
3 FPGA Fabrics

 3.1 Introduction

In this chapter we will study the basic structures of FPGAs, known as fabrics.
We will start with a brief introduction to the structure of FPGA fabrics. However,
there are several fundamentally different ways to build an FPGA. Therefore, we
will discuss combinational logic and interconnect for the two major styles of
FPGA: SRAM-based and antifuse-based. The features of I/O pins are fairly simi-
lar among these two types of FPGAs, so we will discuss pins at the end of the
chapter.

 3.2 FPGA Architectures

elements of FPGAs In general, FPGAs require three major types of elements:

• combinational logic;

• interconnect;

• I/O pins.

Architectures of FPGAs.

SRAM-based FPGAs.

Antifuse-programmed FPGAs.

Programmable I/O pins.

FPGA circuits: logic and interconnect.

 106 Chapter 3 FPGA Fabrics

These three elements are mixed together to form an FPGA fabric.

FPGA architectures Figure 3-1 shows the basic structure of an FPGA that incorporates these
three elements. The combinational logic is divided into relatively small
units which may be known as logic elements (LEs) or combinational
logic blocks (CLBs). The LE or CLB can usually form the function of
several typical logic gates but it is still small compared to the typical
combinational logic block found in a large design. The interconnections
are made between the logic elements using programmable interconnect.
The interconnect may be logically organized into channels or other
units. FPGAs typically offer several types of interconnect depending on
the distance between the combinational logic blocks that are to be con-
nected; clock signals are also provided with their own interconnection
networks. The I/O pins may be referred to as I/O blocks (IOBs). They
are generally programmable to be inputs or outputs and often provide
other features such as low-power or high-speed connections.

FPGA interconnect An FPGA designer must rely on pre-designed wiring, unlike a custom
VLSI designer who can design wires as needed to make connections.

logic
elementIOB

interconnect

logic
element

logic
element

IOB

IOB

logic
elementIOB

interconnect

logic
element

logic
element

IOB

logic
elementIOB

interconnect

logic
element

logic
element

IOB

interconnect

Figure 3-1 Generic structure of an FPGA fabric.

FPGA Architectures 107

The interconnection system of an FPGA is one of its most complex
aspects because wiring is a global property of a logic design.

connection paths Connections between logic elements may require complex paths since
the LEs are arranged in some sort of two-dimensional structure as
shown in Figure 3-2. We therefore need to make connections not just
between LEs and wires but also between the wires themselves. Wires
are typically organized in wiring channels or routing channels that run
horizontally and vertically through the chip. Each channel contains sev-
eral wires; the human designer or a program chooses which wire will be
used in each channel to carry a signal. Connections must be made
between wires in order to carry a signal from one point to another. For
example, the net in the figure starts from the output of the LE in the
upper-right-hand corner, travels down vertical channel 5 until it reaches
horizontal channel 2, then moves down vertical channel 3 to horizontal
channel 3. It then uses vertical channel 1 to reach the input of the LE at
the lower-left-hand corner.

segmented wiring In order to allow a logic designer to make all the required connections
between logic elements, the FPGA channels must provide wires of a
variety of lengths, as shown in Figure 3-3. Because the logic elements
are organized in a regular array, we can arrange wires going from one
LE to another. The figure shows connections of varying length as mea-
sured in units of LEs: the top signal of length 1 goes to the next LE, the
second signal goes to the second LE, and so on. This organization is

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

logic
element

ve
rt

ic
al

ch
an

ne
l1 horizontal channel 2

ve
rt

ic
al

ch
an

ne
l5

ve
rt

ic
al

ch
an

ne
l3

horizontal channel 3

Figure 3-2 Interconnect may require complex paths.

 108 Chapter 3 FPGA Fabrics

known as a segmented wiring structure [ElG88] since the wiring is
constructed of segments of varying lengths. The alternative to seg-
mented wiring is to make each wire length 1. However, this would
require a long connection to hop through many programmable wiring
points, and as we will see in Section 3.6, that would lead to excessive
delay along the connection. The segments in a group need not all end at
the same point. The bottom part of Figure 3-3 shows segments of length
2 that are offset relative to each other.

FPGA configuration All FPGAs need to be programmed or configured. There are three
major circuit technologies for configuring an FPGA: SRAM, antifuse,
and flash. No matter what circuits are used, all the major elements of the
FPGA—the logic, the interconnect, and the I/O pins—need to be con-
figured. The details of these elements vary greatly depending on how
the FPGA elements are to be programmed. But FPGAs are very com-
plex VLSI systems that can be characterized in many different ways.

LE LE LE LE LE

length 1

length 2

length 3

length 4

...

segments of varying lengths

LE LE LE LE LE

......

......

offset segments

Figure 3-3 Segmented wiring and offsets.

FPGA Architectures 109

Some of the characteristics of interest to the system designer who wants
to use an FPGA include:

• How much logic can I fit into this FPGA?

• How many I/O pins does it have?

• How fast does it run?

While we can determine fairly easily how many I/O pins an FPGA has,
determining how much logic can be fit into it and how fast that logic
will run is not simple. As we will see in this chapter, the complex archi-
tecture of an FPGA means that we must carefully optimize the logic as
we fit it into the FPGA. The amount of logic we can fit and how fast that
logic runs depends on many characteristics of the FPGA architecture,
the logic itself, and the logic design process. We’ll look at the tools nec-
essary to configure an FPGA in Chapter 4.

design of FPGA
architectures

Some questions of interest to the person who designs the FPGA itself
include:

• How many logic elements should the FPGA have?

• How large should each logic element be?

• How much interconnect should it have?

• How many types of interconnection structures should it have?

• How long should each type of interconnect be?

• How many pins should it have?

In Section 3.6 and Section 3.7 we will survey some of the extensive
research results in the design of FPGA fabrics. A great deal of theory
and experimentation has been developed to determine the parameters for
FPGA architectures that best match the characteristics of typical logic
that is destined for FPGA implementation.

fine-grain vs. coarse-
grain

All of the FPGAs we will deal with in this chapter are fine-grained
FPGAs—their logic elements can implement fairly small pieces of
logic. Advances in VLSI technology are making possible coarse-
grained FPGAs that are built from large blocks. We will look at some of
these architectures in Chapter 7.

chapter outline The next section looks at FPGAs based on static memory. Section 3.3
studies FPGAs built from permanently programmed parts, either anti-
fuses or flash. Section 3.5 looks at the architecture of chip input and out-
put, which is fairly similar in SRAM and antifuse/flash FPGAs.
Section 3.6 builds on these earlier sections by studying in detail the cir-

 110 Chapter 3 FPGA Fabrics

cuits used to build FPGA elements, and Section 3.7 is a detailed study
of the architectural characteristics of FPGAs.

