
35

CHAPTER 3

Defining Directory Service
Security Architecture

This chapter discusses client-server directory service architectures and describes
what you can and cannot do to secure data transfers and authentication. The focus is
on the Secured LDAP Client, which is a core and integral component of the Solaris 9
Operating Environment.

This chapter starts by discussing the Sun ONE Directory Server software security
features such as access control and authentication mechanisms, in particular SASL
DIGEST-MD5 and the Generic Security Services Application Programming Interface
(GSSAPI) authentication mechanisms, followed by Transport Layer Security (TLS),
and the Start TLS functionality. The server side is discussed from a system
administration and developer point of view. The final part of this chapter describes
the PAM components and modules.

This chapter is organized into the following sections:

■ “Understanding Directory Server Security” on page 36

■ “Understanding the SASL Mechanism” on page 40

■ “GSSAPI Authentication and Kerberos v5” on page 62

■ “TLSv1/SSL Protocol Support” on page 93

■ “Start TLS Overview” on page 152

■ “Enhanced Solaris OE PAM Features” on page 154

■ “Secured LDAP Client Backport to the Solaris 8 OE” on page 180



36 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Understanding Directory Server
Security
The Sun ONE Directory Server 5.2 software provides the foundation for the new
generation of e-business applications and services.

Based on a highly advanced, carrier-grade architecture, the Sun ONE Directory
Server software delivers a high-performance, highly scalable, and highly secure
infrastructure that provides organizations with a secure directory service
implementation.

Sun ONE Directory Server 5.2 Software Security
Features
This section describes the following:

■ “Access Control” on page 36

■ “Authentication Mechanisms” on page 38

Access Control

One of the primary reasons for using an access control mechanism is to control and
restrict access to information and to control the operations that can be performed by
users and administrators of the directory server. Operations to control access to the
directory server include the ability to restrict permissions for adding, deleting, and
modifying directory entries.

Accessing the directory service requires that the directory client authenticate itself to
the directory service. This means that the directory client must inform the directory
server who is going to be accessing the directory data so that the directory server
can determine what the directory client is allowed to view and what operations can
be performed. A directory client first authenticates itself and then performs
operations. The server decides if the client is allowed to perform the operation or
not. This process is known as access control.

Prior to the release of the Sun ONE Directory Server 5.2 software, when a directory
(LDAP) client or directory (LDAP) application authenticated to the directory server,
the directory server would determine whether or not the directory (LDAP) client or
directory (LDAP) application was in fact allowed to perform such operations (such
as add, delete, or modify a particular directory entry).



Chapter 3 Defining Directory Service Security Architecture 37

Additional Security Features

The Sun ONE Directory Server 5.2 software provides additional security
functionality. The following is an introduction to this new functionality.

■ GetEffectiveRights - In addition to the access control framework that is
currently used within the Sun ONE Directory Server 5.2 software version, a new
feature has been added called GetEffectiveRights that addresses various
needs. The GetEffectiveRights mechanism is used by clients to evaluate
existing access control instructions (ACIs) and to report the effective rights that
they grant for a given user on a given entry. The GetEffectiveRights feature
is useful for various reasons:

■ Provides ACI management functionality that is used to verify that the current
ACI’s are really offering the intended access rights.

■ Aids the administration of users, and retrieves their rights to directory entries
and attributes. However, note that though it can be used to determine if an
operation would succeed or fail, it cannot be used to determine if an operation
was successful.

■ Enables verification of the access control policy. You can retrieve the
permissions list for a user on a given entry and its attributes.

■ Enables administrators to debug access control issues.

■ Allows directory-enabled applications to easily determine whether a user has
permission to perform a particular operation (for example, not give the user
the option to delete an entry if they don’t actually have permission to delete it).

■ Encrypted Attributes – Data in any directory service, needs to be protected. The
Sun ONE Directory Server 5.2 software has many different ways and mechanisms
for protecting access to directory data. In the context of attribute encryption, this
feature is designed to provide data privacy or protection of physical access to
data such as LDIF files, backup files, and database files. Thus, attribute encryption
allows you to specify that certain attributes will be stored in an encrypted form.
This feature is configured at a database level, and once you decide you want to
encrypt an attribute, that particular attribute will be encrypted for every entry in
the database.

■ Start TLS – Start Transport Layer Security (Start TLS) is a LDAPv3 extended
operation plug-in in the Sun ONE Directory Server software. This operation
provides for TLS establishment in an LDAP association, which allows the client to
initiate an encrypted connection over an existing (or opened LDAP connection.

Note – Start TLS now available on many platforms including the Windows
platform.

■ Scoped Password Policy – A password policy is a set of rules that control how
passwords are used in the Sun ONE Directory Server software. To improve the
security and make it difficult for password-cracking programs to break into the



38 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

directory, it is desirable to enforce a set of rules on password usage. These rules
are made to ensure that the users change their passwords periodically, the new
password meets construction requirements, the reuse of old passwords is
restricted, and to lock out users after a certain number of bad password attempts.
In earlier versions of the directory server software, the password policy was
limited in its functionality to one global policy for the entire directory. This
limitation no longer exists in the Sun ONE Directory Server 5.2 software, which
offers increased flexibility in that you can configure multiple password policies.

■ Dynamically Loadable SASL Library – The Simple Authentication and Security
Layer (SASL) is a generic mechanism for providing authentication and,
optionally, integrity and privacy support to connection-based protocols. In
previous releases of the directory server software, there were two ways of
thinking of how you could add a SASL security mechanism. One mechanism was
to write a server plug-in that implemented the SASL mechanism in terms of a pre-
bind operation. The other mechanism was to write a SASL mechanism plug-in
that would be loaded by the SASL library itself. With this in mind, a shared
library, libsasl, and associated plug-ins (GSSAPI, DIGEST-MD5, and CRAM-
MD5) have been developed for both the Sun ONE Directory Server 5.2 software
and Solaris OE. However, at the present time, the dynamically loadable SASL
library is private to the Sun ONE Directory Server 5.2 software. When the
integrated version of libsasl is introduced on the Solaris OE, the Dynamically
Loadable SASL mechanisms will be supported. However, due to U.S. government
regulations, there will only be support for authentication, but not encryption.

Authentication Mechanisms

This section discusses what authentication mechanisms are currently available, and
how these authentication mechanisms can be used by directory (LDAP) clients.

The LDAPv3 standard which defines the LDAPv3 protocol was published in 1997,
and originally proposed different mechanisms that could be used by directory
(LDAP) clients to authenticate to directory (LDAP) servers (RFC 2251). RFC 3377
“The LDAPv3 Technical Specification” was published to list all RFC’s that comprise
the full specifications of LDAPv3. That is, RFC 2251-2256, RFC 2829 (authentication
methods) and RFC 2830 (Extension for TLS). The Sun ONE Directory Server 5.2
software conforms to the LDAPv3 Technical Specification.

There are several authentication methods that can be used to authenticate to a
LDAPv3 directory server:

■ None, no authentication, also known as anonymous – When using this method of
authentication, a directory client will not be able to, or is not intended to, perform
specific LDAP operations, such as modifications to directory entries or access to
sensitive information. Using this method means that a directory client which has
not authenticated or which has authenticated with its name but no password is
anonymously authenticated. A client which failed to authenticate is not



Chapter 3 Defining Directory Service Security Architecture 39

authenticated as anonymous but the following operations will be considered as
anonymous. In addition to a client being unauthenticated by default until a
successful bind has been performed, an anonymous bind can be performed by
using Simple authentication with no password (and typically no DN) as per RFC
2251 section 4.2.2.

Note – While it is true that all directory server (LDAPv3) implementations must
support anonymous authentication because LDAPv3 does not require a bind as the
first operation, it is perfectly legal for a directory server to be configured in such a
way that it rejects any attempt to perform an operation without first authenticating
to the server.

■ Simple, password-based authentication – When this method of authentication is
used, the DN (distinguished name) and password are sent over the network in
clear text (not encrypted). It should be noted however, that even with the inherent
security vulnerabilities, it is possible to use Simple authentication with transport-
layer security (like TLSv1/SSL or IPSec) in a secure manner.

■ SASL authentication mechanisms – The Simple Authentication and Security Layer
(SASL) is a specification and method used by the LDAPv3 protocol to support
what is known as pluggable authentication. This mechanism is used by the
directory server (LDAPv3) and directory client (LDAPv3) to identify the user,
authenticate this user to the directory server (LDAPv3), and finally to negotiate
an optional security layer for subsequent protocol interactions. The SASL (RFC
2222) mechanism is covered in more detail later in this chapter.

Note – The LDAP v2 protocol does not support the Simple Authentication and
Security Layer (SASL).

■ Certificate-based authentication – Using this method, it is possible with the Sun
ONE Directory Server 5.2 software to require that when the client connects to the
directory server, the client provides a digital certificate to the directory server as
identification. Authenticating a client using a client certificate really falls under
the SASL category because a client certificate will only be used to authenticate the
client if that client performs a bind operation using the SASL EXTERNAL
mechanism.



40 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Understanding the SASL Mechanism
This section explains what the Simple authentication security layer (SASL) is, how
this is implemented in Sun ONE Directory Server 5.2 software, and what
authentication methods it supports.

The Simple Authentication and Security Layer (RFC 2222) is an Internet Specification
(DRAFT standard like LDAPv3) and method for adding authentication support with
an optional security layer to connection-based protocols, such as LDAPv3. SASL also
describes a structure for authentication mechanisms. The result is an abstraction
layer between protocols and authentication mechanisms such that any SASL-
compatible authentication mechanism can be used with any SASL-compatible
protocol.

Before going into any more detail, let’s take a brief look at why SASL is so
important. Before SASL was introduced, what happened when a new protocol was
written that required authentication? The answer is similar to that of the Solaris
Operating Environment before the Pluggable Authentication Module (PAM) feature
was introduced. Developers of the protocol had to explicitly allow and define the
individual authentication mechanism. You ended up with a protocol that was
developed in such a way that it had a particular way of handling how a CRAM-MD5
login was handled, a particular way of handling how a Kerberos v4 login was
handled, and so on.

One of the biggest concerns of this model was when a new authentication method
was developed and the protocol needed to be modified to support this particular
authentication mechanism. This led to a lengthy process before the new
authentication mechanisms could be released, and if your application used more
than one protocol, for example, an email client, the developer was required to
support CRAM MD5 for IMAP and CRAM-MD5 for POP, which would potentially
create many different authentication mechanisms to implement and support. This
process, of course, was not desirable for the protocol or application developer in an
ever-changing environment where new authentication mechanisms are always being
developed.

What was needed was a mechanism whereby developers could simply have one
framework to write to. This is where the Simple Authentication Security Layer
(SASL) which is described in RFC 2222 comes in to its own and addresses some, but
not all, of the above issues. As an example, not all forms of SASL mechanisms can be
handled by simply linking with some external library. DIGEST-MD5 authentication
is a very good example of this because while you can use an external library to
handle all the negotiation and the work of verifying the password, it is necessary to
establish some mapping between the identity provided by the user and an account
in the directory server. SASL EXTERNAL is an even better example because in many
cases it has to be handled entirely by the server.



Chapter 3 Defining Directory Service Security Architecture 41

The Simple Authentication and Security Layer (SASL), is a generic mechanism and
framework for protocols to accomplish authentication. Applications such as the Sun
ONE Directory Server software and Solaris OE Secured LDAP Clients use the SASL
library as a means of informing the application how to accomplish the SASL
protocol exchange, and what the results are.

SASL is a framework whereby SASL authentication mechanisms control the exact
protocol exchange. For example, if you have two protocols (such as IMAP and POP)
and a number of different ways of authenticating, SASL attempts to make it so that
only n plus m different specifications need be written instead of n times m different
specifications. With the Sun SASL library, the mechanisms need only be written
once, and they’ll work with all servers that use them.

FIGURE 3-1 shows the SASL components.

FIGURE 3-1 SASL Components

SASL mechanisms

SASL

external

mechanism

SASL

DIGEST-MD5

mechanism

SASL lib
rary (lib

sasl)
SASL API (p

ublic)

libldap

GSSAPI

mechanism

SASL

CRAM-MD5

mechanism



42 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

SASL DIGEST-MD5
The basic idea of the SASL DIGEST-MD5 mechanism is that both the client and
server have a shared secret which is namely the user’s password. Each side uses this
secret together with nonces (defined on page 46) to prove to the other side that they
do indeed know this shared secret without revealing the secret to the other side. If
the client uses the wrong password, the server detects it. Similarly, if the server
doesn’t know the secret, the client detects that.

The Sun ONE Directory Server version 5.2 software integrates a new SASL library
(libsasl), which is based on the Cyrus CMU implementation. Through this SASL
framework, the directory server supports DIGEST-MD5 and the GSSAPI (which
implements Kerberos v5).

Note – Currently the GSSAPI is only supported on the Solaris OE.

The SASL security feature is configurable through LDAP and is accessible through
the entry cn=sasl, cn=security, cn=config. Using this entry, you can enable
authentication mechanisms and also update the path where the SASL authentication
mechanism is loaded by libsasl.

To solve the issue of mapping protocol identities to LDAP identities, there is a
feature called identity mapping in the Sun ONE Directory Server 5.2 software. This
feature maps from specific authentication protocols, such as DIGEST-MD5, GSSAPI,
and HTTP, to an LDAP identity by applying mapping rules that are entirely
customizable through LDAP. By default, there is an identity mapping for DIGEST-
MD5 in the case where the client passes a dn as authid. It is possible to define as
many mappings as you want. The identity mapping feature is described in the Sun
ONE Directory Server 5.2 software documentation.

One of the important things to remember is that there is an authentication ID and an
authorization (or proxy) ID. SASL also refers to the authorization ID as the user
name. In the case when there is no proxy, the two identities are the same. Currently,
the Sun ONE Directory Server 5.2 software does not support proxies through SASL.

The LDAPv3 Technical Specification (particularly RFC 2829), mandates the support
of SASL DIGEST-MD5. Authenticating clients using the Digest authentication
mechanism does not provide a strong authentication mechanism when compared to
public key based mechanisms, but does prevent the much weaker and even more
dangerous use of plain text passwords. In addition, the DIGEST-MD5 offers no
confidentiality protection beyond protecting the actual password during the
authentication phase. This means that the rest of the challenge and response,
including the user’s name and authentication realm, are available to an
eavesdropper. However, the DIGEST-MD5 method can be used to provide integrity
and confidentiality on the connection after the authentication process has been
completed.



Chapter 3 Defining Directory Service Security Architecture 43

The MD5 message-digest algorithm is primarily used in three areas of the Solaris 9
Operating Environment. The Secured LDAP Client, the kernel (TCP and IPsec), and
the User (SLP and PPP). Ronald Rivest, who was at the time working at the
Laboratory for Computer Science at the Massachusetts Institute of Technology,
published MD5 as an RFC (RFC 1321) in April 1992.

When you send data over the wire, you are concerned with three general issues:
security, authenticity, and integrity. The security of your data ensures that no one else
can read your data. This issue is important in many organizations that have
information that cannot be exposed to external sources. Authenticity guarantees
knowledge of the originator of the data; in other words, where the data source is
from. This issue is important in areas such as the legal world where authentication
issues (like digital signatures) are of great importance. Lastly, integrity guarantees
that the data has not been tampered with in any way when it was transmitted, thus
determining whether the data you received was the same data that was actually
sent.

It is also very important to understand that MD5 hashing only guarantees the
integrity of the data if it is possible to guarantee the integrity and/or authenticity of
the MD5 digest itself. That is, if you use an MD5 digest to guarantee the integrity of
a file, you should not store the digest with the file because if the file data is
compromised it is very easy for a new MD5 digest to be generated. Alternately (and
this is the way that DIGEST-MD5 works), all or part of the digest can include some
shared secret that is known only by the originator and valid recipients, but not by
untrusted third parties.

The MD5 algorithm guarantees the integrity of your data by taking a bit pattern of
arbitrary but finite length and producing a 128-bit fingerprint or message digest of
that pattern. This pattern is always 128-bit, regardless of the length of the bit pattern.
It is extremely unlikely for two different files to produce the same fingerprint, but
because an MD5 hash only consists of 128 bits, there are theoretically an infinite
number of bit sequences that when hashed using MD5 will produce the same digest.
The MD5 algorithm is not complex and does not require large substitution tables.
Security experts estimate that the difficulty of finding two-bit patterns having the
same digest is 264 operations, and the difficulty of finding a bit pattern having
predetermined digest is 2128 operations. It is computationally possible to determine a
file based on its fingerprint, but it is not feasible based on current technology and
techniques. This means that it is not possible for someone to figure out your data
based on its MD5 fingerprint. Before we look at an example, we need to be aware
that the Solaris 9 OE does not ship with the MD5 binary.

Take a look at an example of the output produced by MD5 on the binary file
/usr/bin/crypt.

# md5-sparc /usr/bin/crypt



44 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

You should see output similar to the following:

In particular, the string c54740de32d1903b78322a9be712a31d is the fingerprint of
/usr/bin/crypt:.

What happened in the above example is that the MD5 message-digest algorithm
applied a mathematical algorithm to the binary crypt and produced the fingerprint.
What you see is that you get the exact same fingerprint; if you do not, then you
know that the binary has been altered in some way. Finally, since MD5 does not
encrypt data, it is not restricted by any exportation laws, so you can distribute this
tool freely anywhere in the world.

Note – In the Solaris 9 OE, there is no md5 binary. What you will find is the
/platform/sun4u/kernel/misc/md5 and
/platform/sun4u/kernel/misc/sparcv9/md5 kernel modules, which export
the standard MD5 calls to a user program. To obtain the md5 binary, download the
following file:
http://sunsolve.Sun.COM/md5/md5.tar.Z

Now that we have taken a look into what the MD5 message-digest is and how it
works, it is time to apply this to how this actually translates and works in the Sun
ONE Directory Server 5.2 software environment. This section introduces a new
element that is discussed later in this chapter and called the Secured LDAP Client,
which supports, and thus can be used to authenticate using DIGEST-MD5, to the
Sun ONE Directory Server 5.2 software.

The following process describes how the Secured LDAP Client authenticates to the
Sun ONE Directory Server 5.2 software using the SASL DIGEST-MD5 authentication
mechanism.

1. Initial Authentication

This process starts with the Secured LDAP Client sending a bind request with
either the SIMPLE or SASL method. In this context, if it’s SASL, the DIGEST-MD5
mechanism is specified. The DIGEST-MD5 authentication is a two-step bind
operation.

The Secured LDAP Client issues a SASL DIGEST bind request, as well as
requesting a SASL DIGEST-MD5 bind. While it is possible to specify the bind DN
in the initial request, the DN should not be sent, but if it is, if should be ignored.
Rather, the authorization ID (which may be a DN, but may also be basically any
other kind of ID provided that it can be uniquely resolved to a user entry using
the directory server’s identity mapping API) is provided by the client in the
second stage of the bind request.

MD5 (/usr/bin/crypt) = c54740de32d1903b78322a9be712a31d



Chapter 3 Defining Directory Service Security Architecture 45

In this process, both sides can compute a shared secret, A1. A1 consists of a hash
of the username, realm and password, which is concatenated with the directory
server nonce and the directory client nonce. It is assumed that both the Secured
LDAP client and directory server can obtain this hash, given the username and
realm.

Note – Although the directory server does need to have access to the clear text
password in order for the client to use DIGEST-MD5 authentication, the attribute
encryption feature of the Sun ONE Directory Server 5.2 software can at least
somewhat mitigate the risk of having clear text passwords in the server by ensuring
that they are not stored on disk in clear text (and therefore would not show up
clearly in most backups or LDIF exports).

2. Digest Challenge Stage

The directory server starts by sending a challenge, whereby the data encoded in
the challenge contains a string formatted according to the rules for a digest-
challenge which is shown in the following example:

As you can see in this example, there are various directives and values declared.
The following is a short description of what each directive value means:

# From RFC 2831 "Digest SASL Mechanism”
digest-challenge  =

1#( realm | nonce | qop-options | stale | maxbuf | charset
algorithm | cipher-opts | auth-param )

        realm             = "realm" "=" <"> realm-value <">
        realm-value       = qdstr-val
        nonce             = "nonce" "=" <"> nonce-value <">
        nonce-value       = qdstr-val
        qop-options       = "qop" "=" <"> qop-list <">
        qop-list          = 1#qop-value
        qop-value         = "auth" | "auth-int" | "auth-conf" |
                             token
        stale             = "stale" "=" "true"
        maxbuf            = "maxbuf" "=" maxbuf-value
        maxbuf-value      = 1*DIGIT
        charset           = "charset" "=" "utf-8"
        algorithm         = "algorithm" "=" "md5-sess"
        cipher-opts       = "cipher" "=" <"> 1#cipher-value <">
        cipher-value      = "3des" | "des" | "rc4-40" | "rc4" |
                            "rc4-56" | token
        auth-param        = token "=" ( token | quoted-string )



46 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

■ realm – A string which enables users to know which user name and password to
use, in the event that they have different ones for different servers. Conceptually,
it is the name of a collection of accounts that might include the user’s account.
This string should contain at least the name of the host performing the
authentication and might additionally indicate the collection of users who might
have access. An example might be
registered_users@gotham.news.example.com. This directive is optional; if
not present, the client should solicit it from the user or be able to compute a
default. A plausible default might be the realm supplied by the user when they
logged in to the client system. Multiple realm directives are allowed, in which
case the user or client must choose one as the realm for which to supply to
username and password.

Note – In the Sun ONE Directory Server 5.2 software, the realm is always the FQDN
host name of the server that appears in the value of the nsslapd-localhost
attribute in the cn=config entry.

■ nonce – The server’s nonce is a random 32-byte (256-bit) random number, which
is platform dependent. The server-specified data string which must be different
each time a digest-challenge is sent as part of initial authentication. It is
recommended that this string be base64 or hexadecimal data. Because the string is
passed as a quoted string, the double-quote character is not allowed unless
escaped. The contents of the nonce are implementation dependent. The security
of the implementation depends on a good choice. It is recommended that it
contain at least 64 bits of entropy. The nonce is opaque to the client. This
directive is required and must appear exactly once; if not present, or if multiple
instances are present, the client should abort the authentication exchange.

■ qop-options – A quoted string of one or more tokens indicating the quality of
protection values supported by the server. The value auth indicates
authentication; the value auth-int indicates authentication with integrity
protection; the value auth-conf indicates authentication with integrity
protection and encryption. This directive is optional; if not present it defaults to
auth. The client must ignore unrecognized options; if the client recognizes no
option, it should abort the authentication exchange.

Note – At present, the Sun ONE Directory Server software only supports auth qop.

■ stale – The stale directive is not used in initial authentication. This directive
may appear at most once; if multiple instances are present, the client should abort
the authentication exchange.



Chapter 3 Defining Directory Service Security Architecture 47

Note – At present, the Sun ONE Directory Server software does not support
reauth, thus the server will not report a reauthentication stale because of a nonce
timeout.

■ maxbuf – A number indicating the size of the largest buffer the server is able to
receive when using auth-int or auth-conf. If this directive is missing, the
default value is 65536. This directive may appear at most once; if multiple
instances are present, the client should abort the authentication exchange.

Note – maxbuf is only used if confidentiality or integrity is specified. The Sun ONE
Directory Server software sets this to 65535.

■ charset – This directive, if present, specifies that the server supports UTF-8
encoding for the username and password. If not present, the username and
password must be encoded in ISO 8859-1 (of which US-ASCII is a subset). The
directive is needed for backwards compatibility with HTTP Digest, which only
supports ISO 8859-1. This directive may appear at most once; if multiple instances
are present, the client should abort the authentication exchange.

Note – Only UTF-8 is supported. Any other charset will be rejected.

■ algorithm – This directive is required for backwards compatibility with HTTP
Digest, which supports other algorithms. This directive is required and must
appear exactly once; if not present, or if multiple instances are present, the client
should abort the authentication exchange.

Note – Only md5-sess is supported. Any other algorithm is rejected.

■ cipher-opts – A list of ciphers that the server supports. This directive must be
present exactly once if auth-conf is offered in the qop-options directive, in
which case implementation of the 3des and des modes is mandatory. The client
must ignore unrecognized options; if the client recognizes no option, it should
abort the authentication exchange.

■ des – Data Encryption Standard (DES) cipher [FIPS] in cipherblock chaining
(CBC) mode with a 56-bit key.

■ 3des – the triple DES cipher in CBC mode with EDE with the same key for
each E stage (aka “two keys mode”) for a total key length of 112 bits.

■ rc4, rc4-40, rc4-56 – the RC4 cipher with a 128-bit, 40-bit, and 5-bit key,
respectively.



48 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Note – No ciphers are currently offered by the Sun ONE Directory Server software
because confidentiality is not yet supported.

■ auth-param – This construct allows for future extensions; it may appear more
than once. The client must ignore any unrecognized directives. The size of a
digest-challenge must be less than 2048 bytes.

Note – No auth-param is sent by Sun ONE Directory Server software at this time.

3. Digest Response Stage

The Secured LDAP Client makes note of the digest-challenge and responds
with a string formatted and computed according to the rules for a digest-
response. The Secured LDAP Client performs two MD5 hashes of the password
with the challenge, and the realm. The challenge is the nonce; the realm is the
realm containing the user’s account. This directive is required if the server
provided any realms in the digest-challenge, in which case it may appear
exactly once and its value should be one of those realms. If the directive is missing,
realm value is set to the empty string when computing. The way to understand
this, is to think of A1 which is the shared secret, whereby A1 is not sent over the
wire, but where just a one way hash of it is. Time is not used in the response, but
it is possible to generate a random nonce. In the Solaris 9 OE, use
/dev/urandom. For SASL, users are considered to be located in a realm. It is an
organizational item. In this case, the server’s specified realm (if there is one) is
returned.



Chapter 3 Defining Directory Service Security Architecture 49

In this example, there are various directives and values declared. Below is a short
description of what each directive value means:

■ username – The user’s name in the specified realm, encoded according to the
value of the charset directive. This directive is required and must be present
exactly once; otherwise, authentication fails.

■ realm – The realm containing the user’s account. This directive is required if
the server provided any realms in the digest-challenge, in which case it
may appear exactly once and its value should be one of those realms. If the
directive is missing, realm-value sets to the empty string when computing
A1.

Note – If the same realm is not specified in the response as was in the challenge (the
server’s FQDN), then the authentication will fail.

# From RFC 2831 "Digest SASL Mechanism”
digest-response  = 1#( username | realm | nonce | cnonce |

nonce-count | qop | digest-uri | response |
                          maxbuf | charset | cipher | authzid |
                          auth-param )

       username         = "username" "=" <"> username-value <">
       username-value   = qdstr-val
       cnonce           = "cnonce" "=" <"> cnonce-value <">
       cnonce-value     = qdstr-val
       nonce-count      = "nc" "=" nc-value
       nc-value         = 8LHEX
       qop              = "qop" "=" qop-value

digest-uri = "digest-uri" "=" <"> digest-uri-value <">
       digest-uri-value  = serv-type "/" host [ "/" serv-name ]
       serv-type        = 1*ALPHA
       host             = 1*( ALPHA | DIGIT | "-" | "." )
       serv-name        = host
       response         = "response" "=" response-value
       response-value   = 32LHEX
       LHEX             = "0" | "1" | "2" | "3" |
                          "4" | "5" | "6" | "7" |
                          "8" | "9" | "a" | "b" |
                          "c" | "d" | "e" | "f"
       cipher           = "cipher" "=" cipher-value
       authzid          = "authzid" "=" <"> authzid-value <">
       authzid-value    = qdstr-val



50 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

■ nonce – The server-specified data string received in the preceding digest-
challenge. This directive is required and must be present exactly once;
otherwise, authentication fails.

The following is an example of what would be returned in the digest response:

Here the username (which must be UTF-8) is in the form that the directory server
will map. For example: dn: ldap_dn or u: username or any other form for which you
have matching rules defined.

