
41

CHAPTER 3

Configuring the Secure Shell

Configuration is the the technical implementation of the local security policy. When
setting the policy, management decided the level of protection needed for machines
and data. Now you must implement their decisions when configuring Secure Shell.
Secure Shell has a variety of options, some of which may not be appropriate to your
local situation. Configure according to your policy. Again, if you do not have a
security policy, it is important to establish one.

In configuring Secure Shell, keep in mind two principles:

■ Defense-in-depth

Let no single point of configuration or defense be the only gatekeeper for security.

■ Plan on failure

Secure Shell can, and should, be configured at multiple points (build-time, server
configuration, and client configuration). No single misconfiguration should
completely break the system security.

Example client and server configurations can be found in “Scripts and Configuration
Files” on page 159. Consult the appendixes on server and client configuration
options for information on individual options. Also refer to vendor documentation
because the appendixes are not all encompassing. OpenSSH exists in a particularly
fluid state with new options occasionally appearing.

Configuration Details
In order of precedence, Secure Shell configuration occurs at the following places: the
software build-time, the server command-line options, the server configuration file
(sshd_config), the client command-line options, the user client configuration file

42 Secure Shell in the Enterprise • June 2003

(~/.ssh/config), and the global client configuration file (ssh_config). Build-time
configuration is the strongest. It cannot be changed without rebuilding the software.
This makes it inconvenient if a change is needed.

The server configuration involves the following: how the sshd (1M) daemon will
present itself on the network, what protocols and authentication methods are
acceptable, and how the user environment is constructed. The client configuration
involves the following: determining which server to transact with which protocol,
verifying the server identity, determining the user identity presentation, and
choosing the ease-of-use features. Policy details are implemented on the server side.
The client cannot override or provide a feature that the server does not offer.

The available features can be enabled or disabled by either command-line options or
the applicable configuration file. Command-line options apply to a particular
instantiation of either the server or client. Configuration file options are persistent
until the file is altered and a new instantiation started. The most reliable
configuration method uses the configuration file. This gives a repeatable,
reproducible invocation. Changes can also be tracked by using source control. For
information on command-line options, consult the vendor documentation.

Mechanics of Configuration Files
When OpenSSH is built, sshd_config and ssh_config are placed at the location
specified by sysconfdir . Usual locations are /etc , /usr/local/etc , /etc/ssh , or
/etc/openssh . The Solaris Secure Shell software stores the two files at /etc/ssh .
These files should be owned by user root and group sys . The file permission mode
should be either 644 or 444.

Configuration files contain two types of entries: comments and keyword-value pairs.
Comments are blank lines and lines beginning with the hash mark (#). Keyword-
value pairs consist of an identifier (keyword), a space, and the value associated with
the identifier. Keywords are case insensitive, where as values are case sensitive.

Traditionally, the first letter of each word in a keyword is capitalized for readability.
Some values are lists that are either comma delimited or space delimited, depending
on the keyword. Consider keeping configuration files under source control to track
revisions. The source control tags can be hidden by the comment character (the hash
mark).

Example config file - two comments and one
keyword-value pair
Port 22

Chapter 3 Configuring the Secure Shell 43

Recommendations
During configuration, you will need to make trade-offs between security, ease-of-
use, and legacy compatibility. A wide variety of options covering network and
protocol support, authentication, and user environment, obscure the individual
option’s impact on the whole. This section includes some configuration
recommendations and discusses the consequences of their usage.

Note – Only the Solaris Secure Shell software and OpenSSH versions that are
current at the time of this writing are used. Not all of the options are covered.
Consult the vendor documentation for information on the other options and on the
options presented here.

Server Recommendations
Server configuration specifies how the daemon presents itself on the network, what
protocols are offered, and what authentication methods are allowed. Specific
recommendations are given for each topic. Recommendations specific to a particular
Secure Shell implementation have also been noted.

Protocol Support

Two major versions of the Secure Shell protocol exist. Protocol 1 has been deprecated
because of vulnerabilities, such as packet insertion and password-length
determination. Whenever possible, use Protocol 2. Unfortunately, many legacy
clients support only Protocol 1. If this protocol must be enabled, consult the Legacy
Support recommendations later in this chapter. Consider migrating to clients that
support Protocol 2 as soon as reasonably possible.

Network Access

By default, the sshd (1M) daemon listens on all network interfaces on its bound
ports. For workstations or other systems on which accessibility is desired for all
interfaces, this behavior is not a problem. For architectures such as the Service

44 Secure Shell in the Enterprise • June 2003

Delivery Network, in which management traffic is limited to a particular interface,
this behavior is a problem. Limit network access with the ListenAddress keyword.
Access is limited by a particular IP address, not by a network interface.

To further narrow down what the daemon will listen to, use either a host-based
firewall, such as the SunScreen™ software, or TCP Wrappers.

For information about traffic-limited architectures, consult the Sun BluePrints
OnLine article “Building Secure N-Tier Environments” (October 2000).

