
9

CHAPTER 2

Introducing EMF

Simply put, the Eclipse Modeling Framework (EMF) is a modeling framework
for Eclipse. By now, you probably know what Eclipse is, given that you either
just read Chapter 1, or you skipped it, presumably because you already knew
what it was. You also probably know what a framework is, since you know
what Eclipse is, and Eclipse is itself a framework. So, to understand what EMF
really is, all you need to know is one more thing: What is a model? Or better
yet, what do we mean by a model?

If you’re familiar with things like class diagrams, collaboration diagrams,
state diagrams, and so on, you’re probably thinking that a model is a set of
those things, probably defined using UML (Unified Modeling Language), a
(the) standard notation for them. You might be imagining a higher-level
description of an application from which some, or all, of the implementation
can be generated. Well, you’re right about what a model is, but not exactly
about EMF’s spin on it.

Although the idea is the same, a model in EMF is less general and not quite
as high-level as the commonly accepted interpretation. EMF doesn’t require a
completely different methodology or any sophisticated modeling tools. All
you need to get started with EMF are the Eclipse Java Development Tools. As
you’ll see in the following sections, EMF relates modeling concepts directly to
their implementations, thereby bringing to Eclipse—and Java developers in
general—the benefits of modeling with a low cost of entry.

EMF.book Page 9 Tuesday, July 15, 2003 3:51 PM

10 CHAPTER 2 • Introducing EMF

2.1 Unifying Java, XML, and UML

To help understand what EMF is about, let’s start with a simple Java program-
ming example. Say that you’ve been given the job of writing a program to
manage purchase orders for some store or supplier.1 You’ve been told that a
purchase order includes a “bill to” and “ship to” address, and a collection of
(purchase) items. An item includes a product name, a quantity, and a price.
“No problem,” you say, and you proceed to create the following Java inter-
faces:

public interface PurchaseOrder
{
 String getShipTo();
 void setShipTo(String value);

 String getBillTo();
 void setBillTo(String value);

 List getItems(); // List of Item
}

public interface Item
{
 String getProductName();
 void setProductName(String value);

 int getQuantity();
 void setQuantity(int value);

 float getPrice();
 void setPrice(float value);
}

Starting with these interfaces, you’ve got what you need to begin writing
the application UI, persistence, and so on.

Before you start to write the implementation code, your boss asks you,
“Shouldn’t you create a ‘model’ first?” If you’re like other Java program-
mers we’ve talked to, who didn’t think that modeling was relevant to them,
then you’d probably claim that the Java code is the model. “Describing the
model using some formal notation would have no value-add,” you say.
Maybe a class diagram

1. If you’ve read much about XML Schema, you’ll probably find this example quite familiar, since
it’s based on the well-known example from XML Schema Part 0: Primer [2]. We’ve simplified it
here, but in Chapter 4 we’ll step up to the real thing.

EMF.book Page 10 Tuesday, July 15, 2003 3:51 PM

2.1 Unifying Java, XML, and UML 11

Maybe a class diagram or two to fill out the documentation a bit, but other
than that it simply doesn’t help. So, to appease the boss, you produce this
UML diagram (see Figure 2.1)2:

Figure 2.1 UML diagram of interfaces.

Then you tell the boss to go away so you can get down to business. (As
you’ll see below, if you had been using EMF, you would already have avoided
this unpleasant little incident with the boss.)

Next, you start to think about how to persist this “model.” You decide
that storing the model in an XML file would be a good solution. Priding your-
self on being a bit of an XML expert, you decide to write an XML Schema to
define the structure of your XML document:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/SimplePO"
 xmlns:PO="http://www.example.com/SimplePO">
 <xsd:complexType name="PurchaseOrder">
 <xsd:sequence>
 <xsd:element name="shipTo" type="xsd:string"/>
 <xsd:element name="billTo" type="xsd:string"/>
 <xsd:element name="items" type="PO:Item"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:int"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

2. If you’re unfamiliar with UML and are wondering what things like the little black diamond mean,
Appendix A provides a brief overview of the notation.

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EMF.book Page 11 Tuesday, July 15, 2003 3:51 PM

12 CHAPTER 2 • Introducing EMF

Before going any further, you notice that you now have three different rep-
resentations of what appears to be pretty much (actually, exactly) the same
thing: the “data model” of your application. Looking at it, you start to won-
der if you could have written only one of the three (that is, Java interfaces,
UML diagram, or XML Schema), and generated the others from it. Even bet-
ter, you start to wonder if maybe there’s even enough information in this
“model” to generate the Java implementation of the interfaces.

This is where EMF comes in. EMF is a framework and code generation
facility that lets you define a model in any of these forms, from which you can
then generate the others and also the corresponding implementation classes.
Figure 2.2 shows how EMF unifies the three important technologies: Java,
XML, and UML. Regardless of which one is used to define it, an EMF model
is the common high-level representation that “glues” them all together.

Figure 2.2 EMF unifies Java, XML, and UML.

Imagine that you want to build an application to manipulate some specific
XML message structure. You would probably be starting with a message
schema, wouldn’t you? Wouldn’t it be nice to be able to take the schema, press
a button or two, and get a UML class diagram for it? Press another button,
and you have a set of Java implementation classes for manipulating the XML.
Finally, press one more button, and you can even generate a working editor
for your messages. All this is possible with EMF, as you’ll see when we walk
through an example similar to this in Chapter 4.

If, on the other hand, you’re not an XML Schema expert, you may choose
to start with a UML diagram, or simply a set of Java interfaces representing
the message structure. The EMF model can just as easily be defined using
either of them. If you want, you can then have an XML Schema generated for
you, in addition to the implementation code. Regardless of how the EMF
model is provided, the power of the framework and generator will be the
same.

EMF
Model

XML UML

Java

EMF.book Page 12 Tuesday, July 15, 2003 3:51 PM

2.2 Modeling vs. Programming 13

2.2 Modeling vs. Programming

So is EMF simply a framework for describing a model and then generating
other things from it? Well, basically yes, but there’s an important difference.
Unlike most tools of this type, EMF is truly integrated with and tuned for effi-
cient programming. It answers the often-asked question, “Should I model or
should I program?” with a resounding, “both.”

“To model or to program, that is not the question.”

How’s that for a quote? With EMF, modeling and programming can be
considered the same thing. Instead of forcing a separation of the high-level
engineering/modeling work from the low-level implementation programming,
it brings them together as two well-integrated parts of the same job. Often,
especially with large applications, this kind of separation is still desirable, but
with EMF the degree to which it is done is entirely up to you.

