABLE 3-1.

TABLE 3-1 Solaris 9 OE Kerberos v5 Packages

Package Name Description

SUNWkdcr Kerberos v5 KDC (root)

SUNVkdcu Kerberos v5 Master KDC (user)

SUNVKr br Kerberos version 5 support (Root)
SUNVKr bu Kerberos version 5 support (Usr)
SUNVKTr bux Kerberos version 5 support (Usr) (64-bit)

All of these Sun Enterprise Authentication Mechanism software distributions are
based on the MIT KRB5 Release version 1.0. The client programs in these
distributions are compatible with later MIT releases (1.1, 1.2) and with other
implementations that are compliant with the standard.

Chapter 3 Defining Directory Service Security Architecture 65

66

How Kerberos Works

The following is an overview of the Kerberos v5 authentication system. From the
user’s standpoint, Kerberos v5 is mostly invisible after the Kerberos session has been
started. Initializing a Kerberos session often involves no more than logging in and
providing a Kerberos password.

The Kerberos system revolves around the concept of a ticket. A ticket is a set of
electronic information that serves as identification for a user or a service such as the
NFS service. Just as your driver’s license identifies you and indicates what driving
permissions you have, so a ticket identifies you and your network access privileges.
When you perform a Kerberos-based transaction (for example, if you use r | ogi n to
log in to another machine), your system transparently sends a request for a ticket to
a Key Distribution Center, or KDC. The KDC accesses a database to authenticate
your identity and returns a ticket that grants you permission to access the other
machine. Transparently means that you do not need to explicitly request a ticket.

Tickets have certain attributes associated with them. For example, a ticket can be
forwardable (which means that it can be used on another machine without a new
authentication process), or postdated (not valid until a specified time). How tickets
are used (for example, which users are allowed to obtain which types of tickets) is
set by policies that are determined when Kerberos is installed or administered.

Note — You will frequently see the terms credential and ticket. In the Kerberos world,
they are often used interchangeably. Technically, however, a credential is a ticket
plus the session key for that session.

Initial Authentication

Kerberos authentication has two phases, an initial authentication that allows for all
subsequent authentications, and the subsequent authentications themselves.

A client (a user, or a service such as NFS) begins a Kerberos session by requesting a
ticket-granting ticket (TGT) from the Key Distribution Center (KDC). This request is
often done automatically at login.

A ticket-granting ticket is needed to obtain other tickets for specific services. Think
of the ticket-granting ticket as something similar to a passport. Like a passport, the
ticket-granting ticket identifies you and allows you to obtain numerous “visas,”
where the “visas” (tickets) are not for foreign countries, but for remote machines or
network services. Like passports and visas, the ticket-granting ticket and the other
various tickets have limited lifetimes. The difference is that Kerberized commands
notice that you have a passport and obtain the visas for you. You don’t have to
perform the transactions yourself.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

The KDC creates a ticket-granting ticket and sends it back, in encrypted form, to the
client. The client decrypts the ticket-granting ticket using the client’s password.

Now in possession of a valid ticket-granting ticket, the client can request tickets for
all sorts of network operations for as long as the ticket-granting ticket lasts. This
ticket usually lasts for a few hours. Each time the client performs a unique network
operation, it requests a ticket for that operation from the KDC.

Subsequent Authentications

The client requests a ticket for a particular service from the KDC by sending the
KDC its ticket-granting ticket as proof of identity.

1. The KDC sends the ticket for the specific service to the client.

For example, suppose user lucy wants to access an NFS file system that has been
shared with krb5 authentication required. Since she is already authenticated (that
is, she already has a ticket-granting ticket), as she attempts to access the files, the
NFS client system automatically and transparently obtains a ticket from the KDC
for the NFS service.

2. The client sends the ticket to the server.

When using the NFS service, the NFS client automatically and transparently
sends the ticket for the NFS service to the NFS server.

3. The server allows the client access.

These steps make it appear that the server doesn’t ever communicate with the
KDC. The server does, though, as it registers itself with the KDC, just as the first
client does.

Principals

A client is identified by its principal. A principal is a unique identity to which the
KDC can assign tickets. A principal can be a user, such as j oe, or a service, such as
NFS.

By convention, a principal name is divided into three parts: the primary, the
instance, and the realm. A typical principal could be, for example,
| ucy/ adm n@XAMPLE. COM where:

| ucy is the primary. The primary can be a user name, as shown here, or a service,
such as NFS. The primary can also be the word host , which signifies that this
principal is a service principal that is set up to provide various network services.

Chapter 3 Defining Directory Service Security Architecture 67

68

admi n is the instance. An instance is optional in the case of user principals, but it is
required for service principals. For example, if the user lucy sometimes acts as a
system administrator, she can use | ucy/ admi n to distinguish herself from her usual
user identity. Likewise, if Lucy has accounts on two different hosts, she can use two
principal names with different instances (for example,

| ucy/ cali fornia. exanpl e. comand | ucy/ bost on. exanpl e. conj.

Realms

A realm is a logical network, similar to a domain, which defines a group of systems
under the same master KDC. Some realms are hierarchical (one realm being a
superset of the other realm). Otherwise, the realms are non-hierarchical (or direct)
and the mapping between the two realms must be defined.

Realms and KDC Servers

Each realm must include a server that maintains the master copy of the principal
database. This server is called the master KDC server. Additionally, each realm
should contain at least one slave KDC server, which contains duplicate copies of the
principal database. Both the master KDC server and the slave KDC server create
tickets that are used to establish authentication.

Understanding the Kerberos KDC

The Kerberos Key Distribution Center (KDC) is a trusted server that issues Kerberos
tickets to clients and servers to communicate securely. A Kerberos ticket is a block of
data that is presented as the user’s credentials when attempting to access a
Kerberized service. A ticket contains information about the user’s identity and a
temporary encryption key, all encrypted in the server’s private key. In the Kerberos
environment, any entity that is defined to have a Kerberos identity is referred to as a
principal.

A principal may be an entry for a particular user, host, or service (such as NFS or
FTP) that is to interact with the KDC. Most commonly, the KDC server system also
runs the Kerberos Administration Daemon, which handles administrative
commands such as adding, deleting, and modifying principals in the Kerberos
database. Typically, the KDC, the admin server, and the database are all on the same
machine, but they can be separated if necessary. Some environments may require
that multiple realms be configured with master KDCs and slave KDCs for each
realm. The principals applied for securing each realm and KDC should be applied to
all realms and KDCs in the network to ensure that there isn’t a single weak link in
the chain.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

One of the first steps to take when initializing your Kerberos database is to create it
using the kdb5_ut i | command, which is located in/ usr/ sbi n. When running this
command, the user has the choice of whether to create a stash file or not. The stash
file is a local copy of the master key that resides on the KDC’s local disk. The master
key contained in the stash file is generated from the master password that the user
enters when first creating the KDC database. The stash file is used to authenticate
the KDC to itself automatically before starting the kadm nd and kr b5kdc daemons
(for example, as part of the machine’s boot sequence).

If a stash file is not used when the database is created, the administrator who starts
up the kr b5kdc process will have to manually enter the master key (password)
every time they start the process. This may seem like a typical trade off between
convenience and security, but if the rest of the system is sufficiently hardened and
protected, very little security is lost by having the master key stored in the protected
stash file. It is recommended that at least one slave KDC server be installed for each
realm to ensure that a backup is available in the event that the master server
becomes unavailable, and that slave KDC be configured with the same level of
security as the master.

Currently, the Sun Kerberos v5 Mechanism utility, kdb5_uti | , can create three
types of keys, DES- CBC- CRC, DES- CBC- MD5, and DES- CBC- RAW DES-CBC stands
for DES encryption with Cipher Block Chaining and the CRC, MD5, and RAW
designators refer to the checksum algorithm that is used. By default, the key created
will be DES- CBC- CRC, which is the default encryption type for the KDC. The type of
key created is specified on the command line with the - k option (see the

kdb5_uti | (IM) man page). Choose the password for your stash file very carefully,
because this password can be used in the future to decrypt the master key and
modify the database. The password may be up to 1024 characters long and can
include any combination of letters, numbers, punctuation, and spaces.

The following is an example of creating a stash file:

kdcl # /usr/sbin/kdb5 util create -r EXAMPLE. COM -s
Initializing database '/var/krb5/principal’ for realm
" EXAMPLE. COM

mast er key nane ' K/ M@&EXAMPLE. COM

You will be pronmpted for the database Master Password.
It is inportant that you NOT FORGET this password.

Ent er KDC dat abase nmster key: master_key

Re-enter KDC dat abase nmaster key to verify: master_key

Chapter 3 Defining Directory Service Security Architecture 69

Notice the use of the - s argument to create the stash file. The location of the stash
file is in the / var / kr b5. The stash file appears with the following mode and
ownership settings:

kdcl # cd /var/krb5
kdcl # Is -1
SrW---- - 1 root other 14 Apr 10 14:28 . k5. EXAMPLE. COM

Note — The directory used to store the stash file and the database should not be
shared or exported.

Secure Settings in the KDC Configuration File

The KDC and Administration daemons both read configuration information from
/ et c/ kr b5/ kdc. conf. This file contains KDC-specific parameters that govern
overall behavior for the KDC and for specific realms. The parameters in the

kdc. conf file are explained in detail in the kdc. conf (4) man page.

The kdc. conf parameters describe locations of various files and ports to use for
accessing the KDC and the administration daemon. These parameters generally do
not need to be changed, and doing so does not result in any added security.
However, there are some parameters that may be adjusted to enhance the overall
security of the KDC. The following are some examples of adjustable parameters that
enhance security.

= kdc_port s - Defines the ports that the KDC will listen on to receive requests.
The standard port for Kerberos v5 is 88. 750 is included and commonly used to
support older clients that still use the default port designated for Kerberos v4.
Solaris OE still listens on port 750 for backwards compatibility. This is not
considered a security risk.

= max_|ife — Defines the maximum lifetime of a ticket, and defaults to eight
hours. In environments where it is desirable to have users re-authenticate
frequently and to reduce the chance of having a principal’s credentials stolen, this
value should be lowered. The recommended value is eight hours.

= nmax_renewabl e_| i f e — Defines the period of time from when a ticket is issued
that it may be renewed (using ki nit - R). The standard value here is 7 days. To
disable renewable tickets, this value may be set to 0 days, 0 hrs, 0 min. The
recommended value is 7d Oh Om Os.

=« default_principal _expiration- A Kerberos principal is any unique
identity to which Kerberos can assign a ticket. In the case of users, it is the same
as the UNIX system user name. The default lifetime of any principal in the realm
may be defined in the kdc. conf file with this option. This should be used only if
the realm will contain temporary principals, otherwise the administrator will

70 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

have to constantly be renewing principals. Usually, this setting is left undefined
and principals do not expire. This is not insecure as long as the administrator is
vigilant about removing principals for users that no longer need access to the
systems.

= supported_enctypes — The encryption types supported by the KDC may be
defined with this option. At this time, Sun Enterprise Authentication Mechanism
software only supports des- cbc- cr c: nor mal encryption type, but in the future
this may be used to ensure that only strong cryptographic ciphers are used.

= dict_file-The location of a dictionary file containing strings that are not
allowed as passwords. A principal with any password policy (see below) will not
be able to use words found in this dictionary file. This is not defined by default.
Using a dictionary file is a good way to prevent users from creating trivial
passwords to protect their accounts, and thus helps avoid one of the most
common weaknesses in a computer network-guessable passwords. The KDC will
only check passwords against the dictionary for principals which have a
password policy association, so it is good practice to have at least one simple
policy associated with all principals in the realm.

The Solaris OE has a default system dictionary that is used by the spell program that
may also be used by the KDC as a dictionary of common passwords. The location of
this file is: / usr/ shar e/l i b/ di ct/ wor ds. Other dictionaries may be substituted.
The format is one word or phrase per line.

The following is a Kerberos v5 / et ¢/ kr b5/ kdc. conf example with suggested
settings:

Copyright 1998-2002 Sun Mcrosystenms, Inc. Al rights reserved.
Use is subject to |license terns.

#

#ident " @#)kdc. conf 1.2 02/ 02/ 14 sM "

[kdcdef aul ts]
kdc_ports = 88, 750

[real nms]
___default_realm__ = {
profile = /etc/krb5/krb5. conf
dat abase_nane = /var/krb5/ princi pal
adm n_keytab = /etc/krb5/ kadnb. keyt ab
acl _file = /etc/krb5/kadnb. acl
kadm nd_port = 749
max_|ife = 8h Om Os
max_renewabl e_life = 7d Oh Om Os
default _principal _flags = +preauth
Needs noving -- dict_file = /usr/share/lib/dict/words
}

Chapter 3 Defining Directory Service Security Architecture 71

Access Control

The Kerberos administration server allows for granular control of the administrative
commands by use of an access control list (ACL) file (/ et ¢/ kr b5/ kadnb. acl). The
syntax for the ACL file allows for wildcarding of principal names so it is not
necessary to list every single administrator in the ACL file. This feature should be
used with great care. The ACLs used by Kerberos allow privileges to be broken
down into very precise functions that each administrator can perform. If a certain
administrator only needs to be allowed to have read-access to the database then that
person should not be granted full admin privileges. Below is a list of the privileges
allowed:

« a - Allows the addition of principals or policies in the database.

« A- Prohibits the addition of principals or policies in the database.

« d - Allows the deletion of principals or policies in the database.

« D- Prohibits the deletion of principals or policies in the database.

« m- Allows the modification of principals or policies in the database.

« M- Prohibits the modification of principals or policies in the database.
« C — Allows the changing of passwords for principals in the database.

« C- Prohibits the changing of passwords for principals in the database.

« i — Allows inquiries to the database.
« | — Prohibits inquiries to the database.
« | — Allows the listing of principals or policies in the database.

« L — Prohibits the listing of principals or policies in the database.
« * — Short for all privileges (adnti |).
« X — Short for all privileges (adnti |). Identical to *.

Adding Administrators

After the ACLs are set up, actual administrator principals should be added to the
system. It is strongly recommended that administrative users have separate / admi n
principals to use only when administering the system. For example, user Lucy
would have two principals in the database - | ucy @GREALMand | ucy/ adm n@REALM
The / adm n principal would only be used when administering the system, not for
getting ticket-granting-tickets (TGTSs) to access remote services. Using the Zadmi n
principal only for administrative purposes minimizes the chance of someone
walking up to Joe’s unattended terminal and performing unauthorized
administrative commands on the KDC.

Kerberos principals may be differentiated by the instance part of their principal
name. In the case of user principals, the most common instance identifier is Zadni n.
It is standard practice in Kerberos to differentiate user principals by defining some

72 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

to be Zadmi n instances and others to have no specific instance identifier (for
example, | ucy/ adm n@REALMversus | ucy @REALM). Principals with the Zadmi n
instance identifier are assumed to have administrative privileges defined in the ACL
file and should only be used for administrative purposes. A principal with an
/admi n identifier which does not match up with any entries in the ACL file will not
be granted any administrative privileges, it will be treated as a non-privileged user
principal. Also, user principals with the Zadm n identifier are given separate
passwords and separate permissions from the non-admin principal for the same
user.

The following is a sample / et ¢/ kr b5/ kadnb. acl file:

Copyright (c¢) 1998-2000 by Sun M crosystens, Inc.
Al rights reserved.

#

#pragma i dent "@#)kadnb.acl 1.1 01/03/19 sSM "

lucy/admin is given full administrative privilege

| ucy/ adm n@XAMPLE. COM *

#

tomfadmin user is allowed to query the database (d), listing
princi pal s

(1), and changi ng user passwords (c)

#

t oml adm n@XAMPLE. COM dl ¢

Note — It is highly recommended that the kadnb. acl file be tightly controlled and
that users be granted only the privileges they need to perform their assigned tasks.

Creating Host Keys

Creating host keys for systems in the realm such as slave KDCs is performed the
same way that creating user principals is performed. However, the - r andkey option
should always be used, so no one ever knows the actual key for the hosts. Host
principals are almost always stored in the keyt ab file, to be used by root-owned
processes that wish to act as Kerberos services for the local host. It is rarely
necessary for anyone to actually know the password for a host principal because the
key is stored safely in the keytab and is only accessible by root-owned processes,
never by actual users.

When creating keytab files, the keys should always be extracted from the KDC on
the same machine where the keytab is to reside using the kt add command from a
kadni n session. If this is not feasible, take great care in transferring the keyt ab file
from one machine to the next. A malicious attacker who possesses the contents of

Chapter 3 Defining Directory Service Security Architecture 73

the keyt ab file could use these keys from the file in order to gain access to another
user or services credentials. Having the keys would then allow the attacker to
impersonate whatever principal that the key represented and further compromise
the security of that Kerberos realm. Some suggestions for transferring the keyt ab
are to use Kerberized, encrypted f t p transfers, or to use the secure file transfer
programs scp or sf t p offered with the SSH package (htt p: / / ww. openssh. or g).
Another safe method is to place the keyt ab on a removable disk, and hand-deliver
it to the destination.

Hand delivery does not scale well for large installations, so using the Kerberized
f t p daemon is perhaps the most convenient and secure method available.

Using NTP to Synchronize Clocks

All servers participating in the Kerberos realm need to have their system clocks
synchronized to within a configurable time limit (default 300 seconds). The safest,
most secure way to systematically synchronize the clocks on a network of Kerberos
servers is by using the Network Time Protocol (NTP) service. The Solaris OE comes
with an NTP client and NTP server software (SUNWht pu package). See the

nt pdat e(1M) and xnt pd(1M) man pages for more information on the individual
commands. For more information on configuring NTP, refer to the following Sun
BluePrints OnLine NTP articles:

= “Using NTP to Control and Synchronize System Clocks — Part I Introduction to
NTP” (July 2001), http://ww. sun. com bl uepri nts/ 0701/ NTP. pdf

= “Using NTP to Control and Synchronize System Clocks — Part II: Basic NTP
Administration and Architecture” (August 2001),
http://ww. sun. conl bl uepri nt s/ 0801/ NTPpt 2. pdf

= “Using NTP to Control and Synchronize System Clocks — Part Ill: NTP
Monitoring and Troubleshooting” (September 2001),
http://ww. sun. com bl ueprints/ 0901/ NTPpt 3. pdf

It is critical that the time be synchronized in a secure manner. A simple denial of
service attack on either a client or a server would involve just skewing the time on
that system to be outside of the configured clock skew value, which would then
prevent anyone from acquiring TGTs from that system or accessing Kerberized
services on that system. The default clock-skew value of five minutes is the
maximum recommended value.

The NTP infrastructure must also be secured, including the use of server hardening
for the NTP server and application of NTP security features. Using the Solaris
Security Toolkit software (formerly known as JASS) with the secur e. dri ver script
to create a minimal system and then installing just the necessary NTP software is
one such method. The Solaris Security Toolkit software is available at:

http://ww. sun. com security/jass/

74 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Documentation on the Solaris Security Toolkit software is available at:

http://ww. sun. com security/blueprints

Establishing Password Policies

Kerberos allows the administrator to define password policies that can be applied to
some or all of the user principals in the realm. A password policy contains
definitions for the following parameters:

= Minimum Password Length — The number of characters in the password, for
which the recommended value is 8.

= Maximum Password Classes — The number of different character classes that must
be used to make up the password. Letters, numbers, and punctuation are the
three classes and valid values are 1, 2, and 3. The recommended value is 2.

= Saved Password History — The number of previous passwords that have been
used by the principal that cannot be reused. The recommended value is 3.

= Minimum Password Lifetime (seconds) — The minimum time that the password
must be used before it can be changed. The recommended value is 3600 (1 hour).

= Maximum Password Lifetime (seconds) — The maximum time that the password
can be used before it must be changed. The recommended value is 7776000 (90
days).

These values can be set as a group and stored as a single policy. Different policies
can be defined for different principals. It is recommended that the minimum
password length be set to at least 8 and that at least 2 classes be required. Most
people tend to choose easy-to-remember and easy-to-type passwords, so it is a good
idea to at least set up policies to encourage slightly more difficult-to-guess
passwords through the use of these parameters. Setting the Maximum Password
Lifetime value may be helpful in some environments, to force people to change their
passwords periodically. The period is up to the local administrator according to the
overriding corporate security policy used at that particular site. Setting the Saved
Password History value combined with the Minimum Password Lifetime value
prevents people from simply switching their password several times until they get
back to their original or favorite password.

The maximum password length supported is 255 characters, unlike the UNIX
password database which only supports up to 8 characters. Passwords are stored in
the KDC encrypted database using the KDC default encryption method, DES- CBC-
CRC. In order to prevent password guessing attacks, it is recommended that users
choose long passwords or pass phrases. The 255 character limit allows one to choose
a small sentence or easy to remember phrase instead of a simple one-word
password.

Chapter 3 Defining Directory Service Security Architecture 75

It is possible to use a dictionary file that can be used to prevent users from choosing
common, easy-to-guess words (see “Secure Settings in the KDC Configuration File”
on page 70). The dictionary file is only used when a principal has a policy
association, so it is highly recommended that at least one policy be in effect for all
principals in the realm.

The following is an example password policy creation:

If you specify a kadm n command without specifying any options, kadm n displays
the syntax (usage information) for that command. The following code box shows
this, followed by an actual add_pol i cy command with options.

kadm n: add_policy

usage: add_policy [options] policy

options are:

[-maxlife tinme] [-minlife tine] [-minlength | ength]
[-m ncl asses nunber] [-history nunber]

kadm n: add_policy -minlife "1 hour" -maxlife "90 days"
-minlength 8 -minclasses 2 -history 3 passpolicy
kadmi n: get _policy passpolicy

Pol i cy: passpolicy

Maxi mum password |ife: 7776000

M ni mum password |ife: 3600

M ni mum password | ength: 8

M ni mum nunber of password character cl asses: 2
Number of ol d keys kept: 3

Ref erence count: O

This example creates a password policy called passpol i cy which enforces a
maximum password lifetime of 90 days, minimum length of 8 characters, a
minimum of 2 different character classes (letters, numbers, punctuation), and a
password history of 3.

To apply this policy to an existing user, modify the following:

kadm n: nodprinc -policy passpolicy |ucyPrincipal
"l ucy @XAMPLE. COM' nodi fi ed.

76 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

To modify the default policy that is applied to all user principals in a realm, change
the following:

kadm n: nodify_policy -maxlife "90 days" -minlife "1 hour"
-minlength 8 -mnclasses 2 -history 3 default

kadmi n: get_policy default

Policy: default

Maxi mum password |ife: 7776000

M ni mum password |ife: 3600

M ni mum password | ength: 8

M ni mum nunber of password character classes: 2

Nunmber of ol d keys kept: 3

Ref erence count: 1

The Reference count value indicates how many principals are configured to use the
policy.

Note — The default policy is automatically applied to all new principals that are not
given the same password as the principal name when they are created. Any account
with a policy assigned to it is uses the dictionary (defined in the dict _file
parameter in / et ¢/ kr b5/ kdc. conf) to check for common passwords.

Backing Up a KDC

Backups of a KDC system should be made regularly or according to local policy.
However, backups should exclude the / et ¢/ kr b5/ kr b5. keyt ab file. If the local
policy requires that backups be done over a network, then these backups should be
secured either through the use of encryption or possibly by using a separate network
interface that is only used for backup purposes and is not exposed to the same traffic
as the non-backup network traffic. Backup storage media should always be kept in a
secure, fireproof location.