Keep-Alives

Occasionally, connections are temporarily suspended when a route is downed, a
machine crashes, a connection is hijacked, or a man-in-the-middle attack is
attempted. TCP keep-alives should be sent to detect any of these cases. If TCP keep-
alives fail, the server will disconnect the connection and return allocated resources.
Regular disconnects can aggravate users on faulty networks.

Data Compression

Optionally, compression can be used on the encrypted data streams. This use results
in bandwidth savings for compressible data, such as interactive logins or log files, at
the expense of more CPU resources. For uncompressible data such as encrypted or
compressed files, the extra CPU time is wasted and decreases performance. For a
single Secure Shell session, these losses are inconsequential. For a file server, the
extra load could impact performance. In this case, turn compression off to prevent
misconfigured clients from driving up the system load.

Listen only to the management network.
ListenAddress 192.168.0.10

KeepAlive yes

Transferring ASCII data such as interactive logins or log files
Compression yes

Transferring random data such as compressed or encrypted files
Prevents performance issues and reduces CPU load
Compression no

Chapter 3 Configuring the Secure Shell 45

Privilege Separation

Privilege separation is an OpenSSH-only feature. The sshd (1M) daemon is split into
two parts: a privileged process to deal with authentication and process creation and
an unprivileged process to deal with incoming network connections. After successful
authentication, the privileged process spawns a new process with the privileges of
the authenticated user. The goal is to prevent compromise from an error in the
network facing process. Unfortunately, privilege separation is not really compatible
with pluggable authentication modules or SunSHIELD Basic Security Module (BSM)
auditing. Some OpenSSH features are also disabled. If privilege separation is
desired, consult the vendor documentation.

Note – The compilation options presented in Chapter 2 disable privilege separation.

Login Grace Time

The default login grace time is the time a connection is allowed to exist before being
successfully authenticated. The default of 600 seconds for the Solaris Secure Shell
software and 120 seconds for later OpenSSH versions is too long. Reduce the time to
60 seconds.

Password and Public Key Authentication

Passwords are not always appropriate. A stronger means may be required, such as
public-key cryptographic two-factor authentication. Secure Shell refers to the key
pair as an identity. See “Managing Keys and Identities” on page 71 for more details.
When passwords are deemed sufficient, do not allow empty passwords. They are too
easy to guess.

OpenSSH only
UsePrivilegeSeparation no

LoginGraceTime 60

PasswordAuthentication yes
PermitEmptyPasswords no
PubKeyAuthentication yes
DSAAuthentication yes

46 Secure Shell in the Enterprise • June 2003

Superuser (root) Logins

Neither the Solaris Secure Shell software nor OpenSSH honors the values set in the
/etc/default/login file. To prevent network superuser (root) logins, they must be
explicitly denied. The Solaris Secure Shell software and OpenSSH default to yes .
However, the default sshd_config (4) file in the Solaris Secure Shell software
disables this feature. This forces a system administrator to log in as an unprivileged
user, then change users (su) to the superuser. Enable superuser logins only if the
system has no user accounts and the appropriate host protection is in place.

Banners, Mail, and Message-of-the-Day

Some sites require that a banner be displayed after a user connects to a system, but
before logging in. You can accomplished this with the Banner keyword. Set Banner
to /etc/issue so that only one banner file exists for the entire system.

In the Solaris OE, the interactive login shell is expected to display the message-of-
the-day (MOTD) and to check for new mail. With some versions of OpenSSH, this
feature causes the MOTD display and mail check to be done twice. Set these
keywords to no to eliminate the duplication.

Connection and X11 Forwarding

Secure Shell can tunnel TCP and X protocol connections through encrypted
connections established between the client and server. Tunneling the traffic is
referred to as forwarding. The forwarding occurs at the application level and is not
completely transparent to the applications being forwarded. The applications need
some configuration to use the tunnel.

Note – Data is protected only while it is in the tunnel between the client and server.
After that, it is normal network traffic in the clear.

PermitRootLogin no

Banner /etc/issue

CheckMail no
PrintMotd no

Chapter 3 Configuring the Secure Shell 47

Tunneled traffic bypasses firewalls and intrusion detection systems. Allowing
connection (TCP port) forwarding allows remote users safer access to email or the
corporate web server. X forwarding allows system administrators to run GUI
applications remotely, such as the Solaris™ Management Console software. This may
not be functionality you want your users setting up. You can inconvenience users by
turning off the functionality, but as long as they have shell access, they can run their
own forwarders. Use role-based access control to explicitly limit what you want your
users to do in this case.

If port forwarding is enabled, disable GatewayPorts and notify your users.
GatewayPorts allows machines, other than the client, to access the forwarded ports
in the tunnel. This access effectively bypasses any firewall usage. Again, users could
run their own private forwarders on their client machines to defeat the server
restrictions. Consider placing an intrusion detection sensor on the private network
side of a Secure Shell bastion host to detect problem traffic.