Why is modeling interesting in the first place? Well, for starters it gives
you the ability to describe what your application is supposed to do (presum-
ably) more easily than with code. This in turn can give you a solid, high-level
way both to communicate the design and to generate part, if not all, of the
implementation code. If you’re a hard-core programmer without a lot of faith
in the idea of high-level modeling, you should think of EMF as a gentle intro-
duction to modeling, and the benefits it implies. You don’t need to step up to
a whole new methodology, but you can enjoy some of the benefits of model-
ing. Once you see the power of EMF and its generator, who knows, we might
even make a modeler out of you yet!

If, on the other hand, you have already bought into the idea of modeling,
and even the “MDA (Model Driven Architecture) Big Picture,”3 you should
think of EMF as a technology that is moving in that direction, but more slowly
than immediate widespread adoption. You can think of EMF as MDA on
training wheels. We’re definitely riding the bike, but we don’t want to fall
down and hurt ourselves by moving too fast. The problem is that high-level
modeling languages need to be learned, and since we’re going to need to work
with (for example, debug) generated Java code anyway, we now need to
understand the mapping between them. Except for specific applications where
things like state diagrams, for example, can be the most effective way to con-
vey the behavior, in the general case, good old-fashioned Java programming is
the simplest and most direct way to do the job.

3. MDA is described in Section 2.6.4.

EMF.book Page 13 Tuesday, July 15, 2003 3:51 PM

14 CHAPTER 2 • Introducing EMF

From the last two paragraphs, you’ve probably surmised that EMF stands
in the middle between two extreme views of modeling: the “I don’t need mod-
eling” crowd, and the “modeling rules!” crowd. You might be thinking that
being in the middle implies that EMF is a compromise and is reduced to the
lowest common denominator. You’re right about EMF being in the middle
and requiring a bit of compromise from those with extreme views. However,
the designers of EMF truly feel that its exact position in the middle represents
the right level of modeling, at this point in the evolution of software develop-
ment technology. We believe that it mixes just the right amount of modeling
with programming to maximize the effectiveness of both. We must admit,
though, that standing in the middle and arguing out of both sides of our
mouths can get tiring!

What is this right balance between modeling and programming? An EMF
model is essentially the Class Diagram subset of UML. That is, a simple model
of the classes, or data, of the application. From that, a surprisingly large per-
centage of the benefits of modeling can be had within a standard Java devel-
opment environment. With EMF, there’s no need for the user, or other
development tools (like a debugger, for example), to understand the mapping
between a high-level modeling language and the generated Java code. The
mapping between an EMF model and Java is natural and simple for Java pro-
grammers to understand. At the same time, it’s enough to support fine-grain
data integration between applications; next to the productivity gain resulting
from code generation, this is one of the most important benefits of modeling.

2.3 Defining the Model

Let’s step back and take a closer look at what we’re really describing with an
EMF model. We’ve seen in Section 2.1 that our conceptual model could be
defined in several different ways, that is, in Java, UML, or XML Schema. But
what exactly are the common concepts we’re talking about when describing a
model? Let’s look at our purchase order example again. Recall that our simple
model included the following:

1. PurchaseOrder and Item, which in UML and Java map to class defini-
tions, but in XML Schema map to complex type definitions.

2. shipTo, billTo, productName, quantity, and price, which map to
attributes in UML, get()/set() method pairs (or Bean properties, if
you want to look at it that way) in Java, and in the XML Schema are
nested element declarations.

EMF.book Page 14 Tuesday, July 15, 2003 3:51 PM

2.3 Defining the Model 15

3. items, which is a UML association end or reference, a get() method in
Java, and in XML Schema, a nested element declaration of another com-
plex type.

As you can see, a model is described using concepts that are at a higher
level than simple classes and methods. Attributes, for example, represent pairs
of methods, and as you’ll see when we look deeper into the EMF implemen-
tation, they also have the ability to notify observers (such as UI views, for
example) and be saved to, and loaded from, persistent storage. References are
more powerful yet, because they can be bidirectional, in which case referential
integrity is maintained. References can also be persisted across multiple
resources (documents), where demand-load and proxy resolution come into
play.

To define a model using these kinds of “model parts” we need a common
terminology for describing them. More importantly, to implement the EMF
tools and generator, we also need a model for the information. We need a
model for describing EMF models, that is, a metamodel.

2.3.1 The Ecore (Meta) Model

The model used to represent models in EMF is called Ecore. Ecore is itself
an EMF model, and thus is its own metamodel. You could say that makes it
also a meta-metamodel. People often get confused when talking about meta-
metamodels (metamodels in general, for that matter), but the concept is actu-
ally quite simple. A metamodel is simply the model of a model, and if that
model is itself a metamodel, then the metamodel is in fact a meta-metamodel.4

Got it? If not, I wouldn’t worry about it, since it’s really just an academic issue
anyway.

A simplified subset of the Ecore model is shown in Figure 2.3. This diagram
only shows the parts of Ecore needed to describe our purchase order example,
and we’ve taken the liberty of simplifying it a bit to avoid showing base classes.
For example, in the real Ecore model the classes EClass, EAttribute, and
EReference share a common base class, ENamedElement, which defines the
name attribute which here we’ve shown explicitly in the classes themselves.

4. This concept can recurse into meta-meta-metamodels, and so on, but we won’t go there.

EMF.book Page 15 Tuesday, July 15, 2003 3:51 PM

16 CHAPTER 2 • Introducing EMF

Figure 2.3 A simplified subset of the Ecore model.

As you can see, there are four Ecore classes needed to represent our model:

1. EClass is used to represent a modeled class. It has a name, zero or more
attributes, and zero or more references.

2. EAttribute is used to represent a modeled attribute. Attributes have a
name and a type.

3. EReference is used to represent one end of an association between
classes. It has a name, a boolean flag to indicate if it represents contain-
ment, and a reference (target) type, which is another class.

4. EDataType is used to represent the type of an attribute. A data
type can be a primitive type like int or float or an object type like
java.util.Date.

Notice that the names of the classes correspond most closely to the UML
terms. This is not surprising since UML stands for Unified Modeling Lan-
guage. In fact, you might be wondering why UML isn’t “the” EMF model.
Why does EMF need its own model? Well, the answer is quite simply that
Ecore is a small and simplified subset of full UML. Full UML supports much
more ambitious modeling than the core support in EMF. UML, for example,
allows you to model the behavior of an application, as well as its class struc-
ture. We’ll talk more about the relationship of EMF to UML and other stan-
dards in Section 2.6.

We can now use instances of the classes defined in Ecore to describe the
class structure of our application models. For example, we describe the pur-
chase order class as an instance of EClass named “PurchaseOrder”. It con-
tains two attributes (instances of EAttribute that are accessed via eAttributes)
named “shipTo” and “billTo”, and one reference (an instance of EReference
that is accessed via eReferences) named “items”, for which eReferenceType
(its target type) is equal to another EClass instance named “Item”. These
instances are shown in Figure 2.4.

