
C H A P T E R 9

Determining a Suitable Test Mix

Finally, we are in a position to give attention to one of the core matters surrounding testing and
tuning: determining a suitable stress-test business process or other “input data” test mix. Af-

ter all, it is the mix of activities, transactions, and processes executed under your guidance that
ultimately simulates your financials’ month-end close or helps you understand the load borne by
your SAP customer-facing systems during the holidays or other seasonal peaks. And it’s the test
mix that brings together master data, transactional data, customer-specific data, and other input
necessary to fuel a business process from beginning to end. You’ve certainly heard the phrase
“garbage in, garbage out.” It applies without question here, because poor test data will never al-
low you to achieve your testing and follow-on tuning goals.

Beyond SAP application-level data, though, input data can also consist of the scripts, batch
files, configuration files, and so on required of lower level testing tools, like those associated with
testing the performance of your disk subsystem, network infrastructure, and so on. As you know
by now, sound testing of your SAP Technology Stack encompasses much more than strictly busi-
ness process testing.

The goal of this chapter is therefore to help walk you through the challenges surrounding
data: how to select appropriate data, what to look for, and what to avoid. In this way, you’ll be
that much closer to conducting stress-test runs that not only “work” but also truly simulate the
load planned for your production environment.

9.1. Overview—What’s a Mix?

What exactly is a test mix? In true consulting fashion, the right answer is “it depends.” The next
couple of pages provide a high-level overview of a test mix, followed by more detailed discus-
sions on this subject. For beginners, note that all test mixes must include a way to control tim-
ing, or the time it takes for a test run (or subtasks within a run) to actually execute. Sometimes
this factor is controllable via the test mix itself or a test-tool configuration file, whereas other
times it’s left up to test-tool controller software or the team executing and monitoring the test runs.

Timing is not everything, though. Test mixes also typically allow the number of OS or other
technology stack–based threads or processes to be controlled, another key input factor relevant to
multiuser stress testing. In this way, the very load placed on a system may be controlled, making

207

mySAPch09 5/27/04 6:02 AM Page 207

208 Chapter 9: Determining a Suitable Test Mix

it possible to vary workload rates or individual users or processes without actually changing the
absolute number of users or processes.

Unfortunately, we must also keep in mind that the assorted tools and approaches we have ex-
amined thus far differ greatly in terms of their fundamental execution and goals, and therefore their
specific data-input-mix requirements. On the flip side, test mixes tend to adhere to a set of general
rules of thumb, too. But rather than trying to lay down a dictionary-style definition, let’s instead
look at test mixes by way of example, working our way up the technology stack, as follows:

• For network infrastructure testing, a test mix consists of factors like the number of data
transfers or other network operations performed, the size of those transfers/operations,
the use of configuration files that define the two end points necessary for testing (i.e.,
server-to-server testing), and even the protocols that may be tested (although for SAP
testing, there’s usually little reason to test anything other than TCP/IP-based RFC,
CPIC, and ALE network activity).

• For disk subsystem testing, a test mix defines the number of reads and writes to be exe-
cuted (either as a ratio or an absolute number), the types of operations to be executed
(sequential versus direct/random, or inserts versus appends), data block sizes, and even
the number of iterations (rather than leveraging timing criteria, a test mix might instead
specify the number of I/O operations each thread, process, or test run will execute, such
as 1,000). And the number of data files or partitions against which a test is executed is
also often configurable, as is the size of each data file. For instance, I often execute
tests against six different data files spread across six different disk partitions, each 5GB
in size, thus simulating a small but realistic 30GB “database.”

• For server testing, a test mix might include the number of operations that specifically
stress a particular subsystem or component of the server (e.g., the processor complex,
RAM subsystem, system bus). Server testing often is intertwined with network infra-
structure and disk subsystem testing, too, and therefore may leverage the same types of
data input as previously discussed.

• At a database level, a test mix must reflect operations understood and executable by the
explicit DBMS being tested. Thus, SQL Server test mixes may differ from Oracle in
terms of syntax, execution, and so forth. But, in all cases, a database-specific test will
reflect a certain type of operation (read, write, join) executed against a certain database,
which itself supports a host of database-specific tuning and configuration parameters.

• A single R/3 or mySAP component’s test mix will often reflect discrete transactions (or
multiple transactions sequentially executed to form a business process) that are exe-
cuted against only the system being tested. I call these “simple” or “single-component”
tests, because they do not require the need for external systems, and therefore CPIC-
based communications, external program or event-driven factors, and interface issues
stay conveniently out of scope. (Note that CPIC, or SAP’s Common Programming In-
terface Communication protocol, allows for program-to-program communication.) The
input necessary to drive these simple tests is transaction-specific, therefore, and rela-

mySAPch09 5/27/04 6:02 AM Page 208

Overview—What’s a Mix? 209

tively easy to identify: all input data that must be keyed into the SAPGUI (anything
from data ranges to quantities to unique transaction-specific values like PO numbers,
and more) and any master, transactional, or other client-specific data must be known,
available, and plentiful. User accounts configured with the appropriate authorizations
and other security considerations also act as input. The right mix essentially becomes a
matter of the proper quantity of high-quality input data versus the amount of time a test
run needs to execute to prove viable for performance tuning.

• Complex R/3 or mySAP component test mixes, on the other hand, necessitate multiple
components or third-party applications to support complex business process testing that
spans more than a single system. Even so, the bulk of the input data may still be quite
straightforward, possibly originating in a single core system. But like any complete
business process, the output from one transaction typically becomes the input to a sub-
sequent transaction. Cross-component business processes therefore require more de-
tailed attention to input data than their simpler counterparts, because the originating
system (along with other supporting data) must be identified as well.

Many of these examples are discussed in more detail later in this chapter. Suffice it to say,
though, that a single TU or stress-test run can quickly grow complex from an input data perspec-
tive if several technology stack layers or systems are involved, especially in light of the many
stack-specific test tools that might be used.

9.1.1. Change-Driven Testing

It’s important to remember one of the fundamental reasons behind testing—to quantify the delta
in performance that a particular change or configuration creates. I refer to this generically as
change-driven testing, and believe that most if not all performance-oriented testing falls into this
big bucket. But it’s impossible to quantify and characterize performance without a load behind
the change. In other words, things don’t tend to “break” until they’re exercised. The strength and
robustness of a solution remains unproven, just like the maximum load a weight-trainer can lift,
until it (or he or she) successfully supports or lifts it. The “it” is the workload, in essence the ma-
nipulation or processing of input data. Thus, it only follows that a good performance test depends
on a good mix of data, data that has been identified and characterized as to their appropriateness
in helping you meet your simulation and load-testing goals. Not surprisingly, stress tests executed
without the benefit of adequate test mix analysis, or workload characterization, often fall short in
achieving their goals.