 3.3 SRAM-Based FPGAs

Static memory is the most widely used method of configuring FPGAs.
In this section we will look at the elements of an FPGA: logic, intercon-
nect, and I/O. In doing so we will consider both general principles and
specific commercial FPGAs.

3.3.1 Overview

characteristics of
SRAM-based FPGAs

SRAM-based FPGAs hold their configurations in static memory
(though as we will see in Section 3.6 they don’t use the same circuits as
are used in commodity SRAMs). The output of the memory cell is
directly connected to another circuit and the state of the memory cell
continuously controls the circuit being configured.

Using static memory has several advantages:

• The FPGA can be easily reprogrammed. Because the chips can
be reused, and generally reprogrammed without removing
them from the circuit, SRAM-based FPGAs are the generally
accepted choice for system prototyping.

• The FPGA can be reprogrammed during system operation, pro-
viding dynamically reconfigurable systems.

• The circuits used in the FPGA can be fabricated with standard
VLSI processes.

• Dynamic RAM, although more dense, needs to be refreshed,
which would make the configuration circuitry much more cum-
bersome.

SRAM-based FPGAs also have some disadvantages:

• The SRAM configuration memory burns a noticeable amount
of power, even when the program is not changed.

• The bits in the SRAM configuration are susceptible to theft.

A large number of bits must be set in order to program an FPGA. Each
combinational logic element requires many programming bits and each
programmable interconnection point requires its own bit.

SRAM-Based FPGAs 111

3.3.2 Logic Elements

lookup tables The basic method used to build a combinational logic block (CLB)—
also called a logic element or LE—in an SRAM-based FPGA is the
lookup table (LUT). As shown in Figure 3-4, the lookup table is an
SRAM that is used to implement a truth table. Each address in the
SRAM represents a combination of inputs to the logic element. The
value stored at that address represents the value of the function for that

input combination. An n-input function requires an SRAM with
locations. Because a basic SRAM is not clocked, the lookup table LE
operates much as any other logic gate—as its inputs change, its output
changes after some delay.

programming a lookup
table

Unlike a typical logic gate, the function represented by the LE can be
changed by changing the values of the bits stored in the SRAM. As a

result, the n-input LE can represent functions (though some of these
functions are permutations of each other). A typical logic element has
four inputs. The delay through the lookup table is independent of the
bits stored in the SRAM, so the delay through the logic element is the
same for all functions. This means that, for example, a lookup table-
based LE will exhibit the same delay for a 4-input XOR and a 4-input
NAND. In contrast, a 4-input XOR built with static CMOS logic is con-
siderably slower than a 4-input NAND. Of course, the static logic gate is
generally faster than the LE.

Logic elements generally contain registers—flip-flops and latches—as
well as combinational logic. A flip-flop or latch is small compared to
the combinational logic element (in sharp contrast to the situation in
custom VLSI), so it makes sense to add it to the combinational logic ele-
ment. Using a separate cell for the memory element would simply take
up routing resources. As shown in Figure 3-5, the memory element is

lookup
table

configuration
bits

out

inputs

mux

n

2n 1

Figure 3-4 A lookup
table.

2n

22n

 112 Chapter 3 FPGA Fabrics

connected to the output; whether it stores a given value is controlled by
its clock and enable inputs.

complex logic elements More complex logic blocks are also possible. For example, many logic
elements also contain special circuitry for addition.

Many FPGAs also incorporate specialized adder logic in the logic ele-
ment. The critical component of an adder is the carry chain, which can
be implemented much more efficiently in specialized logic than it can
using standard lookup table techniques.

The next two examples describe the logic elements in two FPGAs. They
illustrate both the commonality between FPGA structures and the vary-
ing approaches to the design of logic elements.

logic
element

QD

out

selectFigure 3-5 A flip-flop in a
logic element.

SRAM-Based FPGAs 113

Example 3-1
Xilinx Spartan-II
combinational
logic block

The Spartan-II combinational logic block [Xil01] consists of two identi-
cal slices, with each slice containing a LUT, some carry logic, and regis-
ters. Here is one slice:

A slice includes two logic cells (LCs). The foundation of a logic cell is
the pair of four-bit lookup tables. Their inputs are F1-F4 and G1-G4.
Each lookup table can also be used as a 16-bit synchronous RAM or as a
16-bit shift register. Each slice also contains carry logic for each LUT so
that additions can be performed. A carry in to the slice enters the CIN
input, goes through the two bits of carry chain, and out through COUT.
The arithmetic logic also includes an XOR gate. To build an adder, the

QD
lookup
table

carry/
control
logic

YB

Y

YQ

QD QD
lookup
table

carry/
control
logic

YB

Y

YQ

CIN

COUT

F5IN

G4

G3

G2

G1

F4

F3

F2

F1

BY

BX

SR

CE

CLK

 114 Chapter 3 FPGA Fabrics

XOR is used to generate the sum and the LUT is used for the carry com-
putation.

Each slice includes a multiplexer that is used to combine the results of
the two function generators in a slice. Another multiplexer combines the
outputs of the multiplexers in the two slices, generating a result for the
entire CLB.

The registers can be configured either as D-type flip-flops or as latches.
Each register has clock and clock enable signals.

Each CLB also contains two three-state drivers (known as BUFTs) that
can be used to drive on-chip busses.

Example 3-2
Altera APEX II
logic elements

The APEX II’s logic [Alt02] is organized into logic array blocks
(LABs). Each LAB includes 10 logic elements. Each logic element con-
tains a lookup table, flip-flop, etc. The logic elements in an LAB share
some logic, such as a carry chain and some control signal generation.

A single logic element looks like this:

QDlookup
table

carry
chain

cascade
chain

synchronous
load/clear

logic

asynchronous
clear/preset/

load logic

data1
data2
data3
data4

carry in cascade in load clear

labclr1

labclr2

chip
reset

labclk1

labclk2

labclkena1

labclkena2

SRAM-Based FPGAs 115

The main logic chain starts with a 4-input lookup table. The output of
the LUT is fed to a carry chain. The cascade chain is used for cascading
large fanin functions. For example, an AND function with a large num-
ber of inputs can be built using the cascade chain. The output of the cas-
cade chain goes to a register. The register can be programmed to operate
as a D, T, JK, or SR element.