EDataType
EAttribute

name : String
1

eAttributeType

1EClass
name : String

0..*

eAttributes
0..*

EReference
name : String
containment : boolean

0..*
eReferences

0..*
1 eReferenceType1

EMF.book Page 16 Tuesday, July 15, 2003 3:51 PM

2.3 Defining the Model 17

Figure 2.4 The purchase order Ecore instances.

When we instantiate the classes defined in Ecore to define the model for
our own application, we are creating what we call a core model.

2.3.2 Creating and Editing the Model

Now that we have these Ecore objects to represent a model in memory, the
EMF framework can read from them to, among other things, generate imple-
mentation code. You might be wondering, though, how do we create the
model in the first place? The answer is that we need to build it from whatever
input form you start with. If you start with Java interfaces, the EMF generator
will introspect them and build the core model. If, instead, you start with an
XML Schema, then the model will be built from that. If you start with UML,
there are three possibilities:

1. Direct Ecore Editing—EMF’s simple tree-based sample Ecore editor and
Omondo’s (free) EclipseUML graphical editor5 are examples.

2. Import from UML—The EMF Project Wizard provides this option for
Rational Rose (.mdl files) only. The reason Rose has this special status is
because it’s the tool that we used to “bootstrap” the implementation of
EMF itself.

3. Export from UML—This is essentially the same as option 2, except the
conversion is invoked from the UML tool, instead of from the EMF
Project Wizard.

As you might imagine, option 1 is the most desirable. With it, there is no
import or export step in the development process. You simply edit the model
and then generate. Also, unlike the other options, you don’t need to worry

5. You can download EclipseUML from the Omondo Web site at www.omondo.com.

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

eReferenceType

. . .

EMF.book Page 17 Tuesday, July 15, 2003 3:51 PM

18 CHAPTER 2 • Introducing EMF

about the core model being out of sync with the tool’s own native model. The
other two approaches require an explicit reimport or reexport step whenever
the UML model changes.

The advantage of options 2 or 3 is that you can use the UML tool to do
more than just your EMF modeling. You can use the full power of UML and
whatever fancy features the particular tool has to offer. If it supports its own
code generation, for example, you can use the tool to define your core model,
and also to both define and generate other parts of your application. As long
as the tool is able to export a serialized core model, then that tool will also be
usable as an input source for the EMF framework/generator.6

2.3.3 XMI Serialization

By now you might be wondering what is the serialized form of a core model?
Previously, we’ve observed that the “conceptual” model is represented in at
least three physical places: Java code, XML Schema, or a UML diagram.
Should there be just one form that we use as the primary, or standard, repre-
sentation? If so, which one should it be?

Believe it or not, we actually have yet another (that is, a fourth) persistent
form that we use as the canonical representation: XMI (XML Metadata Inter-
change). Why did we need another one? We weren’t exactly short of ways to
represent the model persistently.

The reason we use XMI is because it is a standard for serializing metadata,
which Ecore is. Also, except for the Java code, the other forms are all optional.
If we were to use Java code to represent the model, we would need to intro-
spect the whole set of Java files every time we want to reproduce the model.
It’s definitely not a very concise form of the model.

So, XMI does seem like a reasonable choice for the canonical form of
Ecore. It’s actually the closest to choosing door number 3 (UML) anyway. The
problem is that every UML tool has its own persistent model format. An Ecore
XMI file is a “Standard” XML serialization of the exact metadata that EMF
uses.

Serialized as XMI, our purchase order model looks something like this:

<?xml version="1.0" encoding="ASCII"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
 name="po" nsURI="http:///com/example/po.ecore"
 nsPrefix="com.example.po">

6. For option 3, the UML tool in question needs to support exporting to “Ecore XMI,” not simply
export to XMI. This issue is discussed in Section 2.6.3.

EMF.book Page 18 Tuesday, July 15, 2003 3:51 PM

2.3 Defining the Model 19

 <eClassifiers xsi:type="ecore:EClass" name="PurchaseOrder">
 <eReferences name="items"
 eType="#//Item" upperBound="-1" containment="true"/>
 <eAttributes name="shipTo"
 eType="ecore:EDataType
 http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eAttributes name="billTo"
 eType="ecore:EDataType
 http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Item">
 <eAttributes name="productName"
 eType="ecore:EDataType
 http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eAttributes name="quantity"
 eType="ecore:EDataType
 http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
 <eAttributes name="price"
 eType="ecore:EDataType
 http://www.eclipse.org/emf/2002/Ecore#//EFloat"/>
 </eClassifiers>
</ecore:EPackage>

Notice that the XML elements correspond directly to the Ecore instances
back in Figure 2.4, which makes perfect sense seeing that this is a serialization
of exactly those objects.

2.3.4 Java Annotations

Let’s revisit the issue of defining a core model using Java interfaces. Previously
we implied that when provided with ordinary Java interfaces, EMF “would”
introspect them and deduce the model properties. That’s not exactly the case.
The truth is that given interfaces containing standard get() methods,7 EMF
“could” deduce the model attributes and references. EMF does not, however,
blindly assume that every interface and method in it is part of the model. The
reason for this is that the EMF generator is a code-merging generator. It gen-
erates code that not only is capable of being merged with user-written code,
it’s expected to be.

Because of this, our PurchaseOrder interface isn’t quite right for use as a
model definition. First of all, the parts of the interface that correspond to
model elements whose implementation should be generated need to be indi-
cated. Unless explicitly marked with an @model annotation in the Javadoc
comment, a method is not considered to be part of the model definition. For
example, interface PurchaseOrder needs the following annotations:

7. EMF uses a subset of the JavaBean simple property accessor naming patterns [3].

EMF.book Page 19 Tuesday, July 15, 2003 3:51 PM

20 CHAPTER 2 • Introducing EMF

/**
 * @model
 */
public interface PurchaseOrder
{
 /**
 * @model
 */
 String getShipTo();

 /**
 * @model
 */
 String getBillTo();

 /**
 * @model type="Item" containment="true"
 */
 List getItems();
}

Here, the @model tags identify PurhaseOrder as a modeled class, with
two attributes, shipTo and billTo, and a single reference, items. Notice that
both attributes, shipTo and billTo, have all their model information available
through Java introspection, that is, they are simple attributes of type String.
No additional model information appears after their @model tags, because
only information that is different from the default needs to be specified.

There is some non-default model information needed for the items refer-
ence. Because the reference is multiplicity-many, indicated by the fact that it
returns a List, we need to specify the target type of the reference. We also
need to specify containment="true" to indicate that we want purchase
orders to be a container for their items and serialize them as children.