The realm must be the FQDN of the directory server specified, which is sent to the
client in the initial challenge stage, and the passwd would be the user’s password.
H(x) is the DIGEST-MD5 hash of the string, and nonce value is supplied by the
directory server. The cnonce is a nonce generated by the Secured LDAP Client.

Let HEX(n) be the representation of the 16-octet MD5 hash n as a string of 32 hex
digits (with alphabetic characters always in lower case, because MD5 is case
sensitive).

# From RFC 2831 "Digest SASL Mechanism”

HEX( KD ( HEX(H(A1)),
{ nonce-value, ":" nc-value, ":",
cnonce-value, ":", qop-value, ":", HEX(H(A2)) }))

This is where SASL digest-md5 will support authzid. NOTE: If the
userid and authzid do not match, then the Sun ONE Directory Server
policy is to refuse the authentication.

A1 = { H( { username-value, ":", realm-value, ":", passwd } ),
":", nonce-value, ":", cnonce-value }

# From RFC 2831 "Digest SASL Mechanism”

A2       = { "AUTHENTICATE:", digest-uri-value }
Let { a, b, ... } be the concatenation of the octet strings a, b,
...

Let H(s) be the 16 octet MD5 hash [RFC 1321] of the octet string s.

Let KD(k, s) be H({k, ":", s}), i.e., the 16 octet hash of the
string k, a colon and the string s.



Chapter 3 Defining Directory Service Security Architecture 51

Example: (S==Directory Server and C==Secured LDAP Client

This is the directory server reply, indicating realm, nonce, quality of protection it
offers, mechanisms, and a specified character set.

Note – The Secured LDAP Client implementation only supports UTF-8.

We reconfirm a number of elements, and add additional ones, such as cnonce
and digest-uri. These are needed by the directory server to confirm the
Secured LDAP Client’s password, which the directory server must know. The
directory server has all the elements to be able to recompute the response.

The following step can be done if the directory server authentication is desired.
However, The Secured LDAP Client currently does not check this, but instead
retrieves this information from the server. Future versions of the Secured LDAP
Client will check this.

The directory server calculates a new digest based on the above algorithm, to
prove to the Secured LDAP Client that it knows the Secured LDAP Client
password.

Note – The size of a digest-response is 2048 bytes, which is the limit for all
authentication exchanges for DIGEST-MD5.

4. The authentication exchange is completed once the directory server has sent the
reauth packet.

Additionally, the DIGEST-MD5 authentication can be used for integrity and
confidentiality. Currently neither the Sun ONE Directory Server 5.x software or
the Secured LDAP Client supports this functionality.

S: realm="example.com",nonce="OA6MG9tEQGm2hh",qop="auth",
algorithm=md5-sess,charset=utf-8

C: charset=utf8,username="michaelh",realm="example.com",
nonce="OA6MG9tEQGm2hh",nc=00000001,cnonce="OA6MHXh6VqTrRk",
digest-uri="ldap/example.com",
response=d388dad90d4bbd760a152321f2143af7,qop=auth

S: rspauth=ea40f60335c427b5527b84dbabcdfff



52 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

It is important to understand that in the final exchange from the directory server to
the client, the server is indicating that it too can calculate the shared secret A1. This
will prove that this is a trusted server because it knows how to compute our shared
secret.

Note – The DIGEST-MD5 details are buried deep in the underlying libldap.so.5
library, which is used by the Secured LDAP Client (libsldap.so.1) library. In
libsldap, we just call the LDAP client C API (which is currently a private Solaris
OE interface), to bind. The rest is handled by the libldap library.

In summary, it is important to emphasize and understand that digests are one-way
functions that are relatively easy to compute, but are extremely difficult to determine
the possible inverses.

Setting up the SASL DIGEST-MD5 Authentication
Mechanism
This procedure in this section uses the ldapsearch utility to authenticate against
the Sun ONE Directory Server version 5.2 software, using the SASL DIGEST-MD5
authentication mechanism.

Before we get into the step-by-step instructions, it’s worth discussing how SASL
DIGEST-MD5 is configured because it can be a little tricky.

The DIGEST-MD5 authentication mechanism is now a loadable authentication
plug-in in the Sun ONE Directory Server version 5.2 software. Now the LDAP tools
(such as ldapsearch) rely on the LDAP C-SDK that relies on the libsasl to
perform a SASL bind. This means that the libsasl has to be aware of where to load
the DIGEST-MD5 plug-in. When you install the Sun ONE Directory Server version
5.2 software, the plug-ins are copied under
root_server/lib/sasl/libdigestmd5.so (for 32-bit plug-ins), and
root_server/lib/sasl/64/libdigestmd5.so (for 64-bit plug-ins). The directory
server needs to be able to load these plug-ins, and know where to get the plug-ins.
To achieve this, the directory server looks at the attribute value
dsSaslPluginsPath under the config entry cn=sasl,cn=security,cn=config
in the dse.ldif. By default, the dsSaslPluginsPath is set up to point to
root_server/lib/sasl. You can update this multi-valued attribute if you want to
load plug-ins that are stored in another location.

On the client side, it’s a little bit different. First, a client might not be aware of where
the directory server is installed. But the client needs to retrieve the SASL plug-ins
anyway (at least the DIGEST-MD5 plug-in). In the Sun ONE Directory Server 5.2
software (on Solaris OE), the sasl library looks at /usr/lib/mps/sasl2 (for 32-
bit plug-ins) and /usr/lib/mps/sparcv9 (for 64-bit plug-ins).



Chapter 3 Defining Directory Service Security Architecture 53

▼ To Set up the SASL DIGEST-MD5 Authentication
Mechanism

Note – This procedure refers to the installation of the unbundled version of the Sun
ONE Directory Server 5.2 software. On future versions of Solaris OE, the Sun ONE
Directory Server 5.2 software might include a set of SVR4 packages that you install
using the pkgadd command, and configure using the directoryserver utility. If
you are installing the directory server from SVR4 packages, your installation steps
are different than those listed here. Refer to the product documentation, and to
“Differentiating Server and Client Versions” on page 191 for details.

1. Download the Sun ONE Directory Server version 5.2 software product from the
http://www.sun.com web site.

2. Uncompress and extract the Sun ONE Directory Server software.

Extract in a directory other than the directory where you intend to install the server
(not ServerRoot).

3. Run the idsktune utility

The idsktune utility is located in the root of the directory server distribution.
Apply any necessary patches and modifications that are reported by idsktune.
Once this is done, rerun the idsktune utility to confirm that all is as it should be
before running the setup command.

4. Install and Configure the Sun ONE Directory Server version 5.2 software.

Refer to the product documentation for details.



54 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

5. Create user accounts in the directory server.

Use either the Sun ONE Directory Server Console or the MakeLDIF utility (this
utility is available for download. See “Creating LDIF for Benchmarks” on page 479).
This example uses the Java MakeLDIF utility.

# /usr/ccs/bin/make
Building...
Processed 1000 entries
1002 entries written to example-1k.ldif
Writing filters to example-1k-filter-file.ldif
Wrote 1000 equality filters for uid
Wrote 1000 equality filters for givenname
Wrote 1000 equality filters for sn
Wrote 2479 substring filters for cn
.
.
.
dn: employeeNumber=1000,ou=People,dc=example,dc=com
telephoneNumber: 1-510-315-4801
departmentNumber: 1000
sn: Ruble
employeeType: Employee
employeeNumber: 1000
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: mailRecipient
objectclass: nsCalUser
givenName: Lucille
mailDeliveryOption: mailbox
cn: Lucille Ruble
initials: LR
uid: lucyr
mail: Lucy.Ruble@example.com
userPassword: secret123
l: Menlo Park, United States
st: CA
description: This is the description for Lucille Ruble
mailhost: mailhost.example.com
nsCalHost: calhost.example.com



Chapter 3 Defining Directory Service Security Architecture 55

6. Add the newly created user accounts to the directory server.

Example using the ldif2db utility using the default database back end:

Example output from ldif2db:

Example using the ldapmodify utility:

Make sure that you use the ldapmodify command from the
/var/Sun/mps/shared/bin directory, or some of the options may not be
recognized because there are other versions of the ldapmodify command in the
Solaris OE.

$ cd /var/Sun/mps/slapd-instance
$ ./stop-slapd
$ ./ldif2db -n userRoot -i LDIF_file
$ ./start-slapd

importing data ...
[08/Jan/2003:15:46:27 +0000] - import userRoot: Index buffering
enabled with bucket size 16
[08/Jan/2003:15:46:27 +0000] - import userRoot: Beginning import
job...
[08/Jan/2003:15:46:27 +0000] - import userRoot: Processing file
"$(LDIF_FILE)”
[08/Jan/2003:15:46:32 +0000] - import userRoot: Finished scanning
file "$(LDIF_FILE)” (1002 entries)
[08/Jan/2003:15:46:33 +0000] - import userRoot: Workers finished;
cleaning up...
[08/Jan/2003:15:46:36 +0000] - import userRoot: Workers cleaned
up.
[08/Jan/2003:15:46:36 +0000] - import userRoot: Cleaning up
producer thread...
[08/Jan/2003:15:46:36 +0000] - import userRoot: Indexing complete.
Postprocessing...
[08/Jan/2003:15:46:36 +0000] - import userRoot: Flushing caches...
[08/Jan/2003:15:46:36 +0000] - import userRoot: Closing files...
[08/Jan/2003:15:46:37 +0000] - import userRoot: Import complete.
Processed 9002 entries in 10 seconds. (900.20 entries/sec)

$ cd /var/Sun/mps/shared/bin
$./ldapmodify -a -c -h directoryserver_hostname -p ldap_port
-D "cn=Directory Manager" -w "password" -f LDIF_file
-e /var/tmp/ldif.rejects 2> /var/tmp/ldapmodify.log



56 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Note – If the ldapmodify command is not executed as ./ldapmodify from the
server-root/shared/bin directory, you must have LD_LIBRARY_PATH set to server-
root/lib so that ldapmodify finds the appropriate dynamic libraries.

Note – In this example, the -e /var/tmp/ldif.rejects 2>
/var/tmp/ldapmodify.log string is redirecting messages to a log file.

Example output from ldapmodify:

adding new entry employeeNumber=8995,ou=People,dc=example,dc=com

adding new entry employeeNumber=8996,ou=People,dc=example,dc=com

adding new entry employeeNumber=8997,ou=People,dc=example,dc=com

adding new entry employeeNumber=8998,ou=People,dc=example,dc=com

adding new entry employeeNumber=8999,ou=People,dc=example,dc=com

adding new entry employeeNumber=9000,ou=People,dc=example,dc=com
.
.
.



Chapter 3 Defining Directory Service Security Architecture 57

Example output from the access log:

7. Confirm the current value of the passwordStorageScheme attribute value.

The SASL DIGEST-MD5 authentication mechanism is a two-stage bind operation. In
the first stage, the client issues a SASL DIGEST bind request (as previously
mentioned, the bind DN is not typically included in the first request issued by the
client when authenticating using DIGEST-MD5). The directory server returns a
challenge. The client performs two DIGEST-MD5 hashes of the password with the
Challenge, and the Realm. The client sends the result to the directory server. The
directory server performs the same hashes and compares the results. Because the

[08/Jan/2003:14:57:49 +0000] conn=24 op=997 msgId=998 - ADD dn=
"employeeNumber=8995,ou=People,dc=example,dc=com"
[08/Jan/2003:14:57:49 +0000] conn=24 op=997 msgId=998 - RESULT
err=0 tag=105 nentries=0 etime=0
[08/Jan/2003:14:57:49 +0000] conn=24 op=998 msgId=999 - ADD dn=
"employeeNumber=8996,ou=People,dc=example,dc=com"
[08/Jan/2003:14:57:49 +0000] conn=24 op=998 msgId=999 - RESULT
err=0 tag=105 nentries=0 etime=0
[08/Jan/2003:14:57:49 +0000] conn=24 op=999 msgId=1000 - ADD dn=
"employeeNumber=8997,ou=People,dc=example,dc=com"
[08/Jan/2003:14:57:49 +0000] conn=24 op=1000 msgId=1001 - ADD dn=
"employeeNumber=8998,ou=People,dc=example,dc=com"
[08/Jan/2003:14:57:49 +0000] conn=24 op=999 msgId=1000 - RESULT
err=0 tag=105 nentries=0 etime=0
[08/Jan/2003:14:57:49 +0000] conn=24 op=1000 msgId=1001 - RESULT
err=0 tag=105 nentries=0 etime=0
[08/Jan/2003:14:57:49 +0000] conn=24 op=1001 msgId=1002 - ADD dn=
"employeeNumber=8999,ou=People,dc=example,dc=com"
[08/Jan/2003:14:57:49 +0000] conn=24 op=1001 msgId=1002 - RESULT
err=0 tag=105 nentries=0 etime=0
[08/Jan/2003:14:57:49 +0000] conn=24 op=1002 msgId=1003 - ADD dn=
"employeeNumber=9000,ou=People,dc=example,dc=com"
[08/Jan/2003:14:57:49 +0000] conn=24 op=1002 msgId=1003 - RESULT
err=0 tag=105 nentries=0 etime=0
[08/Jan/2003:14:57:49 +0000] conn=24 op=1003 msgId=1004 - UNBIND
[08/Jan/2003:14:57:49 +0000] conn=24 op=1003 msgId=-1 - closing -
U1
[08/Jan/2003:14:57:50 +0000] conn=24 op=-1 msgId=-1 - closed
.
.
.



58 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

directory server must perform the hashes, the server requires a clear text password.
Before changing the passwordStorageScheme attribute value, you can confirm the
current value using the ldapsearch command.

Example output from ldapsearch:

8. Run ldapsearch to verify the user, and to verify a successful bind.

When you create directory user accounts, the passwords are stored in the default
password storage mechanism (Salted Secure Hashing Algorithm (SSHA)). Using one
of these accounts, you must change the userpassword to be in the clear. Before
changing the userpassword of an entry, you should run ldapsearch to verify that
the user exists in the directory server, (also note the format of the userpassword
attribute value) and that you can bind successfully with the password.

$ cd /usr/sunone/servers/shared/bin
$ ./ldapsearch -h directoryserver_hostname -p ldap_port
-D "cn=Directory Manager" -w password
-b “cn=Password Policy,cn=config” "(objectclass=*)"
passwordStorageScheme
cn=Password Policy,cn=config
passwordStorageScheme=SSHA



Chapter 3 Defining Directory Service Security Architecture 59

Example running ldapsearch to verify a user entry:

Example of searching for the user entry lucyr and displaying the current
userpassword attribute value:

Example of binding to the directory server as user lucyr using the correct
credentials:

If the preceding ldapsearch was not successful, you will see something similar to
the following output:

Note – The correct way in LDAPv3 to request that no attributes be returned is to
specify an attribute list of 1.1 as specified in RFC 2251.

9. Change the passwordStorageScheme attribute value to {CLEAR}.

It is not necessary to set the default storage scheme to clear in the directory server in
order to store passwords in clear text. Passwords can be stored in clear text
regardless of the default password storage scheme by prefixing the clear text
password with {CLEAR}. This can be beneficial if there are only a few special
accounts in the server for which authentication will be performed using DIGEST-

$./ldapsearch -h directoryserver_hostname -p ldap_port
-b "dc=example,dc=com" uid=lucyr 1.1
dn: employeeNumber=1000,ou=People,dc=example,dc=com

$./ldapsearch -h directoryserver_hostname -p ldap_port
-b "dc=example,dc=com" -D "cn=Directory Manager" -w password uid=
lucyr userpassword
dn: employeeNumber=1000,ou=People,dc=example,dc=com
userpassword: {SSHA}zDGUDF2HHAMzheLjjXSNSem/NS2YSmItdXh8cQ==

$./ldapsearch -h directoryserver_hostname -p ldap_port
-b "dc=example,dc=com" -D "employeeNumber=1000,ou=People,dc=
example,dc=com" -w password uid=lucyr 1.1
dn: employeeNumber=1000,ou=People,dc=example,dc=com

ldap_simple_bind: Invalid credentials



60 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

MD5 and it is not desirable to store passwords for those other accounts in clear text.
However, you will not be able to use pam_unix for authentication if you store
passwords in clear text.

Example changing the passwordStorageScheme attribute value:

You are now in the ldapmodify interactive mode. Enter the information, and when
you are done, use Control-d to exit ldapmodify.

Example:

10. Confirm the passwordStorateScheme attribute value change.

When you verify this attribute change, you see that an entry has been added to cn=
# Password Policy,cn=config which looks like this:

In this particular example, we loaded the directory user entries with the
passwordStorageScheme attribute value set to {SSHA}. It is possible to make the
modification to the passwordStorageScheme attribute prior to loading your
directory entries, however, in practice this is never really the case.

$ cd /usr/sunone/servers/shared/bin
$ ./ldapmodify -h directoryserver_hostname -p ldap_port
-D "cn=Directory Manager" -w password

dn: cn=Password Policy,cn=config
changetype: modify
replace: passwordStorageScheme
passwordStorageScheme: clear
modifying entry cn=Password Policy,cn=config

$ ./ldapsearch -h directoryserver_hostname -p ldap_port
-D "cn=Directory Manager" -w password
-b “cn=Password Policy, cn=config” “(objectclass=*)”
passwordStorageScheme
cn=Password Policy,cn=config
passwordStorageScheme: clear



Chapter 3 Defining Directory Service Security Architecture 61

11. Change the userpassword attribute value to be in the clear for a user.

Example:

12. Verify that the password for the user is now in the clear.

When you search the directory server for the user entry lucyr and return the
userpassword attribute value, you should see the clear text value of the password.

Example:

Example of authenticating using SASL DIGEST-MD5:

Note – Because of the way the Solaris OE packages install the SASL plug-ins, it is
necessary to specify a value for the SASL_PATH environment variable that points to
the server-root/lib/sasl directory.

$ ./ldapmodify -h directoryserver_hostname -p ldap_port
-D "cn=Directory Manager" -w password
dn: employeeNumber=1000,ou=People,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: password123
modifying entry employeeNumber=1000,ou=People,dc=example,dc=com

(Note: use contol-d to exit interactive mode)

$./ldapsearch -h directoryserver_hostname -p ldap_port
-b "dc=example,dc=com" -D "cn=Directory Manager" -w password uid=
lucyr userpassword
dn: employeeNumber=1000,ou=People,dc=example,dc=com
userpassword: {clear}password123

$./ldapsearch -h directoryserver_hostname -p ldap_port -D "" -w password
-o mech=DIGEST-MD5 -o authid="dn:employeeNumber=1000,ou=
People,dc=example,dc=com" -o authzid="dn:employeeNumber=1000,ou=
People,dc=example,dc=com"
-b "dc=example,dc=com" -s base "(uid=lucyr)"



62 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

GSSAPI Authentication and Kerberos v5
This section discusses the GSSAPI mechanism, in particular, Kerberos v5 and how
this works in conjunction with the Sun ONE Directory Server 5.2 software and what
is involved in implementing such a solution. Please be aware that this is not a trivial
task.

It’s worth taking a brief look at the relationship between the Generic Security
Services Application Program Interface (GSSAPI) and Kerberos v5.

The GSSAPI does not actually provide security services itself. Rather, it is a
framework that provides security services to callers in a generic fashion, with a
range of underlying mechanisms and technologies such as Kerberos v5. The current
implementation of the GSSAPI only works with the Kerberos v5 security
mechanism. The best way to think about the relationship between GSSAPI and
Kerberos is in the following manner: GSSAPI is a network authentication protocol
abstraction that allows Kerberos credentials to be used in an authentication
exchange. Kerberos v5 must be installed and running on any system on which
GSSAPI-aware programs are running.

The support for the GSSAPI is made possible in the directory server through the
introduction of a new SASL library, which is based on the Cyrus CMU
implementation. Through this SASL framework, DIGEST-MD5 is supported as
explained previously, and GSSAPI which implements Kerberos v5. Additional
GSSAPI mechanisms do exist. For example, GSSAPI with SPNEGO support would
be GSS-SPNEGO. Other GSS mechanism names are based on the GSS mechanisms
OID.

Note – The Sun ONE Directory Server 5.2 software only supports the use of GSSAPI
on Solaris OE. There are implementations of GSSAPI for other operating systems (for
example, Linux), but the Sun ONE Directory Server 5.2 software does not use them
on platforms other than the Solaris OE.

Understanding GSSAPI
The Generic Security Services Application Program Interface (GSSAPI) is a standard
interface, defined by RFC 2743, that provides a generic authentication and secure
messaging interface, whereby these security mechanisms can be plugged in. The
most commonly referred to GSSAPI mechanism is the Kerberos mechanism that is
based on secret key cryptography.



Chapter 3 Defining Directory Service Security Architecture 63

One of the main aspects of GSSAPI is that it allows developers to add secure
authentication and privacy (encryption and or integrity checking) protection to data
being passed over the wire by writing to a single programming interface. This is
shown in FIGURE 3-2.

FIGURE 3-2 GSSAPI Layers

The underlying security mechanisms are loaded at the time the programs are
executed, as opposed to when they are compiled and built. In practice, the most
commonly used GSSAPI mechanism is Kerberos v5. The Solaris OE provides a few
different flavors of Diffie-Hellman GSSAPI mechanisms, which are only useful to
NIS+ applications.

What can be confusing is that developers might write applications that write directly
to the Kerberos API, or they might write GSSAPI applications that request the
Kerberos mechanism. There is a big difference, and applications that talk Kerberos
directly cannot communicate with those that talk GSSAPI. The wire protocols are not

GSS SPI
libgss

GSS API (p
ublic)

Message confidentiality
Message integrityAuthenticationSASL GSSAPI m

echanism



64 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

compatible, even though the underlying Kerberos protocol is in use. An example is
telnet with Kerberos is a secure telnet program that authenticates a telnet user
and encrypts data, including passwords exchanged over the network during the
telnet session. The authentication and message protection features are provided
using Kerberos. The telnet application with Kerberos only uses Kerberos, which is
based on secret-key technology. However, a telnet program written to the GSSAPI
interface can use Kerberos as well as other security mechanisms supported by
GSSAPI.

The Solaris OE does not deliver any libraries that provide support for third-party
companies to program directly to the Kerberos API. The goal is to encourage
developers to use the GSSAPI. Many open-source Kerberos implementations (MIT,
Heimdal) allow users to write Kerberos applications directly.

Note – On the wire, the GSSAPI is compatible with Microsoft’s SSPI and thus
GSSAPI applications can communicate with Microsoft applications that use SSPI and
Kerberos.

The GSSAPI is preferred because it is a standardized API, whereas Kerberos is not.
This means that the MIT Kerberos development team might change the
programming interface anytime, and any applications that exist today might not
work in the future without some code modifications. Using GSSAPI avoids this
problem.

Another benefit of GSSAPI is its pluggable feature, which is a big benefit, especially
if a developer later decides that there is a better authentication method than
Kerberos, because it can easily be plugged into the system and the existing GSSAPI
applications should be able to use it without being recompiled or patched in any
way.

Understanding Kerberos v5
Kerberos is a network authentication protocol designed to provide strong
authentication for client/server applications by using secret-key cryptography.
Originally developed at the Massachusetts Institute of Technology, it is included in
the Solaris OE to provide strong authentication for Solaris OE network applications.

In addition to providing a secure authentication protocol, Kerberos also offers the
ability to add privacy support (encrypted data streams) for remote applications such
as telnet, ftp, rsh, rlogin, and other common UNIX network applications. In
the Solaris OE, Kerberos can also be used to provide strong authentication and
privacy support for Network File Systems (NFS), allowing secure and private file
sharing across the network.



Chapter 3 Defining Directory Service Security Architecture 65

Because of its widespread acceptance and implementation in other operating
systems, including Windows 2000, HP-UX, and Linux, the Kerberos authentication
protocol can interoperate in a heterogeneous environment, allowing users on
machines running one OS to securely authenticate themselves on hosts of a different
OS.

The Kerberos software is available for Solaris OE versions 2.6, 7, 8, and 9 in a
separate package called the Sun Enterprise Authentication Mechanism (SEAM)
software. For Solaris 2.6 and Solaris 7 OE, Sun Enterprise Authentication Mechanism
software is included as part of the Solaris Easy Access Server 3.0 (Solaris SEAS)
package. For Solaris 8 OE, the Sun Enterprise Authentication Mechanism software
package is available with the Solaris 8 OE Admin Pack.

For Solaris 2.6 and Solaris 7 OE, the Sun Enterprise Authentication Mechanism
software is freely available as part of the Solaris Easy Access Server 3.0 package
available for download from:
http://www.sun.com/software/solaris/7/ds/ds-seas.

For Solaris 8 OE systems, Sun Enterprise Authentication Mechanism software is
available in the Solaris 8 OE Admin Pack, available for download from:
http://www.sun.com/bigadmin/content/adminPack/index.html.

For Solaris 9 OE systems, Sun Enterprise Authentication Mechanism software is
already installed by default and contains the following packages listed in TABLE 3-1.

All of these Sun Enterprise Authentication Mechanism software distributions are
based on the MIT KRB5 Release version 1.0. The client programs in these
distributions are compatible with later MIT releases (1.1, 1.2) and with other
implementations that are compliant with the standard.

TABLE 3-1 Solaris 9 OE Kerberos v5 Packages

Package Name Description

SUNWkdcr Kerberos v5 KDC (root)

SUNWkdcu Kerberos v5 Master KDC (user)

SUNWkrbr Kerberos version 5 support (Root)

SUNWkrbu Kerberos version 5 support (Usr)

SUNWkrbux Kerberos version 5 support (Usr) (64-bit)



66 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

How Kerberos Works

The following is an overview of the Kerberos v5 authentication system. From the
user’s standpoint, Kerberos v5 is mostly invisible after the Kerberos session has been
started. Initializing a Kerberos session often involves no more than logging in and
providing a Kerberos password.

The Kerberos system revolves around the concept of a ticket. A ticket is a set of
electronic information that serves as identification for a user or a service such as the
NFS service. Just as your driver’s license identifies you and indicates what driving
permissions you have, so a ticket identifies you and your network access privileges.
When you perform a Kerberos-based transaction (for example, if you use rlogin to
log in to another machine), your system transparently sends a request for a ticket to
a Key Distribution Center, or KDC. The KDC accesses a database to authenticate
your identity and returns a ticket that grants you permission to access the other
machine. Transparently means that you do not need to explicitly request a ticket.

Tickets have certain attributes associated with them. For example, a ticket can be
forwardable (which means that it can be used on another machine without a new
authentication process), or postdated (not valid until a specified time). How tickets
are used (for example, which users are allowed to obtain which types of tickets) is
set by policies that are determined when Kerberos is installed or administered.

Note – You will frequently see the terms credential and ticket. In the Kerberos world,
they are often used interchangeably. Technically, however, a credential is a ticket
plus the session key for that session.

Initial Authentication

Kerberos authentication has two phases, an initial authentication that allows for all
subsequent authentications, and the subsequent authentications themselves.

A client (a user, or a service such as NFS) begins a Kerberos session by requesting a
ticket-granting ticket (TGT) from the Key Distribution Center (KDC). This request is
often done automatically at login.

A ticket-granting ticket is needed to obtain other tickets for specific services. Think
of the ticket-granting ticket as something similar to a passport. Like a passport, the
ticket-granting ticket identifies you and allows you to obtain numerous “visas,”
where the “visas” (tickets) are not for foreign countries, but for remote machines or
network services. Like passports and visas, the ticket-granting ticket and the other
various tickets have limited lifetimes. The difference is that Kerberized commands
notice that you have a passport and obtain the visas for you. You don’t have to
perform the transactions yourself.



Chapter 3 Defining Directory Service Security Architecture 67

The KDC creates a ticket-granting ticket and sends it back, in encrypted form, to the
client. The client decrypts the ticket-granting ticket using the client’s password.