To use all this logic, an LE can be operated in normal, arithmetic, or
counter mode. In normal mode, the LE looks like this:

In arithmetic mode, the LE’s configuration changes to take advantage of
the carry chain logic:

4-input
lookup
table QD

cascade incarry in

data1
data2

data3

data4

cascade out

enable

3-input
lookup
table

QD

cascade incarry in

data1

data2

cascade out

out

out

enable

3-input
lookup
table

carry out

 116 Chapter 3 FPGA Fabrics

In counter mode, the configuration is altered slightly to provide a fast
count:

3-input
lookup
table

QD

cascade in

carry in

data1

data2

cascade out

out

out

enable

3-input
lookup
table

carry out

data3

synchronous load synchronous clear

SRAM-Based FPGAs 117

Each logic array block also includes some logic to generate control sig-
nals that can be distributed to all the LEs in the block:

This block can take input signals from the rest of the chip and generate
signals for the register: load, clear, enable, etc.

The LAB-wide control signals control the preset and clear signals in the
LEs’ registers. The APEX II also provides a chip-wide reset pin to clear
all the registers in the device.

3.3.3 Interconnection Networks

Logic elements must be interconnected to implement complex
machines. An SRAM-based FPGA uses SRAM to hold the information
used to program the interconnect. As a result, the interconnect can be
reconfigured, just as the logic elements can.

programmable
interconnection points

Figure 3-6 shows a simple version of an interconnection point, often
known as a connection box. A programmable connection between two
wires is made by a CMOS transistor (a pass transistor). The pass transis-
tor’s gate is controlled by a static memory program bit (shown here as a

local
interconnect

local
interconnect

local
interconnect

local
interconnect

fast global
signals

dedicated
clocks

control

 118 Chapter 3 FPGA Fabrics

D register). When the pass transistor’s gate is high, the transistor con-
ducts and connects the two wires; when the gate is low, the transistor is
off and the two wires are not connected. A CMOS transistor has a good
off-state (though off-states are becoming worse as chip geometries
shrink). In this simple circuit, the transistor also conducts bidirection-
ally—it doesn’t matter which wire has the signal driver. However, the
pass transistor is relatively slow, particularly on a signal path that
includes several interconnection points in a row. As we will see in
Section 3.6, there are several other circuits that can be used to build a
programmable interconnection point, most of them unidirectional.
These alternative circuits provide higher performance at the cost of
additional chip area.

performance FPGA wiring with programmable interconnect is slower than typical
wiring in a custom chip for two reasons: the pass transistor and wire
lengths. The pass transistor is not a perfect on-switch, so a programma-
ble interconnection point is somewhat slower than a pair of wires per-
manently connected by a via. In addition, FPGA wires are generally
longer than would be necessary for a custom chip. In a custom layout, a
wire can be made just as long as necessary. In contrast, FPGA wires
must be designed to connect a variety of logic elements and other FPGA
resources. A net made of programmable interconnect may be longer,
introducing extra capacitance and resistance that slows down the signals
on the net.

types of programmable
interconnect

An FPGA requires a large number of programmable wires in order to
take advantage of the logic in the LEs. As we saw in Section 3.1,
FPGAs use wires of varying lengths in order to minimize the delay
through wires. Wiring is often organized into different categories
depending on its structure and intended use:

• Short wires connect only local LEs. These wires don’t take up
much space and they introduce less delay. The carry chains
through the LEs are one example of short interconnect.

• Global wires are specially designed for long-distance commu-

QD
Figure 3-6 An interconnect
point controlled by an SRAM
cell.

SRAM-Based FPGAs 119

nication. As with high-speed highways with widely spaced
exits, they have fewer connection points than local connec-
tions. This reduces their impedance. Global wires may also
include built-in electrical repeaters to reduce the effects of
delay.

• Special wires may be dedicated to distribute clocks or other
register control signals.

connections and choice In order to be able to select routes for connections, the FPGA fabric
must provide choices for the interconnections. We must be able to
connect a logic element’s input or output to one of several different
wires. Similarly, the ends of each wire must be able to connect to
several different wires. Each of these choices requires its own con-
nection box. This adds up to a large amount of circuitry and wiring
that is devoted to programmable interconnection. If we add too many
choices, we end up devoting too much of the chip to programmable
interconnect and not enough to logic. If we don’t have enough
choice, we can’t make use of the logic resources on the chip. One of
the key questions in the design of an FPGA fabric is how rich the
programmable interconnect fabric should be. Section 3.7 presents
the results of several experiments that are designed to match the rich-
ness of FPGA fabrics to the characteristics of typical designs.

types of interconnect One way to balance interconnect and logic resources is to provide sev-
eral different types of interconnect. Connections vary both in length and
in speed. Most FPGAs offer several different types of wiring so that the
type most suited to a particular wire can be chosen for that wire. For
example, the carry signal in an adder can be passed from LE to LE by
wires that are designed for strictly local interconnections; longer con-
nections may be made in a more general interconnect structure that uses
segmented wiring.

The next examples describe the interconnect systems in the two FPGAs
we discussed earlier.

Example 3-3
The Xilinx
Spartan-II
interconnect
system

The Spartan-II includes several types of interconnect: local, general-
purpose, I/O, global, and clock.

The local interconnect system provides several kinds of connections. It
connects the LUTs, flip-flops, and general purpose interconnect. It also
provides internal CLB feedback. Finally, it includes some direct paths
for high-speed connections between horizontally adjacent CLBs. These
paths can be used for arithmetic, shift registers, or other functions that
need structured layout and short connections.

 120 Chapter 3 FPGA Fabrics

The general-purpose routing network provides the bulk of the routing
resources. This network includes several types of interconnect:

• A general routing matrix (GRM) is a switch matrix used to
connect horizontal and vertical routing channels as well as the
connections between the CLBs and the routing channels.

• There are 24 single-length lines to connect each GRM to the
four nearest GRMs, to the left, right, above, and below.

• Hex lines route GRM signals to the GRMs six blocks away.
Hex lines provide longer interconnect. The hex lines include
buffers to drive the longer wires. There are 96 hex lines, one
third bidirectional and the rest unidirectional.

• 12 longlines provide interconnect spanning the entire chip,
both vertically and horizontally.