9.1.2. Characterizing Workloads

Given that the workload a test run is to process is central to the success of stress testing, charac-
terizing or describing that workload is paramount as well. Workloads vary as much as the real
world varies, unfortunately, so there’s no easy answer. Key workload considerations as they per-
tain to the SAP application layer include the following:

mySAPch09 5/27/04 6:02 AM Page 209

• The mix or ratio of online users to batch jobs, reports, and other similar processes, re-
flecting a particular business scenario.

• The mix of functional areas, such that the resulting mix reflects a sought-after condi-
tion (e.g., month-end closing for the entire business) or state (e.g., an average daily
load).

• The pure number of online users, batch processes, report generators, and so on lever-
aged to create a representative load on an SAP system.

• The predictability of a workload, so that apples-to-apples comparisons may be made
against subsequent test runs—in other words, avoiding true randomization when it
comes to input data is important. True randomization needs to be replaced instead with
pseudorandom algorithms that are at once “random” and repeatable.

• The quantity of data. Low quantities result in higher cache hit rates as more data may
be stuffed into hardware- and software-based caches, therefore exercising the disk sub-
system less than the workload truly would otherwise.

• The quality of data. Only unique combinations of customers, materials, plants, and
storage locations “work” to create a sales order, for example. Other combinations result
in error messages in the best of cases, and more often in failed or simply incompletely
executed business processes.

The configuration of the system itself in relation to performance also represents “input” to
some extent as well, though I prefer to keep this separate, under the guise of configuration or
current-state documentation as discussed in the previous chapter.

But how do you determine what a representative workload or data mix looks like? In the
past, I’ve spent most of my time speaking with various SAP team members to answer this ques-
tion. Functional leads are your best bet, because they know the business as well as anyone else on
the SAP technical team. But SAP power users representing each of the core functional areas are
also valuable sources of workload information, as are management representatives of the various
functional organizations found in most companies.

Outside of people resources/team members, you can also determine the “Top 40” online and
batch processes through CCMS’s ST03 or ST03N, both of which display detailed transaction data
over defined periods of time. That is, you can drill down into the days preceding or following
month-end to identify precisely the transactions that are weighing down the system most in terms
of CPU, database, network, and other loads, along with relative response-time metrics. Particu-
larly heavy hours, like 9 a.m. to 11 a.m., or 1 p.m. to 4 p.m., can be scrutinized closely as well.
These “top transactions” can be sorted in any number of ways, too: by the total number executed,
the peak hour executed, and even by greatest to least impact (highlighting the transactions that
beat up the database or CPU or network the worst, for example). And, because CCMS since Ba-
sis release 4.6C allows you to globally view ST03 data across an entire SAP system, the once
time-consuming job of reviewing individual application servers for your production BW system,
for example, is no longer necessary.

210 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 210

Once you understand the particular transactions and business processes representative of a
particular workload or regular event/condition, you must then consider how you will represent
this workload in a stress test. To make the process of workload characterization as flexible and
manageable as possible, I like to create “packages” of work. Within a package, the work is typi-
cally similar in nature—online transactions that focus on a particular business process or func-
tional area, batch processes that execute against a particular set of data or for a similar period of
time, and so on might make sense for you. Besides maintaining a certain functional consistency,
I also chop up the packages into manageable user loads. For example, if I need to test 600 CRM
users executing a standard suite of business activities, I’ll not only create a set of business scripts
to reflect those activities, but I’ll also create perhaps six identical packages of 100 virtual users
each, so as to easily control and manage the execution of a stress-test run. If the workload needs
to be more granular and represent five core business activities, I might divide the packages instead
into these five areas (where each package then reflects unique business process scripts), and work
with the business or drill down into the CCMS to determine how many users need to be “behind”
or associated with each package. Even then, if one of these granular and functionally focused
packages represents many users, I would still be inclined to chop it up further as just mentioned
and as shown in Figure 9–1. More details regarding the creation and divvying up of test packages
are discussed later in this chapter.

9.1.3. Don’t Forget to Baseline!

Beyond baselining and documenting the configuration to be stress tested, each test mix also needs
to be characterized by way of a baseline. The baseline serves as documentation relevant to a par-

Overview—What’s a Mix? 211

Package 1
60 Users

Package 2a
60 Users

Package 2b
60 Users

Package 4
60 Users

Package 3a
60 Users

Package 3c
60 Users

Package 3b
60 Users

R/3 FI/CO R/3 MM BW UploadR/3 SD

Business Proscessed to Be Executed
During a Stess-Test Run

Figure 9–1 Once your workload is characterized and sorted by tasks, functional areas, or
business processes, it makes sense to further divide the workload into smaller and more
manageable packages, each reflecting a representative user mix.

mySAPch09 5/27/04 6:02 AM Page 211

ticular state—the configuration of the system in relation to the workload that it can support—so
that future changes to either the technology stack or workload are not only easily identified but
also specifically quantified in terms of performance. In my experience, these initial performance
baselines tend to multiply rather quickly. For instance, I’ll often begin initial load testing by work-
ing through a number of specific configuration alternatives, testing the same test mix against each
different configuration in the name of pretuning or to help start off a stress-test project on the best
foot possible. Each alternative rates a documented baseline, but only the most promising end-
results act as a launch pad for further testing and pretuning iterations.

Once a particular configuration seems to work best, I then move into the next phase of
baselining, called workload baselining. This phase is very much test mix–centric, as opposed to
the first phase’s configuration-centric approach. The idea during these workload characterization
and baselining processes is to maintain a static system configuration (i.e., refrain from tuning SAP
profiles, disk subsystems, etc.), so as to focus instead on monitoring the performance deltas
achieved through executing different workloads. All of this is performed by way of single-unit
testing, of course, to save time and energy. The goal is quite simple, too: to prove that a particu-
lar workload indeed seems to represent the load described by the business, technical teams, or
CCMS data. The work of scripting a true multiuser load followed by real-world performance tun-
ing comes later, then, after you’ve solidified your workloads and executed various stress-test sce-
narios as depicted in the next few chapters.

