
2

Arguments,
Options,

and
the Environment

In this chapter

page 242.1 Option and Argument Conventions

page 282.2 Basic Command-Line Processing

page 302.3 Option Parsing: getopt() and getopt_long()

page 402.4 The Environment

page 492.5 Summary

page 50Exercises

23

C ommand-line option and argument interpretation is usually the first task of
any program. This chapter examines how C (and C++) programs access their

command-line arguments, describes standard routines for parsing options, and takes
a look at the environment.

Option and Argument Conventions2.1
The word arguments has two meanings. The more technical definition is “all the

‘words’ on the command line.” For example:
$ ls main.c opts.c process.c

Here, the user typed four “words.” All four words are made available to the program
as its arguments.

The second definition is more informal: Arguments are all the words on the command
line except the command name. By default, Unix shells separate arguments from each
other with whitespace (spaces or TAB characters). Quoting allows arguments to include
whitespace:

$ echo here are lots of spaces
here are lots of spaces The shell ‘‘eats’’ the spaces
$ echo "here are lots of spaces"
here are lots of spaces Spaces are preserved

Quoting is transparent to the running program; echo never sees the double-quote
characters. (Double and single quotes are different in the shell; a discussion of the rules
is beyond the scope of this book, which focuses on C programming.)

Arguments can be further classified as options or operands. In the previous two exam-
ples all the arguments were operands: files for ls and raw text for echo.

Options are special arguments that each program interprets. Options change a pro-
gram’s behavior, or they provide information to the program. By ancient convention,
(almost) universally adhered to, options start with a dash (a.k.a. hyphen, minus sign)
and consist of a single letter. Option arguments are information needed by an option,
as opposed to regular operand arguments. For example, the fgrep program’s -f option
means “use the contents of the following file as a list of strings to search for.” See
Figure 2.1.

24

Operands

fgrep -f patfile foo.c bar.c baz.c

Option argument

Option

Command name

FIGURE 2.1
Command-line components

Thus, patfile is not a data file to search, but rather it’s for use by fgrep in defining
the list of strings to search for.

POSIX Conventions2.1.1
The POSIX standard describes a number of conventions that standard-conforming

programs adhere to. Nothing requires that your programs adhere to these standards,
but it’s a good idea for them to do so: Linux and Unix users the world over understand
and use these conventions, and if your program doesn’t follow them, your users will
be unhappy. (Or you won’t have any users!) Furthermore, the functions we discuss
later in this chapter relieve you of the burden of manually adhering to these conventions
for each program you write. Here they are, paraphrased from the standard:

1. Program names should have no less than two and no more than nine characters.

2. Program names should consist of only lowercase letters and digits.

3. Option names should be single alphanumeric characters. Multidigit options
should not be allowed. For vendors implementing the POSIX utilities, the -W
option is reserved for vendor-specific options.

4. All options should begin with a ‘-’ character.

5. For options that don’t require option arguments, it should be possible to group
multiple options after a single ‘-’ character. (For example, ‘foo -a -b -c’
and ‘foo -abc’ should be treated the same way.)

6. When an option does require an option argument, the argument should be
separated from the option by a space (for example, ‘fgrep -f patfile’).

252.1 Option and Argument Conventions

The standard, however, does allow for historical practice, whereby sometimes
the option and the operand could be in the same string: ‘fgrep -fpatfile’.
In practice, the getopt() and getopt_long() functions interpret ‘-fpatfile’
as ‘-f patfile’, not as ‘-f -p -a -t ...’.

7. Option arguments should not be optional.

This means that when a program documents an option as requiring an option
argument, that option’s argument must always be present or else the program
will fail. GNU getopt() does provide for optional option arguments since
they’re occasionally useful.

8. If an option takes an argument that may have multiple values, the program
should receive that argument as a single string, with values separated by commas
or whitespace.

For example, suppose a hypothetical program myprog requires a list of users
for its -u option. Then, it should be invoked in one of these two ways:
myprog -u "arnold,joe,jane" Separate with commas
myprog -u "arnold joe jane" Separate with whitespace

In such a case, you’re on your own for splitting out and processing each value
(that is, there is no standard routine), but doing so manually is usually
straightforward.

9. Options should come first on the command line, before operands. Unix versions
of getopt() enforce this convention. GNU getopt() does not by default,
although you can tell it to.

10. The special argument ‘--’ indicates the end of all options. Any subsequent ar-
guments on the command line are treated as operands, even if they begin with
a dash.

11. The order in which options are given should not matter. However, for mutu-
ally exclusive options, when one option overrides the setting of another, then
(so to speak) the last one wins. If an option that has arguments is repeated, the
program should process the arguments in order. For example, ‘myprog -u
arnold -u jane’ is the same as ‘myprog -u "arnold,jane"’. (You have
to enforce this yourself; getopt() doesn’t help you.)

12. It is OK for the order of operands to matter to a program. Each program should
document such things.

Chapter 2 • Arguments, Options, and the Environment26

13. Programs that read or write named files should treat the single argument ‘-’ as
meaning standard input or standard output, as is appropriate for the program.

Note that many standard programs don’t follow all of the above conventions. The
primary reason is historical compatibility; many such programs predate the codifying
of these conventions.