Now in possession of a valid ticket-granting ticket, the client can request tickets for
all sorts of network operations for as long as the ticket-granting ticket lasts. This
ticket usually lasts for a few hours. Each time the client performs a unique network
operation, it requests a ticket for that operation from the KDC.

Subsequent Authentications

The client requests a ticket for a particular service from the KDC by sending the
KDC its ticket-granting ticket as proof of identity.

1. The KDC sends the ticket for the specific service to the client.

For example, suppose user lucy wants to access an NFS file system that has been
shared with krb5 authentication required. Since she is already authenticated (that
is, she already has a ticket-granting ticket), as she attempts to access the files, the
NFS client system automatically and transparently obtains a ticket from the KDC
for the NFS service.

2. The client sends the ticket to the server.

When using the NFS service, the NFS client automatically and transparently
sends the ticket for the NFS service to the NFS server.

3. The server allows the client access.

These steps make it appear that the server doesn’t ever communicate with the
KDC. The server does, though, as it registers itself with the KDC, just as the first
client does.

Principals

A client is identified by its principal. A principal is a unique identity to which the
KDC can assign tickets. A principal can be a user, such as joe, or a service, such as
NFS.

By convention, a principal name is divided into three parts: the primary, the
instance, and the realm. A typical principal could be, for example,
lucy/admin@EXAMPLE.COM, where:

lucy is the primary. The primary can be a user name, as shown here, or a service,
such as NFS. The primary can also be the word host, which signifies that this
principal is a service principal that is set up to provide various network services.



68 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

admin is the instance. An instance is optional in the case of user principals, but it is
required for service principals. For example, if the user lucy sometimes acts as a
system administrator, she can use lucy/admin to distinguish herself from her usual
user identity. Likewise, if Lucy has accounts on two different hosts, she can use two
principal names with different instances (for example,
lucy/california.example.com and lucy/boston.example.com).

Realms

A realm is a logical network, similar to a domain, which defines a group of systems
under the same master KDC. Some realms are hierarchical (one realm being a
superset of the other realm). Otherwise, the realms are non-hierarchical (or direct)
and the mapping between the two realms must be defined.

Realms and KDC Servers

Each realm must include a server that maintains the master copy of the principal
database. This server is called the master KDC server. Additionally, each realm
should contain at least one slave KDC server, which contains duplicate copies of the
principal database. Both the master KDC server and the slave KDC server create
tickets that are used to establish authentication.

Understanding the Kerberos KDC

The Kerberos Key Distribution Center (KDC) is a trusted server that issues Kerberos
tickets to clients and servers to communicate securely. A Kerberos ticket is a block of
data that is presented as the user’s credentials when attempting to access a
Kerberized service. A ticket contains information about the user’s identity and a
temporary encryption key, all encrypted in the server’s private key. In the Kerberos
environment, any entity that is defined to have a Kerberos identity is referred to as a
principal.

A principal may be an entry for a particular user, host, or service (such as NFS or
FTP) that is to interact with the KDC. Most commonly, the KDC server system also
runs the Kerberos Administration Daemon, which handles administrative
commands such as adding, deleting, and modifying principals in the Kerberos
database. Typically, the KDC, the admin server, and the database are all on the same
machine, but they can be separated if necessary. Some environments may require
that multiple realms be configured with master KDCs and slave KDCs for each
realm. The principals applied for securing each realm and KDC should be applied to
all realms and KDCs in the network to ensure that there isn’t a single weak link in
the chain.



Chapter 3 Defining Directory Service Security Architecture 69

One of the first steps to take when initializing your Kerberos database is to create it
using the kdb5_util command, which is located in /usr/sbin. When running this
command, the user has the choice of whether to create a stash file or not. The stash
file is a local copy of the master key that resides on the KDC’s local disk. The master
key contained in the stash file is generated from the master password that the user
enters when first creating the KDC database. The stash file is used to authenticate
the KDC to itself automatically before starting the kadmind and krb5kdc daemons
(for example, as part of the machine’s boot sequence).

If a stash file is not used when the database is created, the administrator who starts
up the krb5kdc process will have to manually enter the master key (password)
every time they start the process. This may seem like a typical trade off between
convenience and security, but if the rest of the system is sufficiently hardened and
protected, very little security is lost by having the master key stored in the protected
stash file. It is recommended that at least one slave KDC server be installed for each
realm to ensure that a backup is available in the event that the master server
becomes unavailable, and that slave KDC be configured with the same level of
security as the master.

Currently, the Sun Kerberos v5 Mechanism utility, kdb5_util, can create three
types of keys, DES-CBC-CRC, DES-CBC-MD5, and DES-CBC-RAW. DES-CBC stands
for DES encryption with Cipher Block Chaining and the CRC, MD5, and RAW
designators refer to the checksum algorithm that is used. By default, the key created
will be DES-CBC-CRC, which is the default encryption type for the KDC. The type of
key created is specified on the command line with the -k option (see the
kdb5_util(1M) man page). Choose the password for your stash file very carefully,
because this password can be used in the future to decrypt the master key and
modify the database. The password may be up to 1024 characters long and can
include any combination of letters, numbers, punctuation, and spaces.

The following is an example of creating a stash file:

kdc1 # /usr/sbin/kdb5_util create -r EXAMPLE.COM -s
Initializing database ’/var/krb5/principal’ for realm
’EXAMPLE.COM’
master key name ’K/M@EXAMPLE.COM’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: master_key
Re-enter KDC database master key to verify: master_key



70 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Notice the use of the -s argument to create the stash file. The location of the stash
file is in the /var/krb5. The stash file appears with the following mode and
ownership settings:

Note – The directory used to store the stash file and the database should not be
shared or exported.

Secure Settings in the KDC Configuration File

The KDC and Administration daemons both read configuration information from
/etc/krb5/kdc.conf. This file contains KDC-specific parameters that govern
overall behavior for the KDC and for specific realms. The parameters in the
kdc.conf file are explained in detail in the kdc.conf(4) man page.

The kdc.conf parameters describe locations of various files and ports to use for
accessing the KDC and the administration daemon. These parameters generally do
not need to be changed, and doing so does not result in any added security.
However, there are some parameters that may be adjusted to enhance the overall
security of the KDC. The following are some examples of adjustable parameters that
enhance security.

■ kdc_ports – Defines the ports that the KDC will listen on to receive requests.
The standard port for Kerberos v5 is 88. 750 is included and commonly used to
support older clients that still use the default port designated for Kerberos v4.
Solaris OE still listens on port 750 for backwards compatibility. This is not
considered a security risk.

■ max_life – Defines the maximum lifetime of a ticket, and defaults to eight
hours. In environments where it is desirable to have users re-authenticate
frequently and to reduce the chance of having a principal’s credentials stolen, this
value should be lowered. The recommended value is eight hours.

■ max_renewable_life – Defines the period of time from when a ticket is issued
that it may be renewed (using kinit -R). The standard value here is 7 days. To
disable renewable tickets, this value may be set to 0 days, 0 hrs, 0 min. The
recommended value is 7d 0h 0m 0s.

■ default_principal_expiration – A Kerberos principal is any unique
identity to which Kerberos can assign a ticket. In the case of users, it is the same
as the UNIX system user name. The default lifetime of any principal in the realm
may be defined in the kdc.conf file with this option. This should be used only if
the realm will contain temporary principals, otherwise the administrator will

kdc1 # cd /var/krb5
kdc1 # ls -l
-rw------- 1 root other 14 Apr 10 14:28 .k5.EXAMPLE.COM



Chapter 3 Defining Directory Service Security Architecture 71

have to constantly be renewing principals. Usually, this setting is left undefined
and principals do not expire. This is not insecure as long as the administrator is
vigilant about removing principals for users that no longer need access to the
systems.

■ supported_enctypes – The encryption types supported by the KDC may be
defined with this option. At this time, Sun Enterprise Authentication Mechanism
software only supports des-cbc-crc:normal encryption type, but in the future
this may be used to ensure that only strong cryptographic ciphers are used.

■ dict_file – The location of a dictionary file containing strings that are not
allowed as passwords. A principal with any password policy (see below) will not
be able to use words found in this dictionary file. This is not defined by default.
Using a dictionary file is a good way to prevent users from creating trivial
passwords to protect their accounts, and thus helps avoid one of the most
common weaknesses in a computer network-guessable passwords. The KDC will
only check passwords against the dictionary for principals which have a
password policy association, so it is good practice to have at least one simple
policy associated with all principals in the realm.

The Solaris OE has a default system dictionary that is used by the spell program that
may also be used by the KDC as a dictionary of common passwords. The location of
this file is: /usr/share/lib/dict/words. Other dictionaries may be substituted.
The format is one word or phrase per line.

The following is a Kerberos v5 /etc/krb5/kdc.conf example with suggested
settings:

# Copyright 1998-2002 Sun Microsystems, Inc. All rights reserved.
# Use is subject to license terms.
#
#ident  "@(#)kdc.conf   1.2     02/02/14 SMI"

[kdcdefaults]
        kdc_ports = 88,750

[realms]
        ___default_realm___ = {
                profile = /etc/krb5/krb5.conf
                database_name = /var/krb5/principal
                admin_keytab = /etc/krb5/kadm5.keytab
                acl_file = /etc/krb5/kadm5.acl
                kadmind_port = 749
                max_life = 8h 0m 0s
                max_renewable_life = 7d 0h 0m 0s
                default_principal_flags = +preauth
Needs moving -- dict_file = /usr/share/lib/dict/words
        }



72 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Access Control

The Kerberos administration server allows for granular control of the administrative
commands by use of an access control list (ACL) file (/etc/krb5/kadm5.acl). The
syntax for the ACL file allows for wildcarding of principal names so it is not
necessary to list every single administrator in the ACL file. This feature should be
used with great care. The ACLs used by Kerberos allow privileges to be broken
down into very precise functions that each administrator can perform. If a certain
administrator only needs to be allowed to have read-access to the database then that
person should not be granted full admin privileges. Below is a list of the privileges
allowed:

■ a – Allows the addition of principals or policies in the database.

■ A – Prohibits the addition of principals or policies in the database.

■ d – Allows the deletion of principals or policies in the database.

■ D – Prohibits the deletion of principals or policies in the database.

■ m – Allows the modification of principals or policies in the database.

■ M – Prohibits the modification of principals or policies in the database.

■ c – Allows the changing of passwords for principals in the database.

■ C – Prohibits the changing of passwords for principals in the database.

■ i – Allows inquiries to the database.

■ I – Prohibits inquiries to the database.

■ l – Allows the listing of principals or policies in the database.

■ L – Prohibits the listing of principals or policies in the database.

■ * – Short for all privileges (admcil).

■ x – Short for all privileges (admcil). Identical to *.

Adding Administrators

After the ACLs are set up, actual administrator principals should be added to the
system. It is strongly recommended that administrative users have separate /admin
principals to use only when administering the system. For example, user Lucy
would have two principals in the database - lucy@REALM and lucy/admin@REALM.
The /admin principal would only be used when administering the system, not for
getting ticket-granting-tickets (TGTs) to access remote services. Using the /admin
principal only for administrative purposes minimizes the chance of someone
walking up to Joe’s unattended terminal and performing unauthorized
administrative commands on the KDC.

Kerberos principals may be differentiated by the instance part of their principal
name. In the case of user principals, the most common instance identifier is /admin.
It is standard practice in Kerberos to differentiate user principals by defining some



Chapter 3 Defining Directory Service Security Architecture 73

to be /admin instances and others to have no specific instance identifier (for
example, lucy/admin@REALM versus lucy@REALM). Principals with the /admin
instance identifier are assumed to have administrative privileges defined in the ACL
file and should only be used for administrative purposes. A principal with an
/admin identifier which does not match up with any entries in the ACL file will not
be granted any administrative privileges, it will be treated as a non-privileged user
principal. Also, user principals with the /admin identifier are given separate
passwords and separate permissions from the non-admin principal for the same
user.

The following is a sample /etc/krb5/kadm5.acl file:

Note – It is highly recommended that the kadm5.acl file be tightly controlled and
that users be granted only the privileges they need to perform their assigned tasks.

Creating Host Keys

Creating host keys for systems in the realm such as slave KDCs is performed the
same way that creating user principals is performed. However, the -randkey option
should always be used, so no one ever knows the actual key for the hosts. Host
principals are almost always stored in the keytab file, to be used by root-owned
processes that wish to act as Kerberos services for the local host. It is rarely
necessary for anyone to actually know the password for a host principal because the
key is stored safely in the keytab and is only accessible by root-owned processes,
never by actual users.

When creating keytab files, the keys should always be extracted from the KDC on
the same machine where the keytab is to reside using the ktadd command from a
kadmin session. If this is not feasible, take great care in transferring the keytab file
from one machine to the next. A malicious attacker who possesses the contents of

# Copyright (c) 1998-2000 by Sun Microsystems, Inc.
# All rights reserved.
#
#pragma ident   "@(#)kadm5.acl  1.1     01/03/19 SMI"

# lucy/admin is given full administrative privilege
lucy/admin@EXAMPLE.COM *
#
# tom/admin user is allowed to query the database (d), listing
principals
# (l), and changing user passwords (c)
#
tom/admin@EXAMPLE.COM dlc



74 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

the keytab file could use these keys from the file in order to gain access to another
user or services credentials. Having the keys would then allow the attacker to
impersonate whatever principal that the key represented and further compromise
the security of that Kerberos realm. Some suggestions for transferring the keytab
are to use Kerberized, encrypted ftp transfers, or to use the secure file transfer
programs scp or sftp offered with the SSH package (http://www.openssh.org).
Another safe method is to place the keytab on a removable disk, and hand-deliver
it to the destination.

Hand delivery does not scale well for large installations, so using the Kerberized
ftp daemon is perhaps the most convenient and secure method available.

Using NTP to Synchronize Clocks

All servers participating in the Kerberos realm need to have their system clocks
synchronized to within a configurable time limit (default 300 seconds). The safest,
most secure way to systematically synchronize the clocks on a network of Kerberos
servers is by using the Network Time Protocol (NTP) service. The Solaris OE comes
with an NTP client and NTP server software (SUNWntpu package). See the
ntpdate(1M) and xntpd(1M) man pages for more information on the individual
commands. For more information on configuring NTP, refer to the following Sun
BluePrints OnLine NTP articles:

■ “Using NTP to Control and Synchronize System Clocks – Part I: Introduction to
NTP” (July 2001), http://www.sun.com/blueprints/0701/NTP.pdf

■ “Using NTP to Control and Synchronize System Clocks – Part II: Basic NTP
Administration and Architecture” (August 2001),
http://www.sun.com/blueprints/0801/NTPpt2.pdf

■ “Using NTP to Control and Synchronize System Clocks – Part III: NTP
Monitoring and Troubleshooting” (September 2001),
http://www.sun.com/blueprints/0901/NTPpt3.pdf

It is critical that the time be synchronized in a secure manner. A simple denial of
service attack on either a client or a server would involve just skewing the time on
that system to be outside of the configured clock skew value, which would then
prevent anyone from acquiring TGTs from that system or accessing Kerberized
services on that system. The default clock-skew value of five minutes is the
maximum recommended value.

The NTP infrastructure must also be secured, including the use of server hardening
for the NTP server and application of NTP security features. Using the Solaris
Security Toolkit software (formerly known as JASS) with the secure.driver script
to create a minimal system and then installing just the necessary NTP software is
one such method. The Solaris Security Toolkit software is available at:

http://www.sun.com/security/jass/



Chapter 3 Defining Directory Service Security Architecture 75

Documentation on the Solaris Security Toolkit software is available at:

http://www.sun.com/security/blueprints

Establishing Password Policies

Kerberos allows the administrator to define password policies that can be applied to
some or all of the user principals in the realm. A password policy contains
definitions for the following parameters:

■ Minimum Password Length – The number of characters in the password, for
which the recommended value is 8.

■ Maximum Password Classes – The number of different character classes that must
be used to make up the password. Letters, numbers, and punctuation are the
three classes and valid values are 1, 2, and 3. The recommended value is 2.

■ Saved Password History – The number of previous passwords that have been
used by the principal that cannot be reused. The recommended value is 3.

■ Minimum Password Lifetime (seconds) – The minimum time that the password
must be used before it can be changed. The recommended value is 3600 (1 hour).

■ Maximum Password Lifetime (seconds) – The maximum time that the password
can be used before it must be changed. The recommended value is 7776000 (90
days).

These values can be set as a group and stored as a single policy. Different policies
can be defined for different principals. It is recommended that the minimum
password length be set to at least 8 and that at least 2 classes be required. Most
people tend to choose easy-to-remember and easy-to-type passwords, so it is a good
idea to at least set up policies to encourage slightly more difficult-to-guess
passwords through the use of these parameters. Setting the Maximum Password
Lifetime value may be helpful in some environments, to force people to change their
passwords periodically. The period is up to the local administrator according to the
overriding corporate security policy used at that particular site. Setting the Saved
Password History value combined with the Minimum Password Lifetime value
prevents people from simply switching their password several times until they get
back to their original or favorite password.

The maximum password length supported is 255 characters, unlike the UNIX
password database which only supports up to 8 characters. Passwords are stored in
the KDC encrypted database using the KDC default encryption method, DES-CBC-
CRC. In order to prevent password guessing attacks, it is recommended that users
choose long passwords or pass phrases. The 255 character limit allows one to choose
a small sentence or easy to remember phrase instead of a simple one-word
password.



76 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

It is possible to use a dictionary file that can be used to prevent users from choosing
common, easy-to-guess words (see “Secure Settings in the KDC Configuration File”
on page 70). The dictionary file is only used when a principal has a policy
association, so it is highly recommended that at least one policy be in effect for all
principals in the realm.

The following is an example password policy creation:

If you specify a kadmin command without specifying any options, kadmin displays
the syntax (usage information) for that command. The following code box shows
this, followed by an actual add_policy command with options.

This example creates a password policy called passpolicy which enforces a
maximum password lifetime of 90 days, minimum length of 8 characters, a
minimum of 2 different character classes (letters, numbers, punctuation), and a
password history of 3.

To apply this policy to an existing user, modify the following:

kadmin: add_policy
usage: add_policy [options] policy
options are:
[-maxlife time] [-minlife time] [-minlength length]
[-minclasses number] [-history number]
kadmin: add_policy -minlife "1 hour" -maxlife "90 days"
-minlength 8 -minclasses 2 -history 3 passpolicy
kadmin: get_policy passpolicy
Policy: passpolicy
Maximum password life: 7776000
Minimum password life: 3600
Minimum password length: 8
Minimum number of password character classes: 2
Number of old keys kept: 3
Reference count: 0

kadmin: modprinc -policy passpolicy lucyPrincipal
"lucy@EXAMPLE.COM" modified.



Chapter 3 Defining Directory Service Security Architecture 77

To modify the default policy that is applied to all user principals in a realm, change
the following:

The Reference count value indicates how many principals are configured to use the
policy.

Note – The default policy is automatically applied to all new principals that are not
given the same password as the principal name when they are created. Any account
with a policy assigned to it is uses the dictionary (defined in the dict_file
parameter in /etc/krb5/kdc.conf) to check for common passwords.

Backing Up a KDC

Backups of a KDC system should be made regularly or according to local policy.
However, backups should exclude the /etc/krb5/krb5.keytab file. If the local
policy requires that backups be done over a network, then these backups should be
secured either through the use of encryption or possibly by using a separate network
interface that is only used for backup purposes and is not exposed to the same traffic
as the non-backup network traffic. Backup storage media should always be kept in a
secure, fireproof location.

kadmin: modify_policy -maxlife "90 days" -minlife "1 hour"
-minlength 8 -minclasses 2 -history 3 default
kadmin: get_policy default
Policy: default
Maximum password life: 7776000
Minimum password life: 3600
Minimum password length: 8
Minimum number of password character classes: 2
Number of old keys kept: 3
Reference count: 1



78 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Monitoring the KDC

Once the KDC is configured and running, it should be continually and vigilantly
monitored. The Sun Kerberos v5 software KDC logs information into the
/var/krb5/kdc.log file, but this location can be modified in the
/etc/krb5/krb5.conf file, in the logging section.

The KDC log file should have read and write permissions for the root user only, as
follows:

Kerberos Options

The /etc/krb5/krb5.conf file contains information that all Kerberos applications
use to determine what server to talk to and what realm they are participating in.
Configuring the krb5.conf file is covered in the Sun Enterprise Authentication
Mechanism Software Installation Guide. Also refer to the krb5.conf(4) man page for a
full description of this file.

The appdefaults section in the krb5.conf file contains parameters that control
the behavior of many Kerberos client tools. Each tool may have its own section in
the appdefaults section of the krb5.conf file.

Many of the applications that use the appdefaults section, use the same options;
however, they might be set in different ways for each client application.

Kerberos Client Applications

The following Kerberos applications can have their behavior modified through the
user of options set in the appdefaults section of the /etc/krb5/krb5.conf file
or by using various command-line arguments. These clients and their configuration
settings are described below.

[logging]
        default = FILE:/var/krb5/kdc.log
        kdc = FILE:/var/krb5/kdc.log

-rw------ 1 root other 750 25 May 10 17:55 /var/krb5/kdc.log



Chapter 3 Defining Directory Service Security Architecture 79

kinit

The kinit client is used by people who want to obtain a TGT from the KDC. The
/etc/krb5/krb5.conf file supports the following kinit options: renewable,
forwardable, no_addresses, max_life, max_renewable_life and
proxiable.

telnet

The Kerberos telnet client has many command-line arguments that control its
behavior. Refer to the man page for complete information. However, there are
several interesting security issues involving the Kerberized telnet client.

The telnet client uses a session key even after the service ticket which it was
derived from has expired. This means that the telnet session remains active even
after the ticket originally used to gain access, is no longer valid. This is insecure in a
strict environment, however, the trade off between ease of use and strict security
tends to lean in favor of ease-of-use in this situation. It is recommended that the
telnet connection be re-initialized periodically by disconnecting and reconnecting
with a new ticket. The overall lifetime of a ticket is defined by the KDC
(/etc/krb5/kdc.conf), normally defined as eight hours.

The telnet client allows the user to forward a copy of the credentials (TGT) used to
authenticate to the remote system using the -f and -F command-line options. The
-f option sends a non-forwardable copy of the local TGT to the remote system so
that the user can access Kerberized NFS mounts or other local Kerberized services
on that system only. The -F option sends a forwardable TGT to the remote system so
that the TGT can be used from the remote system to gain further access to other
remote Kerberos services beyond that point. The -F option is a superset of -f. If the
Forwardable and or forward options are set to false in the krb5.conf file,
these command-line arguments can be used to override those settings, thus giving
individuals the control over whether and how their credentials are forwarded.

The -x option should be used to turn on encryption for the data stream. This further
protects the session from eavesdroppers. If the telnet server does not support
encryption, the session is closed. The /etc/krb5/krb5.conf file supports the
following telnet options: forward, forwardable, encrypt, and autologin.
The autologin [true/false] parameter tells the client to try and attempt to log in
without prompting the user for a user name. The local user name is passed on to the
remote system in the telnet negotiations.



80 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

rlogin and rsh

The Kerberos rlogin and rsh clients behave much the same as their non-
Kerberized equivalents. Because of this, it is recommended that if they are required
to be included in the network files such as /etc/hosts.equiv and .rhosts that
the root users directory be removed. The Kerberized versions have the added benefit
of using Kerberos protocol for authentication and can also use Kerberos to protect
the privacy of the session using encryption.

Similar to telnet described previously, the rlogin and rsh clients use a session
key after the service ticket which it was derived from has expired. Thus, for
maximum security, rlogin and rsh sessions should be re-initialized periodically.
rlogin uses the -f, -F, and -x options in the same fashion as the telnet client.
The /etc/krb5/krb5.conf file supports the following rlogin options: forward,
forwardable, and encrypt.

Command-line options override configuration file settings. For example, if the rsh
section in the krb5.conf file indicates encrypt false, but the -x option is used
on the command line, an encrypted session is used.

rcp

Kerberized rcp can be used to transfer files securely between systems using
Kerberos authentication and encryption (with the -x command-line option). It does
not prompt for passwords, the user must already have a valid TGT before using rcp
if they wish to use the encryption feature. However, beware if the -x option is not
used and no local credentials are available, the rcp session will revert to the
standard, non-Kerberized (and insecure) rcp behavior. It is highly recommended
that users always use the -x option when using the Kerberized rcp client.The
/etc/krb5/krb5.conf file supports the encrypt [true/false] option.

login

The Kerberos login program (login.krb5) is forked from a successful
authentication by the Kerberized telnet daemon or the Kerberized rlogin
daemon. This Kerberos login daemon is separate from the standard Solaris OE login
daemon and thus, the standard Solaris OE features such as BSM auditing are not yet
supported when using this daemon. The /etc/krb5/krb5.conf file supports the
krb5_get_tickets [true/false] option. If this option is set to true, then the
login program will generate a new Kerberos ticket (TGT) for the user upon proper
authentication.



Chapter 3 Defining Directory Service Security Architecture 81

ftp

The Sun Enterprise Authentication Mechanism (SEAM) version of the ftp client
uses the GSSAPI (RFC 2743) with Kerberos v5 as the default mechanism. This means
that it uses Kerberos authentication and (optionally) encryption through the
Kerberos v5 GSS mechanism. The only Kerberos-related command-line options are -
f and -m. The -f option is the same as described above for telnet (there is no need
for a -F option). -m allows the user to specify an alternative GSS mechanism if so
desired, the default is to use the kerberos_v5 mechanism.

The protection level used for the data transfer can be set using the protect
command at the ftp prompt. Sun Enterprise Authentication Mechanism software
ftp supports the following protection levels:

■ Clear unprotected, unencrypted transmission

■ Safe data is integrity protected using cryptographic checksums

■ Private data is transmitted with confidentiality and integrity using encryption

It is recommended that users set the protection level to private for all data
transfers. The ftp client program does not support or reference the krb5.conf file
to find any optional parameters. All ftp client options are passed on the command
line. See the man page for the Kerberized ftp client, ftp(1).

In summary, adding Kerberos to a network can increase the overall security
available to the users and administrators of that network. Remote sessions can be
securely authenticated and encrypted, and shared disks can be secured and
encrypted across the network. In addition, Kerberos allows the database of user and
service principals to be managed securely from any machine which supports the
SEAM software Kerberos protocol. SEAM is interoperable with other RFC 1510
compliant Kerberos implementations such as MIT Krb5 and some MS Windows 2000
Active Directory services. Adopting the practices recommended in this section
further secure the SEAM software infrastructure to help ensure a safer network
environment.

Implementing the Sun ONE Directory Server 5.2
Software and the GSSAPI Mechanism
This section provides a high-level overview, followed by the in-depth procedures
that describe the setup necessary to implement the GSSAPI mechanism and the Sun
ONE Directory Server 5.2 software. This implementation assumes a realm of
EXAMPLE.COM for this purpose. The following list gives an initial high-level
overview of the steps required, with the next section providing the detailed
information.



82 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

1. Setup DNS on the client machine. This is an important step because Kerberos
requires DNS.

2. Install and configure the Sun ONE Directory Server version 5.2 software.

3. Check that the directory server and client both have the SASL plug-ins installed.

4. Install and configure Kerberos v5.

5. Edit the /etc/krb5/krb5.conf file.

6. Edit the /etc/krb5/kdc.conf file.

7. Edit the /etc/krb5/kadm5.acl file.

8. Move the kerberos_v5 line so it is the first line in the /etc/gss/mech file.

9. Create new principals using kadmin.local, which is an interactive command-
line interface to the Kerberos v5 administration system.

10. Modify the rights for /etc/krb5/krb5.keytab. This access is necessary for the
Sun ONE Directory Server 5.2 software.

11. Run /usr/sbin/kinit.

12. Check that you have a ticket with /usr/bin/klist.

13. Perform an ldapsearch, using the ldapsearch command-line tool from the
Sun ONE Directory Server 5.2 software to test and verify.

The sections that follow fill in the details.