User Access Control Lists

User access control lists (ACLs) can be specified in the server configuration file. No
other part of the Solaris OE honors this ACL. You can either specifically allow or
deny individual users or groups. The default is to allow access to anyone with a
valid account. You can use ACLs to limit access to particular users in NIS
environments, without resorting to custom pluggable authentication modules. Use
only one of the following four ACL keywords in the server configuration file:
AllowGroups , AllowUsers , DenyGroups , or DenyUsers .

AllowTCPForwarding yes
GatewayPorts no
X11DisplayOffset 10
X11Forwarding yes
XAuthLocation /usr/X/bin/xauth

Allow only the sysadmin staff
AllowGroups staff

Prevent unauthorized users.
DenyUsers cheng atkinson

48 Secure Shell in the Enterprise • June 2003

User File Permissions

If a user has left their home directory or .ssh files world writable either by accident
or by trickery, an intruder could insert identities allowing password-free access or
alter the known_hosts file to allow man-in-the-middle attacks. With StrictModes
enabled, the sshd (1M) daemon will not allow a login. But, users can be easily
confused because they will not know why they cannot log in. No different error
message is presented to them.

If you decide to disable StrictModes , consider eliminating public-key-based
authentication to prevent user account compromise. The consequence is the
elimination of password-free logins for users or automated jobs.

UseLogin Keyword

For OpenSSH only, UseLogin specifies that the OpenSSH sshd (1M) call login (1)
instead of performing the initial login tasks itself for interactive sessions. login (1)
must be called for BSM auditing. Unless UseLogin is set to yes , cron (1M) will
partially break if SunSHIELD BSM auditing is enabled. See “Auditing” on page 81
for details on the consequences of UseLogin and on getting BSM auditing to work
successfully. UseLogin will not work if UsePrivilegeSeparation is enabled.
Enabling UseLogin disables X11 and port forwarding.

StrictModes yes

UseLogin no

Chapter 3 Configuring the Secure Shell 49

Legacy Support

If legacy clients must be supported, strengthen the default configuration as much as
possible. Default to Protocol 2 for the clients that support it. Disable all of the
rhosts -style authentication methods. Increase the server key size and decrease the
ephemeral key regeneration interval to minimize offline factoring attacks against the
keys.

Client Recommendations
Client configuration specifies host option assignment, data compression, keep-alives,
protocol support, and identity management. Specific recommendations are given for
each topic.

Host Option Assignment

Configuration options can be assigned to a specific host or to all hosts by using the
Host keyword. The value is matched to what the user types on the command line,
not to the actual host name of the server. An asterisk (*) is used to set global default
options. Options assigned to a specific host have precedence over the global
defaults.

Enable protocol 1 but default to protocol 2.
Protocol 2,1
Legacy support options - protocol 1 only
HostKey /etc/ssh/ssh_host_key
IgnoreRhosts yes
IgnoreUserKnownHosts yes
KeyRegenerationInterval 1800
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
ServerKeyBits 1024

Only for a specific host
Host legacy
Protocol 1

For all hosts
Host *
Protocol 2

50 Secure Shell in the Enterprise • June 2003

Data Compression

Data compression can be used on the encrypted data stream to save bandwidth. Set
to off by default, you should enable it for interactive sessions or for transferring
easily compressible data. The compression cost is asymmetric in that compressing
the data is more computationally expensive than decompression. Client-side CPU
cycles are generally cheaper than server-side CPU cycles. Avoid attempting to
compress already compressed or encrypted data to avoid needlessly raising the CPU
load on the server.

Keep-Alives

Enable TCP keep-alives to detect downed connections. See “Keep-Alives” on page 44
for the server recommendations.

Protocol Support

Always use Protocol 2 when possible. See “Protocol Support” on page 43 for the
server recommendation.

rlogin and rsh

The rlogin and rsh protocols should not be used. Prevent the client from
attempting to execute rsh if a Secure Shell connection is refused.

For interactive sessions, low bandwidth links, or easily
compressable files
Compression yes

KeepAlive yes

Protocol 2

FallBackToRsh no
UseRsh no

Chapter 3 Configuring the Secure Shell 51

Server Identity

Verify server identity both by its host key and IP address. For higher levels of
identity assurance, set StrictHostKeyChecking to yes and distribute host keys out-
of-band. This is impractical when users frequently encounter new hosts. Set
StrictHostKeyChecking to ask , and train the users to verify the offered host key
with the stored host key on the server. See “Managing Keys and Identities” on
page 71 for more information.

User Identity

User identities are stronger and provide more flexibility than does password
authentication. When user identities are combined with agents, password-free logins
can safely be obtained if the server permits it. See “Integrating Secure Shell” on
page 59 and “Managing Keys and Identities” on page 71 for details.

CheckHostIP yes
only access one host
StrictHostKeyChecking yes

CheckHostIP yes
access a variety of hosts
StrictHostKeyChecking ask

DSAAuthentication yes
PubkeyAuthentication yes