GNU Long Options2.1.2
As we saw in Section 1.4.2, “Program Behavior,” page 16, GNU programs are en-

couraged to use long options of the form --help, --verbose, and so on. Such options,
since they start with ‘--’, do not conflict with the POSIX conventions. They also can
be easier to remember, and they provide the opportunity for consistency across all GNU
utilities. (For example, --help is the same everywhere, as compared with -h for “help,”
-i for “information,” and so on.) GNU long options have their own conventions, im-
plemented by the getopt_long() function:

1. For programs implementing POSIX utilities, every short (single-letter) option
should also have a long option.

2. Additional GNU-specific long options need not have a corresponding short
option, but we recommend that they do.

3. Long options can be abbreviated to the shortest string that remains unique.
For example, if there are two options --verbose and --verbatim, the
shortest possible abbreviations are --verbo and --verba.

4. Option arguments are separated from long options either by whitespace or by
an = sign. For example, --sourcefile=/some/file or --sourcefile
/some/file.

5. Options and arguments may be interspersed with operands on the command
line; getopt_long() will rearrange things so that all options are processed
and then all operands are available sequentially. (This behavior can be sup-
pressed.)

6. Option arguments can be optional. For such options, the argument is deemed
to be present if it’s in the same string as the option. This works only for short
options. For example, if -x is such an option, given ‘foo -xYANKEES -y’, the
argument to -x is ‘YANKEES’. For ‘foo -x -y’, there is no argument to -x.

272.1 Option and Argument Conventions

7. Programs can choose to allow long options to begin with a single dash. (This
is common with many X Window programs.)

Much of this will become clearer when we examine getopt_long() later in
the chapter.

The GNU Coding Standards devotes considerable space to listing all the long and
short options used by GNU programs. If you’re writing a program that accepts long
options, see if option names already in use might make sense for you to use as well.

Basic Command-Line Processing2.2
A C program accesses its command-line arguments through its parameters, argc

and argv. The argc parameter is an integer, indicating the number of arguments there
are, including the command name. There are two common ways to declare main(),
varying in how argv is declared:

int main(int argc, char *argv[]) int main(int argc, char **argv)
{ {

} }

Practically speaking, there’s no difference between the two declarations, although
the first is conceptually clearer: argv is an array of pointers to characters. The second
is more commonly used: argv is a pointer to a pointer. Also, the second definition is
technically more correct, and it is what we use. Figure 2.2 depicts this situation.

NULL

*

char **

argv

*

*

*

char *

"cat"

"file1"

"file2"

C strings, terminated with'\0'

NULL pointer, binary zero

FIGURE 2.2
Memory for argv

By convention, argv[0] is the program’s name. (For details, see Section 9.1.4.3,
“Program Names and argv[0],” page 297.) Subsequent entries are the command line
arguments. The final entry in the argv array is a NULL pointer.

Chapter 2 • Arguments, Options, and the Environment28

argc indicates how many arguments there are; since C is zero-based, it is always true
that ‘argv[argc] == NULL’. Because of this, particularly in Unix code, you will see
different ways of checking for the end of arguments, such as looping until a counter is
greater than or equal to argc, or until ‘argv[i] == 0’ or while ‘*argv != NULL’ and
so on. These are all equivalent.

The V7 echo Program2.2.1
Perhaps the simplest example of command-line processing is the V7 echo program,

which prints its arguments to standard output, separated by spaces and terminated with
a newline. If the first argument is -n, then the trailing newline is omitted. (This is used
for prompting from shell scripts.) Here’s the code:1

1 #include <stdio.h>
2
3 main(argc, argv) int main(int argc, char **argv)
4 int argc;
5 char *argv[];
6 {
7 register int i, nflg;
8
9 nflg = 0;

10 if(argc > 1 && argv[1][0] == '-' && argv[1][1] == 'n') {
11 nflg++;
12 argc--;
13 argv++;
14 }
15 for(i=1; i<argc; i++) {
16 fputs(argv[i], stdout);
17 if (i < argc-1)
18 putchar(' ');
19 }
20 if(nflg == 0)
21 putchar('\n');
22 exit(0);
23 }

Only 23 lines! There are two points of interest. First, decrementing argc and simul-
taneously incrementing argv (lines 12 and 13) are common ways of skipping initial
arguments. Second, the check for -n (line 10) is simplistic. -no-newline-at-the-
end also works. (Compile it and try it!)

See /usr/src/cmd/echo.c in the V7 distribution.1

292.2 Basic Command-Line Processing

Manual option parsing is common in V7 code because the getopt() function hadn’t
been invented yet.

Finally, here and in other places throughout the book, we see use of the register
keyword. At one time, this keyword provided a hint to the compiler that the given
variables should be placed in CPU registers, if possible. Use of this keyword is obsolete;
modern compilers all base register assignment on analysis of the source code, ignoring
the register keyword. We’ve chosen to leave code using it alone, but you should be
aware that it has no real use anymore.2

Option Parsing: getopt() and getopt_long()2.3
Circa 1980, for System III, the Unix Support Group within AT&T noted that each

Unix program used ad hoc techniques for parsing arguments. To make things easier
for users and developers, they developed most of the conventions we listed earlier. (The
statement in the System III intro(1) manpage is considerably less formal than what’s
in the POSIX standard, though.)

The Unix Support Group also developed the getopt() function, along with several
external variables, to make it easy to write code that follows the standard conventions.
The GNU getopt_long() function supplies a compatible version of getopt(), as
well as making it easy to parse long options of the form described earlier.

Single-Letter Options2.3.1
The getopt() function is declared as follows:
#include <unistd.h> POSIX

int getopt(int argc, char *const argv[], const char *optstring);

extern char *optarg;
extern int optind, opterr, optopt;

The arguments argc and argv are normally passed straight from those of main().
optstring is a string of option letters. If any letter in the string is followed by a colon,
then that option is expected to have an argument.