Configuring a DNS Client
To be a DNS client, a machine must run the resolver. The resolver is neither a daemon
nor a single program. It is a set of dynamic library routines used by applications that
need to know machine names. The resolver’s function is to resolve users’ queries. To
do that, it queries a name server, which then returns either the requested
information or a referral to another server. Once the resolver is configured, a
machine can request DNS service from a name server.



Chapter 3 Defining Directory Service Security Architecture 83

The following example shows you how to configure the resolv.conf(4) file in the
server kdc1 in the example.com domain.

The first line of the /etc/resolv.conf file lists the domain name in the form:

domain domainname

Note – No spaces or tabs are permitted at the end of the domain name. Make sure
that you press return immediately after the last character of the domain name.

The second line identifies the server itself in the form:

nameserver IP_address

Succeeding lines list the IP addresses of one or two slave or cache-only name servers
that the resolver should consult to resolve queries. Name server entries have the
form:

nameserver IP_address

IP_address is the IP address of a slave or cache-only DNS name server. The resolver
queries these name servers in the order they are listed until it obtains the
information it needs.

For more detailed information of what the resolv.conf file does, refer to the
resolv.conf(4) man page.

▼ To Configure Kerberos v5 (Master KDC)

In the this procedure, the following configuration parameters are used:

■ Realm name = EXAMPLE.COM

■ DNS domain name = example.com

■ Master KDC = kdc1.example.com

■ admin principal = lucy/admin

■ Online help URL =
http://example:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

;
; /etc/resolv.conf file for dnsmaster
;
 domain             example.com
 nameserver         192.168.0.0
 nameserver         192.168.0.1



84 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Note – This procedure requires that DNS is running.

Note – Before you begin this configuration process, make a backup of the
/etc/krb5 files.

1. Become superuser on the master KDC. (kdc1, in this example)

2. Edit the Kerberos configuration file (krb5.conf).

Note – You need to change the realm names and the names of the servers. See the
krb5.conf(4) man page for a full description of this file.

In this example, the lines for domain_realm, kdc, admin_server, and all
domain_realm entries were changed. In addition, the line
with ___slave_kdcs___ in the [realms] section was deleted and the line that
defines the help_url was edited.

kdc1 # more /etc/krb5/krb5.conf
       [libdefaults]
               default_realm = EXAMPLE.COM

       [realms]
                       EXAMPLE.COM = {
                       kdc = kdc1.example.com
                       admin server = kdc1.example.com
               }

       [domain_realm]
               .example.com = EXAMPLE.COM

       [logging]
               default = FILE:/var/krb5/kdc.log
               kdc = FILE:/var/krb5/kdc.log

       [appdefaults]
           gkadmin = {
               help_url =
http://example:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956
               }



Chapter 3 Defining Directory Service Security Architecture 85

3. Edit the KDC configuration file (kdc.conf).

You must change the realm name. See the kdc.conf(4) man page for a full
description of this file.

In this example, only the realm name definition in the [realms] section is changed.

4. Create the KDC database by using the kdb5_util command.

The kdb5_util command, which is located in /usr/sbin, creates the KDC
database. When used with the -s option, this command creates a stash file that is
used to authenticate the KDC to itself before the kadmind and krb5kdc daemons
are started.

Note – The -r option followed by the realm name is not required if the realm name
is equivalent to the domain name in the server’s name space.

kdc1 # more /etc/krb5/kdc.conf
[kdcdefaults]
               kdc_ports = 88,750

       [realms]
               EXAMPLE.COM= {
                       profile = /etc/krb5/krb5.conf
                       database_name = /var/krb5/principal
                       admin_keytab = /etc/krb5/kadm5.keytab
                       acl_file = /etc/krb5/kadm5.acl
                       kadmind_port = 749
                       max_life = 8h 0m 0s
                       max_renewable_life = 7d 0h 0m 0s
Need moving ---------> default_principal_flags = +preauth
               }

kdc1 # /usr/sbin/kdb5_util create -r EXAMPLE.COM -s
Initializing database ’/var/krb5/principal’ for realm
’EXAMPLE.COM’
master key name ’K/M@EXAMPLE.COM’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: key
Re-enter KDC database master key to verify: key



86 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

5. Edit the Kerberos access control list file (kadm5.acl).

Once populated, the /etc/krb5/kadm5.acl file contains all principal names that
are allowed to administer the KDC. The first entry that is added might look similar
to the following:

This entry gives the lucy/admin principal in the EXAMPLE.COM realm the ability to
modify principals or policies in the KDC. The default installation includes an
asterisk (*) to match all admin principals. This default could be a security risk, so it
is more secure to include a list of all of the admin principals. See the kadm5.acl(4)
man page for more information.

6. Edit the /etc/gss/mech file.

The /etc/gss/mech file contains the GSSAPI based security mechanism names, its
object identifier (OID), and a shared library that implements the services for that
mechanism under the GSSAPI. Change the following from:

To the following:

lucy/admin@EXAMPLE.COM   *

# Mechanism Name        Object Identifier       Shared Library
Kernel Module
#
diffie_hellman_640_0    1.3.6.4.1.42.2.26.2.4   dh640-0.so.1
diffie_hellman_1024_0   1.3.6.4.1.42.2.26.2.5   dh1024-0.so.1
kerberos_v5             1.2.840.113554.1.2.2    gl/mech_krb5.so
gl_kmech_krb5

# Mechanism Name        Object Identifier       Shared Library
Kernel Module
#
kerberos_v5             1.2.840.113554.1.2.2    gl/mech_krb5.so
gl_kmech_krb5
diffie_hellman_640_0    1.3.6.4.1.42.2.26.2.4   dh640-0.so.1
diffie_hellman_1024_0   1.3.6.4.1.42.2.26.2.5   dh1024-0.so.1



Chapter 3 Defining Directory Service Security Architecture 87

7. Run the kadmin.local command to create principals.

You can add as many admin principals as you need. But you must add at least one
admin principal to complete the KDC configuration process. In the following
example, lucy/admin is added as the principal.

8. Create a keytab file for the kadmind service.

The following command sequence creates a special keytab file with principal
entries for lucy and tom. These principals are needed for the kadmind service. In
addition, you can optionally add NFS service principals, host principals, LDAP
principals, and so on.

Note – When the principal instance is a host name, the fully qualified domain name
(FQDN) must be entered in lowercase letters, regardless of the case of the domain
name in the /etc/resolv.conf file.

Once you have added all of the required principals, you can exit from
kadmin.local as follows:

kdc1 # /usr/sbin/kadmin.local
kadmin.local: addprinc lucy/admin
Enter password for principal "lucy/admin@EXAMPLE.COM":
Re-enter password for principal "lucy/admin@EXAMPLE.COM":
Principal "lucy/admin@EXAMPLE.COM" created.
kadmin.local:

kadmin.local: ktadd -k /etc/krb5/kadm5.keytab
kadmin/kdc1.example.com
Entry for principal kadmin/kdc1.example.com with kvno 3,
encryption type DES-CBC-CRC

added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab
changepw/kdc1.example.com
Entry for principal changepw/kdc1.example.com with kvno 3,
encryption type DES-CBC-CRC

added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local:

kadmin.local: quit



88 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

9. Start the Kerberos daemons as shown:

Note – You stop the Kerberos daemons by running the following commands:
kdc1 # /etc/init.d/kdc stop
kdc1 # /etc/init.d/kdc.master stop

10. Add principals by using the SEAM Administration Tool.

To do this, you must log on with one of the admin principal names that you created
earlier in this procedure. However, the following command-line example is shown
for simplicity.

11. Create the master KDC host principal which is used by Kerberized applications
such as klist and kprop.

12. (Optional) Create the master KDC root principal which is used for authenticated
NFS mounting.

kdc1 # /etc/init.d/kdc start
kdc1 # /etc/init.d/kdc.master start

kdc1 # /usr/sbin/kadmin -p lucy/admin
Enter password: kws_admin_password
kadmin:

kadmin: addprinc -randkey host/kdc1.example.com
Principal "host/kdc1.example.com@EXAMPLE.COM" created.
kadmin:

kadmin: addprinc root/kdc1.example.com
Enter password for principal root/kdc1.example.com@EXAMPLE.COM:
password
Re-enter password for principal
root/kdc1.example.com@EXAMPLE.COM: password
Principal "root/kdc1.example.com@EXAMPLE.COM" created.
kadmin:



Chapter 3 Defining Directory Service Security Architecture 89

13. Add the master KDC’s host principal to the master KDC’s keytab file which
allows this principal to be used automatically.

Once you have added all of the required principals, you can exit from kadmin as
follows:

14. Run the kinit command to obtain and cache an initial ticket-granting ticket
(credential) for the principal.

This ticket is used for authentication by the Kerberos v5 system. kinit only needs
to be run by the client at this time. If the Sun ONE directory server were a Kerberos
client also, this step would need to be done for the server. However, you may want
to use this to verify that Kerberos is up and running.

15. Check and verify that you have a ticket with the klist command.

The klist command reports if there is a keytab file and displays the principals. If
the results show that there is no keytab file or that there is no NFS service principal,
you need to verify the completion of all of the previous steps.

Note – The example given here assumes a single domain. The KDC may reside on
the same machine as the Sun ONE directory server for testing purposes, but there
are security considerations to take into account on where the KDCs reside.

kadmin: ktadd host/kdc1.example.com
kadmin: Entry for principal host/kdc1.example.com with
->kvno 3, encryption type DES-CBC-CRC added to keytab
->WRFILE:/etc/krb5/krb5.keytab
kadmin:

kadmin: quit

kdclient # /usr/bin/kinit root/kdclient.example.com
Password for root/kdclient.example.com@EXAMPLE.COM: passwd

# klist -k
Keytab name: FILE:/etc/krb5/krb5.keytab
KVNO Principal
---- ---------------------------------------------------------
3 nfs/host.example.com@EXAMPLE.COM



90 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

With regards to the configuration of Kerberos v5 in conjunction with the Sun ONE
Directory Server 5.2 software, you are finished with the Kerberos v5 part. It’s now
time to look at what is required to be configured on the Sun ONE directory server
side.

Sun ONE Directory Server 5.2 GSSAPI
Configuration
As previously discussed, the Generic Security Services Application Program
Interface (GSSAPI), is standard interface that enables you to use a security
mechanism such as Kerberos v5 to authenticate clients. The server uses the GSSAPI
to actually validate the identity of a particular user. Once this user is validated, it’s
up to the SASL mechanism to apply the GSSAPI mapping rules to obtain a DN that
is the bind DN for all operations during the connection.

The first item discussed is the new identity mapping functionality.

The identity mapping service is required to map the credentials of another protocol,
such as SASL DIGEST-MD5 and GSSAPI to a DN in the directory server. As you will
see in the following example, the identity mapping feature uses the entries in the
cn=identity mapping, cn=config configuration branch, whereby each protocol is
defined and whereby each protocol must perform the identity mapping. For more
information on the identity mapping feature, refer to the Sun ONE Directory Server
5.2 Documents.

▼ To Perform the GSSAPI Configuration for the Sun ONE
Directory Server Software

1. Check and verify, by retrieving the rootDSE entry, that the GSSAPI is returned as
one of the supported SASL Mechanisms.

Example of using ldapsearch to retrieve the rootDSE and get the supported SASL
mechanisms:

$./ldapsearch -h directoryserver_hostname -p ldap_port -b ""
-s base “(objectclass=*)” supportedSASLMechanisms
supportedSASLMechanisms=EXTERNAL
supportedSASLMechanisms=GSSAPI
supportedSASLMechanisms=DIGEST-MD5



Chapter 3 Defining Directory Service Security Architecture 91

2. Verify that the GSSAPI mechanism is enabled.

By default, the GSSAPI mechanism is enabled.

Example of using ldapsearch to verify that the GSSAPI SASL mechanism is
enabled:

$./ldapsearch -h directoryserver_hostname -p ldap_port
-D”cn=Directory Manager” -w password -b "cn=SASL, cn=security,cn=
config" “(objectclass=*)”
#
# Should return
#
cn=SASL, cn=security, cn=config
objectClass=top
objectClass=nsContainer
objectClass=dsSaslConfig
cn=SASL
dsSaslPluginsPath=/var/Sun/mps/lib/sasl
dsSaslPluginsEnable=DIGEST-MD5
dsSaslPluginsEnable=GSSAPI



92 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

3. Create and add the GSSAPI identity-mapping.ldif.

Add the LDIF shown below to the Sun ONE Directory Server so that it contains the
correct suffix for your directory server.

You need to do this because by default, no GSSAPI mappings are defined in the Sun
ONE Directory Server 5.2 software.

Example of a GSSAPI identity mapping LDIF file:

It is important to make use of the ${Principal} variable, because it is the only
input you have from SASL in the case of GSSAPI. Either you need to build a dn
using the ${Principal} variable or you need to perform pattern matching to see if
you can apply a particular mapping. A principal corresponds to the identity of a
user in Kerberos.

#
dn: cn=GSSAPI,cn=identity mapping,cn=config
objectclass: nsContainer
objectclass: top
cn: GSSAPI

dn: cn=default,cn=GSSAPI,cn=identity mapping,cn=config
objectclass: dsIdentityMapping
objectclass: nsContainer
objectclass: top
cn: default
dsMappedDN: uid=${Principal},ou=people,dc=example,dc=com

dn: cn=same_realm,cn=GSSAPI,cn=identity mapping,cn=config
objectclass: dsIdentityMapping
objectclass: dsPatternMatching
objectclass: nsContainer
objectclass: top
cn: same_realm
dsMatching-pattern: ${Principal}
dsMatching-regexp: (.*)@example.com
dsMappedDN: uid=$1,ou=people,dc=example,dc=com



Chapter 3 Defining Directory Service Security Architecture 93

Note – You can find an example GSSAPI LDIF mappings files in ServerRoot/slapd-
server/ldif/identityMapping_Examples.ldif.

The following is an example using ldapmodify to do this:

4. Perform a test using ldapsearch.

To perform this test, type the following ldapsearch command as shown below, and
answer the prompt with the kinit value you previously defined.

Example of using ldapsearch to test the GSSAPI mechanism:

The output that is returned should be the same as without the -o option.

Note – If you do not use the -h hostname option, the GSS code ends up looking for
a localhost.domainname Kerberos ticket, and an error occurs.

TLSv1/SSL Protocol Support
This section discusses the Transport Layer Security (TLS) and how it provides the
encrypted communications between two hosts, such as a directory server and client.
The topic is covered in two categories:

■ Server (directory server)
■ Client (Secured LDAP Client)

To dispel any misunderstandings you might have, this section explains the
differences between TLS and SSL.

$./ldapmodify -a -c -h directoryserver_hostname -p ldap_port
-D ”cn=Directory Manager” -w password -f identity-mapping.ldif
-e /var/tmp/ldif.rejects 2> /var/tmp/ldapmodify.log

$./ldapsearch -h directoryserver_hostname -p ldap_port -o mech=GSSAPI
-o authzid="root/hostname.domainname@EXAMPLE.COM" -b ““
-s base “(objectclass=*)”



94 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

SSL Background
The Secure Sockets Layer (SSL) was originally designed for the World Wide Web
(WWW) environment to provide a secure channel between two machines. The SSL
protocol has gone through various incarnations, beginning with version 1, and
evolving into it’s present state with its adoption be the Internet Engineering Task
Force (IETF), which is now referred to as the Transport Layer Security (TLS)
standard.

All the previous versions of the SSL protocol were developed by engineers who
worked for Netscape Communications. Netscape’s intention was to develop a
security model whereby they could provide a single solution to address all the
security issues around not only the Web, but also messaging, and news.

TABLE 3-2 shows the development cycle of SSL/TLS.

SSLv2

The goal of SSLv2 was to provide a secure channel between two hosts on the WWW
environment. With this in mind, the SSL protocol needed to fit in well with the
HTTP protocol, which is used by the Web. Netscape also wanted to provide a single
security solution, which meant that this solution would have to work with other
protocols and not just HTTP. Unfortunately, not all protocols use or require the same
security properties.

SSLv3

There is no question that SSLv2 was widely adopted resulting in a great deal of
popularity, thus ensuring that the design goals and principles of SSLv2 were carried
forward into SSLv3. The main goal for SSLv3 was to fix a number of security

TABLE 3-2 SSL and TLS Development Cycle

SSL / TLS Protocol Version Description

SSLv1 Developed by Netscape in 1994, but was never released.

SSLv2 Developed by Netscape in 1994, and the first release.

SSLv3 Developed by Netscape in 1995, and provided authentication
only.

TLS Adoption by the IETF in 1997. Provided new functionality
such as a new MAC algorithm and new key expansion.



Chapter 3 Defining Directory Service Security Architecture 95

problems found in SSLv2. This meant designing a more secure model that could
negotiate multiple cryptographic algorithms. The end result is that SSLv3 supports
many more multiple cryptographic algorithms.

TLS Background
In 1996 the IETF chartered the Transport Layer Security (TLS) working group to
attempt to standardize an SSL-like protocol. It became apparent early on that there
was very little support for changing the existing SSLv3 protocol, with the exception
of a few minor bugs and enhancements. To this end, the new protocol just became a
minor cleanup of SSLv3.

Understanding TLSv1 Transport Support

In your directory server (LDAP) deployment, it is highly likely that you have some
form of security requirements that must be addressed. Specific security requirements
are different from one organization to another. For example, a directory server
(LDAP) that is available on the Internet has very specific security needs.

To provide secure communications over a network, your directory server (in
particular, the Sun ONE Directory Server), includes and supports the LDAPS
communications protocol. LDAPS (LDAP over SSL) is the standard LDAP protocol,
which runs on top of the Secure Sockets Layer (SSL).

It is possible to not only use TLSv1 protocol to secure communications between a
directory server (LDAP) and directory clients (LDAP), but also between directory
servers (LDAP) that are bound by a replication agreement, or between a database
link and a remote database. You can use TLSv1 with Simple authentication (bind DN
and password), or with certificate-based authentication.

Two kinds of authentication mechanisms can be performed using TLSv1:

■ Server authentication

■ Client authentication

With server authentication, the client decides whether it trusts the certificate
presented by the server. With client authentication, the client decides whether it
trusts the certificate presented by the server, and the server decides whether it trusts
the certificate presented by the client. In the case of server authentication, the client
is not authenticated to the server at all. In the case of client authentication, the client
may be authenticated to the server if it also performs a bind using the SASL
EXTERNAL mechanism.



96 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Using TLSv1 with the Simple authentication mechanism guarantees confidentiality
and data integrity. One of the benefits of using a certificate to authenticate to the
Directory Server (LDAP) instead of a bind DN and password is improved security.

The use of the certificate-based authentication mechanism is more secure than non-
certificate bind operations. This is because certificate-based authentication uses
public-key cryptography. As a result, bind credentials cannot be intercepted across
the network.

The Sun ONE Directory Server software is capable of simultaneous TLSv1 and non-
SSL communications. This means that you do not have to choose between TLSv1 or
non-SSL communications for your directory server, because you can use both at the
same time.

But one of the downsides to using TLSv1 is reduced efficiency.

The process of data encryption, with generally DES or RC4 does significantly reduce
the throughput that can be achieved, and the initial negotiation and key agreement
with RSA or DSA is even more expensive. There are potentially three cases for which
you must be considered when dealing with the performance impact of TLSv1 in the
Sun ONE Directory Server 5.2 software:

■ Clients establish a connection over TLSv1 and maintain that connection for a
number of operations (persistent connections). This is the best scenario for
TLSv1 because the process of initializing the TLSv1-based connection is the
most expensive part. In this case, using TLSv1 will introduce degradation over
the performance when not using TLSv1.

■ Clients establish a connection over TLSv1, perform one or two operations (for
example, a bind and a search), close the connection, and then repeat. That is,
the same system or set of systems are repeatedly used to establish short-lived
TLSv1-based connections. This is much less efficient because as indicated
above, the process of establishing TLSv1-based connections is rather expensive.
However, it is not as bad as it could be because the same TLSv1 session (which
is also expensive to set up) can be re-used across multiple TCP connections.

■ Different client systems establish a connection over TLSv1, perform one or two
operations (for example, a bind and a search), and then close the connection.
That is, different systems are used to establish short-lived SSL-based
connections. This is the least efficient of the three scenarios because the TLSv1
sessions cannot be reused across the different TCP connections, which means
that the full negotiation process must be performed for each new connection.
This case is a very uncommon scenario for real-world directory use.

Why Use TLSv1?

TLSv1 is used to protect sensitive information. Data that travels over a network is
visible to a number of other machines on that network. This is especially of concern
for information traveling over the Internet. Normally, the other machines simply



Chapter 3 Defining Directory Service Security Architecture 97

ignore the information if it isn’t intended for them, but that isn’t necessarily the case.
Most network interfaces support a feature known as promiscuous mode, in which
they sue to pay attention to all traffic and not just information that pertains
specifically to that machine. This can be a very helpful diagnostic feature for
network administrators or even people that support a product that works in a
networked environment. Applications like snoop (included in the Solaris OE) or the
Network Monitor that comes with Windows NT, provide a mechanism for capturing
and displaying that information. These applications are often called sniffers or
protocol analyzers. More advanced protocol analyzers like Ethereal (available for
free on a number of platforms, or as source code from
http://www.ethereal.com) can even interpret the information that is captured
so that it can be more easily understood by the user. This is helpful with text-based
protocols like HTTP because it provides formatting for the request. It is invaluable
for binary protocols like LDAP because otherwise the task of decoding the
information and figuring out exactly what was going on between the client and the
server is much more difficult.

Sniffers can be very helpful tools when trying to track down problems that are
occurring in a networked environment. However, they can also be very helpful tools
to those with less honorable intentions. They make it easy to see any information
that is transferred over the network, so it is possible to capture sensitive information
like credit card numbers being used to buy a product on the Web, passwords being
used to bind to a directory server, or any other kind of information that would
otherwise be protected. Using TLSv1 can thwart these attempts because the
encrypted information is completely unintelligible except to the two machines that
are having the conversation.

The layer of privacy provided by TLSv1 does not come without a price. Because
TLSv1 is used to encapsulate information in another protocol, each machine must
deal with the extra overhead of encrypting information before sending it over the
network, and decrypting information received before attempting to interpret it. The
primary form of overhead is in CPU utilization, but it is also necessary to transfer
more information between the client and the server. For that reason, TLSv1 should
generally be used only when it is necessary to ensure the privacy of the information
that is being sent over the network.

How Does TLSv1 Work?

From a high level, TLSv1 works by encrypting information using data that is only
available to the two machines having the encrypted conversation. The foundation of
this set of information is the certificate. A certificate is a portion of binary data that
can be used to establish proof of identity. There are two important parts of a
certificate:

■ The public key

■ The private key



98 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

The public key is freely available and is used as the initial proof that the server is the
system that the client believes it is. The private key is available only to the server
and can be used to decrypt information that is encrypted using the server’s public
key.

Before information can be encrypted using TLSv1, a preliminary conversation must
occur between the client and the server, known as the TLSv1 handshake, which is
discussed in some detail later in this section. For now, this is what happens during
the TLSv1 handshake:

1. The client sends some information to the server, including the TLSv1 version
number that the client wants to use and some randomly generated data.

2. The server sends back some information that includes the TLSv1 version number
the server will use, some randomly generated data, and the server’s public key.

3. If the client decides to trust the server’s certificate as proof of identification, it
generates a shared secret. This shared secret is encrypted using the server’s public
key and sent to the server.

4. The server decrypts the data from the client using its private key to determine the
shared secret.

5. All communication between the client and the server beyond that point is
encrypted with that shared secret.

There is actually more that occurs during this TLSv1 handshake, but the above
description is a good starting point.

Types of TLSv1

Two-types of TLSv1 are commonly used:

■ Server authentication

■ Client authentication

Server authentication is the most common form and is the most basic level of
authentication that can be performed using TLSv1, and was explained in a brief
description in the previous section. Essentially, server authentication is used to
obtain enough information to get the shared secret to encrypt the information. It is
called server authentication because the process involves a mechanism whereby the
server sends proof of its identity to the client and the client is then able to decide
whether to trust that information and continue its conversation with the server. In
server authentication, the server automatically trusts the client, or trusts the client
through some mechanism built into the encapsulated protocol (for example, the
password used in an LDAP bind request). No proof of the client’s identity is
required in the TLSv1 handshake.



Chapter 3 Defining Directory Service Security Architecture 99

Client authentication extends the process of server authentication in that the server
requires proof of the client’s identity in addition to having to prove its identity to the
client. In this case, the TLSv1 handshake is extended to include the server requesting
that proof of identity from the client.

In this scenario, the client must have its own certificate, and send the public key to
the server so that the server can determine whether to trust the identity of the client.
The client does not require a certificate. This is only used when there is client
authentication. There is also an additional step involved in the generation of the
shared secret when client authentication is used.

FIGURE 3-3 shows that the TLS protocol runs above TCP/IP and below high-level
application protocols.

FIGURE 3-3 TLS Protocol in the Network Layer

TLS Protocol

The TLSv1 protocol is composed primarily of two subprotocols, which are:

■ TLSv1 Record Protocol

■ TLSv1 Handshake Protocol

The TLSv1 is the actual data transfer which is accomplished by the Record Protocol.
This is achieved by breaking up the data stream to be transmitted into a series of
fragments, with each fragment being independently protected and transmitted.
Before any fragment can be transmitted, it must be protected against any potential

IP

TCP

TLS/SSL

IMAP

LDAP

HTTP

Application Layer

Network Layer



100 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

attack. To provide the integrity protection, a message authentication code (MAC) is
computed over the data, and is transmitted along with the fragment. This MAC is
appended to the fragment and the concatenated data and MAC are encrypted to
form the encrypted payload. A header is then attached to the payload. It is the
concatenated header and encrypted payload that is referred as a record, which is then
actually transmitted. FIGURE 3-4 shows the record protocol.

FIGURE 3-4 Composition of TLSv1 Record Protocol

The TLSv1 handshake protocol has various purposes, one of which includes the
client and server negotiating on a set of algorithms which are used to protect the
data. The client and server establish a set of cryptograhic keys which are used by
these algorithms. The process works like this (also see FIGURE 3-5, and FIGURE 3-6
through FIGURE 3-10):

1. Server and client exchange hello messages

a. Establish protocol version

b. Set session ID

c. Agree to use one of the following cipher suites, choosing the strongest cipher
suite that is common between client and server:

- Key Exchange Algorithm (public-key: RSA, DH)

- Encryption Cipher

- MAC Algorithm

d. Establish compression method

e. Exchange random values

2. Establish server authentication

MAC

Header

Data

Data
fragment

MAC

Header

Data
fragment

Encrypted
payload

Record
protocol



Chapter 3 Defining Directory Service Security Architecture 101

a. Client confirms server’s identity

b. Server sends certificate (necessary for KEA)

The TLS protocol supports a variety of different cryptographic algorithms, or
ciphers, for use in operations such as authenticating the server and client to
each other, transmitting certificates, and establishing session keys. Clients and
servers can support different cipher suites, or sets of ciphers, depending on
factors such as the version of TLS they support, company policies regarding
acceptable encryption strength, and government restrictions on export of TLS-
enabled software. The TLS handshake protocol determines how the server and
client negotiate; which cipher suites they use, to authenticate each other, to
transmit certificates, and to establish session keys. TABLE 3-3 describes the
cipher suite algorithms.

Key-exchange algorithms like KEA and RSA key exchange govern the way in
which the server and client determine the symmetric keys they both use during
a TLS session. The most commonly used TLS cipher suites use RSA key
exchange.

c. Check certificate DN versus server’s DN (used to protect against man-in-the-
middle attack).