Chapter 3 Defining Directory Service Security Architecture 77

Monitoring the KDC

Once the KDC is configured and running, it should be continually and vigilantly
monitored. The Sun Kerberos v5 software KDC logs information into the

/var/ kr b5/ kdc. | og file, but this location can be modified in the

/ et c/ kr b5/ kr b5. conf file, in the logging section.

[oggi ng]
default = FILE: /var/krb5/kdc. | og
kdc = FILE:/var/krb5/kdc. | og

The KDC log file should have read and write permissions for the root user only, as
follows:

STW--- - 1 root other 750 25 May 10 17:55 /var/krb5/kdc. 1 og

Kerberos Options

The / et ¢/ kr b5/ kr b5. conf file contains information that all Kerberos applications
use to determine what server to talk to and what realm they are participating in.
Configuring the kr b5. conf file is covered in the Sun Enterprise Authentication
Mechanism Software Installation Guide. Also refer to the kr b5. conf (4) man page for a
full description of this file.

The appdef aul t s section in the kr b5. conf file contains parameters that control
the behavior of many Kerberos client tools. Each tool may have its own section in
the appdef aul t s section of the kr b5. conf file.

Many of the applications that use the appdef aul t s section, use the same options;
however, they might be set in different ways for each client application.

Kerberos Client Applications

The following Kerberos applications can have their behavior modified through the

user of options set in the appdef aul t s section of the /et ¢/ kr b5/ kr b5. conf file
or by using various command-line arguments. These clients and their configuration
settings are described below.

78 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

kinit
The ki ni t client is used by people who want to obtain a TGT from the KDC. The
/ et c/ kr b5/ kr b5. conf file supports the following ki ni t options: r enewabl e,

f orwar dabl e, no_addresses, max_| i fe, max_renewabl e_| i fe and
proxi abl e.

t el net

The Kerberos t el net client has many command-line arguments that control its
behavior. Refer to the man page for complete information. However, there are
several interesting security issues involving the Kerberized t el net client.

The t el net client uses a session key even after the service ticket which it was
derived from has expired. This means that the t el net session remains active even
after the ticket originally used to gain access, is no longer valid. This is insecure in a
strict environment, however, the trade off between ease of use and strict security
tends to lean in favor of ease-of-use in this situation. It is recommended that the

t el net connection be re-initialized periodically by disconnecting and reconnecting
with a new ticket. The overall lifetime of a ticket is defined by the KDC

(/ et c/ kr b5/ kdc. conf), normally defined as eight hours.

Thet el net client allows the user to forward a copy of the credentials (TGT) used to
authenticate to the remote system using the - f and - F command-line options. The
- f option sends a non-forwardable copy of the local TGT to the remote system so
that the user can access Kerberized NFS mounts or other local Kerberized services
on that system only. The - F option sends a forwardable TGT to the remote system so
that the TGT can be used from the remote system to gain further access to other
remote Kerberos services beyond that point. The - F option is a superset of - f. If the
For war dabl e and or f or war d options are set to f al se in the kr b5. conf file,
these command-line arguments can be used to override those settings, thus giving
individuals the control over whether and how their credentials are forwarded.

The - x option should be used to turn on encryption for the data stream. This further
protects the session from eavesdroppers. If the t el net server does not support
encryption, the session is closed. The / et ¢/ kr b5/ kr b5. conf file supports the
following t el net options: f or war d, f or war dabl e, encrypt, and aut ol ogi n.
The aut ol ogi n [t rue/f al se] parameter tells the client to try and attempt to log in
without prompting the user for a user name. The local user name is passed on to the
remote system in the t el net negotiations.

Chapter 3 Defining Directory Service Security Architecture 79

rl oginandrsh

The Kerberos r 1 ogi n and r sh clients behave much the same as their non-
Kerberized equivalents. Because of this, it is recommended that if they are required
to be included in the network files such as / et ¢/ host s. equi v and .r host s that
the root users directory be removed. The Kerberized versions have the added benefit
of using Kerberos protocol for authentication and can also use Kerberos to protect
the privacy of the session using encryption.

Similar to t el net described previously, the r| ogi n and r sh clients use a session
key after the service ticket which it was derived from has expired. Thus, for
maximum security, r 1 ogi n and r sh sessions should be re-initialized periodically.
rl ogi nusesthe -f, -F and - x options in the same fashion as the t el net client.
The / et ¢/ kr b5/ kr b5. conf file supports the following r | ogi n options: f or war d,
f or war dabl e, and encrypt .

Command-line options override configuration file settings. For example, if the r sh
section in the kr b5. conf file indicates encrypt f al se, but the - x option is used
on the command line, an encrypted session is used.

rcp

Kerberized r cp can be used to transfer files securely between systems using
Kerberos authentication and encryption (with the - x command-line option). It does
not prompt for passwords, the user must already have a valid TGT before using r cp
if they wish to use the encryption feature. However, beware if the - x option is not
used and no local credentials are available, the r cp session will revert to the
standard, non-Kerberized (and insecure) r cp behavior. It is highly recommended
that users always use the - x option when using the Kerberized r cp client.The

/ et c/ kr b5/ kr b5. conf file supports the encrypt [true/fal se] option.

| ogin

The Kerberos login program (I ogi n. kr b5) is forked from a successful
authentication by the Kerberized t el net daemon or the Kerberized r | ogi n
daemon. This Kerberos login daemon is separate from the standard Solaris OE login
daemon and thus, the standard Solaris OE features such as BSM auditing are not yet
supported when using this daemon. The / et ¢/ kr b5/ kr b5. conf file supports the
krb5_get tickets [true/fal se] option. If this option is set to true, then the
login program will generate a new Kerberos ticket (TGT) for the user upon proper
authentication.

80 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

ftp

The Sun Enterprise Authentication Mechanism (SEAM) version of the f t p client
uses the GSSAPI (RFC 2743) with Kerberos v5 as the default mechanism. This means
that it uses Kerberos authentication and (optionally) encryption through the
Kerberos v5 GSS mechanism. The only Kerberos-related command-line options are -
f and - m The - f option is the same as described above for t el net (there is no need
for a - F option). - mallows the user to specify an alternative GSS mechanism if so
desired, the default is to use the ker ber os_v5 mechanism.

The protection level used for the data transfer can be set using the pr ot ect
command at the ft p prompt. Sun Enterprise Authentication Mechanism software
f t p supports the following protection levels:

= Clear unprotected, unencrypted transmission
= Safe data is integrity protected using cryptographic checksums
= Private data is transmitted with confidentiality and integrity using encryption

It is recommended that users set the protection level to pri vat e for all data
transfers. The f t p client program does not support or reference the kr b5. conf file
to find any optional parameters. All f t p client options are passed on the command
line. See the man page for the Kerberized ft p client, f t p(1).

In summary, adding Kerberos to a network can increase the overall security
available to the users and administrators of that network. Remote sessions can be
securely authenticated and encrypted, and shared disks can be secured and
encrypted across the network. In addition, Kerberos allows the database of user and
service principals to be managed securely from any machine which supports the
SEAM software Kerberos protocol. SEAM is interoperable with other RFC 1510
compliant Kerberos implementations such as MIT Krb5 and some MS Windows 2000
Active Directory services. Adopting the practices recommended in this section
further secure the SEAM software infrastructure to help ensure a safer network
environment.

Implementing the Sun ONE Directory Server 5.2
Software and the GSSAPI Mechanism

This section provides a high-level overview, followed by the in-depth procedures
that describe the setup necessary to implement the GSSAPI mechanism and the Sun
ONE Directory Server 5.2 software. This implementation assumes a realm of
EXAMPLE. COMfor this purpose. The following list gives an initial high-level
overview of the steps required, with the next section providing the detailed
information.

Chapter 3 Defining Directory Service Security Architecture 81

1. Setup DNS on the client machine. This is an important step because Kerberos
requires DNS.

2. Install and configure the Sun ONE Directory Server version 5.2 software.

3. Check that the directory server and client both have the SASL plug-ins installed.
4. Install and configure Kerberos v5.

5. Edit the / et ¢/ kr b5/ kr b5. conf file.

6. Edit the / et c/ kr b5/ kdc. conf file.

7. Edit the / et c/ kr b5/ kadnb. acl file.

8. Move the ker ber os_v5 line so it is the first line in the / et ¢/ gss/ mech file.

9. Create new principals using kadmi n. | ocal , which is an interactive command-
line interface to the Kerberos v5 administration system.

10. Modify the rights for / et ¢/ kr b5/ kr b5. keyt ab. This access is necessary for the
Sun ONE Directory Server 5.2 software.

11. Run /usr/sbin/kinit.
12. Check that you have a ticket with / usr/ bi n/ kl i st.

13. Perform an | dapsear ch, using the | dapsear ch command-line tool from the
Sun ONE Directory Server 5.2 software to test and verify.

The sections that follow fill in the details.

Configuring a DNS Client

To be a DNS client, a machine must run the resolver. The resolver is neither a daemon
nor a single program. It is a set of dynamic library routines used by applications that
need to know machine names. The resolver’s function is to resolve users’ queries. To
do that, it queries a name server, which then returns either the requested
information or a referral to another server. Once the resolver is configured, a
machine can request DNS service from a name server.

82 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

The following example shows you how to configure the r esol v. conf (4) file in the
server kdc1l in the exanpl e. comdomain.

: letc/resolv.conf file for dnsmaster

donai n exanpl e. com
nanmeserver 192.168.0.0
nameserver 192.168.0.1

The first line of the / et ¢/ r esol v. conf file lists the domain name in the form:

domai n domainname

Note — No spaces or tabs are permitted at the end of the domain name. Make sure
that you press return immediately after the last character of the domain name.

The second line identifies the server itself in the form:
naneser ver IP_address

Succeeding lines list the IP addresses of one or two slave or cache-only name servers
that the resolver should consult to resolve queries. Name server entries have the
form:

naneser ver IP_address

IP_address is the IP address of a slave or cache-only DNS name server. The resolver
queries these name servers in the order they are listed until it obtains the
information it needs.

For more detailed information of what the resol v. conf file does, refer to the
resol v. conf (4) man page.

To Configure Kerberos v5 (Master KDC)

In the this procedure, the following configuration parameters are used:
= Realm name = EXAMPLE. COM

= DNS domain name = exanpl e. com

= Master KDC = kdcl. exanpl e. com

= admin principal =1 ucy/ admni n

= Online help URL =
http://exanpl e: 8888/ ab2/ col | . 384. 1/ SEAM @\B2PageVi ew 6956

Chapter 3 Defining Directory Service Security Architecture 83

Note — This procedure requires that DNS is running.

Note — Before you begin this configuration process, make a backup of the
[et c/ kr b5 files.

1. Become superuser on the master KDC. (kdc1, in this example)

2. Edit the Kerberos configuration file (kr b5. conf).

Note — You need to change the realm names and the names of the servers. See the
kr b5. conf (4) man page for a full description of this file.

kdcl # nore /etc/krb5/krb5. conf
[1ibdefaults]
default _real m = EXAMPLE. COM

[real ms]
EXAMPLE. COM = {
kdc = kdcl. exanpl e.com
adm n server = kdcl.exanpl e.com
}

[domai n_real m
. exanpl e. com = EXAVPLE. COM

[1 oggi ng]
default = FILE: /var/krb5/kdc. | og
kdc = FILE: /var/krb5/kdc. | og

[appdef aul t s]
gkadmin = {
hel p_url =
http://exanpl e: 8888/ ab2/ col | . 384. 1/ SEAM @\B2PageVi ew 6956

}

In this example, the lines for domai n_r eal m kdc, adm n_server, and all

domai n_r eal mentries were changed. In addition, the line

with __ slave_kdcs___ inthe[real ns] section was deleted and the line that
defines the hel p_ur| was edited.

84 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

3. Edit the KDC configuration file (kdc. conf).

You must change the realm name. See the kdc. conf (4) man page for a full
description of this file.

kdcl # nore /etc/krb5/kdc. conf
[kdcdef aul t s]
kdc_ports = 88, 750

[real ms]
EXAMPLE. COME {

profile = /etc/krb5/krb5. conf
dat abase_nane = /var/krb5/ princi pal
adm n_keytab = /etc/krb5/kadnb. keyt ab
acl _file = [etc/krb5/kadnb. acl
kadm nd_port = 749
max_life = 8h OmOs
max_renewabl e_|ife = 7d Oh Om Os

Need nmoving --------- > defaul t_principal _flags = +preauth

In this example, only the realm name definition in the [r eal ns] section is changed.

4. Create the KDC database by using the kdb5_uti | command.

The kdb5_uti | command, which is located in / usr/ sbi n, creates the KDC
database. When used with the - s option, this command creates a stash file that is
used to authenticate the KDC to itself before the kadm nd and kr b5kdc daemons
are started.

kdcl # /usr/sbin/kdb5 util create -r EXAMPLE. COM - s
Initializing database '/var/krb5/principal’ for realm

" EXAMPLE. COM
mast er key nane ' K/ M@&EXAMPLE. COM
You will be pronpted for the database Master Password.

It is inportant that you NOT FORGET this password.
Ent er KDC dat abase master key: key
Re-enter KDC database master key to verify: key

Note — The - r option followed by the realm name is not required if the realm name
is equivalent to the domain name in the server’s name space.

Chapter 3 Defining Directory Service Security Architecture 85

5. Edit the Kerberos access control list file (kadnb. acl).

Once populated, the / et ¢/ kr b5/ kadnb. acl file contains all principal names that
are allowed to administer the KDC. The first entry that is added might look similar
to the following:

| ucy/ adm n@XAVMPLE. COM *

This entry gives the | ucy/ admi n principal in the EXAMPLE. COMrealm the ability to
modify principals or policies in the KDC. The default installation includes an
asterisk (*) to match all admin principals. This default could be a security risk, so it
is more secure to include a list of all of the admin principals. See the kadnb. acl (4)
man page for more information.

6. Edit the / et ¢/ gss/ mech file.

The / et ¢/ gss/ nmech file contains the GSSAPI based security mechanism names, its
object identifier (OID), and a shared library that implements the services for that
mechanism under the GSSAPI. Change the following from:

Mechani sm Nane Chj ect ldentifier Shared Library
Ker nel Modul e
#

diffie_hell man_640_0 1.3.6.4.1.42.2.26.2. 4 dh640-0.so0.1
diffie_hellman_1024_0 1.3.6.4.1.42.2.26.2.5 dh1024-0.so0.1
ker beros_v5 1.2.840.113554.1.2.2 gl / mech_krb5. so
gl _kmech_kr b5

To the following:

Mechani sm Nane Chj ect ldentifier Shared Library
Ker nel Mbdul e

#

ker beros_v5 1.2.840.113554.1.2.2 gl / mech_krb5. so

gl _knech_kr b5
diffie_hell man_640_0

4 dh640-0.so0.1
diffie_hellman_1024 0 5

1.3.6.4.1.42. 2. 26. 2.
1.3.6.4.1.42. 2. 26. 2. dh1024-0.so0.1

86 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

7. Run the kadm n. | ocal command to create principals.

You can add as many admin principals as you need. But you must add at least one
admin principal to complete the KDC configuration process. In the following
example, | ucy/ adm n is added as the principal.

kdcl # /usr/sbin/kadm n. | ocal

kadmi n. | ocal : addprinc |ucy/admnin

Enter password for principal "lucy/adnm n@XAMPLE. COM' :
Re-enter password for principal "lucy/adm n@EXAMPLE. COM':
Princi pal "lucy/adm n@XAMPLE. COM' cr eat ed.

kadm n. | ocal :

8. Create a keyt ab file for the kadm nd service.

The following command sequence creates a special keyt ab file with principal
entries for | ucy and t om These principals are needed for the kadmi nd service. In
addition, you can optionally add NFS service principals, host principals, LDAP
principals, and so on.

Note — When the principal instance is a host name, the fully qualified domain name
(FQDN) must be entered in lowercase letters, regardless of the case of the domain
name in the / et c/ resol v. conf file.

kadm n.local: ktadd -k /etc/krb5/kadnb. keyt ab
kadm n/ kdcl. exanpl e. com
Entry for principal kadm n/kdcl. exanple.comw th kvno 3,
encryption type DES-CBC- CRC

added to keytab WRFI LE: / et ¢/ kr b5/ kadnb. keyt ab.
kadm n.local: ktadd -k /etc/krb5/kadnb. keyt ab
changepw kdcl. exanpl e. com
Entry for principal changepw kdcl. exanple.comw th kvno 3,
encryption type DES-CBC- CRC

added to keytab WRFI LE: / et ¢/ kr b5/ kadnb. keyt ab.
kadm n. | ocal :

Once you have added all of the required principals, you can exit from
kadm n. | ocal as follows:

kadm n.local: quit

Chapter 3 Defining Directory Service Security Architecture 87

9.

10.

11.

12.

Start the Kerberos daemons as shown:

kdcl # /etc/init.d/ kdc start
kdcl # /etc/init.d/ kdc. master start

Note — You stop the Kerberos daemons by running the following commands:
kdcl # /etc/init.d/ kdc stop
kdcl # /etc/init.d/kdc. master stop

Add principals by using the SEAM Administration Tool.

To do this, you must log on with one of the admin principal names that you created
earlier in this procedure. However, the following command-line example is shown
for simplicity.

kdcl # /usr/sbin/kadmn -p lucy/admn
Enter password: kws_admin_password
kadm n:

Create the master KDC host principal which is used by Kerberized applications
such as kl i st and kpr op.

kadm n: addprinc -randkey host/kdcl. exanpl e.com
Princi pal "host/kdcl. exanpl e. com@XAMPLE. COM' cr eat ed.
kadm n:

(Optional) Create the master KDC root principal which is used for authenticated
NFS mounting.

kadm n: addprinc root/kdcl. exanpl e. com

Enter password for principal root/kdcl. exanpl e. com@&XAVMPLE. COM
password

Re-enter password for principal

root/ kdcl. exanpl e. com@EXAVPLE. COM password

Princi pal "root/kdcl. exanpl e. com@XAMPLE. COM' cr eat ed.

kadm n:

88 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services » September 2003

13.

14.

15.

Add the master KDC'’s host principal to the master KDC’s keyt ab file which
allows this principal to be used automatically.

kadm n: ktadd host/kdcl. exanpl e. com

kadm n: Entry for principal host/kdcl. exanple.comwith
->kvno 3, encryption type DES- CBC-CRC added to keytab
->WRFI LE: / et c/ kr b5/ kr b5. keyt ab

kadm n:

Once you have added all of the required principals, you can exit from kadm n as
follows:

kadm n: quit

Run the ki ni t command to obtain and cache an initial ticket-granting ticket
(credential) for the principal.

This ticket is used for authentication by the Kerberos v5 system. ki ni t only needs
to be run by the client at this time. If the Sun ONE directory server were a Kerberos
client also, this step would need to be done for the server. However, you may want
to use this to verify that Kerberos is up and running.

kdclient # /usr/bin/kinit root/kdclient.exanple.com
Password for root/kdclient.exanpl e. com@XAMPLE. COM passwd

Check and verify that you have a ticket with the kl i st command.

The kI i st command reports if there is a keyt ab file and displays the principals. If
the results show that there is no keyt ab file or that there is no NFS service principal,
you need to verify the completion of all of the previous steps.

klist -k
Keyt ab name: FILE:/etc/krb5/krb5. keyt ab
KVNO Pri nci pal

3 nf s/ host. exanpl e. com@&XAMPLE. COM

Note — The example given here assumes a single domain. The KDC may reside on
the same machine as the Sun ONE directory server for testing purposes, but there
are security considerations to take into account on where the KDCs reside.

Chapter 3 Defining Directory Service Security Architecture 89

90

With regards to the configuration of Kerberos v5 in conjunction with the Sun ONE
Directory Server 5.2 software, you are finished with the Kerberos v5 part. It’'s now
time to look at what is required to be configured on the Sun ONE directory server
side.

Sun ONE Directory Server 5.2 GSSAPI
Configuration

As previously discussed, the Generic Security Services Application Program
Interface (GSSAPI), is standard interface that enables you to use a security
mechanism such as Kerberos v5 to authenticate clients. The server uses the GSSAPI
to actually validate the identity of a particular user. Once this user is validated, it’s
up to the SASL mechanism to apply the GSSAPI mapping rules to obtain a DN that
is the bind DN for all operations during the connection.

The first item discussed is the new identity mapping functionality.

The identity mapping service is required to map the credentials of another protocol,
such as SASL DIGEST-MD5 and GSSAPI to a DN in the directory server. As you will
see in the following example, the identity mapping feature uses the entries in the
cn=i denti ty mapping, cn=conf i g configuration branch, whereby each protocol is
defined and whereby each protocol must perform the identity mapping. For more
information on the identity mapping feature, refer to the Sun ONE Directory Server
5.2 Documents.

To Perform the GSSAPI Configuration for the Sun ONE
Directory Server Software

. Check and verify, by retrieving the r oot DSE entry, that the GSSAPI is returned as

one of the supported SASL Mechanisms.

Example of using | dapsear ch to retrieve the rootDSE and get the supported SASL
mechanisms:

$. /1 dapsearch -h directoryserver_hostname -p Idap_port -b ""
-s base “(objectclass=*)" supportedSASLMechani snms
support edSASLMechani snms=EXTERNAL

support edSASLMechani sms=GSSAPI

suppor t edSASLMechani sns=DI GEST- MD5

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

2. Verify that the GSSAPI mechanism is enabled.
By default, the GSSAPI mechanism is enabled.

Example of using | dapsear ch to verify that the GSSAPI SASL mechanism is
enabled:

$. /1 dapsearch -h directoryserver_hostname -p Idap_port
-D'cn=Directory Manager” -w password -b "cn=SASL, cn=security, cn=
config" “(objectclass=*)"

#

Should return

#

cn=SASL, cn=security, cn=config

obj ect C ass=t op

obj ect O ass=nsCont ai ner

obj ect C ass=dsSasl Confi g

cn=SASL

dsSasl Pl ugi nsPat h=/ var/ Sun/ nps/ | i b/ sasl

dsSasl Pl ugi nsEnabl e=Dl GEST- MD5

dsSasl Pl ugi nsEnabl e=GSSAPI

Chapter 3 Defining Directory Service Security Architecture 91

3. Create and add the GSSAPI i denti ty- mappi ng. | di f.

Add the LDIF shown below to the Sun ONE Directory Server so that it contains the
correct suffix for your directory server.

You need to do this because by default, no GSSAPI mappings are defined in the Sun
ONE Directory Server 5.2 software.

Example of a GSSAPI identity mapping LDIF file:

#

dn: cn=GSSAPI, cn=identity mappi ng, cn=config
obj ectcl ass: nsCont ai ner

obj ectcl ass: top

cn: GSSAPI

dn: cn=defaul t, cn=GSSAPI, cnh=i dentity nappi ng, cn=config
obj ectcl ass: dsl dentityMapping

obj ectcl ass: nsCont ai ner

obj ectcl ass: top

cn: default

dsMappedDN: ui d=${Pri nci pal }, ou=peopl e, dc=exanpl e, dc=com

dn: cn=sane_real m cn=GSSAPI , cn=i dentity mappi ng, cn=config
obj ectcl ass: dsl dentityMappi ng

obj ectcl ass: dsPatt ernhat chi ng

obj ect cl ass: nsCont ai ner

obj ectclass: top

cn: sanme_realm

dsMat chi ng-pattern: ${Principal}

dsMat chi ng-regexp: (.*)@xanple.com

dsMappedDN: ui d=$1, ou=peopl e, dc=exanpl e, dc=com

It is important to make use of the ${ Pri nci pal } variable, because it is the only
input you have from SASL in the case of GSSAPI. Either you need to build a dn
using the ${ Pri nci pal } variable or you need to perform pattern matching to see if
you can apply a particular mapping. A principal corresponds to the identity of a
user in Kerberos.