Baseline testing is useful from a number of different perspectives. For instance, it‘s useful
even when it comes to testing a non-Production platform, like your Development or Test/QA sys-
tems deployed prior to building, configuring, and initially optimizing the Production platform.
That is, you can still gain a fair bit of performance-related knowledge testing against a non-
Production system, both in terms of single-unit and multiuser stress testing. And this knowledge
can pay off simply by helping you create a faster development experience for your expensive
ABAP and Java developers or by creating a functional testing environment for a company’s
unique end-user base. This is especially true prior to Go-Live, when the production environment
is still being built out, but the need for initial single-unit or “contained” load testing is growing
ever more critical. The same goes for any change-driven testing as well, however, such as that as-
sociated with pending functional upgrades, technical refreshes, and so on.

9.2. Real-World Low-Level Technology Stack Test Input and Mixes

Although we have looked at a number of input data and test mixes at the highest application lev-
els, the insight only made possible from real-world low-level examples should help lay to rest any
lingering questions as to the value of your input data in executing a stress test. The next few sec-
tions detail specific stress tests from an input data perspective, identifying goals and how specific
stress-test tools help achieve those goals along the way.

9.2.1. Input Required for Testing Server Hardware

Many testing tools designed to validate the performance of your server platforms require little if
any formal input. CheckIt requires nothing other than installation on the local machine, for ex-

212 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 212

ample. But if your goal is to compare one Windows-based SAP server platform to another in terms
of CPU performance, CheckIt allows you to “save” the testing results yielded from one platform’s
test as comparison or baseline data against which other platforms may be measured and com-
pared. Thus, the output of one test acts as input, in a manner of speaking, for subsequent tests.

Other tools offer a bit more granular control, however, and not surprisingly, support addi-
tional data input metrics. If your goal is to measure how well your memory subsystem handles
operations of different sizes, or differing random or sequential accesses, Nbench is an easy solu-
tion. It features the ability to customize some of your input, specifically the following:

• The size of various operations. Thus, you can test operations that reflect what your
SAP server does (or will do) in production, rather than rely on arbitrary hard-coded val-
ues assumed by other tools. You might test your DB server for large values, for exam-
ple, while you focus on smaller values for applications and Web servers.

• Execution thread count. Again, this gives you flexibility to emulate the expected level
of multiprocessing that occurs in (or is expected of) your unique SAP environment,
specifically regarding the disk subsystem.

• Values associated with integer, floating point, and memory operations.

Other input values unlikely to require customization include the access width of the mem-
ory bus (tested at a number of different levels), timing/control information, and the performance
of both random and sequential operations. Other mainstay general hardware test tools, like IO-
zone, even go so far as to set processor cache size and line size to particular default values,
though both of these settings and much more may be changed through command-line or switch
settings.

9.2.2. Disk Subsystem Test Mixes

Disk subsystem test mixes, like those associated with using SQLIO, Iometer, IOzone, and others
have quite a few things in common. First, the period of time a test will be executed is controllable
through switch settings or manually through the standard “control-c abort” sequence. Second, the
size and location of one or more data files (representing one or more “database” files) is config-
urable as well, as is the mix of reads to writes and ratio of sequential operations to random/direct
operations. These tools also allow you to control the number of processes or threads utilized by
the OS to execute the test, in effect allowing you to control the disk queue lengths that must even-
tually be processed by the OS and its underlying disk controllers and drives. Finally, this and the
settings for many other switches can be saved in a single “input” configuration file, useful in en-
suring consistency between iterative tests executed against different hardware or software con-
figurations.

Of course, if we step back and analyze the need for input at all levels, the fact that a partic-
ular disk stress-test utility may only support a specific OS version, patch level, or similar operat-
ing environment factor reflects core input data as well. And if the output is only provided in a
particular format, the installation of special readers or a specific version of Microsoft Word or Ex-

Real-World Low-Level Technology Stack Test Input and Mixes 213

mySAPch09 5/27/04 6:02 AM Page 213

cel may be warranted, too. Along the same lines, if a particular subset of output data is also de-
sired—like the CPU and system utilization performance metrics that can be captured and shared
via SQLIO—the appropriate switch needs to be manually set (in this case, the “-Up” switch).

9.2.3. OS Testing and Tuning

Performance testing the configuration options available to a particular OS often boils down to
making specific utility– or command-line–driven changes and executing before and after test sce-
narios that indeed help quantify any change in performance. For example, I’ve done extensive test-
ing in the past on pagefile sizing for SAP R/3 Windows-based database and application servers,
ranging from release 3.0F through 6.20. SAP’s recommended guidelines changed quite a bit in
the days just before Basis release 4.0 was made available, and continued to change somewhat over
the last two years as well. My goal was to determine which configurations made the most sense
from both financial and performance perspectives. To this end, I leveraged different hardware con-
figurations (e.g., disk controllers, use of RAID 1 versus RAID 5, use of multiple disk spindles ver-
sus a pair of drives) as well as different pagefile sizes, distribution models, and so forth. At the
lowest levels, I used the Compaq System Stress-Test tool (once known as the Thrasher Test Util-
ity) to force paging operations and therefore establish a baseline reflecting the relationship of I/Os
per second for a particular memory range to the level of Windows paging that resulted. In a sim-
ilar way, I also tested the impact that the “maximize throughput for network settings” Windows
setting had on the memory subsystem and OS in general. In both cases, the tools I used for appli-
cation-layer testing were nothing more complicated than custom-developed AT1 scripts. To cre-
ate and drive a repeatable and consistent application-layer load, I simulated 100 users with
minimal think times executing a suite of simple though typical R/3 transactions (e.g., MM03,
VA03, FD32, and others that only required a single SAPGUI input screen). I could then compare
the low-level thrasher results with the high-level SAP application-layer results, and extrapolate
how different workloads would impact memory management in general and paging in particular.

9.2.4. Test Mixes and Database Tuning

At the simplest levels, a database stress test begins with read-only queries that preferably execute
against a copy of your actual production database (though a copy of a development or test client
or even a small sample database may suffice, depending on your goals). Unless you want to bring
in the entire application layer of your SAP system, you should consider a number of testing al-
ternatives. For instance, tools like Microsoft’s SQL Profiler allow SQL 7 and SQL 2000 database
transactions to be “captured” at a low level, and then replayed against a point-in-time database
snapshot at a later date, all without the need for SAP application servers, an SAP Central Instance,
or anything else that is SAP-specific. This type of approach is perfect for stress tests where an or-
ganization assumes (and rightly so most of the time) that potential application-layer performance
issues can generally be solved either by adding more application servers or by beefing up the ex-
isting servers. That is, performance at the application issue is moot and can therefore be pushed
out of scope simply because SAP supports a robust horizontal scalability model in this regard.