TABLE 3-3 Cipher Suite Algorithms

DES Data Encryption Standard, an encryption algorithm used by the U.S.
Government

DSA Digital Signature Algorithm, part of the digital authentication
standard used by the U.S. Government

KEA Key Exchange Algorithm, an algorithm used for key exchange by
the U.S. Government

MD5 Message Digest algorithm developed by Rivest

RC2 and RC4 Rivest encryption ciphers developed for RSA Data Security

RSA A public-key algorithm for both encryption and authentication.
Developed by Rivest, Shamir, and Adleman

RSA key exchange A key-exchange algorithm for SSL based on the RSA algorithm

SHA-1 Secure Hash Algorithm, a hash function used by the U.S.
Government

SSHA Salted Secure Hash Algorithm, a hash function used by the U.S.
Government

SKIPJACK A classified symmetric-key algorithm implemented in Fortezza-
compliant hardware used by the U.S. Government

Triple-DES DES applied three times



102 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

d. Premaster secret encrypted with server’s public key (successful decryption by
server provides additional authentication evidence)

e. Optionally check the host name used to connect to the server against the value
of the CN attribute in the server certificate’s subject DN. This is an optional
step, whereby the host names are compared to host names and not to the DNs.

FIGURE 3-5 SSL Handshake Steps

3. Perform key exchange:

a. Generate Pre-master secret

b. Client and server share pre-master secret

c. Secret shared using KEA

d. RSA KEA example:

- Client creates pre-master secret

- Encrypt pre-master secret with server’s public key

- Server decrypts pre-master secret with its own private key

Server’s certificate

Server’s public key

Certificate’s serial number

Certificate’s validity period

Server’s DN

Issuer’s DN

Issuer’s
digital signature

Client’s list
of trusted CAs

Issuing CA’s
certificate

Issuer’s DN

Issuer’s public key

Issuer’s digital
signature

Is today’s date within 
validity period?

Is issuing CA a trusted 
CA?

Does issuing CA’s public 
key validate issuer’s 
digital signature?

Does the domain name 
specified in the server’s 
DN match the server’s 
actual domain name?

1

2

3

4



Chapter 3 Defining Directory Service Security Architecture 103

4. Perform client authentication (optional) – For client authentication, it is up to the
client whether it wishes to authenticate itself to the server. The client sends its
certificate which contains the client’s name (and possibly alternate names) and the
client’s public key and the CA – which the server should trust.

a. Server confirms client’s identity

b. Client sends certificate at server’s request with the following:

- Client’s identity

- Client’s public key

c. Client authenticates identity/public key binding. The ability to encrypt using
the private key proves that the client is the owner of the certificate based on
the assumption that only that user knows the private key.

d. Digital signature: random data encrypted with client’s private key to validate
signature with client’s public key

e. Verify certificate within client’s LDAP entry to allow certificate revocation. This
is only done after the TLSv1 negotiation is complete, and then only if the client
sends a SASL bind request using the EXTERNAL mechanism and the server is
configured to verify the certificate presented by the client against the certificate
stored in the user’s entry. If this is not the case, then the client certificate is not
verified against anything in the user’s entry, nor is any attempt made to
associate the client certificate with any user entry during the TLSv1 negotiation
process.



104 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-6 Client Authentication

5. Generate master secret (client and server)

This is generated during first connection, and shared between connections.

6. Generate session keys (client and server, new for each connection)

7. Exchange cipher spec messages and finished messages

a. Change cipher spec and announce start of encrypted message exchange

b. Finished messages already encrypted with session key

John Doe’s certificate

John Doe’s public key

Certificate’s serial number

Certificate’s validity period

John Doe’s DN

Issuer’s DN

Issuer’s
digital signature

Directory
server

John Doe’s
digital signature

Server’s list
of trusted CAs

Issuing CA’s
certificate

Issuer’s DN

Issuer’s public key

Issuer’s digital
signature

Is today’s date
within validity 
period?

Is issuing CA a 
trusted CA?

Does issuing CA’s 
public key validate 
issuer’s digital 
signature?

Is user’s certificate listed
in LDAP entry for user?

2

3

4

5

Does user’s public key
validate user’s digital
signature?

1



Chapter 3 Defining Directory Service Security Architecture 105

FIGURE 3-7 SSL Handshake Flow Chart (1 of 4)

FIGURE 3-8 SSL Handshake Flow Chart (2 of 4)

Client Server

Client Hello:
  Version
  Session ID
  Cipher suites
  Compression method
  Random value

Server Hello:
  Version
  Session ID
  Cipher suites
  Compression method
  Random value

Generate
client random

Generate
server random

Server Hello complete

Client Server
Server certi cate
Server DN
Server public key

Certi cate request

Server
authenticated

f

f

certificate

Certificate



106 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-9 SSL Handshake Flow Chart (3 of 4)

FIGURE 3-10 SSL Handshake Flow Chart (4 of 4)

TLSv1/SSL in the Sun ONE Directory Server 5.2
Software
The Sun ONE Directory server has the ability to support the TLSv1/SSL protocol in
multiple areas, and can be enabled in the following situations:

■ Both the administration server and DSML access are listening to HTTPS (HTTP
over SSL). In this case HTTP over SSL refers to DSMLv2.

■ Replication over SSL

■ LDAP operations over SSL

■ Chaining over SSL

■ Console connected via SSL

Digital signature
(client private key)

Client Server

Pre-master secret
(server public key)

Client certificate
Client DN
Client public key

Generate
pre-master

secret

Client
authenticated

Client Server

Finished (bulk cipher key)

Change cipher specs

Finished (bulk cipher key)

Change cipher specs

Generate
master secret

and session keys

Generate
master secret

and session keys



Chapter 3 Defining Directory Service Security Architecture 107

The TLSv1/SSL Layer in the Sun ONE Directory Server 5.2 software is derived from
the Network Security Services (NSS), and Netscape Portable Runtime (NSPR). NSS is
a set of libraries designed to support cross-platform development of security-
enabled server applications, and NSPR which provides low-level cross-platform
support for operations such as threading and I/O. It is the Network Security
Services that provides support for SSLv2, SSLv3, and TLSv1 and other security
standards.

TABLE 3-4 lists the NSS and NSPR versions that are a component of the Sun ONE
Directory Server 5.2 software and indicates where you can find more information.

FIGURE 3-11 shows a simplified view of the relationships between the NSS and NSPR
shared libraries.

FIGURE 3-11 NSS/NSPR Architecture

The Network Security Services (NSS) has various security tools available, which may
prove useful in the debugging and managing of your TLSv1/SSL implementation.

TABLE 3-4 NSS and NSPR versions

Component Version Additional Information

Network Security Services (NSS) 3.3.4 http://www.mozilla.org/projects/
security/pki/nss

Netscape Portable Runtime
(NSPR)

4.1.4 http://www.mozilla.org/projects/nspr

NSPR

OS

NSS
TLSv1/SSL

NSS /NSPR
architecture



108 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

TLSv1/SSL Tools

Before we take a look at some of the TLSv1/SSL tools (TABLE 3-5), please be aware
that these tools are not integrated into the Solaris 9 OE. You can get these tools from
the Sun ONE Directory Server Resource Kit (SDRK) which is available from the Sun
Download Center:

http://wwws.sun.com/software/download/products/sunone

Tools such as ssltap and many others can be obtained from:

http://www.mozilla.org/projects/security/pki/nss/tools/

This section describes some of the security certificate databases such as cert7.db,
key3.db, and the secmod.db, which can list, generate, modify, or delete certificates
within the cert7.db file and create or change the password, generate new public
and private key pairs, display the contents of the key database, or delete key pairs
within the key3.db file.

Security Databases
Public Key Cryptography Standard (PKCS) #11 specifies an API used to
communicate with devices that hold cryptographic information and perform
cryptographic operations. PKCS #11 supports a wide range of hardware and
software devices intended for such purposes.

A PKCS #11 module (also referred to as a cryptographic module or cryptographic
service provider) manages cryptographic services such as encryption and decryption
through the PKCS #11 interface. PKCS #11 modules can be thought of as drivers for
cryptographic devices that can be implemented in either hardware or software.

A PKCS #11 module always has one or more slots, which can be implemented as
physical hardware slots in some form of a physical reader (for example, smart cards)
or as conceptual slots in software. Each slot for a PKCS #11 module can contain a
token, which is the hardware or software device that actually provides
cryptographic services and optionally stores certificates and keys. The following is a
brief explanation of the security databases:

■ cert7.db – The database where the certificates (and therefore the public keys
attached to them) are stored. Each certificate has a series of flags that account for
the role that every certificate can take, as well as the uses for which that certificate
is to be trusted. You can list, add, and modify the certificates within the database
with certutil.

■ key3.db – The database where the private keys associated to the public keys of
the user certificates in cert7.db are kept. This file is protected by a password or
pin.



Chapter 3 Defining Directory Service Security Architecture 109

■ secmod.db – The file that keeps track of the available security modules. It lists
each module with its slots and tokens, and specifies a default module. This is
where an external module must be declared for the server to be able to detect it.
By default, secmod.db manages two modules; the internal software module, and
the built-in CA certificate module. modutil is the tool used to add, list, and
modify modules to secmod.db.

Note – The Sun Crypto Accelerator 1000 card is the only PKCS#11 module that is
officially supported in the Sun ONE Directory Server 5.2 software.

TLSv1/SSL Configuration Overview

Before implementing the TLSv1/SSL functionality, you need to be aware of the
attributes and attribute values that are or may be required by the Sun ONE Directory
Server 5.2 software for the following attributes:

■ Certificate name

■ Supported cipher suites

■ Cryptographic token

■ Optionally, secure port number

When using the Sun ONE Directory Server software, you also need to be aware of
the following configuration entries:

TABLE 3-5 TLSv1/SSL Tools

Tool Description

certutil 2.0 Manages certificate and key databases (cert7.db and key3.db).

dbck 1.0 Analyzes and repairs certificate databases.

modutil 1.1 Manages the database of PKCS#11 modules (secmod.db). The
PKCS#11 modules refer to hardware encryption tokens like SSL
accelerator cards or secure key storage mechanisms. Adds modules
and modifies the properties of existing modules (such as whether a
module is the default provider of some crypto service).

pk12util 1.0 Imports and exports keys and certificates between the cert/key
databases and files in PKCS#12 format.

ssltap 3.2 Performs proxy requests for an SSL server and for contents of the
messages exchanged between the client and server. The ssltap tool
does not decrypt data, but it shows things like the type of SSL
message (clientHello, serverHello, and so forth) and connection
data (protocol version, cipher suite, and so forth). This tool is very
useful for debugging.



110 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

■ dn: cn=config

■ dn: cn=encryption, cn=config

In the cn=config entry, pay particular attention to the nsslapd-security and
nsslapd-secureport attributes. The nsslapd-security attribute enables the
use of the security features (TLSv1/SSL and attribute encryption) in the Sun ONE
Directory Server 5.2 software. If you require secure connections, or the use of the
attribute encryption feature, this attribute must be set to on. With the nsslapd-
secureport, you must select the TCP/IP port number that will be used for
TLSv1/SSL communications. The default TCP/IP port number is 636, and is only
used if the server has been configured with a private key and a certificate; otherwise
the server does not listen on this port.

In the cn=encryption, cn=config entry, there are a number of attributes and
attribute values to deal with such as specifying the support for a particular SSL
version. The nsSSL2 attribute supports SSLv2, while the nsSSL3 attribute supports
SSLv3. Both of these attributes can be set to on or off.

The nsSSLSessionTimeout specifies the session lifetime in the session cache (in
seconds). The Default is 0 (zero), which results in the following:

■ SSLv2 =100 sec

■ SSLv3 =24 h

The nsSSLClientAuth attribute has the following values associated with a
TLSv1/SSL connection:

■ Off – no client authentication

■ Allowed – request certificate, no error if no client certificate received

■ Required – request certificate, error if no client certificate received

■ Default – allowed

Next is the nsSSLServerAuth attribute, which stipulates the action that the
TLSv1/SSL client should take on the server certificate sent by the TLSv1/SSL server
in a TLSv1/SSL connection. The points of interest are:

■ Weak – accept a server’s certificate without checking the issuers CA

■ Cert – accept server’s certificate if the issuer CA is trusted

■ cncheck – accept the server’s certificate if:

■ The issuer CA is trusted

■ The certificate’s cn matches the server’s DNS host name

■ Default – cert



Chapter 3 Defining Directory Service Security Architecture 111

The following is an example of the cn=encryption,cn=config entry.

The nsSSL3Ciphers is a multi-valued attribute that specifies a set of encryption
ciphers that the Sun ONE Directory Server 5.2 software will use during TLSv1/SSL
communications. The following values are to be noted as interest:

■ enable/disable – to enable and disable cipher suites

■ +all – enable all cipher suites but rsa_null_md5

■ -all – disable all cipher suites

■ cipher_suite – enable or disable a cipher suite. Use the following syntax:

+cipher_suite1,-cipher_suite2,...

■ Default – all but rsa_null_md5 enabled

The nsKeyfile attribute provides the following:

■ Key database path relative to the SERVER_ROOT

■ Key database usually in the alias directory (alias/slapd-instancename-
key3.db)

The nsCertfile attribute provides the following:

■ Certificate database path relative to the directory server installation directory
(/var/Sun/mps by default)

■ Certificate database usually in the alias directory (alias/slapd-instancename-
cert7.db)

# Example of using ldapsearch to show the cn=encryption,cn=config
# entry.
$./ldapsearch -h directoryserver_hostname -p ldap_port -b “cn=
encryption,cn=config“ “(objectclass=*)”

#
# Should return
#

cn=encryption,cn=config
objectClass=top
objectClass=nsEncryptionConfig
cn=encryption
nsSSLSessionTimeout=0
nsSSLClientAuth=allowed
nsSSLServerAuth=cert
nsSSL2=off
nsSSL3=off



112 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

The nsSSLToken specifies where the certificate will be stored. In the vast majority of
installations, this will be internal (software), which means that the certificate will
be contained in the *cert7.db and *key3.db database files. However, it can be
different if the certificate is stored elsewhere (it will be something like
username@realm if you are using the Sun™ Crypto Accelerator 1000). The
nsSSLToken attribute can have the following values:

■ Token for the cryptograhic operations: internal / external

■ Default: internal (software)

The nsSSLPersonalityssl attribute specifies the nickname of the certificate that
is used as the TLSv1/SSL certificate for the directory server. It is generally
something like server-cert. The nsSSLPersonalityssl attribute has the
following values:

■ Certificate name

■ If external, token certname:tokenname - Even with external tokens, the format
is still just the nickname of the certificate. This is true at least with the SCA 1000
card, which is the only external token supported in the 5.2 directory server.
However, the nsSSLToken may be different for external tokens.

The nsSSLActivation attribute indicates whether the associated cipher family
should be considered enabled for use. Given that there will generally only be a
single cipher family (RSA), then it should be on if you want to use TLSv1/SSL in the
directory server. Finally, the nsSSLActivation has the following values:

■ on (the default)

■ off

Now that we have covered the essential attributes and their values, we can now take
a look at how we can now enable TLSv1/SSL in the Sun ONE Directory Server 5.2
software

Enabling TLSv1/SSL in the Sun ONE Directory
Server 5.2 Software
This section describes the process of creating a certificate database, obtaining and
installing a certificate for use with your Sun ONE Directory Server 5.2 software, and
configuring the Sun ONE Directory Server 5.2 software to trust the certification
authority’s (CA) certificate. There are two methods you can use to perform these
tasks. One method uses the Console, the other is through the command line. Both
methods are covered in this chapter.

The following process is necessary before you can turn on TLSv1/SSL in the Sun
ONE Directory Server software.



Chapter 3 Defining Directory Service Security Architecture 113

1. Obtain and install a certificate for your directory server, and configure the
directory server to trust the certification authority’s certificate. See “Obtaining
and Installing Server Certificates” on page 113.

2. Turn on TLSv1/SSL in the Sun ONE Directory Server 5.2 software. See
“Activating TLSv1/SSL in the Sun ONE Directory Server 5.2 Software” on
page 126.

3. (Optional) Ensure that each user of the directory server obtains and installs a
personal certificate for all clients that will authenticate using TLSv1/SSL. This
procedure is not covered in this book.

Note – LDAPS implicitly requires you to have a secure port to listen to. With the
Start TLS operation, this is no longer a requirement.

Obtaining and Installing Server Certificates

You must perform the following tasks to obtain and install server certificates.

■ “Task 1: Generate a Certificate Request (Console)” on page 113

■ “Task 2: Obtain the Certificate From a Certificate Authority (CA)” on page 118

■ “Task 3: Install the Certificate” on page 121

■ “Task 4: Trust the Certificate Authority” on page 123

■ “Task 5: Confirm That Your New Certificates Are Installed” on page 124

These tasks use wizards where possible. You can accomplish the same objectives on
the command line by performing the following procedure:

■ “To Obtain and Install Server Certificates Using the Command-Line Interface” on
page 124

For testing purposes, you can generate a self-signed certificate as described in:

■ “To Generate a Self-Signed Certificate Request” on page 125

▼ Task 1: Generate a Certificate Request (Console)

1. On the Sun ONE Directory Server Console, select the Tasks tab and click Manage
Certificates.

If this is the first time that you’ve opened this window, you are asked to assign a
password to protect the key db as shown in FIGURE 3-12. This password is required to
start the directory server when TLSv1/SSL is enabled.

The Manage Certificates window is displayed (FIGURE 3-13).



114 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-12 Console Security Device Password Window

FIGURE 3-13 Manage Certificates Window



Chapter 3 Defining Directory Service Security Architecture 115

2. Select the Server Certs tab, and click the Request button.

The Certificate Request Wizard is displayed (FIGURE 3-14).

3. Click Next.

4. Enter the Requestor Information in the text fields (FIGURE 3-14), then click Next.

The following information is required:

■ Server Name – Enter the fully qualified host name of the directory server as it is
used in DNS lookups, for example, blueprints.example.com.

■ Organization – Enter your organization name.

■ Organizational Unit – Enter your organizational unit information.

■ City/locality – Enter your city name.

■ State/province – Enter the full name of your state or province (no abbreviations).

■ Country/region – Select the two-character abbreviation for your country’s name
(ISO format). The country code for the United States is US, Great Britain is GB,
Holland is NL, Singapore is SG, and so on.

FIGURE 3-14 Certificate Request Wizard – Requestor Information Dialog Box



116 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

5. In the Token Password dialog box (FIGURE 3-15), enter the password that will be
used to protect the private key, and click Next.

Note – The Next button is greyed out until you supply a password. When you click
Next, the Request Submission dialog box is displayed.

FIGURE 3-15 Certificate Request Wizard – Token Password Dialog Box

6. In the Request Submission dialog box (FIGURE 3-16), select Copy to Clipboard to
copy the certificate request information that you will send to the Certificate
Authority.



Chapter 3 Defining Directory Service Security Architecture 117

FIGURE 3-16 Certificate Request Wizard – Request Submission Dialog Box

Example of the PKCS #10 Request:

You use this generated request to request a certificate from a certificate authority (the
next task).

# Example PKCS #10 Request
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIB3jCCAUcCAQAwgZ0xCzAJBgNVBAYTAkdCMRcwFQYDVQQIEw5HcmVhdGVyIExv
bmRvbjEPMA0GA1UEBxMGTG9uZG9uMRgwFgYDVQQKEw9CbHVlUHJpbnRzIEluYy4x
KDAmBgNVBAsTH1N1biBPTkUgRGlyZWN0b3J5IChMREFQKSBTZXJ2ZXIxIDAeBgNV
BAMTF3Npcm9lLnVrLmJsdWVwcmludHMuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GN
ADCBiQKBgQDFSPHLHPJaFXDIiLphKhaDOBB4QAOUr40o8QIVB4gzsRVtPxeGUuy8
o+mGprCpgXpu0fNG5v8tgjiv4pzFL+r1UjJrTWQTLWMO6znGuAufR35B//nO2e6d
GQQvvYAPcxQFTOcfXcmJuoDyfR38DkGbVUdHFpa3ELADTnd2HGW/NQIDAQABoAAw
DQYJKoZIhvcNAQEEBQADgYEAeITbrpLpG0ODyJmLh1eQMCM1ZgD2A7v9I5q1eDWz
xiWZVMPXPzmMFXjA+YOnfBd/UGBCHF6cmNCoTugolsGhir3dTIjACsoStcNf8x1P
IfCkUZ0C6pQBOIbb1ochcojU8Al6jd2s26vhC+6xmEwf9Z3vfLcI/1mevQ8HCC8n
uBM=
-----END NEW CERTIFICATE REQUEST-----



118 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

▼ Task 2: Obtain the Certificate From a Certificate Authority
(CA)

In this task you have a couple of options:

■ Send the previously generated certificate request to a certificate authority in
email, or

■ Go to a Certificate Authority web site and paste your request.

The outcome should be the same with either choice. That is, the CA will send you a
certificate through e-mail. It is worth noting that the way to request a certificate from
a CA varies depending on the CA.

The Sun ONE Certificate Manager software can be used to manage and sign digital
certificates. This procedure uses the Sun ONE Certificate Manager as the CA. For
small organizations, self-signed certificates are acceptable. However, for enterprise
configurations, using an established CA is recommended.

Note – Sun ONE Certificate Manager version 4.7 is used in this procedure.

1. Using a browser, go to the Sun ONE Certificate Manager secure URL.

This example uses https://example.blueprints.com:443/

2. Select SSL Application Server under the Enrollment tab.

3. Copy the certificate request from the directory server, and paste it into the
certificate manager system (in the TLSv1/SSL Server PKCS#10 request area, as
shown in FIGURE 3-17):

Note – It is advisable to have multiple Registration Authorities (RA) that you can
select from, for example, BluePrints Inc. CA for production systems, and BluePrints
Inc. TEST CA for development and test systems.



Chapter 3 Defining Directory Service Security Architecture 119

FIGURE 3-17 Sun ONE Certificate Manager Test Registration Authority

Note – Be sure to Include the “-----BEGIN CERTIFICATE-----” and “-----END
CERTIFICATE-----” tags in the information pasted into the certificate install wizard.



120 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

4. Fill out all the other information required by the Certificate Authority (CA) as
described in TABLE 3-6.

The revocation password is needed if a certificate holder wants the certificate
revoked, but does not have access to the private key in order to sign the revocation
request.

5. Click Submit at the bottom of the page.

The Certificate Request Result screen appears (FIGURE 3-18), confirming that the
request has been submitted. Note the request ID provided in the response message
in the example below (You can use it later to retrieve the certificate, once the
certificate has been issued).

FIGURE 3-18 Sun ONE Certificate Manager Test Registration Authority

TABLE 3-6 Information Required by the CA

Name Enter your name here

Email Enter your email address.

Additional Comments Enter your request details here. As an example, your
request may be for enabling TLSv1/SSL on your own
Enterprise Directory Service Infrastructure.

Revocation Password Enter the database PIN for this system



Chapter 3 Defining Directory Service Security Architecture 121

Next, your request gets added to the agent queue of the Certificate Manager for
approval by that Certificate Manager’s agent. If you have permissions to access that
Certificate Manager’s Agent interface, you can issue the certificate. Otherwise, you
should wait for the other agent to approve the request you submitted and issue the
certificate.

The Sun ONE Certificate Manager administrator must approve the request by going
to the services URL. Example: http://example.blueprints.com:8100

Once you are in the Certificate Request Approval Page, you can perform the
following to view that status of your request:

1. On the Certificate Management Retrieval Services menu, click Check Request
Status.

2. Enter the request ID that was given to you when you submitted the initial
request.

The following is an example of the information returned to you:

Request: 2114
Submitted on: 4/8/2003 12:38:59
Status: pending

▼ Task 3: Install the Certificate

This task is dependent on receiving an email from your CA with instructions on how
to pick up your certificate (usually the CA provides you with a URL).

1. Using a browser, go to the URL that was provided by the CA.

2. In the Sun ONE Directory Server Console, select the Tasks tab and click Manage
Certificates.

The Manage Certificates window is displayed.

3. Select the Server Certs tab, and click Install.

The Certificate Install Wizard is displayed.

4. Select In the following encoded text block.

5. Copy and Paste the base-64 formatted certificate.

See FIGURE 3-19 for an example of entering the certificate into the Certificate Wizard.



122 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-19 Certificate Install Wizard

6. Check that the certificate information you have pasted is displayed correctly, and
click Next.

The new TLSv1/SSL server certificate appears in the list of Server Certs in the
Certificate Manager Window (FIGURE 3-20).

FIGURE 3-20 List of Server Certificates



Chapter 3 Defining Directory Service Security Architecture 123

▼ Task 4: Trust the Certificate Authority

Configuring the Sun ONE Directory Server 5.2 software to trust the certificate
authority consists of obtaining your CA’s certificate and installing it into your
server’s certificate database. Once you have the CA certificate, you can use the
Certificate Install Wizard to configure the Sun ONE Directory Server software to
trust the Certificate Authority.

1. On the Sun ONE Directory Server 5.2 Console, select the Tasks tab and click
Manage Certificates.

The Manage Certificates window is displayed.

2. For each of the CA certs, go to the CA Certs tab, and click Install.

The Certificate Install Wizard is displayed.

3. Locate the CA certificate (or CA certificate chain in its base-64 encoded format),
and select Retrieval and then Import CA Certificate Chain.

4. Select Display Certificates in the CA Certificate Chain for Importing Individually
into a Server and then click Submit.

5. Copy the text of the base 64 cert.

Copy the section between “-----BEGIN CERTIFICATE-----” and “-----END
CERTIFICATE-----” and paste it into the window.

Note – Repeat this install for each of the Certificates (sections between “-----BEGIN
CERTIFICATE-----” and “-----END CERTIFICATE-----”) present on the page.

6. Check that the certificate information that is displayed is correct, and click Next.

7. Select both of the following as the purpose of trusting this Certificate Authority:

Accepting connections from clients (Client Authentication). The server checks that
the client’s certificate has been issued by a trusted Certificate Authority.

Accepting connections to other servers (Server Authentication). The server checks
that the directory to which it is making a connection (for example, for replication
updates) has a certificate that has been issued by a trusted Certificate Authority.

8. Click Done to dismiss the wizard.

Once you have installed your certificate and trusted the CA’s certificate, you are
ready to activate TLSv1/SSL. However, before proceeding, you should first make
sure that the certificates have been installed correctly.



124 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

▼ Task 5: Confirm That Your New Certificates Are Installed

1. On the Sun ONE Directory Server Console, select the Tasks tab and click Manage
Certificates.

The Manage Certificates window is displayed.

2. Select the Server Certs tab.

A list of all the installed certificates for the server are displayed.

3. Scroll through the list. You should find the certificates that you have installed.

The Sun ONE Directory Server software is now ready for TLSv1/SSL activation.

Using the Command Line to Obtain and Install
Server Certificates
The following steps are performed on the command line instead of through a GUI.
The five steps listed here have the same results as all the tasks that use the GUI.

▼ To Obtain and Install Server Certificates Using the
Command-Line Interface

1. If you do not have certutil in you current PATH, you must either change
directory to server-root/shared/bin or set the LD_LIBRARY_PATH shell variable
to server-root/lib.

2. Run the certutil command to generate a Certificate Signing Request (CSR) as
shown:

The certutil binary is located in server-root/shared/bin.

3. Take this output and provide it to a third-party CA to be signed (just like you
would with the request generated through the Sun ONE Directory Server
Console).

$cd server-root/shared/bin
$./certutil -R -s subject -a -d cert-dir -P "slapd-instancename-"



Chapter 3 Defining Directory Service Security Architecture 125

4. To install the certificate once it has been signed use the certutil command as
shown:

5. Import the CA certificate withe the certutil command:

▼ To Generate a Self-Signed Certificate Request

Use this procedure when you want to test TLSv1/SSL without using a real CA.

1. If you do not have certutil in you current PATH, you must either change
directory to server-root/shared/bin or set the LD_LIBRARY_PATH shell variable
to server-root/lib.

2. Issue the certutil command as shown:

Running the above command will request that a password is given to protect the key
db.

Note – The password must be at least eight characters long, and must contain at
least one non-alphabetic character.