92 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Note — You can find an example GSSAPI LDIF mappings files in ServerRoot/slapd-
server/ |1 di f/identityMappi ng_Exanpl es. | dif.

The following is an example using | dapnodi fy to do this:

$. /1 daprnodify -a -c -h directoryserver_hostname -p Idap_port
-D "cn=Directory Manager” -w password -f identity-mapping.|dif
-e /var/tnp/ldif.rejects 2> /var/tnp/l dapnodify.|og

. Perform a test using | dapsear ch.

To perform this test, type the following | dapsear ch command as shown below, and
answer the prompt with the ki ni t value you previously defined.

Example of using | dapsear ch to test the GSSAPI mechanism:

$. /1 dapsearch -h directoryserver_hostname -p Idap_port - o mech=GSSAPI
-0 aut hzi d="r oot / hostname. domainname@XAMPLE. COM' -b “*“
-s base “(objectclass=*)"

The output that is returned should be the same as without the - o option.

Note — If you do not use the - h hostname option, the GSS code ends up looking for
a | ocal host .domainname Kerberos ticket, and an error occurs.

TLSv1/SSL Protocol Support

This section discusses the Transport Layer Security (TLS) and how it provides the
encrypted communications between two hosts, such as a directory server and client.
The topic is covered in two categories:

= Server (directory server)
= Client (Secured LDAP Client)

To dispel any misunderstandings you might have, this section explains the
differences between TLS and SSL.

Chapter 3 Defining Directory Service Security Architecture 93

94

SSL Background

The Secure Sockets Layer (SSL) was originally designed for the World Wide Web
(WWW) environment to provide a secure channel between two machines. The SSL
protocol has gone through various incarnations, beginning with version 1, and
evolving into it’s present state with its adoption be the Internet Engineering Task
Force (IETF), which is now referred to as the Transport Layer Security (TLS)
standard.

All the previous versions of the SSL protocol were developed by engineers who
worked for Netscape Communications. Netscape’s intention was to develop a
security model whereby they could provide a single solution to address all the
security issues around not only the Web, but also messaging, and news.

TABLE 3-2 shows the development cycle of SSL/TLS.

TABLE3-2 SSL and TLS Development Cycle

SSL / TLS Protocol Version Description

SSLv1 Developed by Netscape in 1994, but was never released.

SSLv2 Developed by Netscape in 1994, and the first release.

SSLv3 Developed by Netscape in 1995, and provided authentication
only.

TLS Adoption by the IETF in 1997. Provided new functionality

such as a new MAC algorithm and new key expansion.

SSLv2

The goal of SSLv2 was to provide a secure channel between two hosts on the WWW
environment. With this in mind, the SSL protocol needed to fit in well with the
HTTP protocol, which is used by the Web. Netscape also wanted to provide a single
security solution, which meant that this solution would have to work with other
protocols and not just HTTP. Unfortunately, not all protocols use or require the same
security properties.

SSLv3

There is no question that SSLv2 was widely adopted resulting in a great deal of
popularity, thus ensuring that the design goals and principles of SSLv2 were carried
forward into SSLv3. The main goal for SSLv3 was to fix a number of security

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

problems found in SSLv2. This meant designing a more secure model that could
negotiate multiple cryptographic algorithms. The end result is that SSLv3 supports
many more multiple cryptographic algorithms.

TLS Background

In 1996 the IETF chartered the Transport Layer Security (TLS) working group to
attempt to standardize an SSL-like protocol. It became apparent early on that there
was very little support for changing the existing SSLv3 protocol, with the exception
of a few minor bugs and enhancements. To this end, the new protocol just became a
minor cleanup of SSLv3.

Understanding TLSv1 Transport Support

In your directory server (LDAP) deployment, it is highly likely that you have some
form of security requirements that must be addressed. Specific security requirements
are different from one organization to another. For example, a directory server
(LDAP) that is available on the Internet has very specific security needs.

To provide secure communications over a network, your directory server (in
particular, the Sun ONE Directory Server), includes and supports the LDAPS
communications protocol. LDAPS (LDAP over SSL) is the standard LDAP protocol,
which runs on top of the Secure Sockets Layer (SSL).

It is possible to not only use TLSv1 protocol to secure communications between a
directory server (LDAP) and directory clients (LDAP), but also between directory
servers (LDAP) that are bound by a replication agreement, or between a database
link and a remote database. You can use TLSv1 with Simple authentication (bind DN
and password), or with certificate-based authentication.

Two kinds of authentication mechanisms can be performed using TLSv1:
= Server authentication
= Client authentication

With server authentication, the client decides whether it trusts the certificate
presented by the server. With client authentication, the client decides whether it
trusts the certificate presented by the server, and the server decides whether it trusts
the certificate presented by the client. In the case of server authentication, the client
is not authenticated to the server at all. In the case of client authentication, the client
may be authenticated to the server if it also performs a bind using the SASL
EXTERNAL mechanism.

Chapter 3 Defining Directory Service Security Architecture 95

Using TLSv1 with the Simple authentication mechanism guarantees confidentiality
and data integrity. One of the benefits of using a certificate to authenticate to the
Directory Server (LDAP) instead of a bind DN and password is improved security.

The use of the certificate-based authentication mechanism is more secure than non-
certificate bind operations. This is because certificate-based authentication uses
public-key cryptography. As a result, bind credentials cannot be intercepted across
the network.

The Sun ONE Directory Server software is capable of simultaneous TLSv1 and non-
SSL communications. This means that you do not have to choose between TLSv1 or
non-SSL communications for your directory server, because you can use both at the
same time.

But one of the downsides to using TLSv1 is reduced efficiency.

The process of data encryption, with generally DES or RC4 does significantly reduce
the throughput that can be achieved, and the initial negotiation and key agreement
with RSA or DSA is even more expensive. There are potentially three cases for which
you must be considered when dealing with the performance impact of TLSv1 in the
Sun ONE Directory Server 5.2 software:

« Clients establish a connection over TLSv1 and maintain that connection for a
number of operations (persistent connections). This is the best scenario for
TLSv1 because the process of initializing the TLSv1-based connection is the
most expensive part. In this case, using TLSv1 will introduce degradation over
the performance when not using TLSv1.

« Clients establish a connection over TLSv1, perform one or two operations (for
example, a bind and a search), close the connection, and then repeat. That is,
the same system or set of systems are repeatedly used to establish short-lived
TLSv1-based connections. This is much less efficient because as indicated
above, the process of establishing TLSv1-based connections is rather expensive.
However, it is not as bad as it could be because the same TLSv1 session (which
is also expensive to set up) can be re-used across multiple TCP connections.

« Different client systems establish a connection over TLSv1, perform one or two
operations (for example, a bind and a search), and then close the connection.
That is, different systems are used to establish short-lived SSL-based
connections. This is the least efficient of the three scenarios because the TLSv1
sessions cannot be reused across the different TCP connections, which means
that the full negotiation process must be performed for each new connection.
This case is a very uncommon scenario for real-world directory use.

Why Use TLSv1?

TLSv1 is used to protect sensitive information. Data that travels over a network is
visible to a number of other machines on that network. This is especially of concern
for information traveling over the Internet. Normally, the other machines simply

96 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

ignore the information if it isn’t intended for them, but that isn’t necessarily the case.
Most network interfaces support a feature known as promiscuous mode, in which
they sue to pay attention to all traffic and not just information that pertains
specifically to that machine. This can be a very helpful diagnostic feature for
network administrators or even people that support a product that works in a
networked environment. Applications like snoop (included in the Solaris OE) or the
Network Monitor that comes with Windows NT, provide a mechanism for capturing
and displaying that information. These applications are often called sniffers or
protocol analyzers. More advanced protocol analyzers like Ethereal (available for
free on a number of platforms, or as source code from

http://ww. et her eal . con) can even interpret the information that is captured
so that it can be more easily understood by the user. This is helpful with text-based
protocols like HTTP because it provides formatting for the request. It is invaluable
for binary protocols like LDAP because otherwise the task of decoding the
information and figuring out exactly what was going on between the client and the
server is much more difficult.

Sniffers can be very helpful tools when trying to track down problems that are
occurring in a networked environment. However, they can also be very helpful tools
to those with less honorable intentions. They make it easy to see any information
that is transferred over the network, so it is possible to capture sensitive information
like credit card numbers being used to buy a product on the Web, passwords being
used to bind to a directory server, or any other kind of information that would
otherwise be protected. Using TLSv1 can thwart these attempts because the
encrypted information is completely unintelligible except to the two machines that
are having the conversation.

The layer of privacy provided by TLSv1 does not come without a price. Because
TLSv1 is used to encapsulate information in another protocol, each machine must
deal with the extra overhead of encrypting information before sending it over the
network, and decrypting information received before attempting to interpret it. The
primary form of overhead is in CPU utilization, but it is also necessary to transfer
more information between the client and the server. For that reason, TLSv1 should
generally be used only when it is necessary to ensure the privacy of the information
that is being sent over the network.

How Does TLSv1 Work?

From a high level, TLSv1 works by encrypting information using data that is only
available to the two machines having the encrypted conversation. The foundation of
this set of information is the certificate. A certificate is a portion of binary data that
can be used to establish proof of identity. There are two important parts of a
certificate:

= The public key
= The private key

Chapter 3 Defining Directory Service Security Architecture 97

The public key is freely available and is used as the initial proof that the server is the
system that the client believes it is. The private key is available only to the server
and can be used to decrypt information that is encrypted using the server’s public
key.

Before information can be encrypted using TLSv1, a preliminary conversation must
occur between the client and the server, known as the TLSv1 handshake, which is
discussed in some detail later in this section. For now, this is what happens during
the TLSv1 handshake:

1. The client sends some information to the server, including the TLSv1 version
number that the client wants to use and some randomly generated data.

2. The server sends back some information that includes the TLSv1 version number
the server will use, some randomly generated data, and the server’s public key.

3. If the client decides to trust the server’s certificate as proof of identification, it
generates a shared secret. This shared secret is encrypted using the server’s public
key and sent to the server.

4. The server decrypts the data from the client using its private key to determine the
shared secret.

5. All communication between the client and the server beyond that point is
encrypted with that shared secret.

There is actually more that occurs during this TLSv1 handshake, but the above
description is a good starting point.

Types of TLSv1

Two-types of TLSv1 are commonly used:
= Server authentication
= Client authentication

Server authentication is the most common form and is the most basic level of
authentication that can be performed using TLSv1, and was explained in a brief
description in the previous section. Essentially, server authentication is used to
obtain enough information to get the shared secret to encrypt the information. It is
called server authentication because the process involves a mechanism whereby the
server sends proof of its identity to the client and the client is then able to decide
whether to trust that information and continue its conversation with the server. In
server authentication, the server automatically trusts the client, or trusts the client
through some mechanism built into the encapsulated protocol (for example, the
password used in an LDAP bind request). No proof of the client’s identity is
required in the TLSv1 handshake.

98 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Client authentication extends the process of server authentication in that the server
requires proof of the client’s identity in addition to having to prove its identity to the
client. In this case, the TLSv1 handshake is extended to include the server requesting
that proof of identity from the client.

In this scenario, the client must have its own certificate, and send the public key to
the server so that the server can determine whether to trust the identity of the client.
The client does not require a certificate. This is only used when there is client
authentication. There is also an additional step involved in the generation of the
shared secret when client authentication is used.

FIGURE 3-3 shows that the TLS protocol runs above TCP/IP and below high-level
application protocols.

AP }Application Layer
M
L
TLS/SS > Network Layer
%
IP

FIGURE 3-3 TLS Protocol in the Network Layer

TLS Protocol

The TLSv1 protocol is composed primarily of two subprotocols, which are:

= TLSv1 Record Protocol

= TLSv1 Handshake Protocol

The TLSv1 is the actual data transfer which is accomplished by the Record Protocol.
This is achieved by breaking up the data stream to be transmitted into a series of

fragments, with each fragment being independently protected and transmitted.
Before any fragment can be transmitted, it must be protected against any potential

Chapter 3 Defining Directory Service Security Architecture 99

attack. To provide the integrity protection, a message authentication code (MAC) is
computed over the data, and is transmitted along with the fragment. This MAC is
appended to the fragment and the concatenated data and MAC are encrypted to
form the encrypted payload. A header is then attached to the payload. It is the
concatenated header and encrypted payload that is referred as a record, which is then
actually transmitted. FIGURE 3-4 shows the record protocol.

r Header

Record MAC

Encrypted
protocol Data payload
fragment
Data J
(—
— Header
(-
MAC
Data
fragment
°
°
°

FIGURE 3-4 Composition of TLSv1 Record Protocol

The TLSv1 handshake protocol has various purposes, one of which includes the
client and server negotiating on a set of algorithms which are used to protect the
data. The client and server establish a set of cryptograhic keys which are used by
these algorithms. The process works like this (also see FIGURE 3-5, and FIGURE 3-6
through FIGURE 3-10):

1. Server and client exchange hello messages
a. Establish protocol version
b. Set session ID

c. Agree to use one of the following cipher suites, choosing the strongest cipher
suite that is common between client and server:

- Key Exchange Algorithm (public-key: RSA, DH)
- Encryption Cipher
- MAC Algorithm

d. Establish compression method
e. Exchange random values

2. Establish server authentication

100 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

a.

b.

Client confirms server’s identity

Server sends certificate (necessary for KEA)

The TLS protocol supports a variety of different cryptographic algorithms, or
ciphers, for use in operations such as authenticating the server and client to
each other, transmitting certificates, and establishing session keys. Clients and
servers can support different cipher suites, or sets of ciphers, depending on
factors such as the version of TLS they support, company policies regarding
acceptable encryption strength, and government restrictions on export of TLS-
enabled software. The TLS handshake protocol determines how the server and
client negotiate; which cipher suites they use, to authenticate each other, to
transmit certificates, and to establish session keys. TABLE 3-3 describes the
cipher suite algorithms.

TABLE 3-3 Cipher Suite Algorithms

DES Data Encryption Standard, an encryption algorithm used by the U.S.
Government

DSA Digital Signature Algorithm, part of the digital authentication
standard used by the U.S. Government

KEA Key Exchange Algorithm, an algorithm used for key exchange by
the U.S. Government

MD5 Message Digest algorithm developed by Rivest

RC2 and RC4 Rivest encryption ciphers developed for RSA Data Security

RSA A public-key algorithm for both encryption and authentication.

Developed by Rivest, Shamir, and Adleman

RSA key exchange A key-exchange algorithm for SSL based on the RSA algorithm

SHA-1 Secure Hash Algorithm, a hash function used by the U.S.
Government

SSHA Salted Secure Hash Algorithm, a hash function used by the U.S.
Government

SKIPJACK A classified symmetric-key algorithm implemented in Fortezza-

compliant hardware used by the U.S. Government

Triple-DES DES applied three times

Key-exchange algorithms like KEA and RSA key exchange govern the way in
which the server and client determine the symmetric keys they both use during
a TLS session. The most commonly used TLS cipher suites use RSA key
exchange.

Check certificate DN versus server’s DN (used to protect against man-in-the-
middle attack).

Chapter 3 Defining Directory Service Security Architecture 101

102

d. Premaster secret encrypted with server’s public key (successful decryption by

server provides additional authentication evidence)

e. Optionally check the host name used to connect to the server against the value
of the CN attribute in the server certificate’s subject DN. This is an optional
step, whereby the host names are compared to host names and not to the DNs.

Server’s certificate

Server’s public key

Client’s list
of trusted CAs

Certificate’s serial number

Is today’s date within

Certificate’s validity period validity period?
Server’'s DN
Is issuing CA a trusted
?
Issuer’'s DN CA? >
Issuer's <€

Issuing CA’s
certificate

Issuer’'s DN

digital signature

Does issuing CA’s public
key validate issuer’'s
digital signature?

Issuer’s public key

Issuer’s digital
signature

Does the domain name

specified in the server’s
DN match the server’s
actual domain name?

FIGURE 3-5 SSL Handshake Steps

3. Perform key exchange:
a. Generate Pre-master secret
b. Client and server share pre-master secret
c. Secret shared using KEA

d. RSA KEA example:

- Client creates pre-master secret

- Encrypt pre-master secret with server’s public key

- Server decrypts pre-master secret with its own private key

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

4. Perform client authentication (optional) — For client authentication, it is up to the
client whether it wishes to authenticate itself to the server. The client sends its
certificate which contains the client’s name (and possibly alternate names) and the
client’s public key and the CA — which the server should trust.

a.

b.

Server confirms client’s identity

Client sends certificate at server’s request with the following:
- Client’s identity
- Client’s public key

Client authenticates identity/public key binding. The ability to encrypt using
the private key proves that the client is the owner of the certificate based on
the assumption that only that user knows the private key.

. Digital signature: random data encrypted with client’s private key to validate

signature with client’s public key

. Verify certificate within client’s LDAP entry to allow certificate revocation. This

is only done after the TLSv1 negotiation is complete, and then only if the client
sends a SASL bind request using the EXTERNAL mechanism and the server is
configured to verify the certificate presented by the client against the certificate
stored in the user’s entry. If this is not the case, then the client certificate is not
verified against anything in the user’s entry, nor is any attempt made to
associate the client certificate with any user entry during the TLSv1 negotiation
process.

Chapter 3 Defining Directory Service Security Architecture 103

104

John Doe'’s certificate

John Doe'’s public key

Certificate’s serial number

Certificate’s validity period

John Doe’s DN

Issuer’s DN

Issuer’s
digital signature

Is today’s date
within validity
period?

Is issuing CA a

trusted CA?
.

Server’s list
of trusted CAs

Issuing CA’s
certificate

Issuer’'s DN

Issuer’s public key

<<

Does issuing CA'’s

Does user’s public key
validate user’s digital

public key validate
issuer’s digital
signature?

Issuer’s digital
signature

Is user’s certificate listed

in LDAP entry for user?

signature?
- — John Doe’s ——
— digital signature ——

Y

FIGURE 3-6 Client Authentication

5. Generate master secret (client and server)

1 Directory

server

This is generated during first connection, and shared between connections.

6. Generate session keys (client and server, new for each connection)

7. Exchange cipher spec messages and finished messages

a. Change cipher spec and announce start of encrypted message exchange

b. Finished messages already encrypted with session key

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

-

Generate
client random

.

o J
e N
Server Hello:
- Version
» Session ID

J

Client Hello:

«Version

* Session ID

* Cipher suites

* Compression method

Server

*Random value —

- Cipher suites
« Compression method
« Random value

A

FIGURE 3-7 SSL Handshake Flow Chart (1 of 4)

Server
authenticated

Server Hello complete]i»

FIGURE 3-8 SSL Handshake Flow Chart (2 of 4)

Chapter 3 Defining Directory Service Security Architecture

Generate
server random

Client — Server
Server certificate
Server DN |
Server public key

105

Generaie Pre-master secret
pres:';?est o (server public key)

Client certificate
--------- Client DN CEREES | TF
Client public key

_________ Digital signature j_____:"_'

(client private key) Client

authenticated

Generate
Change cipher specs]—) master secret
and session keys
Finished (bulk cipher key)]-)
Change cipher specs]7
Finished (bulk cipher key)]—»

FIGURE 3-10 SSL Handshake Flow Chart (4 of 4)

FIGURE 3-9 SSL Handshake Flow Chart (3 of 4)

Generate
master secret
and session keys

TILL

TLSv1/SSL in the Sun ONE Directory Server 5.2
Software

The Sun ONE Directory server has the ability to support the TLSv1/SSL protocol in
multiple areas, and can be enabled in the following situations:

= Both the administration server and DSML access are listening to HTTPS (HTTP
over SSL). In this case HTTP over SSL refers to DSMLV2.

= Replication over SSL

= LDAP operations over SSL
= Chaining over SSL

= Console connected via SSL

106 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services * September 2003

The TLSv1/SSL Layer in the Sun ONE Directory Server 5.2 software is derived from
the Network Security Services (NSS), and Netscape Portable Runtime (NSPR). NSS is
a set of libraries designed to support cross-platform development of security-
enabled server applications, and NSPR which provides low-level cross-platform
support for operations such as threading and 1/0. It is the Network Security
Services that provides support for SSLv2, SSLv3, and TLSv1 and other security
standards.

TABLE 3-4 lists the NSS and NSPR versions that are a component of the Sun ONE
Directory Server 5.2 software and indicates where you can find more information.

TABLE 3-4 NSS and NSPR versions

Component Version Additional Information

Network Security Services (NSS) 3.34 http://ww. nozil | a. org/ projects/
security/ pki/nss

Netscape Portable Runtime 414 ht t p: // waw. mozi | | a. or g/ proj ect s/ nspr
(NSPR)

FIGURE 3-11 shows a simplified view of the relationships between the NSS and NSPR
shared libraries.

55k
Tstll NSS /NSPR
} architecture
NS?
pR
NS
05

FIGURE 3-11 NSS/NSPR Architecture

The Network Security Services (NSS) has various security tools available, which may
prove useful in the debugging and managing of your TLSv1/SSL implementation.

Chapter 3 Defining Directory Service Security Architecture 107

108

TLSv1/SSL Tools

Before we take a look at some of the TLSv1/SSL tools (TABLE 3-5), please be aware
that these tools are not integrated into the Solaris 9 OE. You can get these tools from
the Sun ONE Directory Server Resource Kit (SDRK) which is available from the Sun
Download Center:

http://wws. sun. conf sof t war e/ downl oad/ pr oduct s/ sunone
Tools such as ssl t ap and many others can be obtained from:
http://ww. nozilla.org/projects/security/pki/nss/tools/

This section describes some of the security certificate databases such as cert 7. db,
key3. db, and the secnod. db, which can list, generate, modify, or delete certificates
within the cert 7. db file and create or change the password, generate new public
and private key pairs, display the contents of the key database, or delete key pairs
within the key3. db file.

Security Databases

Public Key Cryptography Standard (PKCS) #11 specifies an APl used to
communicate with devices that hold cryptographic information and perform
cryptographic operations. PKCS #11 supports a wide range of hardware and
software devices intended for such purposes.

A PKCS #11 module (also referred to as a cryptographic module or cryptographic
service provider) manages cryptographic services such as encryption and decryption
through the PKCS #11 interface. PKCS #11 modules can be thought of as drivers for
cryptographic devices that can be implemented in either hardware or software.

A PKCS #11 module always has one or more slots, which can be implemented as
physical hardware slots in some form of a physical reader (for example, smart cards)
or as conceptual slots in software. Each slot for a PKCS #11 module can contain a
token, which is the hardware or software device that actually provides
cryptographic services and optionally stores certificates and keys. The following is a
brief explanation of the security databases:

= cert7.db - The database where the certificates (and therefore the public keys
attached to them) are stored. Each certificate has a series of flags that account for
the role that every certificate can take, as well as the uses for which that certificate
is to be trusted. You can list, add, and modify the certificates within the database
with certutil.

= key3. db — The database where the private keys associated to the public keys of
the user certificates in cert 7. db are kept. This file is protected by a password or

pin.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

secnod. db — The file that keeps track of the available security modules. It lists
each module with its slots and tokens, and specifies a default module. This is
where an external module must be declared for the server to be able to detect it.
By default, secnod. db manages two modules; the internal software module, and
the built-in CA certificate module. nodut i | is the tool used to add, list, and
modify modules to secnod. db.