When we asked Jim Meyering, the Coreutils maintainer, about instances of register in the GNU Coreutils,
he gave us an interesting response. He removes them when modifying code, but otherwise leaves them alone to
make it easier to integrate changes submitted against existing versions.

2

Chapter 2 • Arguments, Options, and the Environment30

To use getopt(), call it repeatedly from a while loop until it returns -1. Each time
that it finds a valid option letter, it returns that letter. If the option takes an argument,
optarg is set to point to it. Consider a program that accepts a -a option that doesn’t
take an argument and a -b argument that does:

int oc; /* option character */
char *b_opt_arg;

while ((oc = getopt(argc, argv, "ab:")) != -1) {
 switch (oc) {
 case 'a':
 /* handle -a, set a flag, whatever */
 break;
 case 'b':
 /* handle -b, get arg value from optarg */
 b_opt_arg = optarg;
 break;
 case ':':
 ... /* error handling, see text */
 case '?':
 default:
 ... /* error handling, see text */
 }
}

As it works, getopt() sets several variables that control error handling.

char *optarg

The argument for an option, if the option accepts one.

int optind

The current index in argv. When the while loop has finished, remaining
operands are found in argv[optind] through argv[argc-1]. (Remember that
‘argv[argc] == NULL’.)

int opterr

When this variable is nonzero (which it is by default), getopt() prints its own
error messages for invalid options and for missing option arguments.

int optopt

When an invalid option character is found, getopt() returns either a '?' or a
':' (see below), and optopt contains the invalid character that was found.

People being human, it is inevitable that programs will be invoked incorrectly, either
with an invalid option or with a missing option argument. In the normal case, getopt()

312.3 Option Parsing: getopt() and getopt_long()

prints its own messages for these cases and returns the '?' character. However, you
can change its behavior in two ways.

First, by setting opterr to 0 before invoking getopt(), you can force getopt()
to remain silent when it finds a problem.

Second, if the first character in the optstring argument is a colon, then getopt()
is silent and it returns a different character depending upon the error, as follows:

Invalid option
getopt() returns a '?' and optopt contains the invalid option character. (This
is the normal behavior.)

Missing option argument
getopt() returns a ':'. If the first character of optstring is not a colon, then
getopt() returns a '?', making this case indistinguishable from the invalid
option case.

Thus, making the first character of optstring a colon is a good idea since it allows
you to distinguish between “invalid option” and “missing option argument.” The cost
is that using the colon also silences getopt(), forcing you to supply your own error
messages. Here is the previous example, this time with error message handling:

int oc; /* option character */
char *b_opt_arg;

while ((oc = getopt(argc, argv, ":ab:")) != -1) {
 switch (oc) {
 case 'a':
 /* handle -a, set a flag, whatever */
 break;
 case 'b':
 /* handle -b, get arg value from optarg */
 b_opt_arg = optarg;
 break;
 case ':':
 /* missing option argument */
 fprintf(stderr, "%s: option `-%c' requires an argument\n",
 argv[0], optopt);
 break;
 case '?':
 default:
 /* invalid option */
 fprintf(stderr, "%s: option `-%c' is invalid: ignored\n",
 argv[0], optopt);
 break;
 }
}

Chapter 2 • Arguments, Options, and the Environment32

A word about flag or option variable-naming conventions: Much Unix code uses
names of the form xflg for any given option letter x (for example, nflg in the V7
echo; xflag is also common). This may be great for the program’s author, who happens
to know what the x option does without having to check the documentation. But it’s
unkind to someone else trying to read the code who doesn’t know the meaning of all
the option letters by heart. It is much better to use names that convey the option’s
meaning, such as no_newline for echo’s -n option.

GNU getopt() and Option Ordering2.3.2
The standard getopt() function stops looking for options as soon as it encounters

a command-line argument that doesn’t start with a ‘-’. GNU getopt() is different:
It scans the entire command line looking for options. As it goes along, it permutes
(rearranges) the elements of argv, so that when it’s done, all the options have been
moved to the front and code that proceeds to examine argv[optind] through
argv[argc-1] works correctly. In all cases, the special argument ‘--’ terminates
option scanning.

You can change the default behavior by using a special first character in optstring,
as follows:

optstring[0] == '+'

GNU getopt() behaves like standard getopt(); it returns options in the order
in which they are found, stopping at the first nonoption argument. This will also
be true if POSIXLY_CORRECT exists in the environment.

optstring[0] == '-'

GNU getopt() returns every command-line argument, whether or not it repre-
sents an argument. In this case, for each such argument, the function returns the
integer 1 and sets optarg to point to the string.

As for standard getopt(), if the first character of optstring is a ':', then GNU
getopt() distinguishes between “invalid option” and “missing option argument” by
returning '?' or ':', respectively. The ':' in optstring can be the second character
if the first character is '+' or '-'.

Finally, if an option letter in optstring is followed by two colon characters, then
that option is allowed to have an optional option argument. (Say that three times fast!)
Such an argument is deemed to be present if it’s in the same argv element as the option,

332.3 Option Parsing: getopt() and getopt_long()

and absent otherwise. In the case that it’s absent, GNU getopt() returns the option
letter and sets optarg to NULL. For example, given—

while ((c = getopt(argc, argv, "ab::")) != 1)
 ...

—for -bYANKEES, the return value is 'b', and optarg points to "YANKEES", while
for -b or ‘-b YANKEES’, the return value is still 'b' but optarg is set to NULL. In the
latter case, "YANKEES" is a separate command-line argument.