214 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 214

So the test mix for a pure DB-based stress-test scenario simply involves the use of record
and playback tools—database-specific tools capable of capturing the SQL statements executed
during a certain timeframe by a representative group of end users. You might choose to capture
the busiest day of the season, for example, or maybe the 4 hours during which the heaviest batch
job load is being processed. The queries, table scans, joins, and so on captured during this time
period become your repeatable set of input data, to be played back for the DB server—you need
not concern yourself with your SAP instances.

These types of tools are necessarily database-specific, of course. That is, Informix admin-
istration tools simply cannot support Microsoft SQL Server, nor do SQL Server–based tools sup-
port Oracle. But the value of these record/playback tools is unquestionable—they’re generally
quite easy to learn and easy to use. And, because they tend to support the ability to play back the
captured transactions in the exact timeframe they were recorded, or compress or stretch out the
timeframe as you see fit, their value in terms of capacity planning and what-if analysis is great.

Case in point, as I mentioned before I used SQL Profiler to record the real-world transac-
tions of one of my large R/3 customers that was preparing for an acquisition that would double
the number of its online and concurrent users. The company was comfortable with the scalability
of the application server tier of their current solution, but needed to better understand the impact
on the DB server. To be sure that this SQL Profiler approach to testing would be suitable, I first
went through a sizing exercise, analyzing the current mix of users (via transactions ST07 and
AL08) in terms of the total number of users as well as the functional areas in which they were
heaviest. I then analyzed similar data provided by the organization to be merged into the first, and
found that the mix was close enough to warrant no further analysis—within plus or minus 10%,
each organization supported about the same number of SD, MM, PM, FI, and CO users. I used
these real-customer data to tweak my SAP sizing tools, to better reflect the weight of their as-
configured functional areas (rather than relying on default weights provided by the tool), using
data gleaned from Basis transactions ST02, ST03, ST04, and ST06. This allowed me to size a new
DB server, which I then procured from our seed unit pool (a pool of gear used for the express pur-
pose of customer demonstrations and proof-of-concept engagements). After loading the OS and
database, configuring the server, and then working through a restore of the customer’s 400GB
SAP R/3 database, I was finally in the position to do some testing.

It was at this point that the value of SQL Profiler really sank in—because the number of
users would double in the new environment but the mix of users would stay pretty much the same,
I simply sped up the playback of my previously recorded transactions 2× and then sat back and
observed how well my newly architected and deployed demonstration DB server handled the
load. In this way, I was not only able to nicely simulate the customer’s actual expected load, but
I was able to validate our user-based sizing as well. In the end, after making some calculated
processor and RAM upgrades to the currently deployed application servers (to account for the ad-
ditional logged-in users), and installing a new DB server identical to the one I tested back in the
lab, the customer’s acquisition went off without a hitch. This database-centric approach to testing
and tuning should appeal to any SAP test team focused on saving time and money when the other

Real-World Low-Level Technology Stack Test Input and Mixes 215

mySAPch09 5/27/04 6:02 AM Page 215

tiers of a technology stack can be ruled out and it’s determined that full-blown end-to-end stress
testing is simply not required.

Beyond these basic database-level test mixes, where only the raw SQL code is executed on
a DB server, lies the ability to execute application-driven SAP transactions. Such transactions
must be commenced on an SAP front-end and executed by an SAP Application Server, of course.
But this incremental complexity gives you the advantage of testing the impact that your test mix
places on your end-to-end solution. And, by varying this test mix, which might range from light-
impact financial and material-based transactions to multicomponent and truly solution-intensive
monster batch transactions, you can exercise various solution stack layers with near pinpoint ac-
curacy. Detailed test mixes and the challenges a team faces in identifying and using them are cov-
ered in detail near the end of this chapter.

9.3. Testing and Tuning for Daily System Loads

Load testing the average daily expected workload is perhaps the most fundamentally overlooked
type of performance testing I’m aware of. The companies that embrace performance testing and
tuning tend to focus instead on high-water peak stress testing or saturation-level smoke testing,
or spend their budget dollars tweaking and tuning the disk subsystem. Certainly, these other ar-
eas are critical, but the first question that comes to my mind is “How often do you see the loads
associated with seasonal peaks?” followed by “How truly important is it to know precisely at what
transaction load your system breaks?” when it has never even been tuned for the mundane daily
workload processed 99% of the time.

Tuning for your anticipated daily transaction load should represent the starting point for
SAP application-layer stress testing, and used, as depicted in Figure 9-2, as a launch pad for in-

216 Chapter 9: Determining a Suitable Test Mix

Package 1
1 User

Package 1a
60 Users

Package 1b
60 Users

Package 1a
60 Users

Package 1c
60 Users

Package 1b
60 Users

Single-Unit
Testing

Smoke Testing

One Key Transaction or Business Proscess, to Be Executed
During a Series of Progressively Stressful Test Runs

Load Testing Stress Testing

n
Packages

n
Packages

Figure 9–2 Use single-unit load testing as a springboard for daily load testing, peak stress
testing, or high-water smoke testing.

mySAPch09 5/27/04 6:02 AM Page 216

cremental load, stress, and smoke testing. Specifically, you should have a series of TUs or test
packages that, when combined, can emulate the typical online and batch workload seen Monday
through Friday, 9 a.m. through 5 p.m. In this way, subtle changes to your workload or configura-
tion alike can be quickly simulated, providing the kind of rapid feedback necessary for support-
ing sound change control processes. And the tuning made possible will benefit you 99% of the
time, huge by any measure, because your system is optimized for a relatively steady workload.
Finally, understanding and capturing your daily system load pays big dividends when it comes
time to perform a major upgrade, add or remove a significant component of the workload (ac-
quisitions and divestitures), or simply build on the load in support of testing and tuning for vari-
ous business peaks, covered next.

9.4. Testing and Tuning for Business Peaks

Though the tuning made possible by daily expected workload testing will benefit you 99% of
the time, you must still work through an ROI exercise designed to determine whether it’s finan-
cially advisable to stress test the remaining 1% of scenarios. To an outsider, 1% might seem triv-
ial, but if the 1% represents any of the following scenarios, the financial impact associated with
planning for, setting up, configuring, executing, monitoring, analyzing, and tuning might easily
be justified:

• If you bring in a significant portion of your revenue via seasonal peaks
• If you must process a time-sensitive workload in a particular execution window (e.g., 2

hours start to finish), such as payroll checks or tax-return data, the failure of which
would produce financial or other significant losses

• If specific SLAs are in place that penalize you significantly for “missing” key
response-time or throughput metrics

• If your business peaks represent an opportunity to compress financial cycles or make it
possible to gain an edge on the competition in terms of insight into product sales, order
fulfillment, inventory turns, and so forth.