TABLE3-5 TLSv1/SSL Tools

Tool Description

certutil 2.0 Manages certificate and key databases (cert 7. db and key3. db).
dbck 1.0 Analyzes and repairs certificate databases.

nmodutil 1.1 Manages the database of PKCS#11 modules (secnod. db). The

PKCS#11 modules refer to hardware encryption tokens like SSL
accelerator cards or secure key storage mechanisms. Adds modules
and modifies the properties of existing modules (such as whether a
module is the default provider of some crypto service).

pkl2util 1.0 Imports and exports keys and certificates between the cert/key

databases and files in PKCS#12 format.

ssltap 3.2 Performs proxy requests for an SSL server and for contents of the

messages exchanged between the client and server. The ssl t ap tool
does not decrypt data, but it shows things like the type of SSL
message (cl i ent Hel | o, server Hel | 0, and so forth) and connection
data (protocol version, cipher suite, and so forth). This tool is very
useful for debugging.

Note — The Sun Crypto Accelerator 1000 card is the only PKCS#11 module that is
officially supported in the Sun ONE Directory Server 5.2 software.

TLSv1/SSL Configuration Overview

Before implementing the TLSv1/SSL functionality, you need to be aware of the
attributes and attribute values that are or may be required by the Sun ONE Directory
Server 5.2 software for the following attributes:

Certificate name

Supported cipher suites
Cryptographic token
Optionally, secure port number

When using the Sun ONE Directory Server software, you also need to be aware of
the following configuration entries:

Chapter 3 Defining Directory Service Security Architecture 109

110

= dn: cn=config

= dn: cn=encryption, cn=config

In the cn=confi g entry, pay particular attention to the nssl apd- security and
nssl apd- secur eport attributes. The nssl apd- securi ty attribute enables the
use of the security features (TLSv1/SSL and attribute encryption) in the Sun ONE
Directory Server 5.2 software. If you require secure connections, or the use of the
attribute encryption feature, this attribute must be set to on. With the nssl apd-
secur eport, you must select the TCP/IP port number that will be used for
TLSv1/SSL communications. The default TCP/IP port number is 636, and is only

used if the server has been configured with a private key and a certificate; otherwise
the server does not listen on this port.

In the cn=encryption, cn=confi g entry, there are a number of attributes and
attribute values to deal with such as specifying the support for a particular SSL
version. The nsSSL2 attribute supports SSLv2, while the nsSSL3 attribute supports
SSLv3. Both of these attributes can be set to on or of f .

The nsSSLSessi onTi meout specifies the session lifetime in the session cache (in
seconds). The Default is 0 (zero), which results in the following:

= SSLv2 =100 sec

= SSLv3=24h

The nsSSLd i ent Aut h attribute has the following values associated with a
TLSv1/SSL connection:

= O f —no client authentication

= Al | oned - request certificate, no error if no client certificate received

= Requi r ed - request certificate, error if no client certificate received

=« Default —allowed

Next is the nsSSLSer ver Aut h attribute, which stipulates the action that the

TLSv1/SSL client should take on the server certificate sent by the TLSv1/SSL server
in a TLSv1/SSL connection. The points of interest are:

= \Weak — accept a server’s certificate without checking the issuers CA
= Cert - accept server’s certificate if the issuer CA is trusted
= cncheck — accept the server’s certificate if:
« The issuer CA is trusted
« The certificate’s cn matches the server’s DNS host name
» Default —cert

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

The following is an example of the cn=encrypti on, cn=confi g entry.

Exanpl e of using | dapsearch to show the cn=encryption, cn=config
entry.

$. /1 dapsearch -h directoryserver_hostname -p ldap_port -b “cn=
encryption, cn=config“ “(objectclass=*)"

#
Should return
#

cn=encryption, cn=config

obj ect C ass=t op

obj ect G ass=nsEncrypti onConfig
cn=encryption

nsSSLSessi onTi neout =0

nsSSLC i ent Aut h=al | owed
nsSSLSer ver Aut h=cert

nsSSL2=of f

nsSSL3=of f

The nsSSL3Ci pher s is a multi-valued attribute that specifies a set of encryption
ciphers that the Sun ONE Directory Server 5.2 software will use during TLSv1/SSL
communications. The following values are to be noted as interest:

= enabl e/di sabl e - to enable and disable cipher suites

= +al | —enable all cipher suites but rsa_nul | _nmd5

= -all —disable all cipher suites

= Ci pher_suite - enable or disable a cipher suite. Use the following syntax:
+ci pher _suitel, -ci pher_suite2, ...

» Default —all butrsa_nul | _nd5 enabled

The nsKeyf i | e attribute provides the following:

= Key database path relative to the SERVER_ROOT

= Key database usually in the alias directory (al i as/ sl apd- instancename-
key3. db)

The nsCertfil e attribute provides the following:

= Certificate database path relative to the directory server installation directory
(/ var/ Sun/ nps by default)

= Certificate database usually in the alias directory (al i as/ sl apd- instancename-
cert7.db)

Chapter 3 Defining Directory Service Security Architecture 111

112

The nsSSLToken specifies where the certificate will be stored. In the vast majority of
installations, this will be i nt er nal (software), which means that the certificate will
be contained in the *cert 7. db and *key3. db database files. However, it can be
different if the certificate is stored elsewhere (it will be something like

user nane@ eal mif you are using the Sun™ Crypto Accelerator 1000). The
nsSSLToken attribute can have the following values:

= Token for the cryptograhic operations: i nt er nal / ext er nal
= Default: i nt er nal (software)

The nsSSLPer sonal i t yssl attribute specifies the nickname of the certificate that
is used as the TLSv1/SSL certificate for the directory server. It is generally
something like server-cert. The nsSSLPer sonal i t yssl attribute has the
following values:

= Certificate name

= If external, token cer t nane: t okennane - Even with external tokens, the format
is still just the nickname of the certificate. This is true at least with the SCA 1000
card, which is the only external token supported in the 5.2 directory server.
However, the nsSSLToken may be different for external tokens.

The nsSSLAct i vat i on attribute indicates whether the associated cipher family
should be considered enabled for use. Given that there will generally only be a
single cipher family (RSA), then it should be on if you want to use TLSv1/SSL in the
directory server. Finally, the nsSSLAct i vat i on has the following values:

= on (the default)
s Off

Now that we have covered the essential attributes and their values, we can now take
a look at how we can now enable TLSv1/SSL in the Sun ONE Directory Server 5.2
software

Enabling TLSv1/SSL in the Sun ONE Directory
Server 5.2 Software

This section describes the process of creating a certificate database, obtaining and
installing a certificate for use with your Sun ONE Directory Server 5.2 software, and
configuring the Sun ONE Directory Server 5.2 software to trust the certification
authority’s (CA) certificate. There are two methods you can use to perform these
tasks. One method uses the Console, the other is through the command line. Both
methods are covered in this chapter.

The following process is necessary before you can turn on TLSv1/SSL in the Sun
ONE Directory Server software.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

1. Obtain and install a certificate for your directory server, and configure the
directory server to trust the certification authority’s certificate. See “Obtaining
and Installing Server Certificates” on page 113.

2. Turn on TLSv1/SSL in the Sun ONE Directory Server 5.2 software. See
“Activating TLSv1/SSL in the Sun ONE Directory Server 5.2 Software” on
page 126.

3. (Optional) Ensure that each user of the directory server obtains and installs a
personal certificate for all clients that will authenticate using TLSv1/SSL. This
procedure is not covered in this book.

Note — LDAPS implicitly requires you to have a secure port to listen to. With the
Start TLS operation, this is no longer a requirement.

Obtaining and Installing Server Certificates

You must perform the following tasks to obtain and install server certificates.

= “Task 1: Generate a Certificate Request (Console)” on page 113

= “Task 2: Obtain the Certificate From a Certificate Authority (CA)” on page 118

= “Task 3: Install the Certificate” on page 121

= “Task 4: Trust the Certificate Authority” on page 123

= “Task 5: Confirm That Your New Certificates Are Installed” on page 124

These tasks use wizards where possible. You can accomplish the same objectives on

the command line by performing the following procedure:
“To Obtain and Install Server Certificates Using the Command-Line Interface” on
page 124

For testing purposes, you can generate a self-signed certificate as described in:

= “To Generate a Self-Signed Certificate Request” on page 125

Task 1: Generate a Certificate Request (Console)
. On the Sun ONE Directory Server Console, select the Tasks tab and click Manage
Certificates.

If this is the first time that you’ve opened this window, you are asked to assign a
password to protect the key db as shown in FIGURE 3-12. This password is required to
start the directory server when TLSv1/SSL is enabled.

The Manage Certificates window is displayed (FIGURE 3-13).

Chapter 3 Defining Directory Service Security Architecture 113

FIGURE 3-12 Console Security Device Password Window

internal {sofware) -

FIGURE 3-13 Manage Certificates Window

114 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services September 2003

2. Select the Server Certs tab, and click the Request button.
The Certificate Request Wizard is displayed (FIGURE 3-14).

3. Click Next.

4. Enter the Requestor Information in the text fields (FIGURE 3-14), then click Next.
The following information is required:

= Server Name — Enter the fully qualified host name of the directory server as it is
used in DNS lookups, for example, bl uepri nt s.exanpl e. com

= Organization — Enter your organization name.

= Organizational Unit — Enter your organizational unit information.

= City/locality — Enter your city name.

= State/province — Enter the full name of your state or province (no abbreviations).

= Country/region — Select the two-character abbreviation for your country’s name
(ISO format). The country code for the United States is US, Great Britain is GB,
Holland is NL, Singapore is SG, and so on.

=| Certificate Request wizard |

Requestor Infermation 2 ofd

Server namme: | blueprints example.cam

Crrganization; | Example Ltd

Organizational unit: |Sun OME Directory Server (LDAPY 5.2

Citylocality: |London

Statedprovince; |Greater London -

Country/fregion: |UK United Kingdarn -

Shawe D

= Back Mext = Eancel | ﬂelp |

FIGURE 3-14 Certificate Request Wizard — Requestor Information Dialog Box

Chapter 3 Defining Directory Service Security Architecture 115

5. In the Token Password dialog box (FIGURE 3-15), enter the password that will be
used to protect the private key, and click Next.

Note — The Next button is greyed out until you supply a password. When you click
Next, the Request Submission dialog box is displayed.

=] Certificate Request Wizard |

Token Password 3 of4

Before cerdificate can be installed on the server, it must be verified using the private key for this
SErVEr.

The private key is stored in a token, which is protected by a password.

Active Encryption Token:

| internal {software)

Enter the password to access the token:

= Back | Cancel Help |

FIGURE 3-15 Certificate Request Wizard — Token Password Dialog Box
6. In the Request Submission dialog box (FIGURE 3-16), select Copy to Clipboard to

copy the certificate request information that you will send to the Certificate
Authority.

116 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

=] Certificate Request Wizard |

Request Submission 4 of 4

Thizs cerificate reguest should be submitted to a Certificate Authority (0 A3 that will process it and
igsue a cerificate.

“ou can submit this request manuslly, ether by sending it in an email message to the CA or by
submitting it through the CA's web site.

Copy to Cliphoard Save to file

= Back | Done | Cancel Help |

FIGURE 3-16 Certificate Request Wizard — Request Submission Dialog Box

Example of the PKCS #10 Request:

Exampl e PKCS #10 Request

----- BEG N NEW CERTI FI CATE REQUEST- - - - -

M | B3j CCAUc CAQAWYZ0x Cz AJBgNVBAYTAKk d CVRcwWFQYDVQQ EwsHemvhdGVy | Exv
brRvbj EPMAOGALUEBX MGTuZGuMRgwWHg YDVQRKEWICbHVI UHIpbnRzI El uYy4x
KDAMBgNVBAs THLN1bi BPTkUgRGA yZWNOb3J51 ChVREFQKSBTZXJ2ZXI x| DAe BgNV
BAMTF3Npc Bl LnVr LmJsdWiwem udHVLUY29t M Gf MAOGCSQqGSI b3 DQEBAQUAA4AGN
ADCBi QKBgQDFSPHLHPJaFXDI i LphKhaDOBB4QAOUr 4008Q VB4gzsRVt PxeGUuy8
o+nGor CpgXpuOf NGBv8t gj i v4pzFL+r 1Uj Jr TWOTLWMO6z nGuAuf R35B/ / nQ2e6d
GQQvV YAPcx QFTCcf XcmJuoDyf R38Dk GbVUdHFpa3ELADTNd2HGW NQ DAQABOAAW
DQYJKoZI hvc NAQEEBQADg YEAe! Thr pLpG0ODy Jnmih1le QMCMLZgD2A7v9l 5qleDvWw
xi WZVMPXPz mVFXj A+YOnf Bd/ UGBCHF6cnNCoTugol sGhi r 3dTl j ACsoSt cNf 8x1P

| f CkUZOC6pQBA bblochcoj USAl 6] d2s26vhC+6xnEwf 9Z3vf Lcl / 1nmev(@HCC8n
uBM=

You use this generated request to request a certificate from a certificate authority (the
next task).

Chapter 3 Defining Directory Service Security Architecture 117

v Task 2: Obtain the Certificate From a Certificate Authority
(CA)

In this task you have a couple of options:

= Send the previously generated certificate request to a certificate authority in
email, or

= Go to a Certificate Authority web site and paste your request.

The outcome should be the same with either choice. That is, the CA will send you a
certificate through e-mail. It is worth noting that the way to request a certificate from
a CA varies depending on the CA.

The Sun ONE Certificate Manager software can be used to manage and sign digital
certificates. This procedure uses the Sun ONE Certificate Manager as the CA. For
small organizations, self-signed certificates are acceptable. However, for enterprise
configurations, using an established CA is recommended.

Note — Sun ONE Certificate Manager version 4.7 is used in this procedure.

1. Using a browser, go to the Sun ONE Certificate Manager secure URL.
This example uses htt ps: // exanpl e. bl uepri nts. com 443/

2. Select SSL Application Server under the Enrollment tab.

3. Copy the certificate request from the directory server, and paste it into the
certificate manager system (in the TLSv1/SSL Server PKCS#10 request area, as
shown in FIGURE 3-17):

Note — It is advisable to have multiple Registration Authorities (RA) that you can
select from, for example, BluePrints Inc. CA for production systems, and BluePrints
Inc. TEST CA for development and test systems.

118 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

—'| Netscape: Certificate Management System EN |
File Edit Yiew Go Communicator Help
e w» A 2 W @ &

Back. Forwad Reload Home Search Metscape Print Security Stop
v o Bockrarks & GoTo: | https,/fexampleblueprints.com443/ f|
v ‘ Int=rnet @ Lookup @ Mewi.Coaol ‘ Meteastar ‘ Sirple S=arch

Public Key Infrastructure Test Registration Authority

10 LT S Henewals SRS Revocation s S Hetreval

SSL Web Server 550 Application Server Enrollment
Object Signing Server Administrators uze this form to submit a recuest for an application server certificate. You

must submit a PECS #10 request.

551 Application Client i . B . .

(PECS #10) After you click the Subrmit button, your request will be submitted to a Certificate Approwver for
approval. Vou will receive the certificate in email when it has been approved.

551 Application Clignt
{Browser) PKCS #10 Reguest

Faste the FKCS #10 request into this text area.
551 Application

Sever EEGIMN MEW CERTIFICATE REQUEST-----
IKE Server MITB3]CCAUCCAQAGZ0x:CZATBNVEAYTAdCHR Cw FOYDVOOTEWSHCWhd Gy TExy
e bmRvbIEPMADGATUEBXMGTGIUZGIUMRGY Fay DVQQKEWIChHYIUHT phnRzIET uYy4x

KDAMBGNYEASTHIN1b1BPTkUGRG] yZWHOL3TSIChMRE FQKSBTZXT 22X I IDARBGNY
BAMTF3NpcnaT LnirlnTsdwywenl udHMUY 29t MIGFMADGCSqUSIb3DQERAQUAR N
ADCE1 QKEqQDFSPHLHPTaFXDIA LphkhaD OBE4 QAOU r4008QIVES gz sRYEPRaCluys
o+mGprCpgEpudfNGSyatgiivapz FL+r1U3T rTWQTLWMOEZn CUuAUFR3SE S/ /n02esd
GOy Y AP CxQFTOCF X cmTuoDy FRISDKChYUAHFpa3E LADTndZHG W/ NQIDAQAE D Al
DY TKoZIhy cNAQEEEQADGYEAIThrpLpGOODyTnLh1eQMCM1 290247 w3151 eDz
TWZVMPRPZmMF] A+YOnfBd/UGBCHFECMNCoTugolsGhir3dTIjACSoSTCNFExR1P

Server Administrator Contact Infi ki
Mame: |} {required)
Ermail : | {required)
Fhare: |:

i e B0 @ 2|

5

FIGURE 3-17 Sun ONE Certificate Manager Test Registration Authority

Note — Be sure to Include the “-----BEGIN CERTIFICATE-----" and “-----END
CERTIFICATE-----" tags in the information pasted into the certificate install wizard.

Chapter 3 Defining Directory Service Security Architecture 119

4. Fill out all the other information required by the Certificate Authority (CA) as
described in TABLE 3-6.

TABLE 3-6 Information Required by the CA

Name Enter your name here
Email Enter your email address.
Additional Comments Enter your request details here. As an example, your

request may be for enabling TLSv1/SSL on your own
Enterprise Directory Service Infrastructure.

Revocation Password Enter the database PIN for this system

The revocation password is needed if a certificate holder wants the certificate
revoked, but does not have access to the private key in order to sign the revocation
request.

5. Click Submit at the bottom of the page.

The Certificate Request Result screen appears (FIGURE 3-18), confirming that the
request has been submitted. Note the request ID provided in the response message
in the example below (You can use it later to retrieve the certificate, once the
certificate has been issued).

= Metscape: Certificate Management Sustem =
File Edit View Go Communicator Help

4 @ 3 & 2 W $ A8

¢ Back Fonward Reload Home Search Metscape Print Security St

v ‘t' Bookrrarks Qﬁ Go To: |http3:;"Iairoe.blueprints. com: 443/ f|

v l Intzrnet @ Lookug @ MeswECool l Metcastzr l Simple Search

Public Key Infrastructure

Test Registration Authority

Enrollment I.-" Renewal I.-" Revocation I.-" Retrieval

551 Web Server Request Successfully Submitted

Object Signing Congratulations, your request has been successtully submitted to the Registration Manager. our
reguest will be processed when an authorized agent verifies and validates the information in wour

551 Application Client recuest.

{PKCS #10}

“our request 1Dis 2114,

551 Application Client " . . .

MOTE: ¥ou can check on the status of your regquest by sending an emall to phiadm@ blueprints oo, or
{Browser) | N ! N .

search under the "Fetrieval” section of this page by referring to this request 1D, so please note doven the

SSL Application request ID.
Server

IKE Server

FIGURE 3-18 Sun ONE Certificate Manager Test Registration Authority

120 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

Next, your request gets added to the agent queue of the Certificate Manager for
approval by that Certificate Manager’s agent. If you have permissions to access that
Certificate Manager’s Agent interface, you can issue the certificate. Otherwise, you
should wait for the other agent to approve the request you submitted and issue the
certificate.

The Sun ONE Certificate Manager administrator must approve the request by going
to the services URL. Example: htt p: // exanpl e. bl uepri nts. com 8100

Once you are in the Certificate Request Approval Page, you can perform the
following to view that status of your request:

1. On the Certificate Management Retrieval Services menu, click Check Request
Status.

2. Enter the request ID that was given to you when you submitted the initial
request.

The following is an example of the information returned to you:

Request: 2114
Submitted on: 4/8/2003 12:38:59
Status: pending

Task 3: Install the Certificate

This task is dependent on receiving an email from your CA with instructions on how
to pick up your certificate (usually the CA provides you with a URL).

. Using a browser, go to the URL that was provided by the CA.

. In the Sun ONE Directory Server Console, select the Tasks tab and click Manage
Certificates.

The Manage Certificates window is displayed.

. Select the Server Certs tab, and click Install.
The Certificate Install Wizard is displayed.

. Select In the following encoded text block.

. Copy and Paste the base-64 formatted certificate.
See FIGURE 3-19 for an example of entering the certificate into the Certificate Wizard.

Chapter 3 Defining Directory Service Security Architecture 121

= Certificate Install wizard |

Certificate Location 1of4

Where is the cerificate you want to install located?

() inthis local fie: Browse

0 in the fallowing encocded text block: Paste fram Cliphoard |

M1 G &0G BAL JohvipcKhSep O 215UdE m ik HtdE hurgS jogh A2 (L gl gl dEyD
mrn? SucaiP kR ELLIMN G widnF d7++H vk 4F r43UC 2 sB7TE0G HD G 4vF Rop MmExHE]
kdBO2+sR 1 vTrmnGsiLLA K EE J A+ Y ulBhS1 6P oiEKpGD o+ VAIMB ARG 0AD AN
Eigk ghkics SwlB AL G F A0 EgL A agynrowddxsel fgoiF vHEP hHgw 01 gl ok LXpCink
E zxfm4BM PExLINIU Gt QP LIT gl O WP aveSyol ZTHUfSr4 2k O30 J g AHRS0 0
rhizRag v rorcosiFUjzk SnndnCevE ghm D7k 273 Z4rSE Z5nadTx7ot 330 gla
Eg==-----EMD MEW CERTIFICATE REQUEST -----

- Mext = Cancel Help

FIGURE 3-19 Certificate Install Wizard

6. Check that the certificate information you have pasted is displayed correctly, and
click Next.

The new TLSv1/SSL server certificate appears in the list of Server Certs in the
Certificate Manager Window (FIGURE 3-20).

=| Manage Certificates: slapd—siroe |

e BrEniEE ‘ internal ¢software) - ‘ Change Passward... |

|/ Server Certs rCACerts rRevokedCerts |

Server cerificate are used for server authenticstion to clients.

Certificate .| |5sued To |l=sued By Expiration Date
server-cet siroe.uk Blue... siroe.uk Blue... Thu Jul 05 14:52:24 2004

FIGURE 3-20 List of Server Certificates

122 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

Task 4: Trust the Certificate Authority

Configuring the Sun ONE Directory Server 5.2 software to trust the certificate
authority consists of obtaining your CA’s certificate and installing it into your
server’s certificate database. Once you have the CA certificate, you can use the
Certificate Install Wizard to configure the Sun ONE Directory Server software to
trust the Certificate Authority.

. On the Sun ONE Directory Server 5.2 Console, select the Tasks tab and click
Manage Certificates.

The Manage Certificates window is displayed.
. For each of the CA certs, go to the CA Certs tab, and click Install.
The Certificate Install Wizard is displayed.

. Locate the CA certificate (or CA certificate chain in its base-64 encoded format),
and select Retrieval and then Import CA Certificate Chain.

. Select Display Certificates in the CA Certificate Chain for Importing Individually
into a Server and then click Submit.
. Copy the text of the base 64 cert.

Copy the section between “-----BEGIN CERTIFICATE-----" and “-----END
CERTIFICATE-----" and paste it into the window.

Note — Repeat this install for each of the Certificates (sections between “-----BEGIN

. Check that the certificate information that is displayed is correct, and click Next.
. Select both of the following as the purpose of trusting this Certificate Authority:

Accepting connections from clients (Client Authentication). The server checks that
the client’s certificate has been issued by a trusted Certificate Authority.

Accepting connections to other servers (Server Authentication). The server checks
that the directory to which it is making a connection (for example, for replication
updates) has a certificate that has been issued by a trusted Certificate Authority.

. Click Done to dismiss the wizard.