Long Options2.3.3
The getopt_long() function handles the parsing of long options of the form de-

scribed earlier. An additional routine, getopt_long_only() works identically, but it
is used for programs where all options are long and options begin with a single ‘-’
character. Otherwise, both work just like the simpler GNU getopt() function. (For
brevity, whenever we say “getopt_long(),” it’s as if we’d said “getopt_long() and
getopt_long_only().”) Here are the declarations, from the GNU/Linux getopt(3)
manpage:

#include <getopt.h> GLIBC

int getopt_long(int argc, char *const argv[],
 const char *optstring,
 const struct option *longopts, int *longindex);

int getopt_long_only(int argc, char *const argv[],
 const char *optstring,
 const struct option *longopts, int *longindex);

The first three arguments are the same as for getopt(). The next option is a pointer
to an array of struct option, which we refer to as the long options table and which
is described shortly. The longindex parameter, if not set to NULL, points to a variable
which is filled in with the index in longopts of the long option that was found. This
is useful for error diagnostics, for example.

Long Options Table2.3.3.1
Long options are described with an array of struct option structures. The struct

option is declared in <getopt.h>; it looks like this:

Chapter 2 • Arguments, Options, and the Environment34

struct option {
 const char *name;
 int has_arg;
 int *flag;
 int val;
};

The elements in the structure are as follows:

const char *name

This is the name of the option, without any leading dashes, for example, "help"
or "verbose".

int has_arg

This describes whether the long option has an argument, and if so, what kind of
argument. The value must be one of those presented in Table 2.1.

The symbolic constants are macros for the numeric values given in the table. While
the numeric values work, the symbolic constants are considerably easier to read,
and you should use them instead of the corresponding numbers in any code that
you write.

int *flag

If this pointer is NULL, then getopt_long() returns the value in the val field of
the structure. If it’s not NULL, the variable it points to is filled in with the value
in val and getopt_long() returns 0. If the flag isn’t NULL but the long option
is never seen, then the pointed-to variable is not changed.

int val

This is the value to return if the long option is seen or to load into *flag if flag
is not NULL. Typically, if flag is not NULL, then val is a true/false value, such as
1 or 0. On the other hand, if flag is NULL, then val is usually a character constant.
If the long option corresponds to a short one, the character constant should be
the same one that appears in the optstring argument for this option. (All of this
will become clearer shortly when we see some examples.)

Each long option has a single entry with the values appropriately filled in. The last
element in the array should have zeros for all the values. The array need not be sorted;
getopt_long() does a linear search. However, sorting it by long name may make it
easier for a programmer to read.

352.3 Option Parsing: getopt() and getopt_long()

TABLE 2.1
Values for has_arg

MeaningNumeric valueSymbolic constant

The option does not take an argument.0no_argument

The option requires an argument.1required_argument

The option’s argument is optional.2optional_argument

The use of flag and val seems confusing at first encounter. Let’s step back for a
moment and examine why it works the way it does. Most of the time, option processing
consists of setting different flag variables when different option letters are seen, like so:

while ((c = getopt(argc, argv, ":af:hv")) != -1) {
 switch (c) {
 case 'a':
 do_all = 1;
 break;
 case 'f':
 myfile = optarg;
 break;
 case 'h':
 do_help = 1;
 break;
 case 'v':
 do_verbose = 1;
 break;
 ... Error handling code here
 }
}

When flag is not NULL, getopt_long() sets the variable for you. This reduces the
three cases in the previous switch to one case. Here is an example long options table
and the code to go with it:

int do_all, do_help, do_verbose; /* flag variables */
char *myfile;

struct option longopts[] = {
 { "all", no_argument, & do_all, 1 },
 { "file", required_argument, NULL, 'f' },
 { "help", no_argument, & do_help, 1 },
 { "verbose", no_argument, & do_verbose, 1 },
 { 0, 0, 0, 0 }
};
...

Chapter 2 • Arguments, Options, and the Environment36

while ((c = getopt_long(argc, argv, ":f:", longopts, NULL)) != -1) {
 switch (c) {
 case 'f':
 myfile = optarg;
 break;
 case 0:
 /* getopt_long() set a variable, just keep going */
 break;
 ... Error handling code here
 }
}

Notice that the value passed for the optstring argument no longer contains 'a',
'h', or 'v'. This means that the corresponding short options are not accepted. To allow
both long and short options, you would have to restore the corresponding cases from
the first example to the switch.

Practically speaking, you should write your programs such that each short option
also has a corresponding long option. In this case, it’s easiest to have flag be NULL and
val be the corresponding single letter.

Long Options, POSIX Style2.3.3.2
The POSIX standard reserves the -W option for vendor-specific features. Thus, by

definition, -W isn’t portable across different systems.

If W appears in the optstring argument followed by a semicolon (note: not a colon),
then getopt_long() treats -Wlongopt the same as --longopt. Thus, in the previous
example, change the call to be:

while ((c = getopt_long(argc, argv, ":f:W;", longopts, NULL)) != -1) {

With this change, -Wall is the same as --all and -Wfile=myfile is the same as
--file=myfile. The use of a semicolon makes it possible for a program to use -W as
a regular option, if desired. (For example, GCC uses it as a regular option, whereas
gawk uses it for POSIX conformance.)

getopt_long() Return Value Summary2.3.3.3
As should be clear by now, getopt_long() provides a flexible mechanism for option

parsing. Table 2.2 summarizes the possible return values and their meaning.