You are prompted for a password to protect the private key store, which you should
provide, and then it will create a new certificate database in the server-root/alias
directory.

3. Issue the following command:

$cd server-root/shared/bin
$./certutil -A -n server-cert -t Pu,Pu,Pu -a -i certfile -D cert-dir -P
"slapd-instancename-"

$cd server-root/shared/bin
$./certutil -A -n ca-cert -t CT,CT,CT -a -i ca_certfile -D cert-dir -P
"slapd-instancename-"

$cd server-root/shared/bin
$ ./certutil -N -d <serveroot>/alias -P "slapd-example -”

$cd server-root/shared/bin
$ ./certutil -S -n "server-cert" -s subject -t CTPu,CTPu,CTPu -x -v
12 -d <serveroot>/alias -P "slapd-example -" -5



126 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

The -t option specifies the trust attributes to modify in an existing certificate or to
apply to a certificate when creating it or adding it to a database. In this example, we
used CTPu, where C is the trusted CA to issue server certificates (SSL only), where T
is the trusted CA to issue the client certificates to, where P is the trusted peer, and u
is the certificate that can be used for authentication or signing. For more information
on certutil, refer to:
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

4. Respond as prompted.

You are asked to randomly enter a text until the progress meter is full, then asked for
the password for the private key store (the one you just used above). You receive a
list of options for certificate extensions. Enter a 1 to indicate that it is an SSL server,
followed by a 9 to indicate that there are no more extensions. Say y to indicate that
it is a critical extension.

After completing the above successfully, you can use the certificate in this database
for your directory server. It is self-signed, and nothing will trust it by default, so you
must use that newly-created database as the trust store as well.

The following databases are also created:

■ slapd-example-cert7.db

■ slapd-example-key3.db

Activating TLSv1/SSL in the Sun ONE Directory
Server 5.2 Software
Before you can activate TLSv1/SSL, you must create a certificate database, obtain
and install a server certificate, and trust the CA’s certificate as described in
“Obtaining and Installing Server Certificates” on page 113.

Once those tasks are complete, you can then enable the TLSv1/SSL capabilities of
the Sun ONE Directory Server software. This process is simple, but involves a few
tasks. The first task is to configure the directory server to use TLSv1/SSL.

▼ To Configure the Directory Server to Use TLSv1/SSL

1. Select the Configuration tab from the Sun ONE Directory Server Console
(FIGURE 3-21).



Chapter 3 Defining Directory Service Security Architecture 127

FIGURE 3-21 Encryption Tab in the Configuration Window in the Sun ONE Directory
Console

2. Select the Encryption tab from the right pane, and choose:

■ Security Device (token)
■ Certificate

3. Choose Cipher family preferences by clicking the corresponding check box and
clicking on the Settings button next to “Cipher:”.

FIGURE 3-22 is an example of the Cipher Preferences for the Sun ONE Directory
Server 5.2 software.



128 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-22 Cipher Preference Panel

4. Set the client authentication policy.

5. Check Enable SSL for this server.

6. Select the server certificate by name.

7. (Optional) Choose to connect the Sun ONE Server Console to Directory Server
over TLSv1/SSL.

It is strongly recommended that you do not select Use SSL in Sun ONE Server
Console while initially enabling SSL in the server. If you do this and there is a
problem with the way that TLSv1/SSL has been configured, it will not be possible to
administer the server through the console without manually editing information
under o=NetscapeRoot. If you want to administer the directory server through the
admin console using TLSv1/SSL, then you should enable that after you have
confirmed that TLSv1/SSL has been properly configured.

8. (Optional) Configure and set the Secure Port for the Sun ONE Directory Server
software.

a. Go to the Configuration➤ Network Tab as shown in FIGURE 3-23.



Chapter 3 Defining Directory Service Security Architecture 129

FIGURE 3-23 Network Tab in the Sun ONE Directory Console

b. Specify in the bottom of this pane whether you wish to disable, allow, or
require client authentication.

In most cases, the default of Allow client authentication is acceptable.

Note – It is possible to require client authentication for TLSv1/SSL-based
connections and still be able to use the admin console, as long as the admin console
is not communicating with the directory server over TLSv1/SSL. Therefore, if you
want to require client authentication, one possibility is to set nsslapd-listenhost
to 127.0.0.1 so that it only listens for non-secure connections on the loopback
interface, and run the admin console from the directory server machine itself,
connecting over LDAP rather than LDAPS.

9. Click Save.

After clicking Save, the Console shows a dialog box telling you changes do not take
affect until the server is restarted. You must use the command line for this, because
the command line provides a means of entering a password.



130 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

10. Stop and restart the directory server.

Example:

Note – If you configure the directory server to verify the client certificate against a
certificate stored in the user’s entry, then you can use either a binary or an ASCII
representation of the certificate to add the data to the user’s entry. Usually it’s easier
to use the ASCII version because it is easier to include in an LDIF file.

Additional Information about TLSv1/SSL in the Sun ONE
Directory Server Software

By default, the Sun ONE Directory Server software uses port 636 for encrypted
communication because this is the standard LDAPS port. If this port is already in
use, or if you would like to use a different port, you can also specify that in the
administration server. Under the Configuration tab, click on the Settings tab in the
right pane instead of the Encryption tab. The port to use for LDAPS communications
is specified in the text field labeled Encrypted port in the Network Settings section.
Enter the correct value, and click the Save button to update the configuration.

Alternatively, you can specify the port to use for TLSv1/SSL communication with
the secure-port directive (nsslapd-secureport) in the dse.ldif configuration
file.

Although you can use the nsslapd-listenhost parameter in the dse.ldif
configuration file to specify the IP address on which the directory server will listen,
this applies only to unencrypted LDAP traffic. If you wish to restrict LDAPS
communication to a single IP address, you can do so with the nsslapd-
securelistenhost directive.

When all of the TLSv1/SSL-related configuration of the Sun ONE Directory Server
software is complete, you must restart the server in order for the changes to take
effect and cause the directory server to actually listen for LDAPS requests. This
introduces a problem, however, because the directory server must be able to access
the private key on startup, but this is stored in the certificate database key store,
which is password-protected. You will be prompted for this password when the
directory server starts, either on the command line (on UNIX systems) or in a dialog
box (on Windows NT). On UNIX systems, the fact that the password will be
requested from the command line means that you will not be able to use the

# directoryserver_install_dir/slapd-instancename/stop-slapd
# directoryserver_install_dir/slapd-instancename/start-slapd
Enter PIN for Internal (Software) Token:
#



Chapter 3 Defining Directory Service Security Architecture 131

administration console to restart the directory server. It also means that the directory
server will not automatically start when the machine boots on either UNIX or
Windows NT systems. To remedy this, you can create a file that contains the
password so that you will not be prompted for the password when the server is
restarted. This file should be stored in the alias directory under the directory
server install root and should be called
slapd-instancename-pin.txt, where instancename is the name of the directory
server instance for which you have installed the certificate. You will also see files
named slapd-instancename-cert7.db and slapd-instancename-key3.db in that
directory, which are the certificate trust and key stores, respectively. The text that
should be placed in your file is Internal (Software) Token:password, where
password is the password for the certificate key store (there should not be any spaces
on either side of the colon). Permissions on that file should be configured so that
they are identical to the permissions of the certificate trust and key store,
respectively.

At this point, you can restart the directory server and you should not be asked for a
password. Use the command netstat -an to look at the network sockets that are
in use on the machine. You should be able to see that the directory server is listening
on both ports 389 and 636 (or whatever LDAP and LDAPS ports you have chosen).
If you do not, then there is likely a problem with the TLSv1/SSL configuration, and
you should check the directory server’s error log for more information.

Using TLSv1/SSL in the Sun ONE Server Console

The Sun ONE Administration Server Console is actually a web server that uses the
HTTP protocol to communicate with the administration console and LDAP to
communicate with the configuration directory with the use of CGI. However, it
doesn’t have to be that way. The administration server can use HTTPS to
communicate with the administration console and LDAPS to communicate with the
configuration directory. In order to do the former, it needs a server certificate, and
the latter requires that the certificate used by the configuration directory is trusted
by the administration server. This section describes how to do each of these.

The process of requesting and installing certificates in the administration server is
almost exactly the same as requesting and installing certificates in the directory
server. The only difference is that you do it in the administration server
configuration of the Administration Server console instead of in one of the directory
server instances. Upon opening the Sun ONE Server Console for the Administration
Server, click on the Configuration tab and then the Encryption tab (FIGURE 3-24). You
will see what is essentially the same interface as the Encryption tab in the directory
server console.

Note – In the Sun ONE Server Console (5.2) there are now options to either Disable
Client Authentication, or Require Client Authentication.



132 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-24 Sun ONE Server Console

To request and install a server certificate, and to install CA certificates and trusted
certificate chains, use the certificate setup wizard exactly as you would use it to
perform those functions if the certificates were for the directory server.

Similarly, the process of enabling TLSv1/SSL in the Sun ONE Administration Server
Console is virtually identical to enabling TLSv1/SSL in the Sun ONE Directory
Server software. Simply check the Enable SSL for this Server checkbox. At that point,
it is necessary to restart the administration server. This should be done on the
command line in UNIX systems because you will be prompted for the key store
password. You cannot use a PIN file to automate this process as you can with the
directory server, however a simple workaround exists. Because the start-admin
program is simply a shell script that sets up the appropriate environment to invoke
the ns-httpd executable to start the administration server, and because the
TLSv1/SSL password is read from STDIN, you can pipe the password to the process
when it is started.



Chapter 3 Defining Directory Service Security Architecture 133

Enabling TLSv1/SSL in the Sun ONE Administration Server
Console

Unlike the directory server, which has the ability to listen for both LDAP and
LDAPS requests at the same time, the administration server can only listen for HTTP
or HTTPS traffic, but not both. Therefore, once TLSv1/SSL is enabled in the
administration server, the console must use TLSv1/SSL to communicate with it. The
change required to do this is simple, but is often overlooked, and might be a source
of confusion when you can no longer log in to the administration console once the
administration server is using TLSv1/SSL.

The change that needs to be made is in the Administration URL, which is typically
http://servername:port. Once TLSv1/SSL is enabled for the administration
server, the URL must change from http to https, as shown in FIGURE 3-25:

FIGURE 3-25 Using TLSv1/SSL in the Sun ONE Administration Server Console With
an https URL

Understanding and Using TLSv1/SSL LDAP
Client Architecture
This section describes the LDAP operations using both the ldapsearch and
ldapmodify commands over TLSv1/SSL and the Secured LDAP Client
implementation in the Solaris OE. Before processing, the following requirements
must be meet. The following is only given as an outline with the details discussed
later:

■ Certificate database:

■ Install the server cert’s issuer CA cert – trust for server authentication (trust
flag: C)

■ If cert-based client authentication is required:

■ Key database

■ Request and install user certificate in cert db

https://blueprints.example.com:



134 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

■ Install user cert’s issuer CA cert in server’s cert db - trust for client
authentication (trust flag: T)

Once a certificate has been installed in the directory server and TLSv1/SSL has been
enabled, you should test this functionality to ensure that everything is working
properly. The easiest and most convenient way to do this is by using the
ldapsearch command-line utility. This utility is located in the shared/bin
directory under the directory server root and has the ability to communicate with
the directory server using TLSv1/SSL using either server or client authentication.

Note – This is not the Solaris 9 OE integrated version of the ldapsearch
command-line tool.

First, it is necessary to understand the syntax for the ldapsearch utility without
TLSv1/SSL enabled. The basic syntax for the ldapsearch command is as follows:

The options described in TABLE 3-7 are the most commonly used:.

$./ldapsearch options query attributes-to-return

TABLE 3-7 Common ldapsearch Options

Command-line
Options Comment

-h The DNS host name or IP address of the directory server. If this
parameter is not specified, the default localhost (127.0.0.1) is used.

-p The port on which the directory server is listening. If this parameter is
not specified, the default 389 is used.

-D The DN to use to bind to the directory server. If this parameter is not
specified, the search will be performed anonymously.

-w The password to use for the bind DN. If a bind DN is specified, the
password is required.

-b The DN of the entry to use as the search base. This parameter is
required.

-s The search scope. It must be one of the following:
• base

• one

• onelevel

• sub

• subtree

If this parameter is not specified, then a default of subtree is used.



Chapter 3 Defining Directory Service Security Architecture 135

The easiest way to test connectivity to the directory server using ldapsearch is to
retrieve the root DSE. This entry is available anonymously (so no bind credentials
are required), and it is known to exist in the directory server no matter how the
administrator has configured the server. The root DSE has a null DN, which you can
specify in ldapsearch as “”, and you must perform a base-level search to get any
results. Assuming that the directory server is listening on 127.0.0.1:389, the
correct syntax for the search is:

You will see the root DSE in LDIF format returned. This is returned using the
unencrypted LDAP protocol, but confirms that the directory server is up and
responding properly.

Look at the ldapsearch operational arguments for the ldapsearch command
over TLSv1/SSL as shown in TABLE 3-8.

Note – Earlier versions of the directory server did not require the -K argument to
ldapsearch if you were only using TLSv1/SSL server authentication. However,
starting with version 5.1, and still applicable to version 5.2, it is necessary to provide
the path to the private-key store even if client authentication is not going to be used.
This is because of a change in the underlying LDAP SDK for C used to build tools
like ldapsearch and ldapmodify.

$./ldapsearch -h 127.0.0.1 -p 389 -b "" -s base "(objectclass=*)"

TABLE 3-8 Common Command-line Options to ldapsearch with TLSv1/SSL

Command-line Options Comment

Simple Authentication:

-p Secure port

-Z TLSv1/SSL encrypted
connection

-P cert-db-path

Certificate-based client
authentication:

-K key-db-path

-W key-db-pwd

-N certificate-name

-3 cn check in server authentication



136 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

To test the TLSv1/SSL capabilities of the Sun ONE Directory Server software, you
must add a couple more parameters to the search request. The -Z parameter, as
mentioned above, indicates that you are using TLSv1/SSL to make an LDAPS
connection, and the -P path-to-trust-db parameter specifies the location of the
certificate trust database. The easiest certificate trust database to use is the directory
server’s own certificate database, which is the slapd-instancename-cert7.db file
in the server-root/alias directory, because we know that the directory server’s own
certificate is included in that trust database and is trusted by default.

Additionally, you must change the port from the insecure LDAP port to the
TLSv1/SSL-enabled LDAPS port of the directory server. With the above changes, the
following command should be able to retrieve the root DSE of the directory server
using LDAPS, (assuming that the directory is listening for LDAPS requests on
127.0.0.1:636 and the instance name of the server is example).

Note – The above command should all be on one line.

In the above example, you can see exactly the same results as in the previous search,
but the search is done using LDAPS instead of LDAP. If so, then the directory server
is responding properly to TLSv1/SSL requests using server authentication.

The ldapsearch utility can also be configured to make LDAPS requests using client
authentication. This process is significantly more complex than server authentication
and carries a few additional requirements. Those requirements include:

■ The public and private keys of the client certificate must exist in the certificate
database that is used.

■ The client certificate must exist in the directory server in the
usercertificate;binary attribute of the entry with which you are binding.
This is only true if the certmap.conf file has been configured to verify the
certificate (verifycert set to on).

■ The certificate mapping mechanism must be used to uniquely map the certificate
subject DN to an entry in the database. There are a number of ways of
establishing this mapping if the DN of the user does not match the subject DN of
the certificate (and it is not very common for a user certificate’s subject DN to
match the DN of the user’s entry in the directory). But unless the subject of the
client certificate exactly matches the DN of the directory entry containing the
certificate, you must provide the -D parameter that contains the DN of the user
entry as whom you wish to bind. The certmap.conf allows some flexibility
here.

$./ldapsearch -h 127.0.0.1 -p 636 -b "" -s base -Z
-P ../../alias/slapd-example-cert7.db "(objectclass=*)"



Chapter 3 Defining Directory Service Security Architecture 137

The mechanism for fulfilling these requirements is discussed in the next section of
configuring an LDAP Client to use TLSv1/SSL. It must be noted, however, that if
you want to use client authentication, it is recommended that you use a Netscape
Communicator (any browser can be used that supports certificate and key
databases) certificate database (this is shown in our example) rather than the
directory server’s certificate database. Once you have met those requirements, then
you must specify the additional parameters, as shown in TABLE 3-8, for the
ldapsearch command.

All of the examples in this section used the ldapsearch command-line utility to
interact with the Sun ONE Directory Server software using LDAPS. The same
functionality exists in the ldapmodify utility, which can be used to add, delete, or
modify entries in the directory server. The use of the ldapmodify command is not
discussed here, but all of theTLSv1/SSL related options are exactly the same for
ldapmodify as for ldapsearch. Therefore, if you can use ldapsearch to search
the directory using an TLSv1/SSL-encrypted connection, then you can use those
same options with ldapmodify to modify the directory server data.

▼ To Generate a TLSv1/SSL Client Certificate

In this procedure showing an example of using client authentication, all of the users
on a client that wish to use TLSv1/SSL when connecting to a Sun ONE directory
server using LDAP client applications, must generate a TLSv1/SSL client certificate.
To create a certificate we need to follow these steps listed below:



138 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

1. Request a signed certificate from the CA using the Netscape browser.

This example in FIGURE 3-26 uses the Sun ONE Certificate Server URL to request a
client certificate (https://blueprints.example.com:443):

FIGURE 3-26 Sun ONE Certificate Manager

2. Fill in all the necessary information.

3. Select the Submit button at the bottom of the request page.

The browser generates a keypair and sends the public part of this keypair to the Sun
ONE Certificate Server in our example. The Sun ONE Certificate Server software
then signs the key together with the additional information that you previously
provided.



Chapter 3 Defining Directory Service Security Architecture 139

FIGURE 3-27 Key Generation Dialog Box

4. Click OK (FIGURE 3-27).

5. Enter a password to protect your private key (FIGURE 3-28).



140 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-28 Password Request Dialog Box

After you enter your password, the private key is generated. If you are using
Netscape Communicator or the Mozilla browser, you should see cert7.db,
key3.db and secmod.db under your browser’s directory (for example, the
.netscape or .mozilla directories). The Netscape browser uses the security
database files in the ~/.netscape directory. Therefore, it is already set up to query
the Sun ONE directory server using TLSv1/SSL. The secmod.db is the file where
Network Security Services (NSS) lists the different PCKS#11 modules available to
you. Each module can have several slots, each slot being usually based on a token or
security device.

For instance, the NSS library delivers an internal module by default, which consists
of a couple of slots (you can see this by using modutil on the
secmod.db/secmodule.db):

■ Slot NSS Internal Cryptographic Services -> Token “NSS Generic Crypto Services”

■ Slot NSS User Private Key and Certificate Services -> Token “NSS Certificate DB”

This file is also where you plug in your external modules, such as accelerator cards.

If you experience a message like the following:



Chapter 3 Defining Directory Service Security Architecture 141

Please enter the password of pin for the Communicator
Certificate DB

Then it assumes you have already provided a password the first time you accessed
your browser’s certificate/key databases. If you don’t remember the password, there
is nothing you can do, and you will have to generate a new cert/key database pair.

The Sun ONE Certificate software presents a request ID to you. Before you can
import the certificate, the Certificate Server Administrator must approve your
request. You can receive the request notification by email or verbally.

Example of a Certificate Request being sent by email:

<html>
<body>
<h2>An automatically generated notification from <i>ca</i></h2>
Your certificate request has been processed successfully.
<p>
SubjectDN= <b>E=lucy.ruble@example.com,CN=Lucy Ruble,UID=
lucyr,OU=Publishing,O=Example,C=US</b><br>
IssuerDN= <b>CN=Certificate Manager,O=Example,Inc,C=us</b><br>
notAfter= <b>09-Jan-04 9:28:59 PM</b><br>
notBefore= <b>10-Jan-03 9:28:59 PM</b><br>
Serial Number= <b>153</b><p>
<p>
To get your certificate, please follow this
<A HREF="https://cms.blueprints.com:444/displayBySerial?op=
displayBySerial&serialNumber=153">URL</A>

Please contact your admin if there is any problem.
</body>
</html>



142 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Example of a Request that has been successfully submitted is shown in FIGURE 3-29.

FIGURE 3-29 Example of a Successfully Submitted Request

The following examples show actual signed certificate components.

This is the certificate section:

# Example certificate
Certificate  0x099

 Certificate contents

    Certificate:
        Data:
            Version:  v3
            Serial Number: 0x99

Signature Algorithm: MD5withRSA - 1.2.840.113549.1.1.4
            Issuer: CN=Certificate Manager,O=blueprints, C=us
            Validity:
                Not Before: Thursday, April 10, 2003 9:28:59 PM
                Not  After: Friday, April 9, 2004 9:28:59 PM



Chapter 3 Defining Directory Service Security Architecture 143

            Subject: E=lucy.ruble@sun.com,CN=Lucy Ruble,UID=
lucyr,OU=Publishing,O=Example‚ Inc,C=US
            Subject Public Key Info:
                Algorithm: RSA - 1.2.840.113549.1.1.1
                Public Key:

30:81:89:02:81:81:00:AE:1D:D5:23:20:AC:F7:BD:B8:
44:42:77:BE:23:AA:FD:32:46:41:CA:D1:F0:F2:24:94:
43:71:ED:63:22:84:DB:EC:68:2B:FF:32:D1:FC:F6:B4:
98:39:7C:B4:ED:B7:A7:12:89:EE:C2:DF:8D:71:D3:35:
07:56:0E:33:F0:F5:A6:EE:6B:DD:43:92:FD:90:31:8B:
0B:B9:DD:5A:8E:05:79:15:F4:21:87:FC:DC:81:73:49:
03:32:78:D2:AA:13:0F:32:D5:E4:C1:88:92:B7:B3:B5:
B6:CF:2B:AF:68:C8:A4:8C:D6:1B:02:74:81:45:93:D1:

                    8F:E8:A5:C9:59:ED:85:02:03:01:00:01
            Extensions:

Identifier: Certificate Type - 2.16.840.1.113730.1.1
                    Critical: no
                    Certificate Usage:
                        SSL Client
                        Secure Email
                Identifier: Key Type - 2.5.29.15
                    Critical: yes
                    Key Usage:
                        Digital Signature
                        Non Repudiation
                        Key Encipherment

Identifier: Authority Key Identifier - 2.5.29.35
                    Critical: no
                    Key Identifier:

DB:6B:27:D7:93:90:3B:68:BB:41:10:12:AB:36:D8:95:
                        02:60:F0:6C
        Signature:
            Algorithm: MD5withRSA - 1.2.840.113549.1.1.4
            Signature:

94:5B:04:2D:0B:82:A6:FD:C9:C0:49:95:B1:C1:8D:09:
67:7C:AA:E0:A1:ED:4D:CF:4A:2F:FF:66:87:B1:88:D0:
FA:B0:AA:EB:68:15:7F:92:87:52:FD:7E:A1:2B:0C:AA:

                D6:FE:BE:05:B4:09:97:E9:6D:CC:27:7A:88:4D:87:09



144 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

The following is the certificate fingerprint section:

These are the details on how to install the certificate:

6. Once you receive a signed certificate, import the signed certificate.

With the signed certificate, it is now possible to import the signed client certificate.
To perform this, scroll down to the end of the page, and look for:

Importing this certificate

To import the certificate into your client, select the Import Your Certificate button.

# Example certificate fingerprint

Certificate fingerprints

    MD2:   4F:22:38:50:E2:C4:A4:09:95:06:E0:E4:A0:1F:9B:3F
    MD5:   9E:8F:5F:ED:9F:FB:D2:14:2D:AF:74:E0:62:90:60:CE
    SHA1:
2D:8E:33:90:19:CE:18:7E:B3:9B:5C:4D:DC:AE:B5:05:3A:FD:F8:87

# Example of how to install the certificate

The following format can be used to install this certificate into
a Netscape server.

-----BEGIN CERTIFICATE-----
MIICVjCCAgCgAwIBAgICAJkwDQYJKoZIhvcNAQEEBQAwOTELMAkGA1UEBhMCdXMx
DDAKBgNVBAoTA3N1bjEcMBoGA1UEAxMTQ2VydGlmaWNhdGUgTWFuYWdlcjAeFw0w
MzA0MTAxNjU4NTlaFw0wNDA0MDkxNjU4NTlaMIGgMQswCQYDVQQGEwJVSzEeMBwG
A1UEChMVU3VuIE1pY3Jvc3lzdGVtcywgSW5jMRgwFgYDVQQLEw9TdW4gRW5naW5l
ZXJpbmcxFzAVBgoJkiaJk/IsZAEBEwdtaDEzNzQ5MRcwFQYDVQQDEw5NaWNoYWVs
IEhhaW5lczElMCMGCSqGSIb3DQEJARYWbWljaGFlbC5oYWluZXNAc3VuLmNvbTCB
nzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEArh3VIyCs9724REJ3viOq/TJGQcrR
8PIklENx7WMihNvsaCv/MtH89rSYOXy07benEonuwt+NcdM1B1YOM/D1pu5r3UOS
/ZAxiwu53VqOBXkV9CGH/NyBc0kDMnjSqhMPMtXkwYiSt7O1ts8rr2jIpIzWGwJ0
gUWT0Y/opclZ7YUCAwEAAaNGMEQwEQYJYIZIAYb4QgEBBAQDAgWgMA4GA1UdDwEB
/wQEAwIF4DAfBgNVHSMEGDAWgBTbayfXk5A7aLtBEBKrNtiVAmDwbDANBgkqhkiG
9w0BAQQFAANBAJRbBC0Lgqb9ycBJlbHBjQlnfKrgoe1Nz0ov/2aHsYjQ+rCq62gV
f5KHUv1+oSsMqtb+vgW0CZfpbcwneohNhwk=
-----END CERTIFICATE-----



Chapter 3 Defining Directory Service Security Architecture 145

7. Enter the password for the Communicator Certificate Database (FIGURE 3-30).

FIGURE 3-30 Password Dialog Box for the Communicator Certificate Database

Once you have successfully typed in the correct password, you will have a new
private key stored in ~/.netscape/key3.db, and a new certificate stored in
~/.netscape/cert7.db.

You must make sure that the certificate of the CA that signed our TLSv1/SSL-client
certificate is trusted.

8. Verify and set up the appropriate trust relations.

a. From the Netscape browsers menu select Communicator ➤ Tools ➤ Security
Info.

b. Under the Certificates, select Your certificate.

You should see the certificate you just imported from the Certificate Server.

c. Select the certificate and click the Verify button.

The browser shows you a dialog box (FIGURE 3-31) showing that the certificate is
not trusted.

FIGURE 3-31 Netscape Verify a Certificate Dialog Box Showing Failed Verification



146 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

d. Go to the Security Info window, select Signers in the navigation frame and
select the certificate signer from the list in the right frame.

This changes the certificate so that it is trusted.

The CA that signed the certificate must have the appropriate trust relations. To
accomplish this task from the Netscape Browser.

e. Click the Edit button.

The Edit Certification Authority dialog box appears (FIGURE 3-32).

f. Modify the trust relation by checking each Accept option (FIGURE 3-32).

FIGURE 3-32 Edit a Certification Authority Dialog Box

g. Verify the client certificate again, as you did previously.

The browser shows that the certificate is now trusted (FIGURE 3-33).



Chapter 3 Defining Directory Service Security Architecture 147

FIGURE 3-33 Verify a Certificate Dialog Box

Initializing the Secured LDAP Client

When you initially created your client certificate, you chose to use the manual option
from the certificate management system (CMS). Remember, however, that by
selecting this option, you end up having your client certificate in your browser’s
certificate/key database pair, so these are the databases that you have to use with
the Secured LDAP client application.

To use the TLSv1/SSL security databases (cert7.db and key3.db), these databases
must be placed in the directory defined by the clients certificatePath attribute.
This is required because the Secured LDAP Client library (libsldap.so.1) uses
the ldapssl_client_init API from libldap to initialize itself to connect to a
secure LDAP server over TLsv1/SSL. This call requires the path to the database
containing certificates and the database must be a cert7.db certificate database.