Once you have installed your certificate and trusted the CA’s certificate, you are
ready to activate TLSv1/SSL. However, before proceeding, you should first make
sure that the certificates have been installed correctly.

Chapter 3 Defining Directory Service Security Architecture 123

v Task 5: Confirm That Your New Certificates Are Installed

1. On the Sun ONE Directory Server Console, select the Tasks tab and click Manage
Certificates.

The Manage Certificates window is displayed.

2. Select the Server Certs tab.
A list of all the installed certificates for the server are displayed.

3. Scroll through the list. You should find the certificates that you have installed.
The Sun ONE Directory Server software is now ready for TLSv1/SSL activation.

Using the Command Line to Obtain and Install
Server Certificates

The following steps are performed on the command line instead of through a GUI.
The five steps listed here have the same results as all the tasks that use the GUI.

v To Obtain and Install Server Certificates Using the
Command-Line Interface

1. If you do not have certutil in you current PATH, you must either change

directory to server-root/ shar ed/ bi n or set the LD_LI BRARY_PATH shell variable
to server-root/ | i b.

2. Run the certutil command to generate a Certificate Signing Request (CSR) as
shown:

The certutil binary is located in server-root/ shar ed/ bi n.

$cd server-root/ shar ed/ bi n
$./certutil -R -s subject -a -d cert-dir - P "sl apd- instancename- "

3. Take this output and provide it to a third-party CA to be signed (just like you
would with the request generated through the Sun ONE Directory Server
Console).

124 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services * September 2003

. To install the certificate once it has been signed use the certuti| command as
shown:

$cd server-root/ shar ed/ bin
$./certutil -A-n server-cert -t Pu,Pu,Pu -a -i certfile - D cert-dir -P
"sl apd- instancename- "

. Import the CA certificate withe the certuti | command:

$cd server-root/ shar ed/ bi n
$./certutil -A-n ca-cert -t CT,CT,CT -a -i ca_certfile - D cert-dir -P
" sl apd- instancename- "

To Generate a Self-Signed Certificate Request

Use this procedure when you want to test TLSv1/SSL without using a real CA.

. If you do not have certutil| inyou current PATH, you must either change
directory to server-root/ shar ed/ bi n or set the LD_LI BRARY_PATH shell variable
to server-root/ | i b.

. Issue the certuti | command as shown:

$cd server-root/ shar ed/ bi n
$./certutil -N-d <serveroot>/alias -P "sl apd-exanple -"

Running the above command will request that a password is given to protect the key
db.

Note — The password must be at least eight characters long, and must contain at
least one non-alphabetic character.

You are prompted for a password to protect the private key store, which you should
provide, and then it will create a new certificate database in the server-root/ al i as
directory.

. Issue the following command:

$cd server-root/ shar ed/ bi n
$./certutil -S -n "server-cert" -s subject -t CTPu, CTPu, CTPu -x -v
12 -d <serveroot>/alias -P "slapd-example -" -5

Chapter 3 Defining Directory Service Security Architecture 125

126

The -t option specifies the trust attributes to modify in an existing certificate or to

apply to a certificate when creating it or adding it to a database. In this example, we
used CTPu, where Cis the trusted CA to issue server certificates (SSL only), where T
is the trusted CA to issue the client certificates to, where P is the trusted peer, and u
is the certificate that can be used for authentication or signing. For more information
oncertutil, refer to:

ht t p: // waww. nozi | | a. or g/ proj ects/ security/ pki/nss/tools/certutil.htm

. Respond as prompted.

You are asked to randomly enter a text until the progress meter is full, then asked for
the password for the private key store (the one you just used above). You receive a
list of options for certificate extensions. Enter a 1 to indicate that it is an SSL server,
followed by a 9 to indicate that there are no more extensions. Say y to indicate that
it is a critical extension.

After completing the above successfully, you can use the certificate in this database
for your directory server. It is self-signed, and nothing will trust it by default, so you
must use that newly-created database as the trust store as well.

The following databases are also created:

= sl apd-exanpl e-cert7.db

= sl apd- exanpl e- key3. db

Activating TLSv1/SSL in the Sun ONE Directory
Server 5.2 Software

Before you can activate TLSv1/SSL, you must create a certificate database, obtain
and install a server certificate, and trust the CA’s certificate as described in
“Obtaining and Installing Server Certificates” on page 113.

Once those tasks are complete, you can then enable the TLSv1/SSL capabilities of
the Sun ONE Directory Server software. This process is simple, but involves a few
tasks. The first task is to configure the directory server to use TLSv1/SSL.

To Configure the Directory Server to Use TLSv1/SSL

. Select the Configuration tab from the Sun ONE Directory Server Console

(FIGURE 3-21).

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

—'| P ety ~ Sun OME Directory Server — siroe

Gonsole Edit View COhiect Help

Sun™ ONE Directory Server

Configuration

[Data
Ferformance [v] Enable SSL for this server

schemnz ~ [v] Usethis cipher family; RSA

@ Backups

Logs Security Device: | internal (software)
o= [Q Plugins

Gertificate: | server-cert

Cipher: Settings... |

~Client Autherticstion

@ Do not allow clisnt suthentication
3 Allowe cliert authentication
{71 Require cliert authentication

[] Use S5L in Sun OME Server Console

DSl Cliert Authertication | HT TP Basic (use authentication in HT TP header)

Feset |

FIGURE 3-21 Encryption Tab in the Configuration Window in the Sun ONE Directory
Console

. Select the Encryption tab from the right pane, and choose:

= Security Device (token)
= Certificate

. Choose Cipher family preferences by clicking the corresponding check box and
clicking on the Settings button next to “Cipher:”.

FIGURE 3-22 is an example of the Cipher Preferences for the Sun ONE Directory
Server 5.2 software.

Chapter 3 Defining Directory Service Security Architecture 127

= Cipher Preferance

SSL 30 TLS |

8 Cipher Bits Message Digest
[Mone Mome MDS
¥l Ro4 128 MDS
[¥] R4 Exparty 40 MOS
[Vl RC2(Export) 40 MDS
[vl DES 56 SHA
[vl DESFIPS) 56 SHA
[vl Triple-DES 168 SHA
[vl Triple-DES {FIPSY 168 SHA
W] (Fortezza) a0 SHA
[Vl RC#4(Fortezza)y 1258 SHa
[¥] Mone{Forezzal Mone SHL

(01,4 | Cancel | Help

FIGURE 3-22 Cipher Preference Panel

Set the client authentication policy.

Check Enable SSL for this server.

o o &

Select the server certificate by name.

7. (Optional) Choose to connect the Sun ONE Server Console to Directory Server
over TLSv1/SSL.

It is strongly recommended that you do not select Use SSL in Sun ONE Server
Console while initially enabling SSL in the server. If you do this and there is a
problem with the way that TLSv1/SSL has been configured, it will not be possible to
administer the server through the console without manually editing information
under o=Net scapeRoot . If you want to administer the directory server through the
admin console using TLSv1/SSL, then you should enable that after you have
confirmed that TLSv1/SSL has been properly configured.

8. (Optional) Configure and set the Secure Port for the Sun ONE Directory Server
software.

a. Go to the Configurationo Network Tab as shown in FIGURE 3-23.

128 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

~ Sun OME Directory Server —sitroe

Console Edit ‘iew Cbiect Help

Sun” ONE Directory Server

Configuration

@‘ siroc.ul sun.com: 220 M etwork

& |3 Data
Performance By
Seherns (" Only non secure port (80 Both secure and non secure ports

Backups
Logs Part: |389
@ [Plugins Secure Part. [536
[C] Return referral: I Construct. . |

— [_] Enable DSML

(80 Ol pon secure port (0 Only secure port () Both secure and non secure ports

Port: IBD
Secure P ot I

Feelative URL: I.l’dsml

FIGURE 3-23 Network Tab in the Sun ONE Directory Console

b. Specify in the bottom of this pane whether you wish to disable, allow, or
require client authentication.

In most cases, the default of Allow client authentication is acceptable.

Note — It is possible to require client authentication for TLSv1/SSL-based
connections and still be able to use the admin console, as long as the admin console
is not communicating with the directory server over TLSv1/SSL. Therefore, if you
want to require client authentication, one possibility is to set nssl apd- 1 i st enhost
to 127. 0. 0. 1 so that it only listens for non-secure connections on the loopback
interface, and run the admin console from the directory server machine itself,
connecting over LDAP rather than LDAPS.

. Click Save.

After clicking Save, the Console shows a dialog box telling you changes do not take
affect until the server is restarted. You must use the command line for this, because
the command line provides a means of entering a password.

Chapter 3 Defining Directory Service Security Architecture 129

130

10. Stop and restart the directory server.

Example:

directoryserver_install_dir/ sl apd- instancename/ st op- sl apd
directoryserver_install_dir/ sl apd- instancename/ st art - sl apd
Enter PIN for Internal (Software) Token:

#

Note — If you configure the directory server to verify the client certificate against a
certificate stored in the user’s entry, then you can use either a binary or an ASCII
representation of the certificate to add the data to the user’s entry. Usually it’s easier
to use the ASCII version because it is easier to include in an LDIF file.

Additional Information about TLSv1/SSL in the Sun ONE
Directory Server Software

By default, the Sun ONE Directory Server software uses port 636 for encrypted
communication because this is the standard LDAPS port. If this port is already in
use, or if you would like to use a different port, you can also specify that in the
administration server. Under the Configuration tab, click on the Settings tab in the
right pane instead of the Encryption tab. The port to use for LDAPS communications
is specified in the text field labeled Encrypted port in the Network Settings section.
Enter the correct value, and click the Save button to update the configuration.

Alternatively, you can specify the port to use for TLSv1/SSL communication with
the secure-port directive (nssl apd- secureport) in the dse. | di f configuration
file.

Although you can use the nssl apd- | i st enhost parameter in the dse. | di f
configuration file to specify the IP address on which the directory server will listen,
this applies only to unencrypted LDAP traffic. If you wish to restrict LDAPS
communication to a single IP address, you can do so with the nssl apd-

secur el i st enhost directive.

When all of the TLSv1/SSL-related configuration of the Sun ONE Directory Server
software is complete, you must restart the server in order for the changes to take
effect and cause the directory server to actually listen for LDAPS requests. This
introduces a problem, however, because the directory server must be able to access
the private key on startup, but this is stored in the certificate database key store,
which is password-protected. You will be prompted for this password when the
directory server starts, either on the command line (on UNIX systems) or in a dialog
box (on Windows NT). On UNIX systems, the fact that the password will be
requested from the command line means that you will not be able to use the

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

administration console to restart the directory server. It also means that the directory
server will not automatically start when the machine boots on either UNIX or
Windows NT systems. To remedy this, you can create a file that contains the
password so that you will not be prompted for the password when the server is
restarted. This file should be stored in the al i as directory under the directory
server install root and should be called

sl apd- instancename- pi n. t xt , where instancename is the name of the directory
server instance for which you have installed the certificate. You will also see files
named sl apd- instancename- cert 7. db and sl apd- instancename- key3. db in that
directory, which are the certificate trust and key stores, respectively. The text that
should be placed in your file is | nt er nal (Sof t war e) Token: password, where
password is the password for the certificate key store (there should not be any spaces
on either side of the colon). Permissions on that file should be configured so that
they are identical to the permissions of the certificate trust and key store,
respectively.

At this point, you can restart the directory server and you should not be asked for a
password. Use the command net st at - an to look at the network sockets that are
in use on the machine. You should be able to see that the directory server is listening
on both ports 389 and 636 (or whatever LDAP and LDAPS ports you have chosen).
If you do not, then there is likely a problem with the TLSv1/SSL configuration, and
you should check the directory server’s error log for more information.

Using TLSv1/SSL in the Sun ONE Server Console

The Sun ONE Administration Server Console is actually a web server that uses the
HTTP protocol to communicate with the administration console and LDAP to
communicate with the configuration directory with the use of CGI. However, it
doesn’t have to be that way. The administration server can use HTTPS to
communicate with the administration console and LDAPS to communicate with the
configuration directory. In order to do the former, it needs a server certificate, and
the latter requires that the certificate used by the configuration directory is trusted
by the administration server. This section describes how to do each of these.

The process of requesting and installing certificates in the administration server is
almost exactly the same as requesting and installing certificates in the directory
server. The only difference is that you do it in the administration server
configuration of the Administration Server console instead of in one of the directory
server instances. Upon opening the Sun ONE Server Console for the Administration
Server, click on the Configuration tab and then the Encryption tab (FIGURE 3-24). You
will see what is essentially the same interface as the Encryption tab in the directory
server console.

Note — In the Sun ONE Server Console (5.2) there are now options to either Disable
Client Authentication, or Require Client Authentication.

Chapter 3 Defining Directory Service Security Architecture 131

| console Edt view Objsct Help

F:x
v A will r A
Sun ONE AdfinistrationServer ~ Versins2

Sonfiguration

@ Liledaiac [Metwork [ecess | Eneryotion || Ganfiuration DS UserDS. |

SMMP Master Agert
Loy ﬁ Logs [] Enahle SSL for this server

FIGURE 3-24 Sun ONE Server Console

To request and install a server certificate, and to install CA certificates and trusted
certificate chains, use the certificate setup wizard exactly as you would use it to
perform those functions if the certificates were for the directory server.

Similarly, the process of enabling TLSv1/SSL in the Sun ONE Administration Server
Console is virtually identical to enabling TLSv1/SSL in the Sun ONE Directory
Server software. Simply check the Enable SSL for this Server checkbox. At that point,
it is necessary to restart the administration server. This should be done on the
command line in UNIX systems because you will be prompted for the key store
password. You cannot use a PIN file to automate this process as you can with the
directory server, however a simple workaround exists. Because the st art - admi n
program is simply a shell script that sets up the appropriate environment to invoke
the ns- ht t pd executable to start the administration server, and because the
TLSv1/SSL password is read from STDIN, you can pipe the password to the process
when it is started.

132 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

Enabling TLSv1/SSL in the Sun ONE Administration Server
Console

Unlike the directory server, which has the ability to listen for both LDAP and
LDAPS requests at the same time, the administration server can only listen for HTTP
or HTTPS traffic, but not both. Therefore, once TLSv1/SSL is enabled in the
administration server, the console must use TLSv1/SSL to communicate with it. The
change required to do this is simple, but is often overlooked, and might be a source
of confusion when you can no longer log in to the administration console once the
administration server is using TLSv1/SSL.

The change that needs to be made is in the Administration URL, which is typically
http://servernane: port. Once TLSv1/SSL is enabled for the administration
server, the URL must change from htt p to ht t ps, as shown in FIGURE 3-25:

—{___Sun ONE Server Console Login_| - | |

User 1D | cn=0irectory Manager

Fassword: |1—*****‘k‘k**

Administration LWEL: | https://bl ueprints. exanpl e.com w |

M EK | 9 ancel ﬂelp |

FIGURE 3-25 Using TLSv1/SSL in the Sun ONE Administration Server Console With
an https URL

Understanding and Using TLSv1/SSL LDAP
Client Architecture

This section describes the LDAP operations using both the | dapsear ch and

| dapnodi f y commands over TLSv1/SSL and the Secured LDAP Client
implementation in the Solaris OE. Before processing, the following requirements
must be meet. The following is only given as an outline with the details discussed
later:

= Certificate database:
« Install the server cert’s issuer CA cert — trust for server authentication (trust
flag: C)
= If cert-based client authentication is required:
« Key database
= Request and install user certificate in cert db

Chapter 3 Defining Directory Service Security Architecture 133

« Install user cert’s issuer CA cert in server’s cert db - trust for client
authentication (trust flag: T)

Once a certificate has been installed in the directory server and TLSv1/SSL has been
enabled, you should test this functionality to ensure that everything is working
properly. The easiest and most convenient way to do this is by using the

| dapsear ch command-line utility. This utility is located in the shar ed/ bi n
directory under the directory server root and has the ability to communicate with
the directory server using TLSv1/SSL using either server or client authentication.

Note — This is not the Solaris 9 OE integrated version of the | dapsear ch
command-line tool.

First, it is necessary to understand the syntax for the | dapsear ch utility without
TLSv1/SSL enabled. The basic syntax for the | dapsear ch command is as follows:

$. /1 dapsear ch options query attributes-to-return

The options described in TABLE 3-7 are the most commonly used.:.

TABLE 3-7 Common | dapsear ch Options

Command-line

Options Comment

-h The DNS host name or IP address of the directory server. If this
parameter is not specified, the default localhost (127. 0. 0. 1) is used.

-p The port on which the directory server is listening. If this parameter is
not specified, the default 389 is used.

-D The DN to use to bind to the directory server. If this parameter is not
specified, the search will be performed anonymously.

-w The password to use for the bind DN. If a bind DN is specified, the
password is required.

-b The DN of the entry to use as the search base. This parameter is
required.

-s The search scope. It must be one of the following:
* base
e one
« onel evel
e sub
e subtree

If this parameter is not specified, then a default of subt r ee is used.

134 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

The easiest way to test connectivity to the directory server using | dapsear ch is to
retrieve the root DSE. This entry is available anonymously (so no bind credentials
are required), and it is known to exist in the directory server no matter how the
administrator has configured the server. The root DSE has a null DN, which you can
specify in | dapsear ch as “”, and you must perform a base-level search to get any
results. Assuming that the directory server is listening on 127. 0. 0. 1: 389, the
correct syntax for the search is:

$. /1 dapsearch -h 127.0.0.1 -p 389 -b "" -s base "(objectclass=*)"

You will see the root DSE in LDIF format returned. This is returned using the
unencrypted LDAP protocol, but confirms that the directory server is up and
responding properly.

Look at the | dapsear ch operational arguments for the | dapsear ch command
over TLSv1/SSL as shown in TABLE 3-8.

TABLE 3-8 Common Command-line Options to | dapsear ch with TLSv1/SSL

Command-line Options Comment

Simple Authentication:

-p Secure port

-Z TLSv1/SSL encrypted
connection

-P cert-db-path

Certificate-based client
authentication:

-K key-db-path

-wW key-db-pwd

-N certificate-name

-3 cn check in server authentication

Note — Earlier versions of the directory server did not require the - K argument to

| dapsear ch if you were only using TLSv1/SSL server authentication. However,
starting with version 5.1, and still applicable to version 5.2, it is necessary to provide
the path to the private-key store even if client authentication is not going to be used.
This is because of a change in the underlying LDAP SDK for C used to build tools
like | dapsear ch and | dapnodi fy.

Chapter 3 Defining Directory Service Security Architecture 135

To test the TLSv1/SSL capabilities of the Sun ONE Directory Server software, you
must add a couple more parameters to the search request. The - Z parameter, as
mentioned above, indicates that you are using TLSv1/SSL to make an LDAPS
connection, and the - P path-to-trust-db parameter specifies the location of the
certificate trust database. The easiest certificate trust database to use is the directory
server’s own certificate database, which is the sl apd- instancename- cert 7. db file
in the server-root/ al i as directory, because we know that the directory server’s own
certificate is included in that trust database and is trusted by default.

Additionally, you must change the port from the insecure LDAP port to the
TLSv1/SSL-enabled LDAPS port of the directory server. With the above changes, the
following command should be able to retrieve the root DSE of the directory server
using LDAPS, (assuming that the directory is listening for LDAPS requests on

127. 0. 0. 1: 636 and the instance name of the server is exanpl e).

$. /I dapsearch -h 127.0.0.1 -p 636 -b "" -s base -Z
-P ../../alias/sl apd-exanpl e-cert7.db "(objectclass=*)"

Note — The above command should all be on one line.

In the above example, you can see exactly the same results as in the previous search,
but the search is done using LDAPS instead of LDAP. If so, then the directory server
is responding properly to TLSv1/SSL requests using server authentication.

The | dapsear ch utility can also be configured to make LDAPS requests using client
authentication. This process is significantly more complex than server authentication
and carries a few additional requirements. Those requirements include:

= The public and private keys of the client certificate must exist in the certificate
database that is used.

= The client certificate must exist in the directory server in the
usercertificate; bi nary attribute of the entry with which you are binding.
This is only true if the cert map. conf file has been configured to verify the
certificate (veri fycert settoon).

= The certificate mapping mechanism must be used to uniquely map the certificate
subject DN to an entry in the database. There are a number of ways of
establishing this mapping if the DN of the user does not match the subject DN of
the certificate (and it is not very common for a user certificate’s subject DN to
match the DN of the user’s entry in the directory). But unless the subject of the
client certificate exactly matches the DN of the directory entry containing the
certificate, you must provide the - D parameter that contains the DN of the user
entry as whom you wish to bind. The cert map. conf allows some flexibility
here.

136 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

The mechanism for fulfilling these requirements is discussed in the next section of
configuring an LDAP Client to use TLSv1/SSL. It must be noted, however, that if
you want to use client authentication, it is recommended that you use a Netscape
Communicator (any browser can be used that supports certificate and key
databases) certificate database (this is shown in our example) rather than the
directory server’s certificate database. Once you have met those requirements, then
you must specify the additional parameters, as shown in TABLE 3-8, for the

| dapsear ch command.

All of the examples in this section used the | dapsear ch command-line utility to
interact with the Sun ONE Directory Server software using LDAPS. The same
functionality exists in the | dapnodi fy utility, which can be used to add, delete, or
modify entries in the directory server. The use of the | dapnodi f y command is not
discussed here, but all of theTLSv1/SSL related options are exactly the same for

| dapnodi fy as for | dapsear ch. Therefore, if you can use | dapsear ch to search
the directory using an TLSv1/SSL-encrypted connection, then you can use those
same options with | dapnodi f y to modify the directory server data.

To Generate a TLSv1/SSL Client Certificate

In this procedure showing an example of using client authentication, all of the users
on a client that wish to use TLSv1/SSL when connecting to a Sun ONE directory
server using LDAP client applications, must generate a TLSv1/SSL client certificate.
To create a certificate we need to follow these steps listed below:

Chapter 3 Defining Directory Service Security Architecture 137

1. Request a signed certificate from the CA using the Netscape browser.

This example in FIGURE 3-26 uses the Sun ONE Certificate Server URL to request a
client certificate (ht t ps: // bl uepri nts. exanpl e. com 443):

https.//siroeblueprints.com443

Certificate Management Certificate Manager
System

Enrollment ‘.-"‘. Renevral . Revocalio I.-‘". Retrieval

User Entallment Manual Lkser Enrollment
Lkse: this ot to submit 3 request for a personal cedificate. After vou click the Submit button, wour tequest will be submitted to an issuing agent Tor approsal, When
Manual ah issuing agent has approved your request you will receive the certificate in email, alony with instructions For installing it.

Important: Ee sure to request your certificate on the same computer on which you plan to use the certificate.
Directory and Pi

=
&
%
2

Server Enrollment User's Mdentity) . . o
Enter values for the fiekds vou want to hawe in your certfficate. Your site may require vou to fil in certain fields

E Ful e

- ‘ Lucy Ruble
Registration
fanager Enroliment Login name: .
ot | e
Ernail address:

Certificate Manager

: ‘ Tucyr@hlueprints. con
Enraliment

Cirganization unit

: ‘ Fub1ishing

Ohbject Sighing

Enrallment Organization

- ‘B'IuePrw‘mts, Inc.]

Courtey: s

FIGURE 3-26 Sun ONE Certificate Manager

2. Fill in all the necessary information.

3. Select the Submit button at the bottom of the request page.

The browser generates a keypair and sends the public part of this keypair to the Sun
ONE Certificate Server in our example. The Sun ONE Certificate Server software
then signs the key together with the additional information that you previously
provided.