Notice that the setShipTo() and setBillTo() methods are not required
in the annotated interface. With the annotations present on the get() method,
we don’t need to include them; once we’ve identified the attributes (which are
settable by default), the set() methods will be generated and merged into the
interface if they’re not already there. Whether the set() method is generated in
the interface or not, both get and set implementation methods will be generated.

2.3.5 The Ecore “Big Picture”

Let’s recap what we’ve covered so far.

1. Ecore, and its XMI serialization, is the center of the EMF world.

2. A core model can be created from any of at least three sources: a UML
model, an XML Schema, or annotated Java interfaces.

EMF.book Page 20 Tuesday, July 15, 2003 3:51 PM

2.4 Generating Code 21

3. Java implementation code and, optionally, other forms of the model can
be generated from a core model.

We haven’t talked about it yet, but there is one important advantage to
using XML Schema to define a model: given the schema, instances of the
model can be serialized to conform to it. Not surprisingly, in addition to sim-
ply defining the model, the XML Schema approach is also specifying some-
thing about the persistent form of the model.

One question that comes to mind is whether there are other persistent
model forms possible. Couldn’t we, for example, provide a relational database
(RDB) Schema and produce a core model from it? Couldn’t this RDB Schema
also be used to specify the persistent format, similar to the way XML Schema
does? The answer is, quite simply, yes. This is one type of function that EMF
is intended to support, and certainly not the only kind. The “big picture” is
shown in Figure 2.5.

Figure 2.5 The core model and its sources.

2.4 Generating Code

The most important benefit of EMF, as with modeling in general, is the boost
in productivity that results from automatic code generation. Let’s say that
you’ve defined a model, for example the purchase order core model shown in
Section 2.3.3, and are ready to turn it into Java code. What do you do now?
In Chapter 4, we’ll walk through this scenario, and others where you start
with other forms of the model (for example, Java interfaces). For now, suffice
to say that it only involves a few mouse clicks. All you need to do is create a
project using the EMF Project Wizard, which automatically launches the gen-
erator, and select Generate Model Code from a menu.

Core Model

Java Code

Annotations

UML Model

XML Schema

RDB Schema

Other . . .

EMF.book Page 21 Tuesday, July 15, 2003 3:51 PM

22 CHAPTER 2 • Introducing EMF

2.4.1 Generated Model Classes

So what kind of code does EMF generate? The first thing to notice is that an
Ecore class (that is, an EClass) actually corresponds to two things in Java: an
interface and a corresponding implementation class. For example, the EClass
for PurchaseOrder maps to a Java interface:

public interface PurchaseOrder ...

and a corresponding implementation class:

public class PurchaseOrderImpl extends ... implements PurchaseOrder {

This interface/implementation separation is a design choice imposed by
EMF. Why do we require this? The reason is simply that we believe it’s a pat-
tern that any good model-like API would follow. For example, DOM [4] is
like this and so is much of Eclipse. It’s also a necessary pattern to support mul-
tiple inheritance in Java.

The next thing to notice about each generated interface is that it extends
directly or indirectly from the base interface EObject like this:

public interface PurchaseOrder extends EObject {

EObject is the EMF equivalent of java.lang.Object, that is, it’s the base of
all modeled objects. Extending from EObject introduces three main behaviors:

1. eClass() returns the object’s metaobject (an EClass).

2. eContainer() and eResource() return the object’s containing object
and resource.

3. eGet(), eSet(), eIsSet(), and eUnset() provide an API for accessing
the objects reflectively.

The first and third items are interesting only if you want to generically
access the objects instead of, or in addition to, using the type-safe generated
accessors. We’ll look at how this works in Sections 2.5.3 and 2.5.4. The sec-
ond item is an integral part of the persistence API that we will describe in Sec-
tion 2.5.2.

Other than that, EObject has only a few convenience methods. However,
there is one more important thing to notice; EObject extends from yet
another interface:

public interface EObject extends Notifier {

EMF.book Page 22 Tuesday, July 15, 2003 3:51 PM

2.4 Generating Code 23

The Notifier interface is also quite small, but it introduces an important
characteristic to every modeled object; model change notification as in the
Observer Design Pattern [5]. Like object persistence, notification is an impor-
tant feature of an EMF object. We’ll look at EMF notification in more detail
in Section 2.5.1.

Let’s move on to the generated methods. The exact pattern that is used for
any given feature (that is, attribute or reference) implementation depends on
the type and other user-settable properties. In general, the features are imple-
mented as you’d expect. For example, the get() method for the shipTo
attribute simply returns an instance variable like this:

public String getShipTo() {
 return shipTo;
}

The corresponding set() method sets the same variable, but it also sends
a notification to any observers that may be interested in the state change:

public void setShipTo(String newShipTo) {
 String oldShipTo = shipTo;
 shipTo = newShipTo;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this,
 Notification.SET,
 POPackage.PURCHASE_ORDER__SHIP_TO,
 oldShipTo, shipTo));
}

Notice that to make this method more efficient when the object has no
observers, the relatively expensive call to eNotify() is avoided by the
eNotificationRequired() guard.

More complicated patterns are generated for other types of features, espe-
cially bidirectional references where referential integrity is maintained. In all
cases, however, the code is generally as efficient as possible, given the intended
semantic. We’ll cover the complete set of generator patterns in Chapter 9.

The main message you should go away with is that the generated code is
clean, simple, and efficient. EMF does not pull in large base classes, or gener-
ate inefficient code. The EMF framework is lightweight, as are the objects gen-
erated for your model. The idea is that the code that’s generated should look
pretty much like what you would have written, had you done it by hand. But
because it’s generated, you know it’s correct. It’s a big time saver, especially for
some of the more complicated reference handshaking code, which might oth-
erwise be fairly difficult to get right.

EMF.book Page 23 Tuesday, July 15, 2003 3:51 PM

24 CHAPTER 2 • Introducing EMF

Before moving on, we should mention two other important classes that
are generated for a model: a factory and a package. The generated factory (for
example, POFactory) includes a create method for each class in the model.
The EMF programming model strongly encourages, but doesn’t require, the
use of factories for creating objects. Instead of simply using the new operator
to create a purchase order, you should do this:

PurchaseOrder aPurchaseOrder =
 POFactory.eINSTANCE.createPurchaseOrder();

The generated package (for example, POPackage) provides convenient
accessors for all the Ecore metadata for the model. You may already have
noticed, in the code fragment on page 23, the use of POPack-

age.PURCHASE_ORDER__SHIP_TO, a static int constant representing the
shipTo attribute. The generated package also includes convenient accessors
for the EClasses, EAttributes, and EReferences. We’ll look at the use of these
accessors in Section 2.5.3.