You can use the NS_LDAP_HOST_CERTPATH parameter in the Secured LDAP Client
profile to specify the path. If you don’t, the path by default is the /var/ldap
directory. So copy the database files and give read access as shown in the following
example:

Note – The Netscape browser uses the security database files in the ~/.netscape
directory. Therefore, it is already set up to query the Sun ONE Directory Server
software using TLSv1/SSL.

# /usr/bin/cp /.netscape/cert7.db /var/ldap
# /usr/bin/cp /.netscape/key3.db /var/ldap
# /usr/bin/chmod 400 /var/ldap/cert7.db /var/ldap/key3.db



148 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

The Solaris OE version of the libldap library and TLSv1/SSL require mutual
authentication. Therefore, the servers IP address that the client uses must resolve to
the same name that is contained in the servers certificate. Because the servers
certificate uses its fully qualified domain name, example.com for example, if you
are using the Secured LDAP client, the address must resolve to the name in the
certificate.

Note – The LDAP name service cannot be used to resolve the address to the LDAP
server. DNS can be used for host resolution. If you add the host to the /etc/hosts
file, be sure to add it so that the host name resolves to the same name that is in the
certificate.

First add the full host name and address of the server to the /etc/hosts file. Edit
the /etc/nsswitch.ldap file to use files and then LDAP for hosts resolution.
The modified nsswitch.ldap file should have an entry as follows:

hosts: files ldap

You must modify the /etc/nsswitch.ldap file because when you run the
ldapclient init command, it is copied to the /etc/nsswitch.conf file.

The TLSv1/SSL support in the Secured LDAP Client is implemented as a library,
and it is libldap.so.5 that actually implements the client side of it. This works in
the following way.

In the Secured LDAP client profile, the authenticationMethods that you can
specify are:

■ NONE
■ SIMPLE
■ SASL/DIGEST-MD5
■ SASL/CRAM-MD5
■ TLS:NONE
■ TLS:SIMPLE
■ TLS:SASL/CRAM-MD5
■ TLS:SASL/DIGEST-MD5

Those that start with TLS: indicate that a TLSv1/SSL session is required. When the
libsldap library sets up the connection to the Sun ONE Directory (LDAP) Server
(or any directory server for that matter), it first calls a private interface in
libldap.so.5 to initialize the client application for TLSv1/SSL (open the
certificate database), then calls the private interface again to initialize an LDAP
session with the secure directory server. After this, everything is performed in the
same way as a non-TLS session.

In the Secured LDAP Client, there is a list of encryption types with encryption
strengths of TLSv1/SSl certificates that can be used by the Solaris OE Secured LDAP
Client.



Chapter 3 Defining Directory Service Security Architecture 149

The Secured LDAP client informs the directory server which cipher suites it
supports (in preferential order – see below). The directory server replies with the
subset of mechanisms it supports (in preferential order). The policy is to allow all of
these cipher suites, except those that are not enabled. The following cipher suites are
present by default:

■ SSL 3.0:
■ SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
■ SSL_RSA_WITH_RC4_128_MD5
■ SSL_RSA_WITH_3DES_EDE_CBC_SHA
■ TLS_RSA_EXPORT1024_WITH_RC4_56_SHA
■ TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA
■ SSL_RSA_EXPORT_WITH_RC4_40_MD5
■ SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
■ SSL_RSA_FIPS_WITH_DES_CBC_SHA
■ SSL_RSA_WITH_DES_CBC_SHA

These may work (see Note):

■ SSL_FORTEZZA_DMS_WITH_NULL_SHA
■ SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA
■ SSL_FORTEZZA_DMS_WITH_RC4_128_SHA

Note – The three Fortezza cases listed above require other things installed, such as
cards, boards, and tokens. Sun does not currently support them at this time.

For SSL2:

■ SSL_CK_RC4_128_WITH_MD5
■ SSL_CK_RC4_128_EXPORT40_WITH_MD5
■ SSL_CK_RC2_128_CBC_WITH_MD5
■ SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5
■ SSL_CK_IDEA_128_CBC_WITH_MD5
■ SSL_CK_DES_64_CBC_WITH_MD5
■ SSL_CK_DES_192_EDE3_CBC_WITH_MD5



150 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

▼ To Verify That TLSv1/SSL Is Working

This procedure verifies that TLSv1/SSL is working on the directory server and that
the client profile is set up.

1. Use the ldapsearch command as shown in the following examples.

$ ./ldapsearch -h directoryserver_hostname -p ldap_port
-D “cn=Directory Manager” -w password
-b “cn=encryption,cn=config” cn=*
objectClass=top
objectClass=nsEncryptionConfig
cn=encryption
nsSSLSessionTimeout=0
nsSSLClientAuth=allowed
nsSSLServerAuth=cert
nsSSL2=off
nsSSL3=on

$ ./ldapsearch -h directoryserver_hostname -p ldap_port
-b "ou=profile,dc=example,dc=com" "cn=default"
cn=default,ou=profile,dc=example,dc=com
objectClass=top
objectClass=DUAConfigProfile
defaultServerList=blueprints.example.com
defaultSearchBase=dc=example,dc=com
authenticationMethod=tls:simple
followReferrals=FALSE
defaultSearchScope=one
searchTimeLimit=30
profileTTL=43200
cn=default
credentialLevel=proxy
bindTimeLimit=10



Chapter 3 Defining Directory Service Security Architecture 151

2. Initialize the Secured LDAP client with the ldapclient init command using
the name of the server instead of the address.

Example:

3. (Optional) Verify the encrypted traffic.

It is good practice to verify the encrypted traffic. Out of the standard Solaris OE
command-line tools, only the ldaplist and ldapaddent commands access the
Sun ONE Directory (LDAP) server using TLSv1/SSL. The command-line tools
(ldapsearch, ldapmodify and ldapdelete) that are provided with the Sun ONE
Directory software distribution are enhanced to use TLSv1/SSL. These are located in
the path/directory-server-instance/shared/bin directory.

Here is an example of verifying the encrypted traffic with TLSv1/ SSL using the
ldapsearch command:

To actually verify that the traffic is encrypted, use something like the Solaris 9 OE
/usr/sbin/snoop command (see Appendix C, “Using snoop with LDAP). The
more advanced protocol analyzers like Ethereal (available for free for a number of
platforms, and as source code from http://www.ethereal.com) can even
interpret the information that is captured so that it can be more easily understood.
This is helpful with text-based protocols like HTTP because it provides formatting

$ ./ldapclient init -a proxydn=cn=proxyagent, ou=profile,dc=
example,dc=com -a proxypassword=proxy -a domainname=example.com
example.com
#
$ ldapclient list
NS_LDAP_FILE_VERSION= 2.0
NS_LDAP_BINDDN= cn=proxyagent,ou=profile,dc=example,dc=com
NS_LDAP_BINDPASSWD= {NS1}ecc423aad0
NS_LDAP_SERVERS= blueprints.example.com
NS_LDAP_SEARCH_BASEDN= dc=example,dc=com
NS_LDAP_AUTH= tls:simple
NS_LDAP_SEARCH_REF= FALSE
NS_LDAP_SEARCH_SCOPE= one
NS_LDAP_SEARCH_TIME= 30
NS_LDAP_PROFILE= default
NS_LDAP_CREDENTIAL_LEVEL= proxy
NS_LDAP_BIND_TIME= 10

$ ./ldapsearch -h directoryserver_hostname -p ldap_port 636 -Z
-P /var/ldap/cert7.db -b "dc=example,dc=com" "cn=*"



152 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

for the request. It is invaluable for binary protocols like LDAP because the task of
decoding the information and figuring out exactly what is going on between the
client and the server is much more difficult.

Note – Ethereal is available on the Solaris 8 and 9 OE Companion Software CDs.
However, support for this utility is not provided by Sun.

Start TLS Overview
The TLS Protocol Version 1.0 is defined in RFC 2246. Before deciding to use the Start
TLS functionality, it is worth taking the time to understand what TLS actually offers.
The primary use of the TLS protocol with LDAP is to ensure connection
confidentiality and integrity, and to optionally provide for authentication. Be aware
that using the Start TLS operation on its own does not provide any additional
security because the security element is accomplished through the use of TLS itself.

The level of security provided though the use of TLS is dependent directly on both
the quality of the TLS implementation used and the style of usage of that
implementation.

Note – The Start TLS extended operation in the Sun ONE Directory Server 5.2
software is available on all platforms. This was not the case with version 5.1, where
NT is not supported.

The Start TLS operation is an extended operation defined by the LDAPv3 protocol
that is initiated by a client starting the TLS protocol over an already established
LDAP connection. What actually happens is that the client transmits an LDAP PDU
(protocol data unit) containing the LDAPv3 ExtendedRequest, and specifying the
OID for the Start TLS operation. The OID is:

1.3.6.1.4.1.1466.20037

This extended operation enables the ability of securing a connection that was not
secure, based on a client’s demand.

This extended operation is forwarded to the directory server in terms of an LDAP
extended request that contains a specific OID as referenced above, identifying the
Start TLS operation. It is up to the directory server to decide whether or not the
request should be accepted or rejected. The server sends an extended LDAP PDU
containing a Start TLS extended response back to the client with either a successful
or a non-successful answer as to whether the directory server is willing and able to
negotiate TLS. If the ExtendedResponse contains a result code indicating success,
then the directory server is willing and able to negotiate TLS. If, on the other hand,



Chapter 3 Defining Directory Service Security Architecture 153

the ExtendedResponse contains a result code other than success, this indicates that
the directory server is unwilling or unable to negotiate TLS. If the Start TLS
extended request is not successful, the result code will be one of:

■ operationsError – TLS already established.

■ protocolError – TLS is not supported or incorrect PDU structure.

■ referral – The directory server does not support TLS.

■ unavailable – There is a serious problem with TLS, or the directory server is
down.

In the case that a successful response is returned, the directory server initializes
TLSv1/SSL (initializes both the certificate and key databases, and sets the cipher
policy), imports the current socket into a TLSv1/SSL-socket, and configures it in
order to behave as a TLSv1/SSL server.

In the Sun ONE Directory Server 5.2 software, the Start TLS extended operation is
implemented as an internal extended operation plug-in. The implementation itself is
based on the IETF RFC 2830 “Lightweight Directory Access Protocol (v3): Extension
for Transport Layer Security” (ftp://ftp.rfc-editor.org/in-
notes/rfc2830.txt).

When the Sun ONE directory server receives a Start TLS extended operation request,
it performs a series of checks as specified in the above document (such as checking
whether there are other operations still pending on the connection, whether security
is enabled on the directory server, and so on). If successful, it performs the
TLSv1/SSL handshake and uses a secure connection.

As to the configuration of the Sun ONE directory server, no specific configuration
has to be taken into account except for the Windows platforms, where you must add
the ds-start-tls-enabled: on attribute to the cn=config entry. This is
necessary because on Windows, the server handles connections differently
depending on whether they are secured or non-secured; secured connections need to
be handled using NSPR (as NSS is built upon NSPR), whereas non-secured ones
benefit from the Windows I/O completion ports architecture, which turns out to be
more efficient. So, if you want to convert a non-secured connection into a secured
one (perform Start TLS operation), you must know beforehand so that the server can
also handle non-secured connections using NSPR right from the start-up.

For Start TLS to work, the security must be enabled in the server, with all the
necessary configuration (certificate and key databases, server certificate available,
cipher preferences set, client authentication policy specified, and so forth).

Note – You don’t need to have a dedicated secure port open. That is, in fact, one of
the strong points of Start TLS— it allows you to have secure connections on the non-
secure LDAP port.



154 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

In summary, the complexity of setting up TLSv1/ SSL is mainly on the Sun ONE
directory server-side, and is categorized in the following main points:

1. Find a CA. You can use an existing one, or you will have to set up something like
the Sun ONE/iPlanet™ Certificate Server.

2. The Sun ONE Directory (LDAP) server has to get a server certificate from the CA,
and has to activate TLSv1/SSL afterwards.

3. The Secured LDAP Client has to get a CA certificate from the same CA.

4. You must copy $HOME/cert7.db and $HOME/key3.db to /var/ldap. The path
/var/ldap can be overwritten by setting up certificatepath with
ldapclient -a certificatepath path

Note – Currently the Secured LDAP does not use Start TLS.

5. If you want to test an LDAP client authentication, the server has to get a CA
certificate and the client has to get a client certificate from the same CA. But it’s
not required by the Secured LDAP Client.

Enhanced Solaris OE PAM Features
The Pluggable Authentication Module (PAM) feature is an integral part of the
authentication mechanism for the Solaris 9 OE. PAM provides you with the
flexibility to choose any authentication service available on a system to perform end-
user authentication. Other PAM implementations are Linux-PAM and OpenPAM.

By using PAM, applications can perform authentication regardless of what
authentication method is defined for a given client.

PAM enables you to deploy the appropriate authentication mechanism for each
service throughout the network. You can also select one or multiple authentication
technologies without modifying applications or utilities. PAM insulates application
developers from evolutionary improvements to authentication technologies, while at
the same time, allows deployed applications to use those improvements.

PAM employs run-time pluggable modules to provide authentication for system
entry services. PAM offers a number of benefits, including:

■ Offers flexible configuration policy by enabling each application or service to use
its own authentication policy. PAM provides the ability for you to choose a
default authentication mechanism. By using the PAM mechanism to require



Chapter 3 Defining Directory Service Security Architecture 155

multiple passwords, protection is enhanced on high-security systems. For
example, you might want users to be authenticated by Kerberos, and to bind to a
directory server using SASL/DIGEST-MD5.

■ Provides ease-of-use for end users. Password usage is easier using PAM. If users
have the same passwords for different mechanisms, they do not need to retype
the password. Configured and implemented properly, PAM offers a way to
prompt the user for passwords for multiple authentication methods without
having the user enter multiple commands. For example, a site may require
certificate-based password authentication for telnet access, while allowing
console login sessions with just a UNIX password.

■ Enhances security and provides ease-of-use of the Solaris 9 OE in an extensible
way. The security mechanisms accessible through PAM are implemented as
dynamically loadable, shared software modules that are installed by system
administrators in a manner that is transparent to applications. By increasing
overall security, users enjoy greater service levels and lower cost of ownership.

Traditional Solaris OE Authentication and PAM
Traditional Solaris OE authentication is based on the method developed for early
UNIX implementations. This method employs a one-way encryption hashing
algorithm called crypt(3c). The encrypted password is stored either in a file or in
a Solaris OE naming service, from which it is retrieved during the user login process.
The traditional UNIX method of the Solaris OE authentication, using crypt, is very
popular and has been enhanced to use an LDAP directory as its data store.

Before proceeding with the details on authentication, you must have a good
understanding of what crypt is. There is some confusion because of a naming
conflict with an application named crypt. This is a standard tool that ships with the
Solaris OE, and is a program for encrypting and decrypting the contents of a file.
(This program is located in /usr/bin/crypt.)

However, when the term crypt is referred to in authentication, it is normally cited as
crypt(3c) and refers to the standard UNIX password hashing algorithm
(crypt(3c)), available to C programmers in the libc.so library.

A more sophisticated authentication method based on public key technology was
introduced with the Network Information System (NIS+) naming service (now
rebranded as the Sun OSTM 5.0 Network Information Service). The NIS+ naming
service method does not replace crypt(3c), but rather provides an additional
security layer by introducing the concept of a network password. When users access
network services through the secure remote procedure call (RPC) mechanism, the
network password is required.



156 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Originally developed by Sun Microsystems and adopted by the Open Software
Foundation (OSF) for inclusion in Common Desktop Environment (CDE)/Motif,
PAM provides a mechanism for dynamic system authentication and related services
such as password, account, and session management. Realizing that new
authentication models continue to be developed, Sun created the PAM architecture
that allows additional methods to be added without disturbing existing ones. PAM
was introduced in the Solaris 2.6 OE to overcome having to recode system entry
services such as, login, passwd, dtlogin, telnet, and rlogin when a new
authentication mechanism was introduced.

The PAM architecture and alternatives to traditional Solaris OE authentication are
discussed in Appendix D, “Solaris OE 9 PAM Architecture.”

UNIX Passwords

Passwords are created with the Solaris OE passwd command. This command
prompts the user for a (new) password, which the user enters as a text string. In the
Solaris OE, this text string is hashed—or one-way encrypted—using the
crypt(3c) algorithm. The result is stored either in /etc/shadow, or in the
passwd.byname and passwd.byuid NIS maps. If the NIS+ naming service is used,
the results are stored in the Passwd and Cred table type. The crypt(3c) algorithm
is provided with a random seed, known technically as a salt string, so that the result
is different each time the passwd command is run, even if the same text string is
used.

When a user logs in, the Solaris OE login program challenges the user to provide a
password. This password is hashed in the same manner as the passwd command. If
the output from this process matches the output that is stored in the password
database, the user is authenticated.

FIGURE 3-34 illustrates how the UNIX password process works.



Chapter 3 Defining Directory Service Security Architecture 157

FIGURE 3-34 Login Program Text String Converting to a Hashed String

Benefits and Drawbacks of crypt(3c)

The major benefit of crypt(3c) is that it is easy to implement in a closed
environment. Authentication takes place on the host that the user logs in to, so an
authentication server is not required. In the case of local logins, the clear text
passwords are never stored or sent over the network, so there is no reason to be
concerned about eavesdroppers intercepting the password. However, when
authenticating over a network using telnet or rlogin, passwords are sent in clear
text.

Because crypt(3c) uses a one-way encryption algorithm, it is difficult to decrypt
passwords stored on the server. Only the user knows what the actual password is.
This means that there is no way to convert passwords stored in crypt to another
format required by a different authentication method.

When the crypt(3c) function is called, it takes the first eight characters and
returns its computation. This computation is then injected with a randomly
generated value called the salt. In conventional crypt, the salt is stored as the first
two characters. This salt value is then added, resulting in a sequence of 13
characters. The result is that the salt is actually an important part of the password
string that is stored in the specific naming service.

User

User

passwd

login

NEW password

crypt(3c)

randomseed
or "salt"

server

server

hashed
password

/etc/shadow
passwd.byname

NIS+ passwd table

/etc/shadow
passwd.byname

NIS+ passwd table

crypt (3c)
on user input Hashed password

Provides "Salt"
for crypt(3c)

Retrieve password
entry for user

Is compared with the 
entry from the database Match = OK

seed



158 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

As CPUs and storage capabilities increase, the crypt(3c) algorithm becomes
vulnerable to attack. The crypt(3c) mechanism shipping with the Solaris 9 OE,
along with PAM authentication, is exactly the same implementation that has been in
the Solaris OE for many years now, and could one day change.

Introduction to Flexible crypt(3c)

The Solaris OE crypt(3c) mechanisms work well for authenticating local Solaris
OE clients, but they are not the only methods used by applications and services
running in the Solaris OE. This can make it difficult for system developers and
system administrators, who must work with multiple password systems, and for
users who must remember multiple passwords.

In the Solaris 9 12/02 OE, Sun updated the crypt(3c) API to allow different
algorithms to be used for encrypting the users login password, this is known as
flexible crypt(3c) for passwords.

The reason this feature was extended is because since the Solaris 2.6 OE, the Solaris
OE has supported a getpassphrase() routine, which is identical to getpass(3C)
routine, except it reads and returns a string of up to 256 characters in length.
However, the crypt(3c) algorithm which it typically provides input to, is still
limited to receiving only 8 ASCII characters.

The existing crypt(3c) API has been be preserved to provide applications that
verify a user’s password by calling crypt(3c) and using strcmp(3c) with the
value returned by getpwnam(3c) so that they continue to work without any source
code change or a recompile. This is obviously a very important aspect when adding
any new or enhanced feature.

Functionally, a plug-in framework has been added to crypt(3c) to allow the
changing of the underlying password hashing algorithm. Currently this ships with
two new password hashing algorithms that use the Blowfish and MD5 hashes (for
compatibility with BSD / Linux).

By default, the behavior of this new feature that provides extended crypt(3c) and
adds crypt_gensalt(3c) is to use the old UNIX crypt(3c) on the password
change, unless the user already has a new style password. This feature is turned on
and used by changing the settings in the /etc/security/policy.conf file,
which is the configuration file used for the security policy. For more information
refer to policy.conf(4).

The PAM interface in the Solaris 9 OE makes it easier for you to deploy different
authentication technologies without modifying administrative commands such as
login, telnet, and other administrative commands. Administrators are able to
select one or multiple authentication technologies, without modifying applications



Chapter 3 Defining Directory Service Security Architecture 159

or utilities. PAM can also be an integral part of a single sign-on system. The PAM
APIs provide a flexible mechanism that increases overall system security. The PAM
APIs are described in Appendix D, “Solaris OE 9 PAM Architecture.”

Solaris 9 OE PAM Framework
The PAM framework enables new authentication technologies to be plugged in
without the need to change commands such as login, dtlogin, rsh, su, ftp, and
telnetd. PAM is also used to replace the UNIX login with other security
mechanisms, such as Kerberos and LDAP authentication. Mechanisms for account,
session, and password management can also be plugged in through this framework.

This framework consists of four specific components:

■ PAM API presented to the application programs
■ PAM framework responsible for implementing the API
■ PAM service provider interface (SPI) implements the back-end functionality for

the PAM API
■ Configuration file pam.conf specifies which service providers are used for the

various programs

PAM allows you to choose any combination of services to provide authentication.
These include a flexible configuration policy that enables a per-application
authentication policy, choice of a default authentication mechanism for non-specified
applications, and multiple passwords on high security systems. Another valuable
service is the ease of use for the end user that enables no retyping of user passwords
if the passwords are the same, and optional parameters passed to the services.

With the introduction of the new PAM framework in the Solaris 9 OE, the LDAP
service module for PAM has been extended to support the account service, which
checks a user’s password and account status by binding to the directory (LDAP)
server. The directory server returns the password status to pam_ldap, which in turn
maps the status to the PAM error codes. A user might be rejected when logging in
with an expired password, or might see a warning message after logging in when
the password is about to expire.

The pam_ldap module has also been updated to support password syntax checking,
which is performed through the SunTM Open Net Environment (Sun ONE) Directory
Server 5.1 and greater (formerly known as the iPlanetTM Directory Server software)
password policy engine. When changing the password (using the passwd
command), the user might see error messages such as password too short,
password in history, and so forth. In addition, it adds mechanisms for account
lockout after too many failed attempts, forced password change after reset (if reset
by root DN in the directory server), minimum password ages, and different
password policies for different groups of users.



160 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Note – The pam_ldap account management feature is not supported with iPlanet
Directory Server software version 5.0.

PAM Types
The PAM framework currently provides four different types of service modules,
which are implemented by dynamic loadable module types to provide
authentication related services. These modules are categorized based on the function
they perform:

■ Authentication (auth) – Provides authentication for users and enables credentials
to be set, refreshed, or destroyed.

■ Account management (account) – Checks for password aging, account
expiration, and access hour restrictions. Once the user is identified by the
authentication modules, the account management modules determine whether
the user can be given access.

■ Session management (session) – Manages the opening and closing of a session.
The modules can log activity, or clean up after the session is over. For example,
the unix_session module updates the lastlog file.

■ Password management (password) – Contains functionality that enables the user
to change an authentication token (usually a password).

Stacking

PAM enables authentication by multiple methods through stacking. When a user is
authenticated through PAM, multiple methods can be selected to fully identify the
user. Depending on the configuration, the user can be prompted for passwords for
each authentication method. This means that the user need not execute another
command to be fully authenticated. The order in which the methods are used is
determined through the configuration file, /etc/pam.conf.

Note – Stacking has the potential of increased security risk because the security of
each mechanism could be subject to the least secure password method used in the
stack.



Chapter 3 Defining Directory Service Security Architecture 161

PAM Operation

The PAM software consists of a library, several modules, and a configuration file.
The PAM library, /usr/lib/libpam.so, provides the framework to load the
appropriate modules and manage stacking. It provides a generic structure for all of
the modules to plug into.

FIGURE 3-35 illustrates the PAM framework.

FIGURE 3-35 PAM Framework Architecture

FIGURE 3-36 illustrates the relationship between the applications, the library, and the
modules. The login, passwd, and su applications use the PAM library to access the
appropriate module. The pam.conf file defines which modules are used with each
application. Responses from the modules are passed back through the library to the
application.

User

PAM
Conversion
Routines

Calling
Application
service name,
user name,
conversation
routines, ...PAMH

PAM
Handle

Management

PAM
Configuration

Data

PAM-API

PAM-SPI

PAM
Service
Modules

PAM
Interface
Library

Authentication
Modules

Account
Management

Modules

Session 
Management

Modules

Password 
Management

Modules

API



162 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

FIGURE 3-36 PAM and the Relationship Between Applications, Library, and Modules

Pluggable Authentication Service Modules

Each module provides the implementation of a specific mechanism. More than one
module type (auth, account, session, or password) can be associated with each
module, but each module needs to manage at least one module type. The following
is a description of the modules that are part of the Solaris 9 OE.

■ pam_authtok_get – Supports authentication and password management. This
module takes care of obtaining (old or new) passwords from the user, so that
other modules on the stack can concentrate on their task, and not worry about
obtaining information from the user.

■ pam_authtok_check – This module provides functionality to the password
management stack. Specifically, it performs a number of checks on the
construction of the newly entered password. See pam_authtok_check(5) man
page for a description of the checks it performs.

■ pam_authtok_store – Provides functionality to the PAM password
management stack. When invoked with flags set to pam_update_authtok, this
module updates the authentication token for the user specified by pam_user.

■ pam_dhkeys – Supports authentication and password management. This module
specifically deals with the establishment and modification of the Diffie-Hellman
keys which are used, for example, for secure RPC calls (NIS+ and Secure NFS).

■ pam_passwd_auth – Provides authentication functionality to the password
service as implemented by passwd(1). It differs from the standard PAM
authentication modules in its prompting behavior.

■ pam_unix_account – Provides functionality to the PAM account management
stack, as the PAM account management module for UNIX. The
pam_acct_mgmt(3PAM) function retrieves password aging information from the
repositories specified in nsswitch.conf(4) and verifies that the user’s account
and password have not expired.

PAM Library

ftpd telnetd login

pam.conf

pam_authtok_get.so.1 pam_dhkeys.so.1 pam_unix_auth.so.1



Chapter 3 Defining Directory Service Security Architecture 163

■ pam_unix_auth – Verifies the password that the user has entered against any
password repository specified in the nsswitch.conf using normal UNIX
crypt(3c) style password encryption, and can only be used for authentication.

■ pam_unix_session – Provides functions to initiate and to terminate session as
the session management PAM module for UNIX.

■ pam_ldap – Implements the functions that provide functionality for the PAM
authentication, account management, and password management stacks. (new in
Solaris 9 12/02 OE). pam_ldap has also been updated in Solaris 9 OE 12/02 to
support password syntax checking, which is done through the Sun ONE
Directory Server password policy engine.

In addition to the above pam_ldap service module, a new server_policy option
can be specified with the pam_unix_auth, pam_unix_account,
pam_passwd_auth, and pam_authtok.store modules. This option instructs these
modules to ignore a user if the user is only found in the directory server (LDAP)
repository, and let the stacked below pam_ldap module to process the user
according to the password policy set in the Sun ONE Directory Server software.

For security, these files must be owned by root and have their permissions set so
that the files are not writable through group or other permissions. If the file is not
owned by root, PAM will not load the module. This requirement on permissions
and owner for the modules is not documented anywhere, and might change in
future releases.

Note – In FIGURE 3-36, pam_unix is not layered entirely on the LDAP server. The
pam_unix module sits on the Name Service Switch (NSS) layer and the NSS back
ends that could be files, NIS, NIS+, or LDAP.