138 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services September 2003

FIGURE 3-27 Key Generation Dialog Box

4. Click OK (FIGURE 3-27).

5. Enter a password to protect your private key (FIGURE 3-28).

Chapter 3 Defining Directory Service Security Architecture 139

= Metscape: Setting Up Your Communicator Password =]

EY Setting Up Your Communicator Password

Itis stronoly recomm enoleol that you protect your Private Key with & Com municator passworl. fyou do not wanta password, leave
the password field blank,

The safest passwords are atleast 8 characers longy, include both lethers and num bers, and contsin no words from a dicionary.
k#ﬁ*k%

Passwarl:

Type it again to confitm: *****i
Impo iz nt: Your pasewerd cannot be recowenad., fyou forget i, wou will kee allof your cartificates.

I pou wishto change your passwaorl of other secutty preferences, choose Security Ifo from #he Com municatat m enu.

More Info.., | (B]4 Cancel

FIGURE 3-28 Password Request Dialog Box

After you enter your password, the private key is generated. If you are using
Netscape Communicator or the Mozilla browser, you should see cert 7. db,

key3. db and secnod. db under your browser’s directory (for example, the

. het scape or . npzi | | a directories). The Netscape browser uses the security
database files in the ~/ . net scape directory. Therefore, it is already set up to query
the Sun ONE directory server using TLSv1/SSL. The secnod. db is the file where
Network Security Services (NSS) lists the different PCKS#11 modules available to
you. Each module can have several slots, each slot being usually based on a token or
security device.

For instance, the NSS library delivers an internal module by default, which consists
of a couple of slots (you can see this by using noduti | on the
secnod. db/ secnodul e. db):

= Slot NSS Internal Cryptographic Services -> Token “NSS Generic Crypto Services”
= Slot NSS User Private Key and Certificate Services -> Token “NSS Certificate DB”
This file is also where you plug in your external modules, such as accelerator cards.
If you experience a message like the following:

140 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services * September 2003

Pl ease enter the password of pin for the Comunicator
Certificate DB

Then it assumes you have already provided a password the first time you accessed
your browser’s certificate/key databases. If you don’t remember the password, there
is nothing you can do, and you will have to generate a new cert/key database pair.

The Sun ONE Certificate software presents a request ID to you. Before you can
import the certificate, the Certificate Server Administrator must approve your
request. You can receive the request notification by email or verbally.

Example of a Certificate Request being sent by email:

<htm >

<body>

<h2>An automatically generated notification from <i>ca</i></h2>
Your certificate request has been processed successfully.

<p>

Subj ect DN= E=l ucy. r ubl e@xanpl e. com CN=Lucy Rubl e, Ul D=

| ucyr, OU=Publ i shi ng, O=Exanpl e, C=US</ b>

| ssuer DN CN=Certificate Manager, O=Exanpl e, | nc, C=us</ b>

not Aft er= 09- Jan- 04 9: 28: 59 PM/ b>

not Bef or e= 10-Jan- 03 9: 28: 59 PM/ b>

Serial Nunber= 153<p>

<p>

To get your certificate, please follow this

<A HREF="https://cns. bl ueprints. com 444/ di spl ayBySeri al ?op=

di spl ayBySeri al &eri al Nunber =153" >URL</ A>

Pl ease contact your admin if there is any problem
</ body>
</htm >

Chapter 3 Defining Directory Service Security Architecture 141

Example of a Request that has been successfully submitted is shown in FIGURE 3-29.

https:./ cmsblueprintdcom:a4, A

Cel Managenment Certificate Manager
System

Envollment % U ST T

User Enraliment Feequest Successhully Submitted

Manual Congratulations, your request has been to the Certificate Manager. our request il be processed when an

authorized agent verfies and validates the information in your request
Directory Based

Directory and Pin

“our regquest 1Dis 181,

Based

“four can check on the status of your request with an authorized agent or local adminis by refening to this request 1D

Servar Enroliment

Registration
ranager Enroliment

Certificate Manager
Enrollment

Ohject Signing
Enrollment

FIGURE 3-29 Example of a Successfully Submitted Request

The following examples show actual signed certificate components.
This is the certificate section:

Exanple certificate
Certificate 0x099

Certificate contents

Certificate:
Dat a:
Version: v3
Serial Number: 0x99
Signature Algorithm M5w thRSA - 1.2.840.113549.1.1.4

| ssuer: CN=Certificate Manager, O=bl ueprints, C=us

Validity:
Not Before: Thursday, April 10, 2003 9:28:59 PM
Not After: Friday, April 9, 2004 9:28:59 PM

142 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services September 2003

Subj ect: E=lucy. rubl e@un. com CN=Lucy Rubl e, Ul D=
| ucyr, OU=Publ i shi ng, O=Exanpl e, Inc, C=US
Subj ect Public Key Info:
Algorithm RSA - 1.2.840.113549.1.1.1
Publ i ¢ Key:
30:81:89: 02: 81:81: 00: AE: 1D: D5: 23: 20: AC. F7: BD: B8:
44:42: 77: BE: 23: AA: FD: 32: 46: 41: CA: D1: FO: F2: 24: 94:
43: 71: ED: 63: 22: 84: DB: EC. 68: 2B: FF: 32: D1: FC:. F6: B4:
98: 39: 7C. B4: ED: B7: A7: 12: 89: EE: C2: DF: 8D: 71: D3: 35:
07: 56: OE: 33: FO: F5: A6: EE: 6B: DD: 43: 92: FD: 90: 31: 8B:
0B: B9: DD: 5A: 8E: 05: 79: 15: F4: 21: 87: FC. DC: 81: 73: 49:
03:32: 78: D2: AA: 13: OF: 32: D5: E4: C1: 88: 92: B7: B3: B5:
B6: CF: 2B: AF: 68: C8: A4: 8C. D6: 1B: 02: 74: 81: 45: 93: D1.:
8F: E8: A5: C9: 59: ED: 85: 02: 03: 01: 00: 01
Ext ensi ons:
Identifier: Certificate Type - 2.16.840.1.113730.1.1
Critical: no
Certificate Usage:
SSL Cdient
Secure Emai l
Identifier: Key Type - 2.5.29.15
Critical: yes
Key Usage:
Digital Signature
Non Repudi ation
Key Enci pher ment
Identifier: Authority Key ldentifier - 2.5.29.35
Critical: no
Key ldentifier:

DB: 6B: 27: D7: 93: 90: 3B: 68: BB: 41: 10: 12: AB: 36: D8: 95:

02: 60: FO: 6C
Si gnat ur e:
Al gorithm WMD5w thRSA - 1.2.840.113549.1.1.4
Si gnat ur e:

94:5B: 04: 2D: 0B: 82: A6: FD: C9: CO: 49: 95: B1: C1: 8D: 09:
67: 7C. AA: EO: Al: ED: 4D: CF: 4A: 2F: FF: 66: 87: B1: 88: DO:
FA: BO: AA: EB: 68: 15: 7F: 92: 87: 52: FD: 7E: Al: 2B: 0C. AA:
D6: FE: BE: 05: B4: 09: 97: E9: 6D: CC. 27: 7A: 88: 4D: 87: 09

Chapter 3 Defining Directory Service Security Architecture 143

144

The following is the certificate fingerprint section:

Exanple certificate fingerprint

Certificate fingerprints

MD2: 4F: 22: 38: 50: E2: C4: A4: 09: 95: 06: EO: E4: AO: 1F: 9B: 3F
MD5: 9E: 8F: 5F: ED: 9F: FB: D2: 14: 2D: AF: 74: EO: 62: 90: 60: CE
SHAL:

2D: 8E: 33:90: 19: CE: 18: 7E: B3: 9B: 5C. 4D: DC. AE: B5: 05: 3A: FD: F8: 87

These are the details on how to install the certificate:

Exanple of howto install the certificate

The following format can be used to install this certificate into
a Net scape server.

----- BEG N CERTI FI CATE- - - - -

M | CVj CCAgCgAW BAgl CAJkwDQYJKoZI hvc NAQEEBQAWOT EL MAk GAT UEBh MCd XIVk
DDAKBgNVBAOTA3NLbj Ec MBoGATUEAXMIQ2Vydd maVWNhdGUg TWFUYWII ¢cj Ae FwOw
Mz AOMTAXN] UANTI aFWOWNDAONMDKXNj UANTI aM GgMQs wCQYDVQQGEW] VSz Ee MBWG
ALUEChMVU3VUI E1pY3Jvc3l zdGVt cywgSWsj MRgwig YDVQQLEWS TdWIgRWsnaWb|

ZXJpbntxFzAVBgoJki aJk/ | sZAEBEwdt aDEz Nz Q6 MRc w-QYDVQQDEWS NaVWNo YW/s
| EhhaWbl czEl MCMGCSqGSI b3DQEJARYWOW j aGFl bC50 YW uZXNAc3VuLm\vbTCB
nz ANBgkghki GOWOBAQEFAACB] QAwWg Yk Cg YEAr h3VI yCs9724REJ3vi Og/ TIGXr R
8PI kI ENx7WM hNvsaCv/ M H89r SYOXy07benEonuwt +NcdMLB1YOM D1pu5r 3UCS
I ZAXi wu53VqOBXkVICGH NyBcOkDivhj SghMPM XkwYi St 701t s8rr 2j | pl zZWBaJ0
gUWT0Y/ opcl Z7YUCAWEAAaNGVEQMEQYJYI ZI AYb4QyEBBAQDAG W) MA4 GALUd DWEB
/ WQEAW F4DAf BgNVHSVEGDAWBTbayf Xk5A7alt BEBKr Nt i VAmDWhDANBgkghki G
9IWO0BAQQFAANBAJRbBCOLggh9ycBJI bHBj Q nf Kr goelNzOov/ 2aHsYj Qtr Cq62gV
f 5KHUv 1+0Ss Mgt b+vgW)CZf pbcwneohNhwk=

----- END CERTI FI CATE- - - - -

6. Once you receive a signed certificate, import the signed certificate.

With the signed certificate, it is now possible to import the signed client certificate.
To perform this, scroll down to the end of the page, and look for:

Inporting this certificate

To import the certificate into your client, select the Import Your Certificate button.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

7. Enter the password for the Communicator Certificate Database (FIGURE 3-30).

—| Metscape: Password

Flease enter the password or the pin for
Communicator Certificate DE.

| Ok | Clear | Cancell

FIGURE 3-30 Password Dialog Box for the Communicator Certificate Database

Once you have successfully typed in the correct password, you will have a new
private key stored in ~/ . net scape/ key3. db, and a new certificate stored in
~/ . net scape/cert7. db.

You must make sure that the certificate of the CA that signed our TLSv1/SSL-client
certificate is trusted.

8. Verify and set up the appropriate trust relations.

a. From the Netscape browsers menu select Communicator 0O Tools O Security
Info.

b. Under the Certificates, select Your certificate.
You should see the certificate you just imported from the Certificate Server.

c. Select the certificate and click the Verify button.

The browser shows you a dialog box (FIGURE 3-31) showing that the certificate is
not trusted.

— MNetscape: Verifu & Certificate
Wedfication afthe seleced cedificate failed forthe following reasons:

Gartifizate Mamagar - sun[Gatificate & utho rity]
Cedificate nottristed

FIGURE 3-31 Netscape Verify a Certificate Dialog Box Showing Failed Verification

Chapter 3 Defining Directory Service Security Architecture 145

d. Go to the Security Info window, select Signers in the navigation frame and
select the certificate signer from the list in the right frame.

This changes the certificate so that it is trusted.
The CA that signed the certificate must have the appropriate trust relations. To
accomplish this task from the Netscape Browser.
e. Click the Edit button.
The Edit Certification Authority dialog box appears (FIGURE 3-32).

f. Modify the trust relation by checking each Accept option (FIGURE 3-32).

FIGURE 3-32 Edit a Certification Authority Dialog Box

g. Verify the client certificate again, as you did previously.
The browser shows that the certificate is now trusted (FIGURE 3-33).

146 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services September 2003

= Metscaps: WVerify A Certificate
The Cedificate has heen successhlly vetfied.

FIGURE 3-33 Verify a Certificate Dialog Box

Initializing the Secured LDAP Client

When you initially created your client certificate, you chose to use the manual option
from the certificate management system (CMS). Remember, however, that by
selecting this option, you end up having your client certificate in your browser’s
certificate/key database pair, so these are the databases that you have to use with
the Secured LDAP client application.

To use the TLSv1/SSL security databases (cert 7. db and key3. db), these databases
must be placed in the directory defined by the clients certi fi cat ePat h attribute.
This is required because the Secured LDAP Client library (I i bsl dap. so. 1) uses
the | dapssl _client _init API from |i bl dap to initialize itself to connect to a
secure LDAP server over TLsv1/SSL. This call requires the path to the database
containing certificates and the database must be a cert 7. db certificate database.

You can use the NS_LDAP_HOST_CERTPATH parameter in the Secured LDAP Client
profile to specify the path. If you don’t, the path by default is the / var/ | dap
directory. So copy the database files and give read access as shown in the following
example:

/usr/bin/cp /.netscape/cert7.db /var/Ildap
lusr/bin/cp /.netscape/ key3.db /var/| dap
/usr/bin/chmod 400 /var/|dap/cert7.db /var/|dap/ key3. db

Note — The Netscape browser uses the security database files in the ~/ . net scape
directory. Therefore, it is already set up to query the Sun ONE Directory Server
software using TLSv1/SSL.

Chapter 3 Defining Directory Service Security Architecture 147

148

The Solaris OE version of the | i bl dap library and TLSv1/SSL require mutual
authentication. Therefore, the servers IP address that the client uses must resolve to
the same name that is contained in the servers certificate. Because the servers
certificate uses its fully qualified domain name, exanpl e. comfor example, if you
are using the Secured LDAP client, the address must resolve to the name in the
certificate.

Note — The LDAP name service cannot be used to resolve the address to the LDAP
server. DNS can be used for host resolution. If you add the host to the / et ¢/ host s
file, be sure to add it so that the host name resolves to the same name that is in the
certificate.

First add the full host name and address of the server to the / et ¢/ host s file. Edit
the /et c/ nsswi tch. | dap file to use fi | es and then LDAP for hosts resolution.
The modified nsswi t ch. | dap file should have an entry as follows:

hosts: files |dap

You must modify the / et ¢/ nsswi t ch. | dap file because when you run the
| dapclient init command, itis copied to the/etc/nssw tch. conf file.

The TLSv1/SSL support in the Secured LDAP Client is implemented as a library,
and itis | i bl dap. so. 5 that actually implements the client side of it. This works in
the following way.

In the Secured LDAP client profile, the aut hent i cat i onMet hods that you can
specify are:

= NONE

= SIMPLE

= SASL/ DI GEST- MD5

= SASL/ CRAM MD5

= TLS: NONE

= TLS: S| MPLE

= TLS: SASL/ CRAM NMD5

= TLS: SASL/ DI GEST- MD5

Those that start with TLS: indicate that a TLSv1/SSL session is required. When the
| i bsl dap library sets up the connection to the Sun ONE Directory (LDAP) Server
(or any directory server for that matter), it first calls a private interface in

I i bl dap. so. 5 to initialize the client application for TLSv1/SSL (open the
certificate database), then calls the private interface again to initialize an LDAP
session with the secure directory server. After this, everything is performed in the
same way as a non-TLS session.

In the Secured LDAP Client, there is a list of encryption types with encryption
strengths of TLSv1/SSI certificates that can be used by the Solaris OE Secured LDAP
Client.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

The Secured LDAP client informs the directory server which cipher suites it
supports (in preferential order — see below). The directory server replies with the
subset of mechanisms it supports (in preferential order). The policy is to allow all of
these cipher suites, except those that are not enabled. The following cipher suites are
present by default:

« SSL 3.0:

= SSL_RSA EXPORT W TH RC2_CBC 40_MD5
= SSL_RSA W TH RC4_128_MD5

= SSL_RSA W TH_3DES_EDE_CBC_SHA

= TLS RSA EXPORT1024_W TH_RC4_56_SHA
TLS_RSA_EXPORT1024_W TH_DES_CBC_SHA
SSL_RSA EXPORT_W TH_RC4_40_ND5
SSL_RSA FI PS_W TH_3DES_EDE_CBC_SHA
SSL_RSA FI PS W TH_DES_CBC_SHA
SSL_RSA W TH_DES_CBC_SHA

These may work (see Note):

= SSL_FORTEZZA DMS_W TH_NULL_SHA
= SSL_FORTEZZA DMS_W TH_FORTEZZA CBC_SHA
= SSL_FORTEZZA DMS_W TH_RC4_128_SHA

Note — The three Fortezza cases listed above require other things installed, such as
cards, boards, and tokens. Sun does not currently support them at this time.

For SSL2:

« SSL_CK RC4_128 W TH_MD5
« SSL_CK RC4_128 EXPORT40_W TH_MD5

« SSL_CK RC2_128 CBC W TH_MD5

« SSL_CK RC2_128 CBC EXPORT40 W TH_MD5
« SSL_CK | DEA 128 _CBC W TH _MD5

« SSL_CK DES 64 _CBC W TH_MD5

« SSL_CK_DES 192 EDE3_CBC_ W TH_MD5

Chapter 3 Defining Directory Service Security Architecture 149

v To Verify That TLSv1/SSL Is Working

This procedure verifies that TLSv1/SSL is working on the directory server and that
the client profile is set up.

1. Use the | dapsear ch command as shown in the following examples.

$./l dapsearch -h directoryserver_hostname - p Idap_port
-D “cn=Directory Manager” -w password
-b “cn=encryption, cn=config” cn=*
obj ect d ass=t op

obj ect O ass=nsEncrypti onConfig
ch=encryption

nsSSLSessi onTi neout =0

nsSSLC i ent Aut h=al | owed

nsSSLSer ver Aut h=cert

nsSSL2=of f

nsSSL3=on

$./l dapsearch -h directoryserver_hostname -p Idap_port
-b "ou=profil e, dc=exanpl e, dc=conf "cn=defaul t"
cn=def aul t, ou=profil e, dc=exanpl e, dc=com

obj ect C ass=t op

obj ect Gl ass=DUAConfi gProfil e

def aul t Server Li st =bl ueprints. exanpl e. com

def aul t Sear chBase=dc=exanpl e, dc=com

aut henti cati onMet hod=t| s: si npl e

f ol | owRef erral s=FALSE

def aul t Sear chScope=one

sear chTi neLi m t =30

profil eTTL=43200

cn=def aul t

credenti al Level =proxy

bi ndTi neLi m t =10

150 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

2. Initialize the Secured LDAP client with the | dapcl i ent i nit command using
the name of the server instead of the address.

Example:

$./ldapclient init -a proxydn=cn=proxyagent, ou=profile,dc=
exanpl e, dc=com - a proxypasswor d=proxy -a domai nnane=exanpl e. com
exanpl e. com

#

$ ldapclient list

NS_LDAP_FI LE_VERSI ON= 2.0

NS_LDAP_BI NDDN= cn=pr oxyagent , ou=profi | e, dc=exanpl e, dc=com
NS_LDAP_BI NDPASSWD= { NS1} ecc423aad0

NS_LDAP_SERVERS= bl uepri nts. exanpl e. com

NS_LDAP_SEARCH BASEDN= dc=exanpl e, dc=com

NS_LDAP_AUTH= tl s:sinple

NS_LDAP_SEARCH REF= FALSE

NS_LDAP_SEARCH_SCOPE= one

NS_LDAP_SEARCH TI ME= 30

NS_LDAP_PROFI LE= defaul t

NS_LDAP_CREDENTI AL_LEVEL= proxy

NS_LDAP_BI ND_TI ME= 10

3. (Optional) Verify the encrypted traffic.

It is good practice to verify the encrypted traffic. Out of the standard Solaris OE
command-line tools, only the | dapl i st and | dapaddent commands access the
Sun ONE Directory (LDAP) server using TLSv1/SSL. The command-line tools

(I dapsear ch, | dapnodi fy and | dapdel et e) that are provided with the Sun ONE
Directory software distribution are enhanced to use TLSv1/SSL. These are located in
the path/ directory-server-instance/ shar ed/ bi n directory.

Here is an example of verifying the encrypted traffic with TLSv1/ SSL using the
| dapsear ch command:

$./l dapsearch -h directoryserver_hostname -p Idap_port 636 -Z
-P /var/ldap/cert7.db -b "dc=exanpl e, dc=cont’ "cn=*"

To actually verify that the traffic is encrypted, use something like the Solaris 9 OE
/ usr/ sbi n/ snoop command (see Appendix C, “Using snoop with LDAP). The
more advanced protocol analyzers like Ethereal (available for free for a number of
platforms, and as source code from htt p: // ww. et her eal . com can even
interpret the information that is captured so that it can be more easily understood.
This is helpful with text-based protocols like HTTP because it provides formatting

Chapter 3 Defining Directory Service Security Architecture 151

152

for the request. It is invaluable for binary protocols like LDAP because the task of
decoding the information and figuring out exactly what is going on between the
client and the server is much more difficult.

Note — Ethereal is available on the Solaris 8 and 9 OE Companion Software CDs.
However, support for this utility is not provided by Sun.

Start TLS Overview

The TLS Protocol Version 1.0 is defined in RFC 2246. Before deciding to use the Start
TLS functionality, it is worth taking the time to understand what TLS actually offers.
The primary use of the TLS protocol with LDAP is to ensure connection
confidentiality and integrity, and to optionally provide for authentication. Be aware
that using the Start TLS operation on its own does not provide any additional
security because the security element is accomplished through the use of TLS itself.

The level of security provided though the use of TLS is dependent directly on both
the quality of the TLS implementation used and the style of usage of that
implementation.

Note — The Start TLS extended operation in the Sun ONE Directory Server 5.2
software is available on all platforms. This was not the case with version 5.1, where
NT is not supported.

The Start TLS operation is an extended operation defined by the LDAPv3 protocol
that is initiated by a client starting the TLS protocol over an already established
LDAP connection. What actually happens is that the client transmits an LDAP PDU
(protocol data unit) containing the LDAPv3 Ext endedRequest , and specifying the
OID for the Start TLS operation. The OID is:

1.3.6.1.4.1. 1466. 20037

This extended operation enables the ability of securing a connection that was not
secure, based on a client’s demand.

This extended operation is forwarded to the directory server in terms of an LDAP
extended request that contains a specific OID as referenced above, identifying the
Start TLS operation. It is up to the directory server to decide whether or not the
request should be accepted or rejected. The server sends an extended LDAP PDU
containing a Start TLS extended response back to the client with either a successful
or a non-successful answer as to whether the directory server is willing and able to
negotiate TLS. If the Ext endedResponse contains a result code indicating success,
then the directory server is willing and able to negotiate TLS. If, on the other hand,

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

the Ext endedResponse contains a result code other than success, this indicates that
the directory server is unwilling or unable to negotiate TLS. If the Start TLS
extended request is not successful, the result code will be one of;

= operationsError — TLS already established.
= protocol Error — TLS is not supported or incorrect PDU structure.
=« referral - The directory server does not support TLS.

= unavai |l abl e — There is a serious problem with TLS, or the directory server is
down.

In the case that a successful response is returned, the directory server initializes

TLSv1/SSL (initializes both the certificate and key databases, and sets the cipher
policy), imports the current socket into a TLSv1/SSL-socket, and configures it in
order to behave as a TLSv1/SSL server.

In the Sun ONE Directory Server 5.2 software, the Start TLS extended operation is
implemented as an internal extended operation plug-in. The implementation itself is
based on the IETF RFC 2830 “Lightweight Directory Access Protocol (v3): Extension
for Transport Layer Security” (ftp://ftp.rfc-editor.org/in-

not es/ rf c2830. t xt).