372.3 Option Parsing: getopt() and getopt_long()

TABLE 2.2
getopt_long() return values

MeaningReturn code

getopt_long() set a flag as found in the long option table.0

optarg points at a plain command-line argument.1

Invalid option.'?'

Missing option argument.':'

Option character 'x'.'x'

End of options.-1

Finally, we enhance the previous example code, showing the full switch statement:
int do_all, do_help, do_verbose; /* flag variables */
char *myfile, *user; /* input file, user name */

struct option longopts[] = {
 { "all", no_argument, & do_all, 1 },
 { "file", required_argument, NULL, 'f' },
 { "help", no_argument, & do_help, 1 },
 { "verbose", no_argument, & do_verbose, 1 },
 { "user" , optional_argument, NULL, 'u' },
 { 0, 0, 0, 0 }
};
...
while ((c = getopt_long(argc, argv, ":ahvf:u::W;", longopts, NULL)) != -1) {
 switch (c) {
 case 'a':
 do_all = 1;
 break;
 case 'f':
 myfile = optarg;
 break;
 case 'h':
 do_help = 1;
 break;
 case 'u':
 if (optarg != NULL)
 user = optarg;
 else
 user = "root";
 break;
 case 'v':
 do_verbose = 1;
 break;
 case 0: /* getopt_long() set a variable, just keep going */
 break;

Chapter 2 • Arguments, Options, and the Environment38

#if 0
 case 1:
 /*
 * Use this case if getopt_long() should go through all
 * arguments. If so, add a leading '-' character to optstring.
 * Actual code, if any, goes here.
 */
 break;
#endif
 case ':': /* missing option argument */
 fprintf(stderr, "%s: option `-%c' requires an argument\n",
 argv[0], optopt);
 break;
 case '?':
 default: /* invalid option */
 fprintf(stderr, "%s: option `-%c' is invalid: ignored\n",
 argv[0], optopt);
 break;
 }
}

In your programs, you may wish to have comments for each option letter explaining
what each one does. However, if you’ve used descriptive variable names for each option
letter, comments are not as necessary. (Compare do_verbose to vflg.)

GNU getopt() or getopt_long() in User Programs2.3.3.4
You may wish to use GNU getopt() or getopt_long() in your own programs

and have them run on non-Linux systems. That’s OK; just copy the source files from
a GNU program or from the GNU C Library (GLIBC) CVS archive.3 The source files
are getopt.h, getopt.c, and getopt1.c. They are licensed under the GNU Lesser
General Public License, which allows library functions to be included even in proprietary
programs. You should include a copy of the file COPYING.LIB with your program,
along with the files getopt.h, getopt.c, and getopt1.c.

Include the source files in your distribution, and compile them along with any other
source files. In your source code that calls getopt_long(), use ‘#include
<getopt.h>’, not ‘#include "getopt.h"’. Then, when compiling, add -I. to the
C compiler’s command line. That way, the local copy of the header file will be
found first.

See http://sources.redhat.com.3

392.3 Option Parsing: getopt() and getopt_long()

You may be wondering, “Gee, I already use GNU/Linux. Why should I include
getopt_long() in my executable, making it bigger, if the routine is already in the C
library?” That’s a good question. However, there’s nothing to worry about. The source
code is set up so that if it’s compiled on a system that uses GLIBC, the compiled files
will not contain any code! Here’s the proof, on our system:

$ uname -a Show system name and type
Linux example 2.4.18-14 #1 Wed Sep 4 13:35:50 EDT 2002 i686 i686 i386 GNU/Linux
$ ls -l getopt.o getopt1.o Show file sizes
-rw-r--r-- 1 arnold devel 9836 Mar 24 13:55 getopt.o
-rw-r--r-- 1 arnold devel 10324 Mar 24 13:55 getopt1.o
$ size getopt.o getopt1.o Show sizes included in executable
 text data bss dec hex filename
 0 0 0 0 0 getopt.o
 0 0 0 0 0 getopt1.o

The size command prints the sizes of the various parts of a binary object or exe-
cutable file. We explain the output in Section 3.1, “Linux/Unix Address Space,” page 52.
What’s important to understand right now is that, despite the nonzero sizes of the files
themselves, they don’t contribute anything to the final executable. (We think this is
pretty neat.)

The Environment2.4
The environment is a set of ‘name=value’ pairs for each program. These pairs are

termed environment variables. Each name consists of one to any number of alphanumeric
characters or underscores (‘_’), but the name may not start with a digit. (This rule is
enforced by the shell; the C API can put anything it wants to into the environment, at
the likely cost of confusing subsequent programs.)

Environment variables are often used to control program behavior. For example, if
POSIXLY_CORRECT exists in the environment, many GNU programs disable extensions
or historical behavior that isn’t compatible with the POSIX standard.

You can decide (and should document) the environment variables that your program
will use to control its behavior. For example, you may wish to use an environment
variable for debugging options instead of a command-line argument. The advantage
of using environment variables is that users can set them in their startup file and not
have to remember to always supply a particular set of command-line options.

Chapter 2 • Arguments, Options, and the Environment40

Of course, the disadvantage to using environment variables is that they can silently
change a program’s behavior. Jim Meyering, the maintainer of the Coreutils, put it
this way:

It makes it easy for the user to customize how the program works without
changing how the program is invoked. That can be both a blessing and a
curse. If you write a script that depends on your having a certain environment
variable set, but then have someone else use that same script, it may well fail
(or worse, silently produce invalid results) if that other person doesn’t have
the same environment settings.