The general routing matrices are related to the single-length and hex
lines like this:

Some additional routing resources are placed around the edge of the
chip to allow connections to the chip’s pins.

GRMGRM

GRM

GRM

GRM

12 12

12

12

hex
lines

SRAM-Based FPGAs 121

One type of dedicated interconnect resource is the on-chip three-state
bus:

These busses run only horizontally. Four partitionable busses are avail-
able per CLB row.

Another type of dedicated routing resource is the wires connecting the
carry chain logic in the CLBs.

The global routing system is designed to distribute high-fanout signals,
including both clocks and logic signals. The primary global routing net-
work is a set of four dedicated global nets with dedicated input pins.
Each global net can drive all CLB, I/O register, and block RAM clock

CLB CLB

 122 Chapter 3 FPGA Fabrics

pins. The clock distribution network is buffered to provide low delay
and low skew:

The secondary global routing network includes 24 backbone lines, half
along the top of the chip and half along the bottom. The chip also
includes a delay-locked loop (DLL) to regulate the internal clock.

clock pin

clock spine

clock rows clock rows

SRAM-Based FPGAs 123

Example 3-4
The Altera APEX
II interconnect
system

The APEX II uses horizontal and vertical interconnect channels to inter-
connect the logic elements and the chip pins. The interconnect structure
looks like this:

A row line can be driven directly by an LE, I/O element, or embedded
memory in that row. A column line can also drive a row line; columns
can be used to connect wires in two rows.

Some dedicated signals with buffers are provided for high-fanout sig-
nals such as clocks.

co
lu

m
n

in
te

rc
on

ne
ct

lo
ca

li
nt

er
co

nn
ec

t

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

co
lu

m
n

in
te

rc
on

ne
ct

lo
ca

li
nt

er
co

nn
ec

t

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

row interconnect

MegaLAB interconnect

 124 Chapter 3 FPGA Fabrics

Column I/O pins can directly drive these interconnect lines. Each line
traverses two MegaLAB structures, driving the four MegaLABs in the
top row and the four MegaLABs in the bottom row of the chip.

3.3.4 Configuration

SRAM configuration SRAM-based FPGAs are reconfigured by changing the contents of the
configuration SRAM. A few pins on the chip are dedicated to configura-
tion; some additional pins may be used for configuration and later
released for use as general-purpose I/O pins. Because FPGAs are recon-
figured relatively infrequently, configuration lines are usually bit-serial.
However, it is possible to send several bits in parallel if configuration
time is important.

During prototyping and debugging, we change the configuration fre-
quently. A download cable can be used to download the configuration
directly from a PC. When we move the design into production, we do
not want to rely on a download cable and a PC. Specialized programma-
ble read-only memories (PROMs) are typically used to store the config-
uration on the printed circuit board with the FPGA. The FPGA upon
power-up runs through a protocol on its configuration pins. The
EPROM has a small amount of additional logic to supply a clock signal
and answer the FPGA’s configuration protocol.

configuration time When we start up the system, we can usually tolerate some delay to
download the configuration into the FPGA. However, there are cases
when configuration time is important. This is particularly true when the
FPGA will be dynamically reconfigured—reconfigured on-the-fly while
the system is operating, such as the Radius monitor described in the next
example.

Example 3-5
Dynamic
reconfiguration

The Radius monitors for the Apple MacintoshTM computer [Tri94]
operated in horizontal (landscape) and vertical (portrait) modes. When
the monitor was rotated from horizontal to vertical or vise versa, the
monitor contents changed so that the display contents did not rotate. The
Radius monitor used an SRAM-based FPGA to run the display. Because
long shift registers to hold the display bits were easily built on the
FPGA, the part made sense even without reconfiguration. However,
the monitor’s mode shift was implemented in part by reconfiguring the

SRAM-Based FPGAs 125

FPGA. A mercury switch sensed the rotation and caused a new person-
ality to be downloaded to the FPGA, implementing the mode switch.

configuration circuits The configuration memory must be designed to be as immune as possi-
ble to power supply noise. Glitches in the power supply voltage can
cause memory circuits to change state. Changing the state of a configu-
ration memory cell changes the function of the chip and can even cause
electrical problems if two circuits are shorted together. As a result, the
memory cells used in configuration memory use more conservative
designs than would be used in bulk SRAM. Configuration memory is
slower to read or write than commodity SRAM in order to make the
memory state more stable.

Although the configuration data is typically presented to the chip in
serial mode in order to conserve pins, configuration is not shifted into
the chip serially in modern FPGAs. If a shift register is directly con-
nected to the programmable interconnection points and I/O pins, then
the connections will constantly change as the configuration is shifted
through. Many of these intermediate states will cause drivers to be
shorted together, damaging the chip. Configuration bits are shifted into a
temporary register and then written in parallel to a block of configura-
tion memory [Tri98].

scan chains and JTAG Many modern FPGAs incorporate their reconfiguration scan chains
into their testing circuitry. Manufacturing test circuitry is used to ensure
that the chip was properly manufactured and that the board on which the
chip is placed is properly manufactured. The JTAG standard (JTAG
stands for Joint Test Action Group) was created to allow chips on boards
to be more easily tested. JTAG is often called boundary scan because it
is designed to scan the pins at the boundary between the chip and the
board. As shown in Figure 3-7, JTAG is built into the pins of the chip.
During testing, the pins can be decoupled from their normal functions
and used as a shift register. The shift register allows input values to be
placed on the chip’s pins and output values to be read from the pins. The
process is controlled by the test access port (TAP) controller. The con-
troller is connected to four pins: TDI, the shift register input; TDO, the
shift register output; TCK, the test clock; and TMS, test mode select.
(The standard also allows an optional test reset pin known as TRST.)
The test access port includes an instruction register (IR) that determines
what actions are taken by the TAP; the standard defines the state transi-
tion graph for the TAP’s function. A bypass register (BP) allows bits to
be either shifted into the IR or for the IR’s contents to be left intact.
Each pin on the chip is modified to include the JTAG shift register logic.

 126 Chapter 3 FPGA Fabrics

Using this relatively small amount of logic, an outside unit can control
and observe all the pins on the chip.

The next two examples discuss the configuration systems for the Spar-
tan-II and APEX-II.

TAP
controller

TDI

TCK

TDO

TMS

IR

BP

JTAG shift register

I/O pad

Figure 3-7 The JTAG architecture.