2.4.2 Other Generated “Stuff”

In addition to the interfaces and classes described in the previous section, the
EMF generator can optionally generate the following:

1. A skeleton adapter factory8 class (for example, POAdapterFactory) for
the model. This convenient base class can be used to implement adapter
factories that need to create type-specific adapters. For example, a
PurchaseOrderAdapter for PurchaseOrders, an ItemAdapter for
Items, and so on.

2. A convenience switch class (for example, POSwitch) that implements a
“switch statement”-like callback mechanism for dispatching based on an
object’s type (that is, its EClass). The adapter factory class, as just
described, uses this switch class in its implementation.

3. A plug-in manifest file, so that the model can be used as an Eclipse plug-
in.

4. An XML Schema for the model.

If all you’re interested in is generating a model, then this is the end of the
story. However, as we’ll see in Chapters 3 and 4, the EMF generator can, using
the EMF.Edit extensions to the base EMF framework, generate adapter classes

8. Adapters and adapter factories are described in Section 2.5.1.

EMF.book Page 24 Tuesday, July 15, 2003 3:51 PM

2.4 Generating Code 25

that enable viewing and command-based, undoable editing of a model. It can
even generate a working editor for your model. We will talk more about
EMF.Edit and its capabilities in the following chapter. For now, we just stick
to the basic modeling framework itself.

2.4.3 Regeneration and Merge

The EMF generator produces files that are intended to be a combination of
generated pieces and hand-written pieces. You are expected to edit the gener-
ated classes to add methods and instance variables. You can always regenerate
from the model as needed and your additions will be preserved during the
regeneration.

EMF uses @generated markers in the Javadoc comments of generated
interfaces, classes, methods, and fields to identify the generated parts. For
example, getShipTo() actually looks like this:

/**
 * @generated
 */
public String getShipTo() { ...

Any method that doesn’t have this @generated tag (that is, anything you
add by hand) will be left alone during regeneration. If you already have a
method in a class that conflicts with a generated method, then your version
will take precedence and the generated one will be discarded. You can, how-
ever, redirect a generated method if you want to override it but still call the
generated version. If, for example, you rename the getShipTo() method with
a Gen suffix:

/**
 * @generated
 */
public String getShipToGen() { ...

Then if you add your own getShipTo() method without an @generated
tag, the generator will, upon detecting the conflict, check for the correspond-
ing Gen version and, if it finds one, redirect the generated method body there.

The merge behavior for other things is generally fairly reasonable. For
example, you can add extra interfaces to the extends clause of a generated
interface (or the implements clause of a generated class) and they will be
retained during regeneration. The single extends class of a generated class,
however, would be overwritten by the model’s choice. We’ll look at code
merging in more detail in Chapter 9.

EMF.book Page 25 Tuesday, July 15, 2003 3:51 PM

26 CHAPTER 2 • Introducing EMF

2.4.4 The Generator Model

Most of the data needed by the EMF generator is stored in the core model. As
we’ve seen in Section 2.3.1, the classes to be generated and their names,
attributes, and references are all there. There is, however, more information
that needs to be provided to the generator, such as where to put the generated
code and what prefix to use for the generated factory and package class
names, that isn’t stored in the core model. All this user-settable data also needs
to be saved somewhere so that it will be available if we regenerate the model
in the future.

The EMF code generator uses a generator model to store this information.
Like Ecore, the generator model is itself an EMF model. Actually, a generator
model provides access to all of the data needed for generation, including the
Ecore part, by wrapping the corresponding core model. That is, generator
model classes are Decorators [5] of Ecore classes. For example, GenClass dec-
orates EClass, GenFeature decorates EAttribute and ERerference, and so
on.

The significance of all this is that the EMF generator runs off of a gener-
ator model instead of a core model; it’s actually a generator model editor.9

When you use the generator, you’ll be editing a generator model, which in turn
indirectly accesses the core model from which you’re generating. As you’ll see
in Chapter 4 when we walk through an example of using the generator, there
are two model resources (files) in the project: a .ecore file and a .genmodel file.
The .ecore file is an XMI serialization of the core model, as we saw in Section
2.3.3. The .genmodel file is a serialized generator model with cross-document
references to the .ecore file. Figure 2.6 shows the conceptual picture.

Figure 2.6 The .genmodel and .ecore files.

9. It is, in fact, an editor generated by EMF, like the ones we’ll be looking at in Chapter 4 and later
in the book.

EAttribute
(shipTo)

EAttribute
(billTo)

EClass
(PurchaseOrder)

GenFeature GenFeature

GenClass

simplepo.ecoresimplepo.genmodel

EMF.book Page 26 Tuesday, July 15, 2003 3:51 PM

2.5 The EMF Framework 27

Separating the generator model from the core model like this has the
advantage that the actual Ecore metamodel can remain pure and independent
of any information that is only relevant for code generation. The disadvantage
of not storing all the information right in the core model is that a generator
model may get out of sync if the referenced core model changes. To handle
this, the generator model classes include methods to reconcile a generator
model with changes to its corresponding core model. Using these methods, the
two files are kept synchronized automatically by the framework and genera-
tor. Users don’t need to worry about it.

2.5 The EMF Framework

In addition to simply increasing your productivity, building your application
using EMF provides several other benefits, such as model change notification,
persistence support including default XMI serialization, and a most efficient
reflective API for manipulating EMF objects generically. Most important of
all, EMF provides the foundation for interoperability with other EMF-based
tools and applications.

2.5.1 Notification and Adapters

In Section 2.4.1, we saw that every generated EMF class is also a Notifier,
that is, it can send notification whenever an attribute or reference is changed.
This is an important property, allowing EMF objects to be observed, for
example, to update views or other dependent objects.

Notification observers (or listeners) in EMF are called adapters because in
addition to their observer status, they are often used to extend the behavior
(that is, support additional interfaces without subclassing) of the object
they’re attached to. An adapter, as a simple observer, can be attached to any
EObject (for example, PurchaseOrder) by adding to its adapter list like this:

Adapter poObserver = ...
aPurchaseOrder.eAdapters().add(poObserver);

After doing this, the notifyChanged() method will be called, on
poObserver, whenever a state change occurs in the purchase order (for exam-
ple, if the setBillTo() method is called), as shown in Figure 2.7.

EMF.book Page 27 Tuesday, July 15, 2003 3:51 PM

28 CHAPTER 2 • Introducing EMF

Figure 2.7 Calling the notifyChanged() method.