• If customer satisfaction is impacted beyond what is otherwise grudgingly acceptable

Business peaks vary nearly as much as the companies that endure them. As I mentioned be-
fore, almost every organization must suffer through some kind of seasonal peak workload—test-
ing and tuning for this peak can mitigate much of the suffering. Similarly, working through issues
surrounding weekly, month-end, and quarter-end financial closings, warehouse inventories, pay-
roll runs, HR benefit update windows, and so on will not only help you avoid self-imposed or ex-
ternally driven SLA penalties but also provide a competitive long-term advantage. And like the
value of knowing your daily load, understanding your business peaks positions you that much bet-
ter when it comes time to perform a major functional upgrade or technology refresh.

Data input required for your business peaks should not be that difficult to identify, because
it’s almost always associated with a particular business activity or functional area, as we have al-
ready seen. But it’s all about quantities! The key is to ensure you have enough data to do the job

Testing and Tuning for Business Peaks 217

mySAPch09 5/27/04 6:02 AM Page 217

of stress testing, along with access to the proper number and mix of virtual or physical users that
truly represent the concurrent online or batch load you seek.

9.5. Identifying Key Transactions and Business Processes

As I said before, there are many ways to identify the key transactions and business processes rep-
resentative of a particular condition, event, or state. The opinions and experience of the end-user
community that actually conducts much of this work is an obvious source of knowledge, albeit
an imperfect and not necessarily holistic source. Regardless, I still recommend that you speak
with your business representatives and functional experts. Indeed, for systems that have not gone
“live” yet, there’s really no alternative. But for precise and historically accurate information that
reflects the load borne by your production systems day in and day out, week after week, month
after month, I strongly encourage you to leverage the abundance of transactional and performance
data sitting in CCMS. In this way, you can have insight into the whole picture—the most popu-
lar online transactions, the heaviest batch processing jobs and execution windows, visibility into
the mundane repetitive tasks collectively responsible for much of the load, and so on. Month-end
closes, seasonal peaks, and other high-water loads can be clearly understood in this way, and be-
yond this, how all of the various functions intertwine and come together to create the lifeblood of
an SAP system—its workload—becomes clear as well.

Prior to following the steps outlined in the sections that follow, you need to determine the
scope—typically by looking at an entire collection of application servers servicing an SAP sys-
tem—and then the timeframe you wish to analyze. That is, SAP CCMS will allow you to look at
the last “X” minutes or, probably more applicable for our purposes, a particular time period. I of-
ten start with analyzing the load of what I’m told is a “typical week” by plugging in start and end
dates that reflect 7 full days (usually Sunday at 3 a.m. until the next Sunday at 2:59 a.m., though
the timeframe you select may be different). I like somewhere around 3 a.m. because it’s often the
quietest time of the evening—backups are usually completed, the system is back up and available,
but scheduled early-morning batch processes have not yet commenced, and few online users tend
to be on the system. I try to avoid capturing only a partial business process or workload—as much
as possible, I want to capture the entire week’s work the moment it begins, without cutting any-
thing off in the beginning or the end.

From this starting point, I then work to identify peak days within the week, and even peak
hours within particular days. The term peak is subjective, of course, but most often involves first
uncovering and sorting the quantity of transactions executed. Next, I’ll change tack and look at
all the transactions sorted by database load, CPU load, and so on. In this way, I can begin to un-
derstand the load placed on the various hardware components that underpin SAP. After this de-
tailed analysis, I’ll often take a look at an entire month’s worth of data as well, just to be sure I
didn’t miss a particular processing peak not easily seen otherwise. And, in some cases, I might
even drill down into a particular application or batch server, especially if capacity planning is one
of the goals of the stress testing. In the sections that follow, we will walk through the exact steps
necessary to uncover the specifics that come together to create your workload. To help you apply

218 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 218

this process to all SAP systems, I will only draw on CCMS, as opposed to SAP Solution Man-
ager or third-party systems-management applications and other tool sets which you may or may
not have at your disposal.

9.5.1. Online User Transactions

To determine the mix of your peak online user transactions and how they interplay to create a load
on your SAP system’s hardware components, log on with a user ID capable of executing core ba-
sis transactions to the system being tested, and perform the following steps (if you prefer the
newer ST03N, keep in mind that a certain amount of modification to the listed steps will be re-
quired. The changes are quite intuitive, fortunately, and for experienced SAP administrators or
Basis consultants will present few problems, if any):

1. Execute transaction /nST03 (the Workload Analysis screen is displayed).
2. Click the “Performance Database” button.
3. Select timeframe.
4. Select the “dialog” button—in this way, only online transactions are analyze.
5. Select “detailed analysis.”
6. Select a column to sort by, such as CPU, and double-click it. Transactions will now be

sorted by those that consume the most CPU time. Record the top 40 transactions.

9.5.2. Batch Processing and Reporting

Follow a process similar to that outlined previously, though changed to reflect batch processes:

1. Execute transaction /nST03 (the Workload Analysis screen is displayed).
2. Click the “Performance Database” button.
3. Select timeframe.
4. Select the “background” button—in this way, only batch processes are analyzed.
5. Select “detailed analysis.”
6. Select a column to sort by, such as database response time, and double-click it. Trans-

actions will now be sorted by those that are most disk-intensive. Record the top 40
transactions.

9.5.3. Most Popular Transactions and Other Workloads

Using ST03, the process to identify the most popular transactions (i.e., those that aren’t neces-
sarily the hardest hitting but represent the bulk of activities performed on the system) is as fol-
lows:

1. Execute transaction /nST03 (the Workload Analysis screen is displayed).
2. Click the “Performance Database” button.

Identifying Key Transactions and Business Processes 219

mySAPch09 5/27/04 6:02 AM Page 219

3. Select timeframe.
4. Select the “total” button—in this way, all transactions are analyzed.
5. Select “detailed analysis.”
6. Select a column to sort by, such as CPU, and double-click it. Transactions will now be

sorted by those that consume the most CPU time. Record the top 40 transactions.

9.5.4. Mixed-Bag Testing

With the step-by-step processes outlined previously, you should now have an understanding of
the key online, batch, and noise transactions hosted by your system. At this point, you need to
bring this knowledge together to create a “mixed-bag” workload—in effect, your workload to be
emulated through scripting. Your workload mix will vary based on the goals of your test. For ex-
ample, if you wish to test the benefits of a new server platform, you’ll probably want to focus on
the transactions that drive the heaviest CPU load. Similarly, if an updated disk configuration or
brand-new virtual SAN is potentially in your future, you’ll probably wish to create a workload
that beats up the disk subsystem in the most representative manner.