Permanently Programmed FPGAs 127

Example 3-6
Xilinx Spartan-II
configuration

The Spartan-II configuration requires, depending on the size of the chip,
from about 200,000 to over 1.3 million bits.

The chip can be configured in one of several modes:

• Master serial mode assumes that the chip is the first chip in a
chain (or the only chip). The master chip loads its configura-
tion from an EPROM or a download cable.

• Slave serial mode gets its configuration from another slave
serial mode chip or from the master serial mode chip in the
chain.

• Slave parallel mode allows fast 8-bit-wide configuration.

• Boundary scan mode uses the standard JTAG pins.

Several pins are dedicated to configuration. The PROGRAM’ pin car-
ries an active-low signal that can be used to initiate configuration. The
configuration mode is controlled by three pins M0, M1, and M2. The
DONE pin signals when configuration is finished. The boundary scan
pins TDI, TDO, TMS, and TCK can be used to configure the FPGA
without using the dedicated configuration pins.

Example 3-7
Altera APEX-II
configuration

The standard APEX-II configuration stream is one bit wide. The config-
uration can be supplied by a ROM or by a system controller such as a
microprocessor. The APEX-II can be configured in less than 100 ms.

The APEX-II also supports a byte-wide configuration mode for fast con-
figuration.

 3.4 Permanently Programmed FPGAs

SRAM-based FPGAs have to be configured at power-up. There are two
technologies used to build FPGAs that need to be configured only once:
antifuses and flash. In this section we will survey methods for using
both to build FPGAs.

 128 Chapter 3 FPGA Fabrics

3.4.1 Antifuses

An antifuse, as shown in Figure 3-8, is fabricated as a normally open
disconnection. When a programming voltage is applied across the anti-
fuse, it makes a connection between the metal line above it and the via
to the metal line below. An antifuse has a resistance on the order of 100
Ω, which is more resistance than a standard via. The antifuse has several
advantages over a fuse, a major one being that most connections in an
FPGA should be open, so the antifuse leaves most programming points
in the proper state.

An antifuse is programmed by putting a voltage across it. Each antifuse
must be programmed separately. The FPGA must include circuitry that
allows each antifuse to be separately addressed and the programming
voltage applied.

3.4.2 Flash Configuration

Flash memory is a high-quality programmable read-only memory. Flash
uses a floating gate structure in which a low-leakage capacitor holds a
voltage that controls a transistor gate. This memory cell can be used to
control programming transistors.

Figure 3-9 shows the schematic of a flash-programmed cell. The mem-
ory cell controls two transistors. One is the programmable connection
point. It can be used for interconnect electrical nodes in interconnect or
logic. The other allows read-write access to the cell.

substrate

metal 1

metal 2

antifuse

via

Figure 3-8 Cross-section of
an antifuse.

Permanently Programmed FPGAs 129

3.4.3 Logic Blocks

multiplexers and
programming

The logic blocks in antifuse-programmed FPGAs are generally based
upon multiplexing, since that function can be implemented by making
or breaking connections and routing signals.

To understand implementing logic functions with multiplexers, consider
first the circuit of Figure 3-10. When the multiplexer control a is 0, the
output is d0; when the control is 1, the output is d1. This logic element
lets us configure which signal is copied to the logic element output. We
can write the logic element’s truth table as shown in the figure.

Now consider the more complex logic element of Figure 3-11. This ele-
ment has two levels of multiplexing and four control signals. The con-

floating gate

programmed
transistor

flash
transistor

word line

Figure 3-9 A flash programmed switch.

out

d0

d1

a

truth table

outa

0

1

d0

d1

schematic

Figure 3-10 A single
multiplexer used as a logic
element.

 130 Chapter 3 FPGA Fabrics

d0

d1

d2

d3

out

a0 a1 b0 b1

Figure 3-11 A logic element
built from several
multiplexers.

schematic

a0 a1 b0 b1 out
0 0 0 0 d0
0 0 0 1 d0
0 0 1 0 d0
0 0 1 1 d1
0 1 0 0 d2
0 1 0 1 d2
0 1 1 0 d2
0 1 1 1 d3
1 0 0 0 d2
1 0 0 1 d2
1 0 1 0 d2
1 0 1 1 d3
1 1 0 0 d2
1 1 0 1 d2
1 1 1 0 d2
1 1 1 1 d3

truth table

Permanently Programmed FPGAs 131

trol signals of both multiplexers in the first row are controlled by the
same signal, which is the AND of two control signals. The final multi-
plexer stage is controlled by the OR of two other control signals. This
provides a significantly more complex function.

The next example describes the logic blocks of the Actel Axcelerator
family FPGA [Act02]. Members of this family range in capacity from
80,000 to 1 million gates.

Example 3-8
Actel
Axcelerator
family logic
elements

The Actel Axcelerator family has two types of logic elements: the C-
cell for combinational logic and the R-cell for registers. These cells are
organized into SuperClusters, each of which has four C-cells, two R-
cells, and some additional logic.

Here is the C cell:

The core of the cell is the multiplexer, which has four data signals: D0,
D1, D2, D3; and four select signals: A0, A1, A2, and A3. The DB input
can be used to drive the inverted form of any of these signals to the mul-
tiplexer by using an antifuse to connect the signal to the DB input, then

D0

D1

D2

D3

Y

A0 B0 A1 B1

DB

FCI CFN

FCO

0

1

0

1

0

1

0

1

0 1

S

X

 132 Chapter 3 FPGA Fabrics

using one of the antifuses shown to connect the inverted signal to the
desired multiplexer input. The signals can also be connected in their
uncomplemented form. The S and X bits are used for fast addition and
are not available outside the SuperCluster.

The cell includes logic for fast addition. The two bits to be added arrive
at the A0 and A1 inputs. The cell has a carry input FCI and carry output
FCO. The carry logic is active when the CFN signal is high. The carry
logic operates in a group of two C-cells in a SuperCluster:

Within C-celli+1, the Xi bit is connected to the 1 input of the FCO multi-
plexer in this configuration. The Y output of C-celli+1 is used as the sum.
This logic performs a carry-skip operation for faster addition.

C-celli

C-celli+1

FCIi

FCIi+1

FCOi

FCOi+10
1

Si

Si+1

Xi

Permanently Programmed FPGAs 133

The R-cell allows for various combinations of register inputs, clocking,
etc.:

DCIN is a hardwired connection to the DCOUT signal of the adjacent C-
cell; this connection is designed to have less than 0.1 ns of wire delay.
The S0 and S1 inputs act as data enables. The flip-flop provides active
low clear and presets, with clear having higher priority. A variety of
clock sources can be selected by the CKS control signal; the CKP signal
selects the polarity of the clock used to control the flip-flop.