Environment Management Functions2.4.1
Several functions let you retrieve the values of environment variables, change their

values, or remove them. Here are the declarations:
#include <stdlib.h>

char *getenv(const char *name); ISO C: Retrieve environment variable
int setenv(const char *name, const char *value, POSIX: Set environment variable
 int overwrite);
int putenv(char *string); XSI: Set environment variable, uses string
void unsetenv(const char *name); POSIX: Remove environment variable
int clearenv(void); Common: Clear entire environment

The getenv() function is the one you will use 99 percent of the time. The argument
is the environment variable name to look up, such as "HOME" or "PATH". If the variable
exists, getenv() returns a pointer to the character string value. If not, it returns NULL.
For example:

char *pathval;

/* Look for PATH; if not present, supply a default value */
if ((pathval = getenv("PATH")) == NULL)
 pathval = "/bin:/usr/bin:/usr/ucb";

Occasionally, environment variables exist, but with empty values. In this case, the
return value will be non-NULL, but the first character pointed to will be the zero byte,
which is the C string terminator, '\0'. Your code should be careful to check that the
return value pointed to is not NULL. Even if it isn’t NULL, also check that the string is
not empty if you intend to use its value for something. In any case, don’t just blindly
use the returned value.

412.4 The Environment

To change an environment variable or to add a new one to the environment,
use setenv():

if (setenv("PATH", "/bin:/usr/bin:/usr/ucb", 1) != 0) {
 /* handle failure */
}

It’s possible that a variable already exists in the environment. If the third argument
is true (nonzero), then the supplied value overwrites the previous one. Otherwise, it
doesn’t. The return value is -1 if there was no memory for the new variable, and 0
otherwise. setenv() makes private copies of both the variable name and the new value
for storing in the environment.

A simpler alternative to setenv() is putenv(), which takes a single "name=value"
string and places it in the environment:

if (putenv("PATH=/bin:/usr/bin:/usr/ucb") != 0) {
 /* handle failure */
}

putenv() blindly replaces any previous value for the same variable. Also, and perhaps
more importantly, the string passed to putenv() is placed directly into the environment.
This means that if your code later modifies this string (for example, if it was an array,
not a string constant), the environment is modified also. This in turn means that you
should not use a local variable as the parameter for putenv(). For all these reasons
setenv() is preferred.

NOTE The GNU putenv() has an additional (documented) quirk to its
behavior. If the argument string is a name, then without an = character, the
named variable is removed. The GNU env program, which we look at later in
this chapter, relies on this behavior.

The unsetenv() function removes a variable from the environment:
unsetenv("PATH");

Finally, the clearenv() function clears the environment entirely:
if (clearenv() != 0) {
 /* handle failure */
}

This function is not standardized by POSIX, although it’s available in GNU/Linux
and several commercial Unix variants. You should use it if your application must be
very security conscious and you want it to build its own environment entirely from

Chapter 2 • Arguments, Options, and the Environment42

scratch. If clearenv() is not available, the GNU/Linux clearenv(3) manpage recom-
mends using ‘environ = NULL;’ to accomplish the task.

The Entire Environment: environ2.4.2
The correct way to deal with the environment is through the functions described in

the previous section. However, it’s worth a look at how things are managed “under
the hood.”

The external variable environ provides access to the environment in the same way
that argv provides access to the command-line arguments. You must declare the variable
yourself. Although standardized by POSIX, environ is purposely not declared by any
standardized header file. (This seems to evolve from historical practice.) Here is the
declaration:

extern char **environ; /* Look Ma, no header file! */ POSIX

Like argv, the final element in environ is NULL. There is no “environment count”
variable that corresponds to argc, however. This simple program prints out the entire
environment:

/* ch02-printenv.c --- Print out the environment. */

#include <stdio.h>

extern char **environ;

int main(int argc, char **argv)
{
 int i;

 if (environ != NULL)
 for (i = 0; environ[i] != NULL; i++)
 printf("%s\n", environ[i]);

 return 0;
}

Although it’s unlikely to happen, this program makes sure that environ isn’t NULL
before attempting to use it.

Variables are kept in the environment in random order. Although some Unix shells
keep the environment sorted by variable name, there is no formal requirement that this
be so, and many shells don’t keep them sorted.

432.4 The Environment

As something of a quirk of the implementation, you can access the environment by
declaring a third parameter to main():

int main(int argc, char **argv, char **envp)
{
 ...
}

You can then use envp as you would have used environ. Although you may see this
occasionally in old code, we don’t recommend its use; environ is the official, standard,
portable way to access the entire environment, should you need to do so.

GNU env2.4.3
To round off the chapter, here is the GNU version of the env command. This command
adds variables to the environment for the duration of one command. It can also be used
to clear the environment for that command or to remove specific environment variables.
The program serves double-duty for us, since it demonstrates both getopt_long()
and several of the functions discussed in this section. Here is how the program is invoked:

$ env --help
Usage: env [OPTION]... [-] [NAME=VALUE]... [COMMAND [ARG]...]
Set each NAME to VALUE in the environment and run COMMAND.

 -i, --ignore-environment start with an empty environment
 -u, --unset=NAME remove variable from the environment
 --help display this help and exit
 --version output version information and exit

A mere - implies -i. If no COMMAND, print the resulting environment.

Report bugs to <bug-coreutils@gnu.org>.