Refrain from only focusing on a single type of transaction, though, if time and budget al-
low. Variety should be your mantra. For example, when it comes to disk subsystem testing, I sug-
gest that you combine a number of hard-hitting online transactions and reports along with key
batch processes, rather than simply going with easily scripted batch loads (easy because once you
do one type, others tend to follow similar patterns or allow for cookie-cutter scripting ap-
proaches). In this way, different disk access patterns will be represented, which in the end will
also best represent the real world. And I suggest tossing in a few noise scripts as well simply to
keep a certain level of constant activity in the background, again representing the real world of
most SAP enterprise solutions. At the end of the day, a mix of perhaps 50% batch processes to
25% online transactions and reports and 25% scripted noise activities will serve you well in stress
testing and tuning your SAP disk subsystem. And the same argument can be made for testing
other subsystems or technology stack layers, too—variety is desirable as long as your budget can
absorb the incremental time necessary to perform the requisite business process scripting.

9.6. Real-World Access Method Limitations

Although I’ve focused on test mixes from an application or low-level technology stack perspec-
tive thus far, another area that needs to be considered relates to the front-end SAP client. SAP of-
fers a number of access methods or alternatives: the classic SAPGUI, which is available for a
number of “desktop” platforms is the most prevalent, of course, followed by the HTML-based
WebGUI and the newer JavaGUI. Generally speaking, though, the following challenges relevant
to input mixes and access methods apply across the board:

• Not all test tools support all front-end client interfaces. Thus, test input quickly be-
comes a moot point if your goal is to perform virtual multiuser SAPGUI-driven testing
but the available tool does not support the SAPGUI. The same holds true if you wish to

220 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 220

leverage the WebGUI, but your preferred tool is incapable of driving Web-based con-
tent.

• Similar to the previous point, the specific development tool and mySAP component-
specific SAPGUI snap-in may or may not be supported by a particular testing tool.

• Not all business transactions are supported by all user interfaces, especially those out-
side of the classic SAPGUI. This is not nearly the problem today as it has been in the
past, where a small percentage of a business’s key transactions simply could not be ex-
ecuted via the WebGUI (because of the absence of HTML-based transaction equiva-
lents of the standard RFC-based transactional data and screens).

• Not all access methods are hosted directly by a client PC or laptop. For instance, a num-
ber of my larger SAP accounts have standardized on Citrix MetaFrame solutions for
hosting and controlling the SAPGUI. Although the benefits are huge in terms of stan-
dardization, lower desktop software upgrade and maintenance costs (it costs an average
of $40 for IT just to “touch” a user’s PC—that is, to upgrade the SAPGUI), and extend-
ing a user community’s PC lifecycle, the costs to replicate the necessary Citrix server
infrastructure in a test environment can be prohibitive.

• Not all functionality is available on particular releases of the SAPGUI. For example,
only the latest SAPGUI releases support some of the newest business and Basis trans-
actions. And, even previously, the use of OCX controls and other GUI features were
only supported on the SAPGUI releases provided after the “EnjoySAP” initiative.

The lesson here should be clear—take the time up front to determine how well your goals
and success criteria affect the technology stack that is being tested. And then perform some basic
front-end testing to ensure that what you envision is indeed possible with the tools, time, and ex-
pertise you have available.

9.6.1. Other Front-End Components and Interfaces

Front-end user interfaces outside of those previously discussed can come into play as well. The
SAPGUI snap-ins mentioned earlier may or may not be supported by your favorite virtual testing
tool, for instance. In fact, the interface you need to use in support of a specific TU may be com-
pletely foreign to SAP. Compuware’s TestPartner is a good example of a tool that can prove help-
ful in these cases—not only is it a great WebGUI test tool but it also allows you to test a variety
of user interfaces outside of those dependent on Internet Explorer or similar Web interfaces.

In these cases it is important to look beyond what is perceived as immediate front-end
needs, and instead take a quick look at alternatives. Perhaps your testing can be driven without
the need for a GUI—SAP eCATT can “talk” directly with SAP behind the scenes; or maybe part
of the access-enabling technology that sits in front of your SAP system represents an unnecessary
stumbling block, something in the way of your testing goals. If you need to test the online user
load your R/3 system can handle, but EP represents the primary access vehicle to R/3, perhaps
it’s not absolutely necessary to keep EP in the testing loop, so to speak. In other words, to make

Real-World Access Method Limitations 221

mySAPch09 5/27/04 6:02 AM Page 221

things simpler you might consider forgoing the inclusion of EP into the solution stack to be tested
back in the lab, and use the simpler direct method of access allowed by virtual SAPGUI connec-
tions. In this case, you won’t be in a position to test the ability that your particular system has to
support single sign-on (SSO), nor will you be able to validate any high-availability or other per-
formance or scalability metrics. The same limitations hold true for SAP’s older portal product,
Workplace, as well as other legacy tools and utilities that help make SAP system access possible.
Bottom line, though, if your goals don’t require it, you can make your test infrastructure and test
runs that much simpler by keeping only the infrastructure and components necessary to meet your
test’s goals or success criteria in scope.

9.7. Best Practices for Assembling Test Packages

With regard to breaking down and assembling good test packages, I’ve already mentioned a num-
ber of key approaches I often use. Four of these are worth more discussion, however, and are cov-
ered next.

9.7.1. User-Based Test Packages

A simple method of controlling the amount of “noise” or any other functionally derived activities
you introduce in a stress-test run is to directly control the number of users tossed into the mix.
With this approach, you’re not concerned about the load placed on the system per se, you’re more
concerned with the number of users hosted, and whether each user is executing consistent and re-
peatable work. I’ve mentioned elsewhere that I like to create packages of 100 users. One hundred
is a nice number simply because it’s a round number; its size is significant enough to allow me to
build up a test run into a “large stress test” very quickly and in a highly controlled manner.

Load becomes an issue only if a group of 60 or 100 users (or whatever number you choose)
overtaxes a system, invalidating the stress-test run. An obvious example might involve executing
custom Z reports—if you toss 100 of these into a system configured for only half as many batch
processes, you’ll simply create a queue of work that monopolizes all batch work processes and
completely destroys most DB servers. A better number in this case might be 10 instead. Experi-
ment to find the best number for you.