Unlike simple observers, attaching an adapter as a behavior extension is
normally done using an adapter factory. An adapter factory is asked to adapt
an object with an extension of the required type, something like this:

PurchaseOrder aPurchaseOrder = ...
AdapterFactory somePOAdapterFactory = ...
Object poExtensionType = ...
if (somePOAdapterFactory.isFactoryForType(poExtensionType)) {
 Adapter poAdapter =
 somePOAdapterFactory.adapt(aPurchaseOrder, poExtensionType);
 ...
}

Often, the poExtensionType represents some interface supported by the
adapter. For example, the argument could be the actual java.lang.Class for
an interface of the chosen adapter. The returned adapter can then be downcast
to the requested interface, like this:

POAdapter poAdapter =
 (POAdapter)somePOAdapterFactory.adapt(someObject,
 POAdapter.class);

If the adapter of the requested type is already attached to the object, then
adapt() will return the existing adapter; otherwise it will create a new one.
In EMF, the adapter factory is the one responsible for creating the adapter; the
EMF object itself has no notion of being able to adapt itself. This approach
allows greater flexibility to implement the same behavioral extension in more
than one way. If instead the object were asked to adapt itself, it could only ever
return one implementation for a given extension type.

As you can see, an adapter must be attached to each individual EObject
that it wants to observe. Sometimes, you may be interested in being informed
of state changes to any object in a containment hierarchy, a resource, or even
any of a set of related resources. Rather than requiring you to walk through
the hierarchy and attach your observer to each object, the EMF framework

PurchaseOrder

Adapter

adapter.notifyChanged()

setBillTo()

EMF.book Page 28 Tuesday, July 15, 2003 3:51 PM

2.5 The EMF Framework 29

provides a very convenient adapter class, EContentAdapter, which can be
used for this purpose. It can be attached to a root object, a resource, or even
a resource set, and it will automatically attach itself to all the contents. It will
then receive notification of state changes to any of the objects and it will even
respond to content change notifications itself, by attaching or detaching itself
as appropriate.

Adapters are used extensively in EMF as observers and to extend behav-
ior. They are the foundation for the UI and command support provided by the
EMF.Edit framework, as we will see in Chapter 3. We’ll also look at how they
work in much more detail in Chapter 13.

2.5.2 Object Persistence

The ability to persist, and reference other persisted model objects, is one of the
most important benefits of EMF modeling; it’s the foundation for fine-grain
data integration between applications. The EMF framework provides simple,
yet powerful, mechanisms for managing object persistence.

As we’ve seen earlier, core models are serialized using XMI. Actually, EMF
includes a default XMI serializer that can be used to persist objects generically
from any model, not just Ecore. Even better, if your model is defined using an
XML Schema, EMF allows you to persist your objects as an XML instance
document conforming to that schema. The EMF framework, combined with
the code generated for your model, handles all this for you.

Above and beyond the default serialization support, EMF allows you to
save your objects in any persistent form you like. In this case you’ll also need
to write the actual serialization code yourself, but once you do that the model
will transparently be able to reference (and be referenced by) objects in other
models and documents, regardless of how they’re persisted.

When we looked at the properties of a generated model class in Section
2.4.1, we pointed out that there are two methods related to persistence: eCon-
tainer() and eResource(). To understand how they work, let’s start with
the following example:

PurchaseOrder aPurchaseOrder =
 POFactory.eINSTANCE.createPurchaseOrder();
aPurchaseOrder.setBillTo("123 Maple Street");

Item aItem = POFactory.eINSTANCE.createItem();
aItem.setProductName("Apples");
aItem.setQuantity(12);
aItem.setPrice(0.50);

aPurchaseOrder.getItems().add(aItem);

EMF.book Page 29 Tuesday, July 15, 2003 3:51 PM

30 CHAPTER 2 • Introducing EMF

Here we’ve created a PurchaseOrder and an Item using the generated
classes from our purchase order model. We then added the Item to the items
reference by calling getItems().add().

Whenever an object is added to a containment reference, which items is,
it also sets the container of the added object. So, in our example, if we were
to call aItem.eContainer() now, it would return the purchase order, aPur-
chaseOrder.10 The purchase order itself is not in any container, so calling
eContainer() on it would return null. Note also that calling the
eResource() method on either object would also return null at this point.

Now, to persist this pair of objects, we need to put them into a resource.
Interface Resource is used to represent a physical storage location (for exam-
ple, a file). To persist our objects all we need to do is add the root object (that
is, the purchase order) to a resource like this:

Resource poResource = ...
poResource.getContents().add(aPurchaseOrder);

After adding the purchase order to the resource, calling eResource() on
either object will return poResource. The item (aItem) is in the resource via
its container (aPurchaseOrder).

Now that we’ve put the two objects into the resource, we can save them
by simply calling save()on the resource. That seems simple enough, but
where did we get the resource from in the first place? To understand how it all
fits together we need to look at another important interface in the EMF frame-
work: ResourceSet.

A ResourceSet, as its name implies, is a set of resources that are accessed
together, in order to allow for potential cross-document references among
them. It’s also the factory for its resources. So, to complete our example, we
would create the resource, add the purchase order to it, and then save it some-
thing like this11:

ResourceSet resourceSet = new ResourceSetImpl();
URI fileURI =
 URI.createFileURI(new File("mypo.xml").getAbsolutePath());
Resource poResource = resourceSet.createResource(fileURI);
poResource.getContents().add(aPurchaseOrder);
poResource.save(null);

10.Notice how this implies that a containment association is implicitly bidirectional, even if, like the
items reference, it is declared to be one-way. We’ll discuss this issue in more detail in Chapter 9.

11. If you’re wondering about the call to File.getAbsolutePath(), it’s used to ensure that we
start with an absolute URI that will allow any cross document references that we may serialize to
use relative URIs, guaranteeing that our serialized document(s) will be location independent. URIs
and cross-document referencing are described in detail in Chapter 13.

EMF.book Page 30 Tuesday, July 15, 2003 3:51 PM

2.5 The EMF Framework 31

Class ResourceSetImpl chooses the resource implementation class using
an implementation registry. Resource implementations are registered, globally
or local to the resource set, based on a URI scheme, file extension, or other
possible criteria. If no specific resource implementation applies for the speci-
fied URI, then EMF’s default XMI resource implementation will be used.

Assuming that we haven’t registered a different resource implementation,
then after saving our simple resource, we’d get an XMI file, mypo.xml, that
looks something like this:

<simplepo:PurchaseOrder xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:simplepo="http:///simplepo.ecore"

 billTo="123 Maple Street">

 <items productName="Apples" quantity="12" price="0.5"/>

</simplepo:PurchaseOrder>

Now that we’ve been able to save our model instance, let’s look at how
we would load it again. Loading is also done using a resource set like this:

ResourceSet resourceSet = new ResourceSetImpl();

URI fileURI =

 URI.createFileURI(new File("mypo.xml").getAbsolutePath());

Resource poResource = resourceSet.getResource(fileURI, true);

PurchaseOrder aPurchaseOrder =

 (PurchaseOrder)poResource.getContents().get(0);

Notice that because we know that the resource has our single purchase
order at its root, we simply get the first element and downcast.