Here are some sample invocations:
$ env - myprog arg1 Clear environment, run program with args

$ env - PATH=/bin:/usr/bin myprog arg1 Clear environment, add PATH, run program

$ env -u IFS PATH=/bin:/usr/bin myprog arg1 Unset IFS, add PATH, run program

The code begins with a standard GNU copyright statement and explanatory comment.
We have omitted both for brevity. (The copyright statement is discussed in Appendix C,
“GNU General Public License,” page 657. The --help output shown previously is
enough to understand how the program works.) Following the copyright and comments

Chapter 2 • Arguments, Options, and the Environment44

are header includes and declarations. The ‘N_("string")’ macro invocation (line 93)
is for use in internationalization and localization of the software, topics covered in
Chapter 13, “Internationalization and Localization,” page 485. For now, you can treat
it as if it were the contained string constant.

80 #include <config.h>
81 #include <stdio.h>
82 #include <getopt.h>
83 #include <sys/types.h>
84 #include <getopt.h>
85
86 #include "system.h"
87 #include "error.h"
88 #include "closeout.h"
89
90 /* The official name of this program (e.g., no `g' prefix). */
91 #define PROGRAM_NAME "env"
92
93 #define AUTHORS N_ ("Richard Mlynarik and David MacKenzie")
94
95 int putenv ();
96
97 extern char **environ;
98
99 /* The name by which this program was run. */

100 char *program_name;
101
102 static struct option const longopts[] =
103 {
104 {"ignore-environment", no_argument, NULL, 'i'},
105 {"unset", required_argument, NULL, 'u'},
106 {GETOPT_HELP_OPTION_DECL},
107 {GETOPT_VERSION_OPTION_DECL},
108 {NULL, 0, NULL, 0}
109 };

The GNU Coreutils contain a large number of programs, many of which perform
the same common tasks (for example, argument parsing). To make maintenance easier,
many common idioms are defined as macros. GETOPT_HELP_OPTION_DECL and
GETOPT_VERSION_OPTION (lines 106 and 107) are two such. We examine their defini-
tions shortly. The first function, usage(), prints the usage information and exits.
The _("string") macro (line 115, and used throughout the program) is also for
internationalization, and for now you should also treat it as if it were the contained
string constant.

452.4 The Environment

111 void
112 usage (int status)
113 {
114 if (status != 0)
115 fprintf (stderr, _("Try `%s --help' for more information.\n"),
116 program_name);
117 else
118 {
119 printf (_("\
120 Usage: %s [OPTION]... [-] [NAME=VALUE]... [COMMAND [ARG]...]\n"),
121 program_name);
122 fputs (_("\
123 Set each NAME to VALUE in the environment and run COMMAND.\n\
124 \n\
125 -i, --ignore-environment start with an empty environment\n\
126 -u, --unset=NAME remove variable from the environment\n\
127 "), stdout);
128 fputs (HELP_OPTION_DESCRIPTION, stdout);
129 fputs (VERSION_OPTION_DESCRIPTION, stdout);
130 fputs (_("\
131 \n\
132 A mere - implies -i. If no COMMAND, print the resulting environment.\n\
133 "), stdout);
134 printf (_("\nReport bugs to <%s>.\n"), PACKAGE_BUGREPORT);
135 }
136 exit (status);
137 }

The first part of main() declares variables and sets up the internationalization. The
functions setlocale(), bindtextdomain(), and textdomain() (lines 147–149)
are all discussed in Chapter 13, “Internationalization and Localization,” page 485. Note
that this program does use the envp argument to main() (line 140). It is the only one
of the Coreutils programs to do so. Finally, the call to atexit() on line 151 (see Sec-
tion 9.1.5.3, “Exiting Functions,” page 302) registers a Coreutils library function that
flushes all pending output and closes stdout, reporting a message if there were problems.
The next bit processes the command-line arguments, using getopt_long().
139 int
140 main (register int argc, register char **argv, char **envp)
141 {
142 char *dummy_environ[1];
143 int optc;
144 int ignore_environment = 0;
145
146 program_name = argv[0];
147 setlocale (LC_ALL, "");
148 bindtextdomain (PACKAGE, LOCALEDIR);
149 textdomain (PACKAGE);
150
151 atexit (close_stdout);

Chapter 2 • Arguments, Options, and the Environment46

152
153 while ((optc = getopt_long (argc, argv, "+iu:", longopts, NULL)) != -1)
154 {
155 switch (optc)
156 {
157 case 0:
158 break;
159 case 'i':
160 ignore_environment = 1;
161 break;
162 case 'u':
163 break;
164 case_GETOPT_HELP_CHAR;
165 case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
166 default:
167 usage (2);
168 }
169 }
170
171 if (optind != argc && !strcmp (argv[optind], "-"))
172 ignore_environment = 1;

Here are the macros, from src/sys2.h in the Coreutils distribution, that define
the declarations we saw earlier and the ‘case_GETOPT_xxx’ macros used above (lines
164–165):

/* Factor out some of the common --help and --version processing code. */

/* These enum values cannot possibly conflict with the option values
 ordinarily used by commands, including CHAR_MAX + 1, etc. Avoid
 CHAR_MIN - 1, as it may equal -1, the getopt end-of-options value. */
enum
{
 GETOPT_HELP_CHAR = (CHAR_MIN - 2),
 GETOPT_VERSION_CHAR = (CHAR_MIN - 3)
};

#define GETOPT_HELP_OPTION_DECL \
 "help", no_argument, 0, GETOPT_HELP_CHAR
#define GETOPT_VERSION_OPTION_DECL \
 "version", no_argument, 0, GETOPT_VERSION_CHAR

#define case_GETOPT_HELP_CHAR \
 case GETOPT_HELP_CHAR: \
 usage (EXIT_SUCCESS); \
 break;

#define case_GETOPT_VERSION_CHAR(Program_name, Authors) \
 case GETOPT_VERSION_CHAR: \
 version_etc (stdout, Program_name, PACKAGE, VERSION, Authors); \
 exit (EXIT_SUCCESS); \
 break;

472.4 The Environment

The upshot of this code is that --help prints the usage message and --version
prints version information. Both exit successfully. (“Success” and “failure” exit statuses
are described in Section 9.1.5.1, “Defining Process Exit Status,” page 300.) Given that
the Coreutils have dozens of utilities, it makes sense to factor out and standardize as
much repetitive code as possible.