Each SuperCluster has two clusters. Each cluster has three cells in the
pattern CCR.

logic elements for
flash-based FPGAs

Flash-based FPGAs use switches for programmability. The next exam-
ple describes the Actel ProASIC 400K family logic element [Act03b].

Example 3-9
ProASIC 500K
logic element

The Actel ProASIC 500K logic element uses multiplexers to generate
the desired logic function. The programmed switches are used to select
alternate inputs to the core logic.

QD
clr rst

cl
r

gc
lr

pr
e

gp
re

HCLKA/B/C/D

CLKE/F/G/H

internal logic

DCIN

DIN

CKP

Y

CKS

S1

S0

 134 Chapter 3 FPGA Fabrics

Here is the core logic tile:

Each of the three inputs can be presented to the multiplexers in true or
complement form. The multiplexer system can implement any function
of three inputs except for three-input XOR. The feedback paths allow
the logic element to be configured as a latch, in which case in2 is used
as the clock and in3 as reset. The logic element provides two output
drivers, one for local interconnect and a larger driver for long lines.

3.4.4 Interconnection Networks

Antifuses make it relatively easy to program interconnect. An antifuse
also slows down the interconnect path less than a pass transistor in an
SRAM-programmable FPGA.

The next example describes the wiring organization of the Actel Axcel-
erator family [Ac02].

in1

in2

local

long line

+

in3

Permanently Programmed FPGAs 135

Example 3-10
Actel
Axcelerator
interconnect
system

The Axcelerator has three different local wiring systems. The FastCon-
nect system provides horizontal connections between logic modules
within a SuperCluster or to the SuperCluster directly below. CarryCon-
nects route the carry signals between SuperClusters. DirectConnect con-
nects entirely within a SuperCluster—it connects a C-cell to the
neighboring R-cell. A DirectConnect signal path does not include any
antifuses; because it has lower resistance it runs faster than programma-
ble wiring.

Generic global wiring is implemented using segmented wiring channels.
Routing tracks run across the entire chip both horizontally and verti-
cally. Although most of the wires are segmented with segments of sev-
eral different lengths, a few wires run the length of the chip.

The chip provides three types of global signals. Hardwired clocks
(HCLK) can directly drive the clock input of each R-cell. Four routed
clocks can drive the clock, clear, preset, or enable pin of an R-cell or any
input of a C-cell. Global clear (GCLR) and global preset (GPSET) sig-
nals drive the clear and preset signals of R-cells and I/O pins.

interconnect in flash-
based FPGAs

The next example describes the interconnect structure of the ProASIC
500K [Act02].

Example 3-11
Actel ProASIC
500K
interconnect
system

The ProASIC 500K provides local wires that allow the output of each
tile to be directly connected to the eight adjacent tiles. Its general-pur-
pose routing network uses segmented wiring with segments of length 1,
2, and 4 tiles. The chip also provides very long lines that run the length
of the chip.

The ProASIC 500K provides four global networks. Each network can be
accessed either from a dedicated global I/O pin or a logic tile.

3.4.5 Programming

antifuse programming An antifuse is programmed by applying a large voltage sufficient to
make the antifuse connection. The voltage is applied through the wires
connected by the antifuse. The FPGA is architected so that all the anti-
fuses are in the interconnect channels; this allows the wiring system to
be used to address the antifuses for programming. In order to be sure

 136 Chapter 3 FPGA Fabrics

that every antifuse can be reached, each antifuse is connected in parallel
with a pass transistor that allows the antifuse to be bypassed during pro-
gramming. The gates of the pass transistors are controlled by program-
ming signals that select the appropriate row and column for the desired
antifuse, as shown in Figure 3-12. The programming voltage is applied
across the row and column such that only the desired antifuse receives
the voltage and is programmed [ElG98].

Because the antifuses are permanently programmed, an antifuse-based
FPGA does not need to be configured when it is powered up. No pins
need to be dedicated to configuration and no time is required to load the
configuration.

 3.5 Chip I/O

features of I/O pins The I/O pins on a chip connect it to the outside world. The I/O pins on
any chip perform some basic functions:

antifuse to
be programmed

row

column
programming
pass transistor

Figure 3-12 Selecting an
antifuse to be programmed.

Chip I/O 137

• Input pins provide electrostatic discharge (ESD) protection.

• Output pins provide buffers with sufficient drive to produce
adequate signals on the pins.

• Three-state pins include logic to switch between input and out-
put modes.

The pins on an FPGA must be programmable to accommodate the
requirements of the configured logic. A standard FPGA pin can be con-
figured as either an input, output, or three-state pin.

Pins may also provide other features. Registers are typically provided at
the pads so that input or output values may be held. The slew rate of out-
puts may be programmable to reduce electromagnetic interference;
lower slew rates on output signals generate less energetic high-fre-
quency harmonics that show up as electromagnetic interference (EMI).

The next two examples describe the I/O pins of the Actel APEX-II and
the Xilinx Spartan-II 2.5V FPGA.

 138 Chapter 3 FPGA Fabrics

Example 3-12
Altera APEX-II
I/O pin

The Altera APEX-II I/O structure, known as an IOE, is designed to sup-
port SDRAM and double-data-rate (DDR) memory interfaces. It con-
tains six registers and a latch as well as bidirectional buffers. The IOE
supports two inputs and two outputs:

QD

QD

QD

QD

CLK

QD

QD

pad

QD

OE

output A

output B

input A

input B

latchflip-flop

flip-flop

flip-flop

flip-flop

flip-flop

flip-flop

Chip I/O 139

The OE signal controls the three-state behavior.