The resource set also manages demand-load for cross-document refer-
ences, if there are any. When loading a resource, any cross-document refer-
ences that are encountered will use a proxy object instead of the actual target.
These proxies will then be resolved lazily when they are first used.

In our simple example, we actually have no cross-document references;
the purchase order contains the item, so they are both in the same resource.
Imagine, however, that we had modeled items as a non-containment reference
like this (Figure 2.8):

Figure 2.8 items as a simple reference.

ItemPurchaseOrder
0..*

items

0..*

EMF.book Page 31 Tuesday, July 15, 2003 3:51 PM

32 CHAPTER 2 • Introducing EMF

Notice the missing black diamond on the PurchaseOrder end of the asso-
ciation, indicating a simple reference as opposed to a by-value aggregation
(containment reference). If we make this change using Java annotations
instead of UML, the getItems() method would need to change to this:

 /**

 * @model type="Item"

 */

 List getItems();

Now that items is not a containment reference, we’ll need to explicitly call
getContents().add() on a resource for the item, just like we previously did
for the purchase order. Now, however, we have the option of adding it to the
same resource as the purchase order, or to a different one. If we choose to put
the items into separate resources, then demand loading would come into play,
as shown in Figure 2.9.

Figure 2.9 Resource set demand-loading of resources.

In the diagram, Resource 1 (which could contain our purchase order, for
example) contains cross-document references to Resource 2 (for example,
containing our item). When we load Resource 1 by calling getResource()
for “uri 1”, any references to objects in Resource 2 (that is, “uri 2”) will sim-
ply be set to proxies. A proxy is an uninitialized instance of the target class,
but with the actual object’s URI stored in it. Later, when we access the object,
for example by calling aPurchaseOrder.getItems().get(0), Resource 2
will be demand loaded and the proxy will be resolved (that is, replaced with
the target object).

Resource 2Resource 1

ResourceSet

Client

load

demand-load
resource 2

resource 1 uri 1 resource 1
uri 2 resource 2

EMF.book Page 32 Tuesday, July 15, 2003 3:51 PM

2.5 The EMF Framework 33

Demand loading, proxies, and proxy resolution are very important fea-
tures of the EMF framework. We’ll explore them in greater detail in Chapters
9 and 13.

2.5.3 The Reflective EObject API

As we observed in Section 2.4.1, every generated model class implements the
EMF base interface, EObject. Among other things, EObject defines a
generic, reflective API for manipulating instances:

public interface EObject
{
 Object eGet(EStructuralFeature feature);
 void eSet(EStructuralFeature feature, Object newValue);

 boolean eIsSet(EStructuralFeature feature);
 void eUnset(EStructuralFeature feature);

 ...
}

We can use this reflective API, instead of the generated methods, to read
and write the model. For example, we can set the shipTo attribute of the pur-
chase order like this:

aPurchaseOrder.eSet(shipToAttribute, "123 Maple Street");

We can read it back like this:

String shipTo = (String)aPurchaseOrder.eGet(shipToAttribute);

We can also create a purchase order reflectively, by calling a generic cre-
ate method on the factory like this:

EObject aPurchaseOrder =
 poFactory.create(purchaseOrderClass);

If you’re wondering where the metaobjects, purchaseOrderClass and
shipToAttribute, and the poFactory come from, the answer is that you can
get them using generated static accessors like this:

POPackage poPackage = POPackage.eINSTANCE;
POFactory poFactory = POFactory.eINSTANCE;
EClass purchaseOrderClass = poPackage.getPurchaseOrder();
EAttribute shipToAttribute =
 poPackage.getPurchaseOrder_ShipTo();

EMF.book Page 33 Tuesday, July 15, 2003 3:51 PM

34 CHAPTER 2 • Introducing EMF

The EMF code generator also generates efficient implementations of the
reflective methods. They are slightly less efficient than the generated get-
ShipTo() and setShipTo() methods (the reflective methods dispatch to the
generated ones through a generated switch statement), but they open up the
model for completely generic access. For example, the reflective methods are
used by the EMF.Edit framework to implement a full set of generic commands
(for example, AddCommand, RemoveCommand, SetCommand) that can be used
on any model. We’ll talk more about this in Chapter 3.

Notice that in addition to the eGet() and eSet() methods, the reflective
EObject API includes two more methods: eIsSet() and eUnset(). The
eIsSet() method can be used to find out if an attribute is set or not, while
eUnset() can be used to unset or reset it. The generic XMI serializer, for
example, uses eIsSet() to determine which attributes need to be serialized
during a resource save operation. We’ll talk more about the “unset” state, and
its significance on certain models, in Chapters 5 and 9.

2.5.4 Dynamic EMF

Until now, we’ve only ever considered the value of EMF in generating imple-
mentations of models. Sometimes, we would like to simply share objects with-
out requiring generated implementation classes to be available. A simple
interpretive implementation would be good enough.

A particularly interesting characteristic of the reflective API is that it can
also be used to manipulate instances of dynamic, non-generated, classes.
Imagine if we hadn’t created the purchase order model or run the EMF gener-
ator to produce the Java implementation classes in the usual way. Instead, we
simply create the core model at runtime, something like this:

EPackage poPackage = EcoreFactory.eINSTANCE.createEPackage();

EClass purchaseOrderClass = EcoreFactory.eINSTANCE.createEClass();
purchaseOrderClass.setName("PurchaseOrder");
poPackage.getEClassifiers().add(purchaseOrderClass);

EClass itemClass = EcoreFactory.eINSTANCE.createEClass();
itemClass.setName("Item");
poPackage.getEClassifiers().add(itemClass);

EAttribute shipToAttribute =
 EcoreFactory.eINSTANCE.createEAttribute();
shipToAttribute.setName("shipTo");
shipToAttribute.setEType(EcorePackage.eINSTANCE.getEString());
purchaseOrderClass.getEAttributes().add(shipToAttribute);

// and so on ...

EMF.book Page 34 Tuesday, July 15, 2003 3:51 PM

2.5 The EMF Framework 35

Here we have an in-memory core model, for which we haven’t generated
any Java classes. We can now create a purchase order instance and initialize it
using the same reflective calls as we used in the previous section:

EFactory poFactory = poPackage.getEFactoryInstance();
EObject aPurchaseOrder = poFactory.create(purchaseOrderClass);
aPurchaseOrder.eSet(shipToAttribute, "123 Maple Street");

Because there is no generated PurchaseOrderImpl class, the factory will
create an instance of EObjectImpl instead. EObjectImpl provides a default
dynamic implementation of the reflective API. As you’d expect, this imple-
mentation is slower than the generated one, but the behavior is exactly the
same.