Returning to env.c:
174 environ = dummy_environ;
175 environ[0] = NULL;
176
177 if (!ignore_environment)
178 for (; *envp; envp++)
179 putenv (*envp);
180
181 optind = 0; /* Force GNU getopt to re-initialize. */
182 while ((optc = getopt_long (argc, argv, "+iu:", longopts, NULL)) != -1)
183 if (optc == 'u')
184 putenv (optarg); /* Requires GNU putenv. */
185
186 if (optind != argc && !strcmp (argv[optind], "-")) Skip options
187 ++optind;
188
189 while (optind < argc && strchr (argv[optind], '=')) Set environment variables
190 putenv (argv[optind++]);
191
192 /* If no program is specified, print the environment and exit. */
193 if (optind == argc)
194 {
195 while (*environ)
196 puts (*environ++);
197 exit (EXIT_SUCCESS);
198 }

Lines 174–179 copy the existing environment into a fresh copy of the environment.
The global variable environ is set to point to an empty local array. The envp parameter
maintains access to the original environment.

Lines 181–184 remove any environment variables as requested by the -u option.
The program does this by rescanning the command line and removing names listed
there. Environment variable removal relies on the GNU putenv() behavior discussed
earlier: that when called with a plain variable name, putenv() removes the environment
variable.

After any options, new or replacement environment variables are supplied on the
command line. Lines 189–190 continue scanning the command line, looking for envi-
ronment variable settings of the form ‘name=value’.

Chapter 2 • Arguments, Options, and the Environment48

Upon reaching line 192, if nothing is left on the command line, env is supposed to
print the new environment, and exit. It does so (lines 195–197).

If arguments are left, they represent a command name to run and arguments to pass
to that new command. This is done with the execvp() system call (line 200), which
replaces the current program with the new one. (This call is discussed in Section 9.1.4,
“Starting New Programs: The exec() Family,” page 293; don’t worry about the details
for now.) If this call returns to the current program, it failed. In such a case, env prints
an error message and exits.
200 execvp (argv[optind], &argv[optind]);
201
202 {
203 int exit_status = (errno == ENOENT ? 127 : 126);
204 error (0, errno, "%s", argv[optind]);
205 exit (exit_status);
206 }
207 }

The exit status values, 126 and 127 (determined on line 203), conform to POSIX.
127 means the program that execvp() attempted to run didn’t exist. (ENOENT means
the file doesn’t have an entry in the directory.) 126 means that the file exists, but
something else went wrong.

Summary2.5

• C programs access their command-line arguments through the parameters argc
and argv. The getopt() function provides a standard way for consistent parsing
of options and their arguments. The GNU version of getopt() provides some
extensions, and getopt_long() and getopt_long_only() make it possible to
easily parse long-style options.

• The environment is a set of ‘name=value’ pairs that each program inherits from
its parent. Programs can, at their author’s whim, use environment variables to
change their behavior, in addition to any command-line arguments. Standard
routines (getenv(), setenv(), putenv(), and unsetenv()) exist for retrieving
environment variable values, changing them, or removing them. If necessary, the
entire environment is available through the external variable environ or
through the char **envp third argument to main(). The latter technique is
discouraged.

492.5 Summary

Exercises

1. Assume a program accepts options -a, -b, and -c, and that -b requires an ar-
gument. Write the manual argument parsing code for this program, without
using getopt() or getopt_long(). Accept -- to end option processing.
Make sure that -ac works, as do -bYANKEES, -b YANKEES, and -abYANKEES.
Test your program.

2. Implement getopt(). For the first version, don’t worry about the case in which
‘optstring[0] == ':'’. You may also ignore opterr.

3. Add code for ‘optstring[0] == ':'’ and opterr to your version of
getopt().

4. Print and read the GNU getopt.h, getopt.c and getopt1.c files.

5. Write a program that declares both environ and envp and compares their
values.

6. Parsing command line arguments and options is a wheel that many people
can’t refrain from reinventing. Besides getopt() and getopt_long(), you
may wish to examine different argument-parsing packages, such as:

• The Plan 9 From Bell Labs arg(2) argument-parsing library,4

• Argp,5

• Argv,6

• Autoopts,7

• GNU Gengetopt,8

• Opt,9

• Popt.10 See also the popt(3) manpage on a GNU/Linux system.

7. Extra credit: Why can’t a C compiler completely ignore the register keyword?
Hint: What operation cannot be applied to a register variable?

http://plan9.bell-labs.com/magic/man2html/2/arg4

http://www.gnu.org/manual/glibc/html_node/Argp.html5

http://256.com/sources/argv6

http://autogen.sourceforge.net/autoopts.html7

ftp://ftp.gnu.org/gnu/gengetopt/8

http://nis-www.lanl.gov/~jt/Software/opt/opt-3.19.tar.gz9

http://freshmeat.net/projects/popt/?topic_id=80910

Chapter 2 • Arguments, Options, and the Environment50