Example 3-13
The Xilinx
Spartan-II 2.5V
I/O pin

The Spartan-II 2.5V family is designed to support a wide variety of I/O
standards:

I/O standard

Input
reference
voltage
(Vref)

Output
source
voltage
(VCCO)

Board
termination
voltage
(VTT)

LVTTL N/A 3.3 N/A
LVCMOS2 N/A 2.5 N/A
PCI N/A 3.3 N/A
GTL 0.8 N/A 1.2
GTL+ 1.0 N/A 1.5
HSTL Class I 0.75 1.5 0.75
HSTL Class III 0;9 1.5 1.5
HSTL Class IV 0.9 1.5 1.5
SSTL3 Class I and II 1.5 3.3 1.5
SSTL2 Class I and II 1.25 2.5 1.25
CTT 1.5 3.3 1.5
AGP-2X 1.32 3.3 N/A

 140 Chapter 3 FPGA Fabrics

Here is the schematic for the I/O block:

Much of the right-hand side of the schematic is devoted to handling the
various I/O standards. Notice that pins are required for the various refer-
ence voltages as well as the I/O itself. The pins on the chip are divided
into eight banks, with each bank sharing the reference voltage pins. Pins
within a bank must use standards that have the same VCCO.

The IOB has three registers, one each for input, output, and three-state
operation. Each has its own enable (ICE, OCE, and TCE, respectively)
but all three share the same clock connection. These registers in the IOB
can function either as flip-flops or latches.

The programmable delay element on the input path is used to eliminate
variations in hold times from pin to pin. Propagation delays within the
FPGA cause the IOB control signals to arrive at different times, causing
the hold time for the pins to vary. The programmable delay element is
matched to the internal clock propagation delay and, when enabled,
eliminates skew-induced hold time variations.

QD
SR

EC

QD
SR

EC

QD
SR

EC

programmable
delay

T

CLK

TCE

SR

O

OCE

IQ

I

ICE

programmable
input
buffer

OE VCC
programmable

bias and
ESD network

internal
reference

programmable
output
buffer

to next I/Oto other
external Vref

inputs of bank

VCCO

I/O

I/O, Vref

Circuit Design of FPGA Fabrics 141

The output path has a weak keeper circuit that can be selected by pro-
gramming. The circuit monitors the output value and weakly drives it to
the desired high or low value. The weak keeper is useful for pins that are
connected to multiple drivers; it keeps the signal at its last valid state
after all the drivers have disconnected.

 3.6 Circuit Design of FPGA Fabrics

Circuit design determines many of the characteristics of FPGA architec-
tures. The size of a logic element determines how many can be put on a
chip; the delay through a wire helps to determine the interconnection
architecture of the fabric. In this section we will look at the circuit
design of both logic elements and interconnections in FPGA fabrics,
primarily concentrating on SRAM-based FPGAs, but with some notes
on antifuse-based FPGAs. We will rely heavily on the results of Chapter
2 throughout this section.

3.6.1 Logic Elements

LEs vs. logic gates The logic element of an FPGA is considerably more complex than a
standard CMOS gate. A CMOS gate needs to implement only one cho-
sen logic function. The logic element of an FPGA, in contrast, must be
able to implement a number of different functions.

Antifuse-based FPGAs program their logic elements by connecting var-
ious signals, either constants or variables, to the inputs of the logic ele-
ments. The logic element itself is not configured as a SRAM-based logic
element would be. As a result, the logic element for an antifuse-based
FPGA can be fairly small. Figure 3-13 shows the schematic for a multi-
plexer-based logic element used in early antifuse-based FPGAs. Table
3-1 shows how to program some functions into the logic element by
connecting its inputs to constants or signal variables. The logic element
can also be programmed as a dynamic latch.

Example 3-14 compares lookup tables and static gates in some detail.

 142 Chapter 3 FPGA Fabrics

A0

Sa

A1

B0

Sb

B1

S0

S1

Figure 3-13 A logic element built from a multiplexer [ElG90].

Circuit Design of FPGA Fabrics 143

equation A0 A1 B0 B1 Sa S1 S0 Sb

(AB)’ 1 1 0 1 A 0 B A
0 1 0 1 0 0 B A
0 1 0 1 0 B 0 A
0 1 0 1 0 0 A B

A^B 1 0 0 1 A 0 B A
1 0 0 1 A B 0 A

latch Q 0 D 0 CLR CLK 0 CLR
Q 0 CLR 0 CLR CLK 0 D

Table 3-1 Programming the mux-based logic element [ElG90].

 144 Chapter 3 FPGA Fabrics

Example 3-14
Lookup table vs.
static CMOS gate

Let us compare the static CMOS gate and lookup table logic element in
several respects: size, delay, and power consumption.

For our purposes, counting the number of transistors in a circuit gives us
a sufficiently accurate estimate of the size of the circuit on-chip. The
number of transistors in a static CMOS gate depend on both the number
of inputs to the gate and the function to be implemented. A static NAND
or NOR gate of n inputs has 2n transistors; more complex functions
such as XOR can be more complicated. A single NAND or NOR gate
with 16 inputs is impractical, but it would require 32 transistors.

In contrast, the SRAM cell in the lookup table requires eight transistors,
including the configuration logic. For a four-input function, we would
have transistors just in the core cell. In addition, we need
decoding circuitry for each bit in the lookup table. A straightforward
decoder for the four-bit lookup table would be a multiplexer with 96
transistors, though smaller designs are possible.

The delay of a static gate depends not only on the number of inputs and
the function to be implemented, but also on the sizes of transistors used.
By changing the sizes of transistors, we can change the delay through
the gate. The slowest gate uses the smallest transistors. Using logical
effort theory [Sut99], we can estimate the delay of a chain of two four-
input NAND gates that drives another gate of the same size as 9 τ units.

The delay of a lookup table is independent of the function implemented
and dominated by the delay through the SRAM addressing logic. Logi-
cal effort gives us the decoding time as 21 τ units.

The power consumption of a CMOS static gate is, ignoring leakage,
dependent on the capacitance connected to its output. The CMOS gate
consumes no energy while the inputs are stable (once again, ignoring
leakage). The SRAM, in contrast, consumes power even when its inputs
do not change. The stored charge in the SRAM cell dissipates slowly (in
a mechanism independent of transistor leakage); that charge must be
replaced by the cross-coupled inverters in the SRAM cell.

As we can see, the lookup table logic element is considerably more
expensive than a static CMOS gate.

Because the logic element is so complex, its design requires careful
attention to circuit characteristics. In this section we will concentrate on
lookup tables—most of the complexity of an antifuse-based logic ele-
ment is in the antifuse itself, and the surrounding circuitry is highly

8 16× 128=

Circuit Design of FPGA Fabrics 145

dependent on the electrical characteristics of the antifuse material. The
lookup table for an SRAM-based logic element incorporates both the
memory and the configuration circuit for that memory.