An even more interesting scenario involves a mixture of generated and
dynamic classes. For example, assume that we had generated class Purchase-
Order in the usual way and now we’d like to create a dynamic subclass of it.

EClass subPOClass = EcoreFactory.eINSTANCE.createEClass();
subPOClass.setName("SubPO");
subPOClass.getESuperTypes().add(POPackage.getPurchaseOrder());
poPackage.getEClassifiers().add(subPOClass);

If we now instantiate an instance of our dynamic class SubPO, then the
factory will detect the generated base class and will instantiate it instead of
EObjectImpl. The significance of this is that any accesses we make to
attributes or references that come from the base class will call the efficient gen-
erated implementations in class PurchaseOrderImpl:

String shipTo = aSubPO.eGet(shipToAttribute);

Only features that come from the derived (dynamic) class will use the slower
dynamic implementation.

The most important point of all this is that, when using the reflective API,
the presence (or lack thereof) of generated implementation classes is com-
pletely transparent. All you need is the core model in memory. If generated
implementation classes are (later) added to the class path, they will then be
used. From the client’s perspective, the only thing that will change will be the
speed of the code.

2.5.5 Foundation for Data Integration

The last few sections have shown various features of the EMF framework
that support sharing of data. Section 2.5.1 described how change notification
is an intrinsic property of every EMF object, and how adapters can be used

EMF.book Page 35 Tuesday, July 15, 2003 3:51 PM

36 CHAPTER 2 • Introducing EMF

to support open-ended extension. In Section 2.5.2, we showed how the EMF
persistence framework uses Resources and ResourceSets to support cross-
document referencing, demand-loading of documents, and arbitrary persis-
tent forms. Finally, in Sections 2.5.3 and 2.5.4 we saw how EMF supports
generic access to EMF models, including ones that may be partially or com-
pletely dynamic (that is, without generated implementation classes).

In addition to these features, the EMF framework provides a number of
convenience classes and utility functions to help manage the sharing of
objects. For example, a utility class for finding object cross-references
(EcoreUtil.CrossReferencer and its subclasses) can be used to find any
uses of an object (for example, to cleanup references when deleting the object)
and any unresolved proxies in a resource, among other things.

All these features, combined with an intrinsic property of modeling—that
it provides a higher-level description that can more easily be shared—provide
all the needed ingredients to foster fine-grain data integration. While Eclipse
itself provides a wonderful platform for integration at the UI and file level,
EMF builds on this capability to enable applications to integrate at a much
finer granularity than would otherwise be possible. We’ve seen how EMF can
even be used to share data reflectively, even without using the EMF code gen-
eration support. Whether dynamic or generated, EMF models are the founda-
tion for fine-grain data integration in Eclipse.

2.6 EMF and Modeling Standards

EMF is often discussed together with several important modeling standards of
the Object Management Group (OMG), including UML, MOF, XMI, and
MDA. This section introduces these standards and describes EMF’s relation-
ships with them.

2.6.1 UML

Unified Modeling Language is the most widely used standard for describing
systems in terms of object concepts. UML is very popular in the specification
and design of software, most often software to be written using an object-ori-
ented language. UML emphasizes the idea that complex systems are best
described through a number of different views, as no single view can capture
all aspects of such a system completely. As such, it includes several different
types of model diagrams to capture usage scenarios, class structures, behav-
iors, and implementations.

EMF is concerned with only one aspect of UML, class modeling. This focus
is in no way a rejection of UML’s holistic approach. Rather, it is a starting

EMF.book Page 36 Tuesday, July 15, 2003 3:51 PM

2.6 EMF and Modeling Standards 37

point, based on the pragmatic realization that the task of translating the ideas
that can be expressed in various UML diagrams into concrete implementa-
tions is very large and very complex.

UML was standardized by the OMG in 1997. The standard’s latest version
is 1.5; it is available at www.omg.org/technology/documents/formal/uml.htm.

2.6.2 MOF

Meta-Object Facility (MOF) concretely defines a subset of UML for describ-
ing class modeling concepts within an object repository. As such, MOF is com-
parable to Ecore. However, with a focus on tool integration, rather than
metadata repository management, Ecore avoids some of MOF’s complexities,
resulting in a widely applicable, optimized implementation.

MOF and Ecore have many similarities in their ability to specify classes
and their structural and behavioral features, inheritance, packages, and reflec-
tion. They differ in the area of life cycle, data type structures, package rela-
tionships, and complex aspects of associations.

MOF was standardized in 1997, at the same time as UML. The standard,
also at version 1.4, is available at www.omg.org/technology/documents/
formal/mof.htm.

The next versions of MOF and UML—2.0—are currently works-in-
progress. Requests for proposals have been issued, with a goal of unifying the
specification cores, increasing the scope, and addressing existing deficiencies.
The experience of EMF has substantially influenced the current status of the
working drafts, in terms the layering of the architecture and the structure of
the semantic core.

2.6.3 XMI

XML Metadata Interchange is the standard that connects modeling with
XML, defining a simple way to specify model objects in XML documents.
An XMI document’s structure closely matches that of the corresponding
model, with the same names and an element hierarchy that follows the model’s
containment hierarchy. As a result, the relationship between a model and its
XMI serialization is easy to understand.

Although XMI can be, and is by default, used as the serialization format
for any EMF model, it is most appropriate for serializing models representing
metadata—that is, metamodels, like Ecore itself. We refer to a core model,
serialized in XMI 2.0, as “Ecore XMI” and consider an Ecore XMI (.ecore)
file as the canonical form of such a model.

ch02.fm Page 37 Tuesday, July 15, 2003 4:54 PM

38 CHAPTER 2 • Introducing EMF

XMI was standardized in 1998, shortly after XML 1.0 was finalized. The
XMI 2.0 specification is available at www.omg.org/technology/documents/
formal/xmi.htm.

2.6.4 MDA

Model Driven Architecture is an industry architecture proposed by the OMG
that addresses full life-cycle application development, data, and application
integration standards that work with multiple middleware languages and
interchange formats. MDA unifies some of the industry best practices in soft-
ware architecture, modeling, metadata management, and software transfor-
mation technologies that allow a user to develop a modeling specification
once and target multiple technology implementations by using precise trans-
formations/mappings.

EMF supports the key MDA concept of using models as input to develop-
ment and integration tools: in EMF, a model is used to drive code generation
and serialization for data interchange.

MDA information and key specifications are available at
www.omg.org/mda.

ch02.fm Page 38 Tuesday, July 15, 2003 4:54 PM