9.7.2. Functionally Focused Test Packages

Although controlling the pure number of users participating in a stress test makes sense, taking
this to the next level and controlling a group of 100 SAP R/3 SD users, for instance, or 10 BW
custom InfoCube reporting users, makes even more sense. Of course, you’ll need to be careful to
ensure that the mix of users (e.g., or batch processes, or reports) adheres to the mix you need to
emulate in support of your test’s specific success criteria. And your test tool needs to support both
the high-water number of users you wish to simulate as well as the ability to create and control
multiple packages.

222 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 222

9.7.3. Another Approach—End-to-End Business Processes

Building on the previous approach, this next approach is both intuitive and in many cases simply
necessary. That is, because a business process by definition feeds off one transaction (the previ-
ous transaction’s output data, actually), and then goes through a processing phase only to hand
off newly created or processed data to the next transaction in line, the idea of bundling these trans-
actions into a single package seems logical. Beyond this, though, it saves time and effort in script-
ing, too, because a common set of fewer variables can be leveraged. And a straightforward
input-output approach to scripting lends itself to making even cross-component business
processes more easily controlled than is otherwise possible. Finally, the granular control made
possible through this method makes it easy to quickly ramp up the user count of a stress-test run
while simultaneously ramping up the number of complete business processes to be executed.

9.7.4. Tips and Tricks—Making Noise with Noise Scripts

One of my favorite approaches to SAP scripting and stress testing involves the creation and de-
ployment of noise scripts. As I said earlier, noise scripts capture and help represent the back-
ground processing or “noise” common in all SAP production systems. I typically create a variety
of noise packages, some focused on general functional areas (e.g., MM or FI, where many light-
weight transactions are common), whereas others might be focused on SAP Basis activities (to
represent the load that monitoring places on a system), specific batch or report jobs, and so on.
The key is to create a consistent baseline of user or batch-driven noise behind the scenes, and then
quantify the per-package load to establish a tier of potential baselines, as depicted in Figure 9–3.
Does this ancillary load represent 10% of the typical production workload? Or 20%? What is the
impact of the load on your test hardware (that is, the HW hit)? Consider what many of my col-
leagues and I deem to be best practices as follows:

Best Practices for Assembling Test Packages 223

Batch
Job Noise

SD Noise

MM Noise

G
re

at
er

 H
W

 H
it

3 Concurrent Processes
1,000 Dialog Steps/Hr
20% CPU, <10 Disk Q

20% Total Workload, 80 Users
20,000 Dialog Steps/Hr
8% CPU, <2 Disk Q

10% Total Workload, 40 Users
12,000 Dialog Steps/Hr
5% CPU, <1 Disk Q

Package Ramifications on BaselinePackage

Figure 9–3 Noise scripts are useful in providing the fundamental underlying nonprimary
transaction load underneath all productive SAP systems.

mySAPch09 5/27/04 6:02 AM Page 223

• Baseline just your noise scripts, to ensure they do the job you envisioned for them. Base-
line not only SAP application-layer performance, but lower levels as well. Eventually, I
recommend that you settle on any number of online users, batch processes, and so on
that create an easy-to-measure load on the system, like 10% CPU utilization or disk
queue lengths of three per disk partition or drive letter.

• Keep the target baseline utilization numbers small, so that it’s easy to add incremental
measurable load to a stress-test run—simply throw another package into the mix, for
example, to add another 10% load on the CPU or perhaps another 40 users or three
concurrent processes (whatever measurement you judge most valuable).

• Ensure that your noise scripts are pseudorandom. As I mentioned earlier, they need to
be repetitive enough that they maintain a consistent load on the CPU, while random
enough to encourage physical disk accesses. In other words, you don’t want to create a
noise script, or any script for that matter, that executes at different speeds every time it
runs, or processes significantly different data between test runs. Make it repeatable!

• Ensure that you track the number of iterations executed, along with the specific number
of discrete noise transactions executed within your noise script or scripts. This is useful
after-the-fact, when you’re seeking to understand and analyze a stress-test run—I sug-
gest leveraging a counter of sorts within the body of your scripts (e.g., and publishing
the counter’s value to your output file), or simply dumping the script’s output into your
output file, to be counted in more of a manual manner after the run.

• Finally, if sound test management dictates that you should group your noise scripts to-
gether, you’ll logically want to go to the trouble of creating one or more noise packages
that either complement the core load being tested (you may create a noise script that ef-
fectively mirrors many of the transactions that represent core activities) or act as a “gap
filler” and instead “round out” a test load (e.g., adding batch noise to a primarily on-
line-user–based stress test).

One of the simplest methods of generating noise within a test run is to execute every core
T-code twice—not the entire transaction, just the T-code associated with the first transaction in a
business process. This kind of incremental and predictable load on the CPU is ideal when it comes
time to measure overall performance, because the transaction is always executed from cache the
second time it’s executed. In this way, it not only does not ever disturb the system’s buffer con-
tents but it is easily scripted or added at the last minute in an iterative fashion if you need to bump
up the CPU hit on a particular stress-test run.

9.8. SAP Component and Other Cross-Application Test Mix Challenges

For each particular SAP application, component, or solution, there tends to be a special set of cir-
cumstances or limiting factors that complicates creating a repeatable, consistent, or adequate test
mix. The following list identifies key problem areas I’ve run into in the past, and what I did to
work around these issues:

224 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 224

• R/3 business processes range from one-offs to multicomponent, highly complex sets of
transactions. But, for most companies, R/3 activities tend to focus on discrete transac-
tions run repeatedly by many users throughout the day, alongside a subset of core batch
processes. I suggest focusing on a few key business processes, like order-to-cash, to
take advantage of the input/output nature of the underlying transactions. In this way,
obtaining input data is a simple matter of leveraging the previous transaction’s output.
And the first transaction—a sales order—can originate in any number of other systems
and be easily completed if core customer, material, and plant data are available and
abundant.

• APO includes both online users and batch-oriented business processes. The real load
borne by the system is represented by the latter, though, especially with regard to de-
mand or production planning runs, or Available to Promise (ATP) processing. Online
user activity is negligible in comparison. From an input data perspective, the number of
key figures that reside in your liveCache server, the number of characteristic combina-
tions (properties) that describe an object, the number of periods (measured in weeks)
against which these processes will run, and of course the number of sales, purchase,
planned, and other orders transferred from R/3 to APO are all important.

• BW and SEM activities range tremendously, so it’s no surprise that input data ranges
are equally wide. In the past, I’ve started a BW stress test by kicking off an R/3 data
extraction process, or simply by pulling data from the ODS to create and populate a
cube. These are certainly important functions, but may not represent your most impor-
tant goals. Instead, you may wish to run queries against one or more standard or cus-
tom InfoCubes. The key will therefore be the cubes themselves—if it matters little how
the data move through your SAP system landscape, make it easy on yourself and start
with a fully populated set of cubes.