PAM Configuration File Update
The PAM configuration file, /etc/pam.conf, determines what authentication
services are used and in what order. Edit this file to select the desired authentication
mechanisms for each system entry application.

Configuration File Syntax

The PAM configuration file consists of entries with the following syntax:

service_name module_type control_flag module_path module_options



164 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

TABLE 3-9 explains the functions of the syntax.

Comments can be added to the pam.conf file by starting the line with a pound sign
(#). Use white space to delimit the fields.

Note – An entry in the PAM configuration file is ignored if one of the following
conditions exists: the line has fewer than four fields, an invalid value is given for
module_type or control_flag, or the named module is not found.

TABLE 3-10 summarizes PAM configurations.

TABLE 3-9 Configuration File Syntax

Syntax Description

service_name Name of the service (for example, ftp, login, telnet)

module_type Module type for the service (auth, account, session, password)

control_flag Determines the continuation or failure semantics for the module
(see note below)

module_path Pathname of the module

module_options Specific options passed to the service modules

TABLE 3-10 PAM Configurations

Service Name Daemon or Command Module Type

cron /usr/sbin/cron account

dtlogin /usr/dt/bin/dtlogin auth, account, session

ftp /usr/sbin/in.ftpd auth, account, session

init /usr/sbin/init session

login /usr/bin/login auth, account, session,
password

passwd /usr/bin/passwd auth, account, password

ppp /usr/bin/pppd auth, account, session

rexecd /usr/sbin/in.rexecd auth, account

rexd /usr/sbin/rpc.rexd account, session

rlogin /usr/sbin/in.rlogind auth, account, session,
password

rsh /usr/sbin/in.rshd auth, account



Chapter 3 Defining Directory Service Security Architecture 165

Control Flags

To determine continuation or failure behavior from a module during the
authentication process, you must select one of four control flags for each entry.
Successful or failed attempts are indicated through control flags. Even though these
flags apply to all module types, the following explanation assumes that the flags are
being used for authentication modules. The control flags are as follows:

required – This module must return success in order to have an overall
successful result. If all of the modules are labeled as required, authentication
through all modules must succeed for the user to be authenticated. If some of the
modules fail, an error value from the first failed module is reported. If a failure
occurs for a module flagged required, all modules in the stack are still tried but
failure is returned. If none of the modules are flagged required, at least one of the
entries for that service must succeed for the user to be authenticated.

requisite – This module must return success for additional authentication to
occur. If a failure occurs for a module flagged requisite, an error is immediately
returned to the application and no additional authentication is done. If the stack
does not include prior modules labeled required that failed, the error from this
module is returned. If a earlier module labeled required has failed, the error
message from the required module is returned.

optional – If this module fails, the overall result can be successful if another
module in this stack returns success. The optional flag should be used when one
success in the stack is enough for a user to be authenticated. This flag should only be
used if it is not important for this particular mechanism to succeed. If your users
need to have permission associated with a specific mechanism to get their work
done, you should not label it optional.

sac /usr/lib/saf/sac session

sshd /usr/lib/ssh/sshd auth, account, session,
password

su /usr/bin/su auth, account

telnet /usr/sbin/in.telnetd auth, account, session,
password

ttymon /usr/lib/saf/ttymon session

uucp /usr/sbin/in.uucpd auth, account

TABLE 3-10 PAM Configurations (Continued)

Service Name Daemon or Command Module Type



166 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

sufficient – If this module is successful, skip the remaining modules in the stack,
even if they are labeled required. The sufficient flag indicates that one
successful authentication is enough for the user to be granted access. More
information about these flags is provided in the next section, which describes the
default /etc/pam.conf file.

binding – This is a new control flag that has been added to the PAM framework in
Solaris 9 12/02 OE. The control flag binding has a meaning of terminate processing
upon success, and report the failure if unsuccessful. This option effectively provides a
local account overriding remote (LDAP) account functionality.

Generic pam.conf File

The following is an example of a generic pam.conf file:

# PAM configuration
# Authentication management
#
login   auth requisite pam_authtok_get.so.1
login   auth sufficient pam_unix_auth.so.1
login   auth required pam_ldap.so.1
#
rlogin  auth sufficient pam_rhosts_auth.so.1
rlogin  auth required   pam_authtok_get.so.1
rlogin  auth sufficient pam_unix_auth.so.1
#
dtlogin auth required   pam_authtok_get.so.1
dtlogin auth required   pam_unix_auth.so.1
#
rsh     auth sufficient pam_rhosts_auth.so.1
rsh     auth required   pam_unix_auth.so.1
#
dtsession auth required pam_authtok_get.so.1
dtsession auth required pam_unix_auth.so.1
#
other   auth required   pam_authtok_get.so.1
other   auth required   pam_unix_auth.so.1
#
# Account management
#
login   account requisite       pam_roles.so.1
login   account required        pam_projects.so.1
login   account required        pam_unix_account.so.1
#
dtlogin account requisite       pam_roles.so.1
dtlogin account required        pam_projects.so.1



Chapter 3 Defining Directory Service Security Architecture 167

This generic pam.conf file specifies the following behavior:

■ When running login, authentication must succeed for the pam_authtok_get
module and for either the pam_unix_auth or the pam_ldap module.

■ For rlogin, authentication through the pam_authtok_get and
pam_unix_auth modules must succeed if authentication through
pam_rhost_auth fails.

■ The sufficient control flag for rlogin’s pam_rhost_auth module indicates
that if the authentication performed by the pam_rhost_auth module is
successful, the remainder of the stack is not executed, and a success value is
returned.

■ Most of the other commands requiring authentication require successful
authentication through the pam_unix_auth module.

Note – With the above configuration, pam_unix is tried first, and if the
userPassword attribute is readable, and the password is correct, then the
pam_ldap module is not called. As a result, the pam_ldap password management is
not used.

The other service name allows a default to be set for any other commands
requiring authentication that are not included in the file. The other option makes it
easier to administer the file because many commands that use the same module can
be covered by only one entry. Also, the other service name, when used as a
catchall, can ensure that each access is covered by one module. By convention, the

dtlogin account required        pam_unix_account.so.1
#
cron    account required        pam_projects.so.1
#
cron    account required        pam_unix_account.so.1
#
other   account requisite       pam_roles.so.1
other   account required        pam_projects.so.1
other   account required        pam_unix_account.so.1
# Session management
#
other   session required        pam_unix_session.so.1
#
# Password management
#
other   password requisite      pam_authtok_get.so.1
other   password requisite      pam_authtok_check.so.1
other   password sufficient pam_authtok_store.so.1
other   password required       pam_ldap.so.1



168 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

other entry is included at the bottom of the section for each module type. The rest
of the entries are in the file control account management, session management, and
password management.

Normally, the entry for the module_path is root relative. If the file name entered for
module_path does not begin with a slash (/), the path /usr/lib/security/$ISA
is added to the file name, where $ISA is expanded by the framework to contain the
instruction set architecture of the executing machine (refer to the isainfo(1) man
page for additional information).

A full path name must be used for modules located in directories other than the
default. The values for the module_options can be found in the man pages for the
module (for example, pam_unix_auth(5)).

If login specifies authentication through both pam_unix_auth and pam_ldap, the
user is prompted to enter a password for each module. Example:

PAM and LDAP Password Management
Extensions
It is important to provide a quick overview to clarify the difference between PAM
Password Management Extensions and the new pam_ldap password management.

PAM Password Management Extensions provide the same functionality as the
existing pam_unix module. The only difference is how the module is packaged.
What used to be a single module is now split up into multiple components, known
as service modules, each performing a separate function. This modular construction
makes implementing custom password management policies easier.

The new pam_ldap password management facility includes two new account
management features: password aging and account expiration. Because the directory
server provides its own mechanism for account management, a conflict can occur if
you want pam_ldap to implement a different password policy than what is set for
the directory-wide policy. For example, the directory might force all users to change
passwords after 60 days, but you might want some special user accounts to be able
to keep their current password for a longer period of time.

# Authentication management
#
login auth required pam_authtok_get.so.1
login auth sufficient pam_unix_auth.so.1
login auth required pam_ldap.so.1



Chapter 3 Defining Directory Service Security Architecture 169

To support this flexibility, the PAM framework has been enhanced by the addition of
a new control flag called binding. The primary reason this control flag was
introduced was the fact that prior to Solaris 9 12/02 OE, the PAM framework lacked
sufficient control flags to provide functionality needed to return the appropriate
failure semantics for service modules which should return immediately upon
success, but report its error upon failure. In particular, pam_ldap depends on this
change to correctly provide failure semantics for a mixture of local and server
controlled accounts on the same machine. Effectively, this control flag allows you to
override the password policy that the directory server enforces.

A server_policy option has been added to instruct pam_unix to allow users that
only have LDAP accounts to be processed by the password policy set on the
directory server. This option can be used to instruct the pam_unix_account,
pam_unix_auth, and pam_passwd_auth service modules to ignore the user being
authenticated and let the pam_ldap module stacked below them process the user
according to the password policy established in the directory server. This effectively
allows you to override the local pam_unix password policy.

Note – The pam_authtok_store module handles this option differently.

The server_policy option was introduced to solve a problem found when
stacking the pam_unix_account and pam_ldap modules together. When used, it
tells the module to rely on the policy specified on the LDAP server and not to apply
a local policy.

Because the pam_unix_account receives incomplete information from the LDAP
server, it might inadvertently decide that an active account has expired, or that an
expired account is still active. Specifying server_policy in /etc/pam.conf tells
pam_unix_account not to guess an account’s status but to leave the decision to the
LDAP server. The LDAP server keeps accurate current status of each account and
can draw the correct conclusion about its expiration status.

Because this feature enables the pam_ldap module to fully support the account
management, it is reasonable to use the following PAM configuration for account
management.

Note – In this configuration, note the binding control flag for
pam_unix_account.so.1.

other  account  requisite  pam_roles.so.1
other  account  required   pam_projects.so.1
other  account  binding pam_unix_account.so.1 server_policy
other  account  required   pam_ldap.so.1



170 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

This configuration specifies that the pam_unix_account should check the user’s
local account first. Because of the binding control flag, the stack succeeds or fails
depending on the values returned by the pam_unix_account. If only the LDAP
account exists for the user, the pam_unix_account does nothing and allows
pam_ldap to determine the stack’s success or failure.

Customer feedback indicated that the PAM functionality in the Solaris OE needed
some enhancements. The requested changes included improving the mechanism
used to validate password structures, adding the ability to change numbers of
characters, total password length, and so forth.

In previous versions of the Solaris OE, this functionality was tightly coupled in a
single monolithic module (pam_unix) and local extensions could not be
incorporated in the module.

Only with a great deal of effort could you extend part of the operations performed
by this module. Because of this, the pam_unix(5) functionality has been replaced
with a new set of modular PAM service modules that are listed in this section. The
functionality of pam_unix has been entirely replaced in the Solaris 9 OE. New PAM
modules are now provided that replace a specific piece of pam_unix. This makes it
easier to customize the PAM behavior by inserting or replacing individual modules.
The Solaris 9 OE no longer uses pam_unix by default. During upgrades, any
existing instances of pam_unix in pam.conf are replaced by the new modules.

In the Solaris 9 OE, the functionality provided by the old pam_unix module has
been split over a number of small modules, each performing a well-defined task,
that can be easily extended or replaced by modifying the pam.conf file.

These new modules are:

■ pam_authtok_get(5)
■ pam_authtok_check(5)
■ pam_authtok_store(5)
■ pam_unix_auth(5)
■ pam_dhkeys(5)
■ pam_unix_account(5)
■ pam_unix_session(5)

You no longer have to replace the pam_authtok_check module to extend or
replace the standard password strength checks. Just list the module in the
/etc/pam.conf file right before, after, or instead of the pam_authtok_check file.

▼ To Add a PAM Module

1. Determine the control flags and other options you want to use.

2. Become superuser.

3. Copy the new module to /usr/lib/security.



Chapter 3 Defining Directory Service Security Architecture 171

Note – If you have a 64-bit version of the module, you should place that version in
/usr/lib/security/sparcv9.

4. Set the permissions so that the module file is owned by root and the permissions
are 755.

5. Edit the PAM configuration file, /etc/pam.conf, to add this module to the
appropriate services.

▼ To Verify the Configuration

It is essential to do some testing before logging out, in case the configuration file is
misconfigured.

1. Test the modified service or the other configuration.

2. Run rlogin, su, and telnet (if these services have been changed).

If the service is a daemon spawned only once when the system is booted, it might be
necessary to reboot the system before you can verify that the module has been
added, however it might be possible to restart the daemon using the appropriate
/etc/init.d/ script.

▼ To Disable .rhosts Access With PAM From Remote
Systems

A common use of the .rhosts file is to simplify remote logins between multiple
accounts owned by the same user. For example, if you have multiple accounts on
more than one system, you might need to perform specific tasks, and using the
.rhosts file is ideal.

However, using the .rhosts file as an authentication mechanism is a weak form of
security and should be avoided.

● Remove the rlogin and rsh (pam_rhosts_auth.so.1) entries from the PAM
configuration file.

This prevents reading the ~/.rhosts files during an rlogin session, and therefore,
prevents unauthenticated access to the local system from remote systems. All
rlogin access requires a password, regardless of the presence or contents of any
~/.rhosts or /etc/hosts.equiv files.



172 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Note – To prevent other unauthenticated access to the ~/.rhosts file, remember to
disable the rsh service. The best way to disable a service is to remove the service
entry from /etc/inetd.conf. The remote shell server, rshd, and the remote login
server, rlogind, only use PAM; they do not call the ruserok() function
themselves.

PAM Error Reporting
Diagnostic messages generated by the PAM modules or the PAM framework are
output using syslog(3c). They are logged to the facility that was specified at the
time the application (login, telnet, sshd) called openlog(3c), so the exact
location of these messages depends upon whether the application uses PAM. The
facility indicates the application or system component generating the message. As an
example, here are a few possible facility values:

■ LOG_KERN – Messages generated by the kernel. These cannot be generated by any
user processes.

■ LOG_USER – Messages generated by random user processes. This is the default
facility identifier if none is specified.

■ LOG_MAIL – The mail system.

For example, login sends its messages to the LOG_AUTH facility, while rlogind
sends its messages to the LOG_DAEMON facility. Other daemons might use a
configurable facility (sshd, ftpd, and so forth) which can be set in the
configuration file of the particular service.

Depending on the severity of the diagnostic message, the PAM module directs the
message to one of the eight available log priorities.

Note – For additional details on the syslog() function and priorities, refer to the
syslog(3c) and syslog.conf(4)man pages.

Debug messages are logged with:

Critical messages are logged with:

syslog(LOG_DEBUG, "...")

syslog(LOG_CRIT, "...")



Chapter 3 Defining Directory Service Security Architecture 173

For example, a general error message (LOG_ERR) from PAM, used by login, is
directed to auth.crit and ends up in a log file as:

▼ To Initiate Diagnostics Reporting for PAM

1. Back up the syslog.conf file before editing it.

2. Determine the syslog facility used by the application you want to receive
diagnostic reports from.

The facility that we are going to use in this example is auth.

3. Edit the /etc/syslog.conf to add a line describing where the message with the
intended facility and priority will be logged.

Example of line added:

Note that these message levels are part of a hierarchy:

Due to this hierarchical ordering, a syslog channel specified to log debug messages
also logs messages at all higher levels (for example, logs messages with priority
debug and up).

4. Make sure that the log file specified in the previous step actually exists.

If it doesn’t exist, create it now.

Example:

5. Make syslogd re-read the configuration file by sending it a HUP signal:

Jul 22 22:11:43 host login: [ID 887986 auth.error]
ACCOUNT:pam_sm_acct_mgmt: illegal option debuf

auth.debug /var/adm/authlog

High -------------------------------------Low
EMERG ALERT CRIT ERR WARNING NOTICE INFO DEBUG

# touch /var/adm/authlog

# pkill -HUP syslogd



174 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

▼ To Initiate PAM Error Reporting

The following example displays all alert messages on the console. Critical messages
are mailed to root. Debug messages are added to /var/log/pamlog.

Each line in the log file contains a timestamp, the name of the system that generated
the message, and the message itself. Be aware that a large amount of information
may be written to the pamlog file.

The log format was changed in the Solaris 8 OE and subsequent releases, and now
includes a hash-value of the message generating string for example—user %s not
found. It now contains the message facility and severity.

● Add the debug flag to a PAM module to enable diagnostics reporting of that
module.

Example:

This configuration example enables debugging information from
pam_dhkeys.so.1 and pam_unix_auth.so.1.

What gets logged might vary quite a bit, because there is no standard describing the
information that needs to be output in response to this option. It is a good practice
for module developers to recognize this debug flag and enable some form of
debugging when the flag is specified in /etc/pam.conf.

PAM LDAP Module
The PAM LDAP module (pam_ldap) was introduced in the Solaris 8 OE for use in
conjunction with pam_unix for authentication and password management with an
LDAP server. This module was written to support stronger authentication methods
such as CRAM-MD5, in addition to the other UNIX authentication capabilities
provided by pam_unix.

auth.alert /dev/console
auth.crit root
auth.debug /var/log/pamlog

# PAM Module Debugging
#
login   auth requisite pam_authtok_get.so.1
login   auth required           pam_dhkeys.so.1 debug
login   auth required           pam_unix_auth.so.1      debug
login   auth required           pam_dial_auth.so.1



Chapter 3 Defining Directory Service Security Architecture 175

Note – The pam_ldap module must be used in conjunction with the modules
supporting the UNIX authentication, password and account management, because
pam_ldap is designed to be stacked directly below these modules.

With the release of Solaris 9 12/02 OE, pam_ldap provides support for
authentication, account management, and password management.

The pam_ldap module should be stacked directly below the pam_unix module in
the configuration file /etc/pam.conf. If there are other modules that are designed
to be stacked in this manner, they could be stacked under the pam_ldap module.
This design must be followed in order for authentication and password management
to work when pam_ldap is used. The following is a sample of /etc/pam.conf file
with pam_ldap stacked under pam_unix:

It is important to note that the control flag for pam_unix is sufficient. This flag
means that if authentication through pam_unix succeeds, then pam_ldap is not
invoked. Also, other service types, such as dtlogin, su, telnet, and so forth can
substitute for login. See FIGURE 3-37.

FIGURE 3-37 pam_ldap Structure

# Authentication management for login service is stacked.
# If pam_unix succeeds, pam_ldap is not invoked.
login   auth sufficient /usr/lib/security/pam_unix.so.1
login   auth required /usr/lib/security/pam_ldap.so.1
# Password management
other   password sufficient /usr/lib/security/pam_unix.so.1
other   password required /usr/lib/security/pam_ldap.so.1

login passwd su

PAM

pam_unix pam_ldap

LDAP Server

/etc/pam.conf



176 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

The options supported by pam_ldap are:

■ debug – If this option is used with pam_ldap, debugging information is output
to the syslog(3C) files.

■ nowarn – This option turns off warning messages.

How PAM and LDAP Work

Before discussing the details of how PAM and LDAP work, it is important to
provide a quick overview to distinguish between how the password is stored and
how the authentication mechanism is used to authenticate to the LDAP server. The
password can be stored in a variety of formats in the directory server, such as salted
secure hash algorithm (SSHA), secure hash algorithm (SHA), CRYPT, and so forth.

The authentication mechanisms currently used and supported in the Solaris 8 OE
LDAP Client, are NONE, SIMPLE, and CRAM-MD5 authentication. Simple
authentication requires the client to pass a distinguished name (DN) and password
to the server in clear text. Currently, the Sun ONE Directory Server 5.x software does
not support the authentication mechanism CRAM-MD5, which sends only the digest
over the wire. CRAM-MD5 is implemented as a Simple authentication and security
layer (SASL) mechanism, and both the client and server must use it. What happens
is the client request authentication is based on SASL/CRAM-MD5 and the server
must support this to complete the authentication. In general, very few clients use
CRAM-MD5, now that RFC 2829 mandates the use of DIGEST-MD5, which is
intended to be an improvement over CRAM-MD5.

Note – DIGEST-MD5 as an authentication mechanism for LDAPv3 directory servers
is mandated in RFC 2829. RFC 2831 provides information about DIGEST-MD5 as a
SASL mechanism, but is not LDAP specific.

With the introduction of the Sun ONE Directory Server 5.2 software, support for
SASL/DIGEST-MD5 has also been added as an authentication mechanism. This
feature was initially introduced in the Sun ONE Directory Server 5.1 software
release.

With SASL/DIGEST-MD5, a digest is created and sent across the wire to
authenticate to the directory server. The directory server then compares the digest
that was sent with the digest created by itself with the stored password and returns
success if it matches. In this case, the password is not sent in clear text. To address
the absence of a security model in the Solaris 8 OE LDAP Client, the Solaris 9 OE
now incorporates the Sun ONE Directory Server 5.1 software and Solaris 9 OE
Secured LDAP Client, addressing the security issues found in the LDAP Client.

To use SASL/DIGEST-MD5, the Sun ONE Directory Server software requires that
the password is stored in the directory in the clear. In the Sun ONE Directory Server
5.2 software, you need to make sure that you enable the SASL mechanism that you



Chapter 3 Defining Directory Service Security Architecture 177

wish to use. Also there is support for identity mapping which was covered
previously. The identity mapping allows for quite a bit of flexibility. For the Sun
ONE Directory Server 5.1 release, two forms are supported, which are dn: and u: as
specified in the RFC. This has built-in rules to handle the identity mapping.

Note – With identity mapping, you must map to one, and only one, identity.

Note – In the current release of the Solaris 9 OE, the extended Start TLS operation is
not supported.

Authentication With pam_unix

In authentication with pam_unix, depending on how the client is configured, the
client retrieves the password that is stored in the server by making a call to the
getspnam function. This function binds to the LDAP server with the proxy agent
account (the reason the proxy passwd is sent across the wire in clear text). The proxy
agent password is stored in the userPassword attribute in the directory server. This
proxy agent account can reside anywhere in the directory server, but must contain
the userPassword attribute.

Note that the ACIs of the proxy agent allow this account to have read access to all
user passwords, which you may not want to do if you are using pam_ldap. ACIs are
instructions that are stored in the directory server itself. Every entry can have a set
of rules that define an ACI for that entry. An ACI appears as an attribute in the entry
so it can be retrieved by using LDAP search, or it can be added, updated, or deleted
with an LDAP modify operation.

An entry may have one ACI, many ACIs, or none. ACIs allow or deny permissions
to entries. When the directory server processes an incoming request for that entry,
the server uses the ACIs specific to that entry to determine whether or not the LDAP
client has permission to perform the requested operation.

Note – LDAP stores data as entries. An entry has a distinguished name (DN) to
uniquely identify it within the directory server

The encrypted password is sent to the client side and compared with the encrypted
password supplied by the user at the password prompt. If there is a match,
pam_unix returns success. The following tables illustrate the authentication
mechanisms currently used.



178 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

TABLE 3-11 lists the PAM abbreviations used in this section.

TABLE 3-12 illustrates if the user password and proxy password are transmitted in the
clear during PAM authentications.

Note – In TABLE 3-11 and TABLE 3-12 the reason for “NO*” as the value of the
DIGEST-MD5 UP column is because the Sun ONE Directory Server version 5.1
software requires that passwords be stored in the server in clear text for DIGEST-
MD5 to work.

TABLE 3-11 PAM Abbreviations

Abbreviation Description

UP User password

PP Proxy agent password

NP New password

NO* Not applicable (at present)

TABLE 3-12 PAM Authentication

Authentication Mechanisms pam_unix pam_ldap

SIMPLE UP-No PP-Yes UP-Yes PP-Yes

DIGEST-MD5 UP-NO* PP-No UP-No PP-No

TLS: SIMPLE UP-No PP-No UP-No PP-No

TLS: DIGEST-MD5 UP-No PP-No UP-No PP-No



Chapter 3 Defining Directory Service Security Architecture 179

For updating passwords in pam_unix, the same comparison as for authentication
takes place (because the user has to bind as the dn); then the new password is
encrypted and not passed over the wire in clear text (TABLE 3-13).

The matrices are easier to understand when you distinguish between how the
password is stored and how the authentication mechanism is used to authenticate to
the LDAP server. The password can be stored in a variety of formats, such as SSHA,
SHA, crypt, clear text, and so forth. The authentication mechanisms that are
currently supported are NONE, SIMPLE, SASL/CRAM-MD5, SASL/DIGEST-MD5,
TLS:NONE, TLS:SIMPLE, TLS:SASL/CRAM-MD5, and TLS:SASL/DIGEST-MD5.

pam_ldap Authentication

In authentication that uses pam_ldap, the user password is passed to the server in
an auth structure in clear text because authentication is being attempted with the
user dn and password. If Simple authentication is used, and the password matches,
then success is returned. Using pam_ldap in the Solaris 9 OE Secured LDAP
Client now provides SASL/DIGEST-MD5 authentication, privacy, and data integrity
with SSL/TLS. If you require stronger authentication mechanisms such as DIGEST-
MD5; then you must use pam_ldap. In addition, pam_ldap is designed to be
extended for future authentication mechanisms that will be supported in future
Solaris OE releases. One of the benefits of using pam_ldap, is that it does not require
passwords to be stored in any specific format, so you can store passwords using
SSHA, SHA, or CRYPT formats.

For additional information, see the pam_ldap man page for the correct way to stack
the authentication management for login service, and password management
modules in the /etc/pam.conf configuration file.

Note – CRAM-MD5 is supported by the Secured LDAP Client, but not by the Sun
ONE Directory Server software. However, DIGEST-MD5 is supported by both.

TABLE 3-13 PAM Update of Password

Authentication Mechanisms pam_unix pam_ldap

SIMPLE UP-No PP-Yes NP-No UP-Yes PP-Yes NP-Yes

DIGEST-MD5 UP-NO* PP-No NP-NO* UP-No PP-No NP-Yes

TLS: SIMPLE UP-No PP-No NP-No UP-No PP-No NP-No

TLS: DIGEST-MD5 UP-No PP-No NP-No UP-No PP-No NP-No



180 LDAP in the Solaris Operating Environment – Deploying Secure Directory Services • September 2003

Secured LDAP Client Backport to the
Solaris 8 OE
Now that we have touched on the Solaris 9 OE Secured LDAP clients, which have
the option to use TLSv1 and SASL/DIGEST-MD5 for authentication, we can discuss
what has been done with the Solaris 8 OE LDAP clients. Initially as previously
discussed, the Solaris 8 OE LDAP clients relied on clear text passwords or the less
secure SASL/CRAM-MD5 for authentication. This is obviously not desirable for
customers that wanted to deploy a secure naming service, and also maintain equal
and matching functionality in both the Solaris 8 and 9 OE.

Note – The Sun ONE directory server does not support SASL/CRAM-MD5.

With this in mind, Sun backported the Secured LDAP Client found in the Solaris 9
OE to the Solaris 8 OE to provide TLSv1/ and SASL/DIGEST-MD5 support for the
LDAP client. The following lists what functionality has been backported:

■ The configuration of the directory server (LDAP) setup has been simplified with
the use of idsconfig.

■ A more robust security model that supports strong authentication and Transport
Layer Security (TLS) encrypted sessions. A client’s proxy credentials are no longer
stored in a client s profile on the directory server.

■ The ldapaddent command allows you to populate and dump data onto the
server.

■ Service search descriptors and attribute mapping

■ New profile schema

■ PAM Framework including account management

■ Updated man pages include:

■ ldaplist(1)
■ ldapaddent(1)
■ pam_authok_check(5)
■ pam_authok_get(5)
■ pam_authok_store(5)
■ pam_passwd_auth(5)
■ pam_unix_auth(5)
■ pam_conf(4)



Chapter 3 Defining Directory Service Security Architecture 181

You can obtain the Secured LDAP Client Backport for the Solaris 8 OE from:

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access

In the Enter a Patch ID field, enter one of the following patches:

■ 108993-xx (SPARC™ systems)

■ 108994-xx (x86 systems)