When the Sun ONE directory server receives a Start TLS extended operation request,
it performs a series of checks as specified in the above document (such as checking
whether there are other operations still pending on the connection, whether security
is enabled on the directory server, and so on). If successful, it performs the
TLSv1/SSL handshake and uses a secure connection.

As to the configuration of the Sun ONE directory server, no specific configuration
has to be taken into account except for the Windows platforms, where you must add
the ds-start-tl s-enabl ed: on attribute to the cn=confi g entry. This is
necessary because on Windows, the server handles connections differently
depending on whether they are secured or non-secured; secured connections need to
be handled using NSPR (as NSS is built upon NSPR), whereas non-secured ones
benefit from the Windows I/0 completion ports architecture, which turns out to be
more efficient. So, if you want to convert a non-secured connection into a secured
one (perform Start TLS operation), you must know beforehand so that the server can
also handle non-secured connections using NSPR right from the start-up.

For Start TLS to work, the security must be enabled in the server, with all the
necessary configuration (certificate and key databases, server certificate available,
cipher preferences set, client authentication policy specified, and so forth).

Note — You don’t need to have a dedicated secure port open. That is, in fact, one of
the strong points of Start TLS— it allows you to have secure connections on the non-
secure LDAP port.

Chapter 3 Defining Directory Service Security Architecture 153

In summary, the complexity of setting up TLSv1/ SSL is mainly on the Sun ONE
directory server-side, and is categorized in the following main points:

1. Find a CA. You can use an existing one, or you will have to set up something like
the Sun ONE/iPlanet™ Certificate Server.

2. The Sun ONE Directory (LDAP) server has to get a server certificate from the CA,
and has to activate TLSv1/SSL afterwards.

3. The Secured LDAP Client has to get a CA certificate from the same CA.

4. You must copy $HOVE/ cert 7. db and $HOVE/ key3. db to / var/ | dap. The path
/var /| dap can be overwritten by setting up certi fi cat epat h with
| dapclient -a certificatepath path

Note — Currently the Secured LDAP does not use Start TLS.

5. If you want to test an LDAP client authentication, the server has to get a CA
certificate and the client has to get a client certificate from the same CA. But it’s
not required by the Secured LDAP Client.

154

Enhanced Solaris OE PAM Features

The Pluggable Authentication Module (PAM) feature is an integral part of the
authentication mechanism for the Solaris 9 OE. PAM provides you with the
flexibility to choose any authentication service available on a system to perform end-
user authentication. Other PAM implementations are Linux-PAM and OpenPAM.

By using PAM, applications can perform authentication regardless of what
authentication method is defined for a given client.

PAM enables you to deploy the appropriate authentication mechanism for each
service throughout the network. You can also select one or multiple authentication
technologies without modifying applications or utilities. PAM insulates application
developers from evolutionary improvements to authentication technologies, while at
the same time, allows deployed applications to use those improvements.

PAM employs run-time pluggable modules to provide authentication for system
entry services. PAM offers a number of benefits, including:

= Offers flexible configuration policy by enabling each application or service to use
its own authentication policy. PAM provides the ability for you to choose a
default authentication mechanism. By using the PAM mechanism to require

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

multiple passwords, protection is enhanced on high-security systems. For
example, you might want users to be authenticated by Kerberos, and to bind to a
directory server using SASL/DIGEST-MD5.

= Provides ease-of-use for end users. Password usage is easier using PAM. If users
have the same passwords for different mechanisms, they do not need to retype
the password. Configured and implemented properly, PAM offers a way to
prompt the user for passwords for multiple authentication methods without
having the user enter multiple commands. For example, a site may require
certificate-based password authentication for t el net access, while allowing
console login sessions with just a UNIX password.

= Enhances security and provides ease-of-use of the Solaris 9 OE in an extensible
way. The security mechanisms accessible through PAM are implemented as
dynamically loadable, shared software modules that are installed by system
administrators in a manner that is transparent to applications. By increasing
overall security, users enjoy greater service levels and lower cost of ownership.

Traditional Solaris OE Authentication and PAM

Traditional Solaris OE authentication is based on the method developed for early
UNIX implementations. This method employs a one-way encryption hashing
algorithm called crypt (3c). The encrypted password is stored either in a file or in
a Solaris OE naming service, from which it is retrieved during the user login process.
The traditional UNIX method of the Solaris OE authentication, using cr ypt , is very
popular and has been enhanced to use an LDAP directory as its data store.

Before proceeding with the details on authentication, you must have a good
understanding of what cr ypt is. There is some confusion because of a naming
conflict with an application named crypt. This is a standard tool that ships with the
Solaris OE, and is a program for encrypting and decrypting the contents of a file.
(This program is located in / usr/ bi n/ crypt.)

However, when the term crypt is referred to in authentication, it is normally cited as
crypt (3c) and refers to the standard UNIX password hashing algorithm
(crypt (3c)), available to C programmers in the | i bc. so library.

A more sophisticated authentication method based on public key technology was
introduced with the Network Information System (NIS+) naming service (now
rebranded as the Sun OS™ 5.0 Network Information Service). The NIS+ naming
service method does not replace cr ypt (3c), but rather provides an additional
security layer by introducing the concept of a network password. When users access
network services through the secure remote procedure call (RPC) mechanism, the
network password is required.

Chapter 3 Defining Directory Service Security Architecture 155

156

Originally developed by Sun Microsystems and adopted by the Open Software
Foundation (OSF) for inclusion in Common Desktop Environment (CDE)/Moatif,
PAM provides a mechanism for dynamic system authentication and related services
such as password, account, and session management. Realizing that new
authentication models continue to be developed, Sun created the PAM architecture
that allows additional methods to be added without disturbing existing ones. PAM
was introduced in the Solaris 2.6 OE to overcome having to recode system entry
services such as, | ogi n, passwd, dt | ogi n, t el net, and rl ogi n when a new
authentication mechanism was introduced.

The PAM architecture and alternatives to traditional Solaris OE authentication are
discussed in Appendix D, “Solaris OE 9 PAM Architecture.”

UNIX Passwords

Passwords are created with the Solaris OE passwd command. This command
prompts the user for a (new) password, which the user enters as a text string. In the
Solaris OE, this text string is hashed—or one-way encrypted—using the

crypt (3c) algorithm. The result is stored either in / et ¢/ shadow or in the
passwd. bynane and passwd. byui d NIS maps. If the NIS+ naming service is used,
the results are stored in the Passwd and Cr ed table type. The cr ypt (3c) algorithm
is provided with a random seed, known technically as a salt string, so that the result
is different each time the passwd command is run, even if the same text string is
used.

When a user logs in, the Solaris OE | ogi n program challenges the user to provide a
password. This password is hashed in the same manner as the passwd command. If
the output from this process matches the output that is stored in the password
database, the user is authenticated.

FIGURE 3-34 illustrates how the UNIX password process works.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

NEW password

\. —» crypt(3c)
[

hashed
password

random seed
or "salt"

server

User

/ et ¢/ shadow
passwd.byname
NIS+ passwd table

Retrieve password

entry for user

Provides "Salt" |

for crypt(3c)

server

crypt (3c)
on userinput] Hashed password / et c/ shadow
passwd.byname

NIS+ passwd table

Is compared with the
entry from the database —— Match = OK

FIGURE 3-34 Logi n Program Text String Converting to a Hashed String

Benefits and Drawbacks of cr ypt (3c)

The major benefit of cr ypt (3c) is that it is easy to implement in a closed
environment. Authentication takes place on the host that the user logs in to, so an
authentication server is not required. In the case of local logins, the clear text
passwords are never stored or sent over the network, so there is no reason to be
concerned about eavesdroppers intercepting the password. However, when
authenticating over a network using t el net or rl ogi n, passwords are sent in clear
text.

Because crypt (3c) uses a one-way encryption algorithm, it is difficult to decrypt
passwords stored on the server. Only the user knows what the actual password is.
This means that there is no way to convert passwords stored in crypt to another
format required by a different authentication method.

When the crypt (3c) function is called, it takes the first eight characters and
returns its computation. This computation is then injected with a randomly
generated value called the salt. In conventional crypt, the salt is stored as the first
two characters. This salt value is then added, resulting in a sequence of 13
characters. The result is that the salt is actually an important part of the password
string that is stored in the specific naming service.

Chapter 3 Defining Directory Service Security Architecture 157

158

As CPUs and storage capabilities increase, the crypt (3c) algorithm becomes
vulnerable to attack. The cr ypt (3c) mechanism shipping with the Solaris 9 OE,
along with PAM authentication, is exactly the same implementation that has been in
the Solaris OE for many years now, and could one day change.

Introduction to Flexible cr ypt (3c)

The Solaris OE crypt (3c) mechanisms work well for authenticating local Solaris
OE clients, but they are not the only methods used by applications and services
running in the Solaris OE. This can make it difficult for system developers and
system administrators, who must work with multiple password systems, and for
users who must remember multiple passwords.

In the Solaris 9 12/02 OE, Sun updated the cr ypt (3c) API to allow different
algorithms to be used for encrypting the users login password, this is known as
flexible crypt(3c) for passwords.

The reason this feature was extended is because since the Solaris 2.6 OE, the Solaris
OE has supported a get passphr ase() routine, which is identical to get pass(3C)
routine, except it reads and returns a string of up to 256 characters in length.
However, the crypt (3c) algorithm which it typically provides input to, is still
limited to receiving only 8 ASCII characters.

The existing crypt (3c) API has been be preserved to provide applications that
verify a user’s password by calling crypt (3c) and using strcnp(3c) with the
value returned by get pwnan{ 3c) so that they continue to work without any source
code change or a recompile. This is obviously a very important aspect when adding
any new or enhanced feature.

Functionally, a plug-in framework has been added to crypt (3c) to allow the
changing of the underlying password hashing algorithm. Currently this ships with
two new password hashing algorithms that use the Blowfish and MD5 hashes (for
compatibility with BSD / Linux).

By default, the behavior of this new feature that provides extended cr ypt (3c) and
adds crypt _gensal t (3c) is to use the old UNIX crypt (3c) on the password
change, unless the user already has a new style password. This feature is turned on
and used by changing the settings in the / et ¢/ securi ty/ pol i cy. conf file,
which is the configuration file used for the security policy. For more information
refer to pol i cy. conf (4).

The PAM interface in the Solaris 9 OE makes it easier for you to deploy different
authentication technologies without modifying administrative commands such as
| ogi n, t el net, and other administrative commands. Administrators are able to
select one or multiple authentication technologies, without modifying applications

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

or utilities. PAM can also be an integral part of a single sign-on system. The PAM
APIs provide a flexible mechanism that increases overall system security. The PAM
APIs are described in Appendix D, “Solaris OE 9 PAM Architecture.”

Solaris 9 OE PAM Framework

The PAM framework enables new authentication technologies to be plugged in
without the need to change commands such as | ogi n, dt | ogi n, rsh, su, ftp, and
t el net d. PAM is also used to replace the UNIX login with other security
mechanisms, such as Kerberos and LDAP authentication. Mechanisms for account,
session, and password management can also be plugged in through this framework.

This framework consists of four specific components:

= PAM API presented to the application programs

= PAM framework responsible for implementing the API

= PAM service provider interface (SPI) implements the back-end functionality for
the PAM API

= Configuration file pam conf specifies which service providers are used for the
various programs

PAM allows you to choose any combination of services to provide authentication.
These include a flexible configuration policy that enables a per-application
authentication policy, choice of a default authentication mechanism for non-specified
applications, and multiple passwords on high security systems. Another valuable
service is the ease of use for the end user that enables no retyping of user passwords
if the passwords are the same, and optional parameters passed to the services.

With the introduction of the new PAM framework in the Solaris 9 OE, the LDAP
service module for PAM has been extended to support the account service, which
checks a user’s password and account status by binding to the directory (LDAP)
server. The directory server returns the password status to pam | dap, which in turn
maps the status to the PAM error codes. A user might be rejected when logging in
with an expired password, or might see a warning message after logging in when
the password is about to expire.

The pam_| dap module has also been updated to support password syntax checking,
which is performed through the Sun™ Open Net Environment (Sun ONE) Directory
Server 5.1 and greater (formerly known as the iPlanet™ Directory Server software)
password policy engine. When changing the password (using the passwd
command), the user might see error messages such as password too short,
password in history, and so forth. In addition, it adds mechanisms for account
lockout after too many failed attempts, forced password change after reset (if reset
by root DN in the directory server), minimum password ages, and different
password policies for different groups of users.

Chapter 3 Defining Directory Service Security Architecture 159

Note — The pam_| dap account management feature is not supported with iPlanet
Directory Server software version 5.0.

PAM Types

The PAM framework currently provides four different types of service modules,
which are implemented by dynamic loadable module types to provide
authentication related services. These modules are categorized based on the function
they perform:

= Authentication (aut h) — Provides authentication for users and enables credentials
to be set, refreshed, or destroyed.

= Account management (account) — Checks for password aging, account
expiration, and access hour restrictions. Once the user is identified by the
authentication modules, the account management modules determine whether
the user can be given access.

= Session management (sessi on) — Manages the opening and closing of a session.
The modules can log activity, or clean up after the session is over. For example,
the uni x_sessi on module updates the | ast | og file.

= Password management (passwor d) — Contains functionality that enables the user
to change an authentication token (usually a password).

Stacking

PAM enables authentication by multiple methods through stacking. When a user is
authenticated through PAM, multiple methods can be selected to fully identify the
user. Depending on the configuration, the user can be prompted for passwords for
each authentication method. This means that the user need not execute another
command to be fully authenticated. The order in which the methods are used is
determined through the configuration file, / et ¢/ pam conf .

Note — Stacking has the potential of increased security risk because the security of
each mechanism could be subject to the least secure password method used in the
stack.

160 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

PAM Operation

The PAM software consists of a library, several modules, and a configuration file.

The PAM library, / usr/1i b/l i bpam so, provides the framework to load the
appropriate modules and manage stacking. It provides a generic structure for all of

the modules to plug into.

FIGURE 3-35 illustrates the PAM framework.

‘PAM ' calling
| Conversion | Application
User «<— } Routines | service name,
P | user name,
conversation Management
PAMH routines, ...
PAM-API - —}---—-—-"]--""—""""F¢1-""—"""""""""""""""-"—-
PAM L P | PAM
Interface ! PAM ! Configuration
Library S 'i aﬁ”ﬁ“ﬁf?f?f?f?j Data
- { 7777777777 } 777777777 { 7777777 1
PAM L L L L
Service Authentication Account Session Password
Modules Modules Management Management Management
Modules Modules Modules

FIGURE 3-35 PAM Framework Architecture

FIGURE 3-36 illustrates the relationship between the applications, the library, and the
modules. The | ogi n, passwd, and su applications use the PAM library to access the
appropriate module. The pam conf file defines which modules are used with each
application. Responses from the modules are passed back through the library to the

application.

Chapter 3 Defining Directory Service Security Architecture

161

162

pam.conf (PAM Library)

pam_authtok_get.so.1 pam_dhkeys.so.1 pam_unix_auth.so.1

FIGURE 3-36 PAM and the Relationship Between Applications, Library, and Modules

Pluggable Authentication Service Modules

Each module provides the implementation of a specific mechanism. More than one
module type (aut h, account, sessi on, or passwor d) can be associated with each
module, but each module needs to manage at least one module type. The following
is a description of the modules that are part of the Solaris 9 OE.

pam aut ht ok_get — Supports authentication and password management. This
module takes care of obtaining (old or new) passwords from the user, so that
other modules on the stack can concentrate on their task, and not worry about
obtaining information from the user.

pam aut ht ok_check — This module provides functionality to the password
management stack. Specifically, it performs a number of checks on the
construction of the newly entered password. See pam _aut ht ok_check(5) man
page for a description of the checks it performs.

pam aut ht ok_st or e — Provides functionality to the PAM password
management stack. When invoked with flags set to pam updat e_aut ht ok, this
module updates the authentication token for the user specified by pam user.

pam dhkeys — Supports authentication and password management. This module
specifically deals with the establishment and modification of the Diffie-Hellman
keys which are used, for example, for secure RPC calls (NIS+ and Secure NFS).

pam passwd_aut h — Provides authentication functionality to the password
service as implemented by passwd(1) . It differs from the standard PAM
authentication modules in its prompting behavior.

pam uni x_account — Provides functionality to the PAM account management
stack, as the PAM account management module for UNIX. The

pam acct _ngnt (3PAM function retrieves password aging information from the
repositories specified in nsswi t ch. conf (4) and verifies that the user’s account
and password have not expired.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

= pam uni Xx_aut h — Verifies the password that the user has entered against any
password repository specified in the nsswi t ch. conf using normal UNIX
crypt (3c) style password encryption, and can only be used for authentication.

= pam_uni x_sessi on — Provides functions to initiate and to terminate session as
the session management PAM module for UNIX.

= pam | dap — Implements the functions that provide functionality for the PAM
authentication, account management, and password management stacks. (new in
Solaris 9 12/02 OE). pam_| dap has also been updated in Solaris 9 OE 12/02 to
support password syntax checking, which is done through the Sun ONE
Directory Server password policy engine.

In addition to the above pam | dap service module, a new server _pol i cy option
can be specified with the pam uni x_aut h, pam_uni x_account ,

pam passwd_aut h, and pam_aut ht ok. st or e modules. This option instructs these
modules to ignore a user if the user is only found in the directory server (LDAP)
repository, and let the stacked below pam_| dap module to process the user
according to the password policy set in the Sun ONE Directory Server software.

For security, these files must be owned by r oot and have their permissions set so
that the files are not writable through gr oup or ot her permissions. If the file is not
owned by r oot , PAM will not load the module. This requirement on permissions
and owner for the modules is not documented anywhere, and might change in
future releases.

Note — In FIGURE 3-36, pam _uni X is not layered entirely on the LDAP server. The
pam_uni x module sits on the Name Service Switch (NSS) layer and the NSS back
ends that could be files, NIS, NIS+, or LDAP.

PAM Configuration File Update

The PAM configuration file, / et ¢/ pam conf , determines what authentication
services are used and in what order. Edit this file to select the desired authentication
mechanisms for each system entry application.

Configuration File Syntax

The PAM configuration file consists of entries with the following syntax:

service_name module_type control_flag module_path module_options

Chapter 3 Defining Directory Service Security Architecture 163

TABLE 3-9 explains the functions of the syntax.

TABLE 3-9 Configuration File Syntax

Syntax Description

service_name Name of the service (for example, ft p, | ogi n, t el net)

module_type Module type for the service (aut h, account , sessi on, passwor d)

control_flag Determines the continuation or failure semantics for the module
(see note below)

module_path Pathname of the module

module_options Specific options passed to the service modules

Comments can be added to the pam conf file by starting the line with a pound sign
(#). Use white space to delimit the fields.

Note — An entry in the PAM configuration file is ignored if one of the following
conditions exists: the line has fewer than four fields, an invalid value is given for
module_type or control_flag, or the named module is not found.

TABLE 3-10 summarizes PAM configurations.

TABLE 3-10 PAM Configurations

Service Name Daemon or Command Module Type

cron /usr/sbin/cron account

dtlogin /usr/dt/bin/dtlogin aut h, account, session

ftp /usr/sbin/in.ftpd auth, account, session

init [usr/sbin/init sessi on

I ogin /usr/bin/login aut h, account, session,
password

passwd /usr/ bi n/ passwd aut h, account, password

ppp /usr/bin/ pppd auth, account, session

rexecd /usr/sbin/in.rexecd aut h, account

rexd /usr/sbin/rpc.rexd account, session

riogin fusr/sbin/in.rlogind auth, account, session,
passwor d

rsh /usr/sbin/in.rshd aut h, account

164 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

TABLE 3-10 PAM Configurations (Continued)

Service Name Daemon or Command Module Type

sac /usr/1iblsaf/sac sessi on

sshd /usr/1iblssh/sshd aut h, account, session,
password

su /usr/bin/su aut h, account

tel net /usr/sbin/in.tel netd auth, account, session,
password

ttynmon /fusr/lib/saf/ttynmon sessi on

uucp /usr/sbin/in.uucpd aut h, account

Control Flags

To determine continuation or failure behavior from a module during the
authentication process, you must select one of four control flags for each entry.
Successful or failed attempts are indicated through control flags. Even though these
flags apply to all module types, the following explanation assumes that the flags are
being used for authentication modules. The control flags are as follows:

requi red — This module must return success in order to have an overall
successful result. If all of the modules are labeled as r equi r ed, authentication
through all modules must succeed for the user to be authenticated. If some of the
modules fail, an error value from the first failed module is reported. If a failure
occurs for a module flagged r equi r ed, all modules in the stack are still tried but
failure is returned. If none of the modules are flagged r equi r ed, at least one of the
entries for that service must succeed for the user to be authenticated.

requi si t e — This module must return success for additional authentication to
occur. If a failure occurs for a module flagged r equi si t e, an error is immediately
returned to the application and no additional authentication is done. If the stack
does not include prior modules labeled r equi r ed that failed, the error from this
module is returned. If a earlier module labeled r equi r ed has failed, the error
message from the required module is returned.

opti onal - If this module fails, the overall result can be successful if another
module in this stack returns success. The opti onal flag should be used when one
success in the stack is enough for a user to be authenticated. This flag should only be
used if it is not important for this particular mechanism to succeed. If your users
need to have permission associated with a specific mechanism to get their work
done, you should not label it opt i onal .

Chapter 3 Defining Directory Service Security Architecture 165

suf fici ent — If this module is successful, skip the remaining modules in the stack,
even if they are labeled r equi r ed. The suf fi ci ent flag indicates that one
successful authentication is enough for the user to be granted access. More
information about these flags is provided in the next section, which describes the
default / et ¢/ pam conf file.

bi ndi ng — This is a new control flag that has been added to the PAM framework in
Solaris 9 12/02 OE. The control flag bi ndi ng has a meaning of terminate processing
upon success, and report the failure if unsuccessful. This option effectively provides a
local account overriding remote (LDAP) account functionality.

Generic pam conf File

The following is an example of a generic pam conf file:

PAM confi guration

Aut henti cati on nanagenent

#

| ogin auth requisite pamaut htok_get.so. 1
l ogin auth sufficient pam.uni x_auth.so.1

| ogi n auth required pam.|dap.so.1

#

rlogin auth sufficient pamrhosts_auth.so.1
rlogin auth required pam aut ht ok_get.so. 1
rlogin auth sufficient pamuni x_auth.so.1

#

dtl ogin auth required pam aut ht ok_get . so. 1
dtlogin auth required pam uni x_aut h. so. 1

#

rsh auth sufficient pamrhosts_auth.so.1
rsh auth required pam uni x_auth. so. 1

#

dt session auth required pam authtok_get.so.1
dt session auth required pam uni x_auth.so.1

#

ot her auth required pam aut ht ok_get.so.1
ot her auth required pam uni x_aut h. so. 1

#

Account managenent

#

l ogin account requisite pamrol es.so.1

| ogin account required pam projects.so.1

| ogin account required pam_uni Xx_account. so. 1
#

dtl ogin account requisite pamrol es.so.1

dtl ogi n account required pam proj ects.so.1

166 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

dtl ogi n account required pam_uni x_account . so. 1
#

cron account required pam proj ects.so.1

#

cron account required pam uni Xx_account. so. 1
#

ot her account requisite pamroles.so.1

ot her account required pam proj ects.so.1

ot her account required pam uni x_account . so. 1
Sessi on managenent

#

ot her session required pam_ uni x_session. so. 1
#

Password managenent

#

ot her password requisite pam aut ht ok_get.so.1
ot her password requisite pam aut ht ok_check. so. 1
ot her password sufficient pam aut ht ok_store.so. 1
ot her password required pam | dap. so. 1

This generic pam conf file specifies the following behavior:

When running | ogi n, authentication must succeed for the pam_aut ht ok_get
module and for either the pam_uni x_aut h or the pam_| dap module.