• CRM data hail from a number of systems within the CRM system landscape, including
the TRex Server, Multi-Channel Interface Server, InQMy Application Server, and po-
tentially a Workgroup Server and Communication Station, not to mention the CRM
server itself. As such, it can be one of the more complex SAP solutions to stress test. As
a starting point, I suggest that you concentrate on the core user type your system hosts
(probably a Mobile Sales or CIC user, though others exist), and determine the input
necessary to support the top five or so key user transactions. For your Mobile Sales
users, you might focus on managing opportunities or activities, creating customer or-
ders, performing service-related transactions, or managing customer, product, or
project-specific data, for instance. If you host CIC users, you might instead go with the
transactions and activities outlined in the SAP CRM benchmark kit, for example, and
focus on transactions relevant to managing incoming and outgoing CIC calls

• EBP (the core component of SRM) is quite complex, especially from an input perspec-
tive—data originating from Requisite BugsEye (an online catalog), R/3, BW, and EP
complicate executing core EBP business processes. But that’s not all! There are other

SAP Component and Other Cross-Application Test Mix Challenges 225

mySAPch09 5/27/04 6:02 AM Page 225

SRM components that need to be considered as well, like the SAP Bidding Engine and
SAP Supplier Self Services. Given all of this, a seemingly straightforward shopping-
cart–driven procurement business process will have many touch points, will pull data
from many sources, and will generally represent a whole lot of scripting and coordina-
tion effort.

• EP has evolved significantly over the last few years and today represents one of the
fastest growing products in SAP’s line-up. It’s also potentially one of the most impor-
tant products a company will implement, in that all users could conceivably (and, it is
hoped, will) leverage its single sign on capabilities to gain access to all other SAP sys-
tems and many third-party resources, creating a potential high-availability and perform-
ance nightmare should the EP technology stack lack scalability. Thus, stress testing EP
will only grow in importance as it continues to be deployed across the globe. Fortu-
nately, stress testing can be conducted quite easily. Sure, many systems represent po-
tential integration points, but an effective load test could very well consist of accessing
only local resources.

• PLM supports users responsible for managing product, asset, and process information
at any point in the product lifecycle, from selection and purchasing through production
ramp-up, installation, operation, engineering changes, maintenance/repair, retirement,
and more. From a data input perspective, then, you need to understand the precise func-
tionality being implemented and what then needs to be tested—everything from Life-
cycle Data Management and Asset Lifecycle Management to core functionality like
Program and Project Management, Quality Management, and Environment, Health,
and Safety (or EHS) can come into play. Plus, because PLM is implemented as an en-
terprise portal solution and is tied closely with CRM and likely APO, the business
processes that can result may be complex indeed. I therefore suggest going after either
the biggest couple of functional areas to be implemented (in terms of transaction counts
or user counts), or instead the most critical functional areas, and script core transactions
rather than full-blown business processes.

The world of SAP has grown considerably over the last year, though—well beyond the com-
ponents and solutions just highlighted. The SAP XI, xApps, and other products represent addi-
tional systems that may be tested individually or as part of a larger SAP solution. For example,
simulating the number and size of the messages that the XI Integration Server processes represents
an excellent method of testing XI without all of the integration points necessarily in the picture.

XI offers some exciting capabilities when it comes to viewing collaborative cross-
application SAP business processes. For example, business processes that span your R/3, APO,
and CRM systems can be tied together via synchronous and asynchronous messaging defined by
and maintained within XI. You may then leverage XI to enable true cross-application business
process stress testing, regardless of whether heterogeneous system landscapes have been de-
ployed—test cases would initiate from one of the core SAP systems tied together in this manner,
of course. And test execution would be seamless, because XI would handle moving the output

226 Chapter 9: Determining a Suitable Test Mix

mySAPch09 5/27/04 6:02 AM Page 226

from one transaction into the proper component, where it becomes input for the next transaction
in a business process. Beyond this awesome timesaving by-product of XI integration, XI also al-
lows you to visually depict and manage SAP components as well as other enterprise applications
from Baan, Broadvision, JDE World Software, Oracle, PeopleSoft, Siebel, and more. In this way,
the inclusion of SAP and third-party enterprise applications may all be tied together into a cohe-
sive virtual system. More to the point, these complex systems may be managed as a single entity
rather than as a bunch of individual systems, which further simplifies testing.

Mainstays like SAP’s ITS also continue to thrive. From a data input perspective, I suggest
you focus on common transactions supported by back-end systems like R/3. Because all (or
nearly all, in the case of older releases of R/3) SAP screen content is maintained in HTML on the
ITS server, testing ITS amounts to testing the speed and throughput of Web connections. Fortu-
nately, tools abound that support this input type, as we reviewed in Chapter 6, and scripts of this
nature are fairly easy to write and maintain. And the best news of all is that you’ll find that your
ITS users tend to execute the same transactions as their SAPGUI-enabled colleagues (though ex-
ceptions exist—I’ve got a customer that has pushed the bulk of its HR and ESS workload on ITS,
for instance, whereas other modules and functional areas are accessed via the traditional
SAPGUI). So once you’ve established the core transactions executed by a particular SAP prod-
uct or component, you’re well on your way to using this information in support of ITS testing,
too.

9.9 Tools and Approaches

Although there are few formal tools that help you analyze your input requirements, the ap-
proaches discussed throughout this chapter can save you time. I suggest that you document step-
by-step processes (e.g., those pertaining to ST03 herein) specific to your TU, in effect
documenting how you arrived at your determination that a particular set of input was both ap-
propriate and adequate. Take a screen shot as well, and file this in your documentation repository.
It may again prove useful as you iteratively execute various new tests, tune your system, and then
return to testing.

Finally, take care not to assume too much when you find yourself implementing new SAP
components or technology stacks because much of the documentation floating around is not nec-
essarily applicable. For instance, with the advent of commodity 64-bit computing from Intel and
AMD, there is a need for basic pagefile and OS memory/caching testing, along with database tun-
ing as I described earlier in the chapter. This is the case because the rules are changing before our
eyes, and the optimal configuration for some of these new platforms relevant to hosting high-
performance SAP solutions has yet to be determined. So minimize your deployment and upgrade
risks by testing and iteratively tuning early in the game and reap the rewards.

Tools and Approaches 227

mySAPch09 5/27/04 6:02 AM Page 227

mySAPch09 5/27/04 6:02 AM Page 228