For r | ogi n, authentication through the pam aut ht ok_get and
pam uni x_aut h modules must succeed if authentication through
pam r host _aut h fails.

The suf fi ci ent control flag for rl ogi n’ s pam r host _aut h module indicates
that if the authentication performed by the pam r host _aut h module is
successful, the remainder of the stack is not executed, and a success value is
returned.

Most of the other commands requiring authentication require successful
authentication through the pam uni x_aut h module.

Note — With the above configuration, pam uni x is tried first, and if the

user Passwor d attribute is readable, and the password is correct, then the

pam_| dap module is not called. As a result, the pam_| dap password management is
not used.

The ot her service name allows a default to be set for any other commands
requiring authentication that are not included in the file. The ot her option makes it
easier to administer the file because many commands that use the same module can
be covered by only one entry. Also, the ot her service name, when used as a
catchall, can ensure that each access is covered by one module. By convention, the

Chapter 3 Defining Directory Service Security Architecture 167

168

ot her entry is included at the bottom of the section for each module type. The rest
of the entries are in the file control account management, session management, and
password management.

Normally, the entry for the nodul e_pat h is root relative. If the file name entered for
nodul e_pat h does not begin with a slash (/), the path/usr/1i b/ security/ $l SA
is added to the file name, where $I SA is expanded by the framework to contain the
instruction set architecture of the executing machine (refer to the i sai nf o(1) man
page for additional information).

A full path name must be used for modules located in directories other than the
default. The values for the nodul e_opti ons can be found in the man pages for the
module (for example, pam _uni x_aut h(5)).

If I ogi n specifies authentication through both pam uni x_aut h and pam_| dap, the
user is prompted to enter a password for each module. Example:

Aut henti cati on nanagenent

#

| ogin auth required pam authtok_get.so.1
| ogin auth sufficient pamunix_auth.so.1
I ogin auth required pam.|dap.so.1

PAM and LDAP Password Management
Extensions

It is important to provide a quick overview to clarify the difference between PAM
Password Management Extensions and the new pam | dap password management.

PAM Password Management Extensions provide the same functionality as the
existing pam_uni x module. The only difference is how the module is packaged.
What used to be a single module is now split up into multiple components, known
as service modules, each performing a separate function. This modular construction
makes implementing custom password management policies easier.

The new pam | dap password management facility includes two new account
management features: password aging and account expiration. Because the directory
server provides its own mechanism for account management, a conflict can occur if
you want pam | dap to implement a different password policy than what is set for
the directory-wide policy. For example, the directory might force all users to change
passwords after 60 days, but you might want some special user accounts to be able
to keep their current password for a longer period of time.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

To support this flexibility, the PAM framework has been enhanced by the addition of
a new control flag called bi ndi ng. The primary reason this control flag was
introduced was the fact that prior to Solaris 9 12/02 OE, the PAM framework lacked
sufficient control flags to provide functionality needed to return the appropriate
failure semantics for service modules which should return immediately upon
success, but report its error upon failure. In particular, pam_| dap depends on this
change to correctly provide failure semantics for a mixture of local and server
controlled accounts on the same machine. Effectively, this control flag allows you to
override the password policy that the directory server enforces.

A server _pol i cy option has been added to instruct pam uni x to allow users that
only have LDAP accounts to be processed by the password policy set on the
directory server. This option can be used to instruct the pam _uni x_account,
pam_uni x_aut h, and pam _passwd_aut h service modules to ignore the user being
authenticated and let the pam | dap module stacked below them process the user
according to the password policy established in the directory server. This effectively
allows you to override the local pam _uni x password policy.

Note — The pam aut ht ok_st or e module handles this option differently.

The server _pol i cy option was introduced to solve a problem found when
stacking the pam uni x_account and pam | dap modules together. When used, it
tells the module to rely on the policy specified on the LDAP server and not to apply
a local policy.

Because the pam uni x_account receives incomplete information from the LDAP
server, it might inadvertently decide that an active account has expired, or that an
expired account is still active. Specifying server _policy in/etc/ pam conf tells
pam_uni Xx_account not to guess an account’s status but to leave the decision to the
LDAP server. The LDAP server keeps accurate current status of each account and
can draw the correct conclusion about its expiration status.

Because this feature enables the pam | dap module to fully support the account
management, it is reasonable to use the following PAM configuration for account
management.

other account requisite pamroles.so.1

other account required pam proj ects. so. 1

ot her account binding pamuni x_account.so.1 server_policy
ot her account required pam | dap. so. 1

Note — In this configuration, note the binding control flag for
pam uni x_account . so. 1.

Chapter 3 Defining Directory Service Security Architecture 169

170

This configuration specifies that the pam uni x_account should check the user’s
local account first. Because of the binding control flag, the stack succeeds or fails
depending on the values returned by the pam uni x_account . If only the LDAP
account exists for the user, the pam uni x_account does nothing and allows
pam | dap to determine the stack’s success or failure.

Customer feedback indicated that the PAM functionality in the Solaris OE needed
some enhancements. The requested changes included improving the mechanism
used to validate password structures, adding the ability to change numbers of
characters, total password length, and so forth.

In previous versions of the Solaris OE, this functionality was tightly coupled in a
single monolithic module (pam_uni x) and local extensions could not be
incorporated in the module.

Only with a great deal of effort could you extend part of the operations performed
by this module. Because of this, the pam uni x(5) functionality has been replaced
with a new set of modular PAM service modules that are listed in this section. The
functionality of pam_uni x has been entirely replaced in the Solaris 9 OE. New PAM
modules are now provided that replace a specific piece of pam uni x. This makes it
easier to customize the PAM behavior by inserting or replacing individual modules.
The Solaris 9 OE no longer uses pam _uni x by default. During upgrades, any
existing instances of pam_uni x in pam conf are replaced by the new modules.

In the Solaris 9 OE, the functionality provided by the old pam_uni x module has
been split over a number of small modules, each performing a well-defined task,
that can be easily extended or replaced by modifying the pam conf file.

These new modules are:

= pam aut ht ok_get (5)

= pam aut ht ok_check(5)
= pam aut ht ok_st ore(5)
= pam_uni x_aut h(5)

= pam dhkeys(5)

= pam uni x_account (5)
= pam.uni x_sessi on(5)

You no longer have to replace the pam aut ht ok_check module to extend or
replace the standard password strength checks. Just list the module in the
/ et c/ pam conf file right before, after, or instead of the pam_aut ht ok_check file.

v To Add a PAM Module

1. Determine the control flags and other options you want to use.
2. Become superuser.

3. Copy the new module to/usr/lib/security.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Note — If you have a 64-bit version of the module, you should place that version in
/usr/lib/security/sparcv9.

. Set the permissions so that the module file is owned by r oot and the permissions
are 755.

. Edit the PAM configuration file, / et ¢/ pam conf, to add this module to the
appropriate services.

To Verify the Configuration

It is essential to do some testing before logging out, in case the configuration file is
misconfigured.

. Test the modified service or the other configuration.

. Runrlogin, su,and t el net (if these services have been changed).

If the service is a daemon spawned only once when the system is booted, it might be
necessary to reboot the system before you can verify that the module has been
added, however it might be possible to restart the daemon using the appropriate
/etc/init.d/ script.

To Disable . r host s Access With PAM From Remote
Systems

A common use of the . r host s file is to simplify remote logins between multiple
accounts owned by the same user. For example, if you have multiple accounts on
more than one system, you might need to perform specific tasks, and using the

. rhost s file is ideal.

However, using the . r host s file as an authentication mechanism is a weak form of
security and should be avoided.

Remove the rl ogi n and r sh (pam r host s_aut h. so. 1) entries from the PAM
configuration file.

This prevents reading the ~/ . r host s files during an r | ogi n session, and therefore,
prevents unauthenticated access to the local system from remote systems. All

rl ogi n access requires a password, regardless of the presence or contents of any
~/ .rhosts or /etc/hosts. equiv files.

Chapter 3 Defining Directory Service Security Architecture 171

172

Note — To prevent other unauthenticated access to the ~/ . r host s file, remember to
disable the r sh service. The best way to disable a service is to remove the service
entry from / et ¢/ i net d. conf . The remote shell server, r shd, and the remote login
server, rl ogi nd, only use PAM; they do not call the r user ok() function
themselves.

PAM Error Reporting

Diagnostic messages generated by the PAM modules or the PAM framework are
output using sysl og(3c) . They are logged to the facility that was specified at the
time the application (I ogi n, t el net, sshd) called openl og(3c), so the exact
location of these messages depends upon whether the application uses PAM. The
facility indicates the application or system component generating the message. As an
example, here are a few possible facility values:

= LOG_KERN- Messages generated by the kernel. These cannot be generated by any
user processes.

= LOG USER - Messages generated by random user processes. This is the default
facility identifier if none is specified.

= LOG_MAI L — The mail system.

For example, | ogi n sends its messages to the LOG_AUTH facility, while r | ogi nd
sends its messages to the LOG_DAEMON facility. Other daemons might use a
configurable facility (sshd, ft pd, and so forth) which can be set in the
configuration file of the particular service.

Depending on the severity of the diagnostic message, the PAM module directs the
message to one of the eight available log priorities.

Note — For additional details on the sysl og() function and priorities, refer to the
sysl og(3c) and sysl og. conf (4) man pages.

Debug messages are logged with:

sysl og(LOG DEBUG, "...")

Critical messages are logged with:

sysl og(LOG CRIT, "...")

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

For example, a general error message (LOG_ERR) from PAM, used by | ogi n, is
directed to aut h. crit and ends up in a log file as:

Jul 22 22:11:43 host login: [ID 887986 auth.error]
ACCOUNT: pam sm acct _ngnt: illegal option debuf

To Initiate Diagnostics Reporting for PAM
. Back up the sysl og. conf file before editing it.

. Determine the sysl og facility used by the application you want to receive
diagnostic reports from.

The facility that we are going to use in this example is aut h.

. Edit the / et c/ sysl og. conf to add a line describing where the message with the
intended facility and priority will be logged.

Example of line added:

aut h. debug /var/adm aut hl og

Note that these message levels are part of a hierarchy:

Hgh ------mi e Low
EMERG ALERT CRI T ERR WARNI NG NOTI CE | NFO DEBUG

Due to this hierarchical ordering, a sysl og channel specified to log debug messages
also logs messages at all higher levels (for example, logs messages with priority
debug and up).

. Make sure that the log file specified in the previous step actually exists.

If it doesn’t exist, create it now.

Exanpl e:

touch /var/adm aut hl og

. Make sysl ogd re-read the configuration file by sending it a HUP signal:

pkill -HUP sysl ogd

Chapter 3 Defining Directory Service Security Architecture 173

174

v To Initiate PAM Error Reporting

The following example displays all alert messages on the console. Critical messages
are mailed to r oot . Debug messages are added to / var/ | og/ pam og.

auth.alert /dev/console
auth.crit root
aut h. debug /var/ | og/ pan og

Each line in the log file contains a timestamp, the name of the system that generated
the message, and the message itself. Be aware that a large amount of information
may be written to the pamnl og file.

The log format was changed in the Solaris 8 OE and subsequent releases, and now
includes a hash-value of the message generating string for example—user % not
f ound. It now contains the message facility and severity.

Add the debug flag to a PAM module to enable diagnostics reporting of that
module.

Example:

PAM Modul e Debuggi ng

#

l ogin auth requisite pam aut ht ok_get.so. 1

| ogin auth required pam dhkeys. so. 1 debug
| ogin auth required pam uni x_aut h. so. 1 debug
| ogin auth required pam di al _auth.so. 1

This configuration example enables debugging information from
pam dhkeys. so. 1 and pam_uni x_aut h. so. 1.

What gets logged might vary quite a bit, because there is no standard describing the
information that needs to be output in response to this option. It is a good practice
for module developers to recognize this debug flag and enable some form of
debugging when the flag is specified in / et ¢/ pam conf .

PAM LDAP Module

The PAM LDAP module (pam_| dap) was introduced in the Solaris 8 OE for use in
conjunction with pam uni x for authentication and password management with an
LDAP server. This module was written to support stronger authentication methods
such as CRAM-MDS5, in addition to the other UNIX authentication capabilities
provided by pam uni x.

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

Note — The pam_| dap module must be used in conjunction with the modules
supporting the UNIX authentication, password and account management, because
pam | dap is designed to be stacked directly below these modules.

With the release of Solaris 9 12/02 OE, pam | dap provides support for
authentication, account management, and password management.

The pam_| dap module should be stacked directly below the pam uni x module in
the configuration file / et ¢/ pam conf . If there are other modules that are designed
to be stacked in this manner, they could be stacked under the pam | dap module.
This design must be followed in order for authentication and password management
to work when pam | dap is used. The following is a sample of / et ¢/ pam conf file
with pam | dap stacked under pam uni x:

Aut henticati on managenent for |ogin service is stacked.

| f pam_uni x succeeds, pam.|dap is not invoked.

l ogin auth sufficient /usr/lib/security/pamunix.so.1

| ogin auth required /usr/lib/security/pamldap.so.1

Password nanagenent

ot her password sufficient /usr/lib/security/pamunix.so.1
ot her password required /usr/lib/security/pam.|dap.so.1

It is important to note that the control flag for pam uni x is suf fi ci ent . This flag
means that if authentication through pam uni x succeeds, then pam | dap is not
invoked. Also, other service types, such as dt | ogi n, su, t el net, and so forth can
substitute for | ogi n. See FIGURE 3-37.

login passwd su

PAM

pam_unix pam_ldap letc/pam.conf

LDAP Server

FIGURE 3-37 pam | dap Structure

Chapter 3 Defining Directory Service Security Architecture 175

176

The options supported by pam | dap are:

= debug - If this option is used with pam | dap, debugging information is output
to the sysl og(3C) files.

= nowar n — This option turns off warning messages.

How PAM and LDAP Work

Before discussing the details of how PAM and LDAP work, it is important to
provide a quick overview to distinguish between how the password is stored and
how the authentication mechanism is used to authenticate to the LDAP server. The
password can be stored in a variety of formats in the directory server, such as salted
secure hash algorithm (SSHA), secure hash algorithm (SHA), CRYPT, and so forth.

The authentication mechanisms currently used and supported in the Solaris 8 OE
LDAP Client, are NONE, SIMPLE, and CRAM-MD?5 authentication. Simple
authentication requires the client to pass a distinguished name (DN) and password
to the server in clear text. Currently, the Sun ONE Directory Server 5.x software does
not support the authentication mechanism CRAM-MDD5, which sends only the digest
over the wire. CRAM-MDS5 is implemented as a Simple authentication and security
layer (SASL) mechanism, and both the client and server must use it. What happens
is the client request authentication is based on SASL/CRAM-MD?5 and the server
must support this to complete the authentication. In general, very few clients use
CRAM-MD5, now that RFC 2829 mandates the use of DIGEST-MDD5, which is
intended to be an improvement over CRAM-MD5.

Note — DIGEST-MD?5 as an authentication mechanism for LDAPv3 directory servers
is mandated in RFC 2829. RFC 2831 provides information about DIGEST-MDS5 as a
SASL mechanism, but is not LDAP specific.

With the introduction of the Sun ONE Directory Server 5.2 software, support for
SASL/DIGEST-MD?5 has also been added as an authentication mechanism. This
feature was initially introduced in the Sun ONE Directory Server 5.1 software
release.

With SASL/DIGEST-MD?5, a digest is created and sent across the wire to
authenticate to the directory server. The directory server then compares the digest
that was sent with the digest created by itself with the stored password and returns
success if it matches. In this case, the password is not sent in clear text. To address
the absence of a security model in the Solaris 8 OE LDAP Client, the Solaris 9 OE
now incorporates the Sun ONE Directory Server 5.1 software and Solaris 9 OE
Secured LDAP Client, addressing the security issues found in the LDAP Client.

To use SASL/DIGEST-MD5, the Sun ONE Directory Server software requires that
the password is stored in the directory in the clear. In the Sun ONE Directory Server
5.2 software, you need to make sure that you enable the SASL mechanism that you

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

wish to use. Also there is support for identity mapping which was covered
previously. The identity mapping allows for quite a bit of flexibility. For the Sun
ONE Directory Server 5.1 release, two forms are supported, which are dn: and u: as
specified in the RFC. This has built-in rules to handle the identity mapping.

Note — With identity mapping, you must map to one, and only one, identity.

Note — In the current release of the Solaris 9 OE, the extended Start TLS operation is
not supported.

Authentication With pam_uni x

In authentication with pam_ uni x, depending on how the client is configured, the
client retrieves the password that is stored in the server by making a call to the

get spnamfunction. This function binds to the LDAP server with the proxy agent
account (the reason the proxy passwd is sent across the wire in clear text). The proxy
agent password is stored in the user Passwor d attribute in the directory server. This
proxy agent account can reside anywhere in the directory server, but must contain
the user Passwor d attribute.

Note that the ACls of the proxy agent allow this account to have read access to all
user passwords, which you may not want to do if you are using pam_| dap. ACls are
instructions that are stored in the directory server itself. Every entry can have a set
of rules that define an ACI for that entry. An ACI appears as an attribute in the entry
so it can be retrieved by using LDAP search, or it can be added, updated, or deleted
with an LDAP modify operation.

An entry may have one ACI, many ACIs, or none. ACls allow or deny permissions
to entries. When the directory server processes an incoming request for that entry,
the server uses the AClIs specific to that entry to determine whether or not the LDAP
client has permission to perform the requested operation.

Note — LDAP stores data as entries. An entry has a distinguished name (DN) to
uniquely identify it within the directory server

The encrypted password is sent to the client side and compared with the encrypted
password supplied by the user at the password prompt. If there is a match,
pam_uni x returns success. The following tables illustrate the authentication
mechanisms currently used.

Chapter 3 Defining Directory Service Security Architecture 177

TABLE 3-11 lists the PAM abbreviations used in this section.

TABLE 3-11 PAM Abbreviations

Abbreviation Description

UP User password

PP Proxy agent password

NP New password

NO* Not applicable (at present)

TABLE 3-12 illustrates if the user password and proxy password are transmitted in the
clear during PAM authentications.

TABLE 3-12 PAM Authentication

Authentication Mechanisms pam_unix pam_ldap

SIMPLE UP-No PP-Yes UP-Yes PP-Yes
DIGEST-MD5 UP-NO* PP-No UP-No PP-No
TLS: SIMPLE UP-No PP-No UP-No PP-No
TLS: DIGEST-MD5 UP-No PP-No UP-No PP-No

Note — In TABLE 3-11 and TABLE 3-12 the reason for “NO*” as the value of the
DIGEST-MD5 UP column is because the Sun ONE Directory Server version 5.1
software requires that passwords be stored in the server in clear text for DIGEST-
MD5 to work.

178 LDAP in the Solaris Operating Environment — Deploying Secure Directory Services ¢ September 2003

For updating passwords in pam uni x, the same comparison as for authentication
takes place (because the user has to bind as the dn); then the new password is
encrypted and not passed over the wire in clear text (TABLE 3-13).

TABLE 3-13 PAM Update of Password

Authentication Mechanisms pam_unix pam_ldap

SIMPLE UP-No PP-Yes NP-No UP-Yes PP-Yes NP-Yes
DIGEST-MD5 UP-NO* PP-No NP-NO* UP-No PP-No NP-Yes
TLS: SIMPLE UP-No PP-No NP-No UP-No PP-No NP-No
TLS: DIGEST-MD5 UP-No PP-No NP-No UP-No PP-No NP-No

The matrices are easier to understand when you distinguish between how the
password is stored and how the authentication mechanism is used to authenticate to
the LDAP server. The password can be stored in a variety of formats, such as SSHA,
SHA, crypt, clear text, and so forth. The authentication mechanisms that are
currently supported are NONE, SIMPLE, SASL/CRAM-MD5, SASL/DIGEST-MD5,
TLS:NONE, TLS:SIMPLE, TLS:SASL/CRAM-MD5, and TLS:SASL/DIGEST-MDS5.

pam | dap Authentication

In authentication that uses pam | dap, the user password is passed to the server in
an aut h structure in clear text because authentication is being attempted with the
user dn and passwor d. If Simple authentication is used, and the password matches,
then success is returned. Using pam | dap in the Solaris 9 OE Secured LDAP
Client now provides SASL/DIGEST-MD?5 authentication, privacy, and data integrity
with SSL/TLS. If you require stronger authentication mechanisms such as DIGEST-
MD?5; then you must use pam_| dap. In addition, pam_| dap is designed to be
extended for future authentication mechanisms that will be supported in future
Solaris OE releases. One of the benefits of using pam_| dap, is that it does not require
passwords to be stored in any specific format, so you can store passwords using
SSHA, SHA, or CRYPT formats.

For additional information, see the pam_| dap man page for the correct way to stack
the authentication management for login service, and password management
modules in the / et ¢/ pam conf configuration file.

Note — CRAM-MDS5 is supported by the Secured LDAP Client, but not by the Sun
ONE Directory Server software. However, DIGEST-MDS5 is supported by both.

Chapter 3 Defining Directory Service Security Architecture 179

180

Secured LDAP Client Backport to the
Solaris 8 OE

Now that we have touched on the Solaris 9 OE Secured LDAP clients, which have
the option to use TLSv1 and SASL/DIGEST-MD?5 for authentication, we can discuss
what has been done with the Solaris 8 OE LDAP clients. Initially as previously
discussed, the Solaris 8 OE LDAP clients relied on clear text passwords or the less
secure SASL/CRAM-MDS5 for authentication. This is obviously not desirable for
customers that wanted to deploy a secure naming service, and also maintain equal
and matching functionality in both the Solaris 8 and 9 OE.

Note — The Sun ONE directory server does not support SASL/CRAM-MD5.

With this in mind, Sun backported the Secured LDAP Client found in the Solaris 9
OE to the Solaris 8 OE to provide TLSv1/ and SASL/DIGEST-MD5 support for the
LDAP client. The following lists what functionality has been backported:

= The configuration of the directory server (LDAP) setup has been simplified with
the use of i dsconfi g.

= A more robust security model that supports strong authentication and Transport
Layer Security (TLS) encrypted sessions. A client’s proxy credentials are no longer
stored in a client s profile on the directory server.

= The |l dapaddent command allows you to populate and dump data onto the
server.

= Service search descriptors and attribute mapping
= New profile schema

= PAM Framework including account management
= Updated man pages include:

« ldaplist(1)

« | dapaddent (1)

« pam_aut hok_check(5)
« pam_ aut hok_get (5)

« pam_ aut hok_store(5)
« pam passwd_aut h(5)
« pam_uni x_aut h(5)

« pam conf (4)

LDAP in the Solaris Operating Environment — Deploying Secure Directory Services « September 2003

You can obtain the Secured LDAP Client Backport for the Solaris 8 OE from:
htt p: // sunsol ve. sun. coni pub- cgi / show. pl ?t ar get =pat ches/ pat ch- access

In the Enter a Patch ID field, enter one of the following patches:
= 108993-xx (SPARC™ systems)
= 108994-xx (x86 systems)

Chapter 3 Defining Directory Service Security Architecture 181