SRAMs for LEs There are two possible organizations for the lookup table as shown in
Figure 3-14: a demultiplexer that causes one bit to drive the output or a
multiplexer that selects the proper bit. These organizations are logically
equivalent but have different implications for circuitry. Bulk SRAMs
generally use the demultiplexer architecture, as shown in Section 2.6.2.
The demultiplexer selects a row to be addressed, and the shared bit lines
are used to read or write the memory cells in that row. The shared bit
line is very efficient in large memories but less so in small memories
like those used in logic elements. Most FPGA logic elements use a mul-
tiplexer to select the desired bit.

Most large SRAMs use two bit lines that provide complementary values
of the SRAM cell value. Using bit and bit-bar lines improves access
times in large SRAMs but does not make any noticeable improvement in
small SRAMs used in logic elements. As a result, logic element SRAM

SRAM cellsaddress

data output

SRAM cells address

data output

demultiplexer multiplexer

Figure 3-14 Organizations for lookup table addressing.

 146 Chapter 3 FPGA Fabrics

cells are generally read and written through only one side of the cell, not
through both sides simultaneously.

SRAM multiplexer
design

Should that multiplexer be made of static gates or pass transistors? The
alternatives for the case of a two-input multiplexer are shown in Figure
3-15. The pass transistor network is clearly smaller—each two-input
NAND or NOR gate has four transistors. But as the number of series
pass transistors grows the delay from the data input to the data output
grows considerably. The delay through a series of pass transistors, in
fact, grows as the square of the number of pass transistors in the chain,
for reasons similar to that given by Elmore. The choice between static
gates and pass transistors therefore depends on the size of the lookup
table. The next example compares the delay through static gate and pass
transistor multiplexers.

Example 3-15
Delay through
multiplexer
circuits

We want to build a b-input multiplexer that selects one of the b possible
input bits. We will call the data input bits i0, etc. and the select bits s0,
etc. In our drawings we will show four-input multiplexers; these are
smaller than the multiplexers we want to use for lookup tables but they
are large enough to show the form of the multiplexer.

ctrl

ctrl'

in0

in1

out

ctrl

ctrl'

in0

in1

out

pass transistors static gates

Figure 3-15 Alternative circuits for a multiplexer.

Circuit Design of FPGA Fabrics 147

Here is a four-input mux built from NAND gates:

This multiplexer uses two levels of logic plus some inverters that form a
third level of logic. Each of the NAND gates in the first level of logic
have as inputs one of the data bits and true or complement forms of all
the select bits. The inverters are used to generate the complement forms
of the select bits. Each NAND gate in the first level determines whether
to propagate the input data bit for which it is responsible; the second-
level NAND sums the partial results to create a final output.

We can analyze the delay through a b-bit multiplexer as a function of b
using logical effort [Sut99]. The delay through an n-input NAND gate is
proportional to . Each NAND gate in the first level of logic has
lg b inputs for the select bits and one for the data input, giving a delay
proportional to . The second-level NAND gate has b inputs,

for delay proportional to . The delay through the inverters on
the select bits is proportional to 1. This means that the total delay
through the b-bit static gate multiplexer grows as .

i0
s0'
s1'

i1
s0
s1'

i2
s0'
s1

i3
s0
s1

s0's0

s1's1

n 2+() 3⁄

lg b 3+() 3⁄
b 2+() 3⁄

blgb

 148 Chapter 3 FPGA Fabrics

Here is one form of multiplexer built from pass transistors:

While this form may seem simple and fast, the pass transistors are not
the only transistors in the multiplexer. The gates must be driven by
decoded address signals generated from the select bits. This circuit is
not good for large multiplexers because it combines the worst aspects of
static gate and pass transistor circuits.

i0

s0' s1'
x0

x1

x2

x3

i1

i2

i3

x0

s0 s1'

x1

s0' s1

x2

s0 s1

x3

Circuit Design of FPGA Fabrics 149

A better form of circuit built from pass transistors is a tree:

The gates of these pass transistors are driven directly by select bits or the
complements of the select bits (generated by inverters), eliminating the
decoder NAND gates. However, because the pass transistors can be
(roughly) modeled as resistors, the delay through a chain of pass transis-
tors is proportional to the square of the number of switches on the path.
(We analyzed delay through RC chains in Section 2.5.4.) The tree for a
b-input multiplexer has lg b levels of logic, so the delay through the tree

is proportional to lg b2.

One question that can be asked is whether transmission gates built from
parallel n-type and p-type transistors are superior to pass transistors
(that is, single n-type transistors). While transmission gates are more
egalitarian in the way they propagate logic 0 and 1 signals, their layouts
are also significantly larger. Chow et al. [Cho99] found that pass transis-
tors were the better choice for multiplexers.

It is possible to build a mux from a combination of pass transistors and
static gates, using switches for some of the select stages and static gates
for the remaining stages.

LE output drivers The output of the logic element must be designed with drivers sufficient
to drive the interconnect at the LE’s output. The transistors must be

i0

s0'

s0

s0'

s0

i1

i2

i3

s1'

s1

 150 Chapter 3 FPGA Fabrics

sized properly based upon a given load on the output and a desired rise/
fall time. Once the characteristics of the interconnect are known, sizing
the output transistors is straightforward. However, because the LE may
need to drive a long wire that also includes logic used to make program-
mable connections, the output buffer must be powerful and large.

3.6.2 Interconnect

varieties of interconnect The first question we need to ask about FPGA interconnect is why an
FPGA has so many different kinds of interconnect. A typical FPGAs has
short wires, general-purpose wires, global interconnect, and specialized
clock distribution networks. The reason that FPGAs need different types
of wires is that wires can introduce a lot of delay, and wiring networks
of different length and connectivity need different circuit designs. We
saw some uses for different types of interconnect when we studied exist-
ing FPGAs, but the rationale for building several types of interconnect
becomes much clearer when we study the circuit design of programma-
ble interconnect.

In Example 2-4 we compared the delay through logic gates and the
delay through wires. We saw that a relatively short wire—a wire that is
much shorter than the size of the chip—has a delay equal to the delay
through a logic gate. Since many connections on FPGAs are long,
thanks to the relatively large size of a logic element, we must take care
to design circuits that minimize wire delay. A long wire that goes from
one point to another needs a chain of buffers to minimize the delay
through the wire. We studied optimal buffer sizing and buffer insertion

LE

programmable
interconnect

...

LE
Figure 3-16 A generic
signal path between two
logic elements.

Circuit Design of FPGA Fabrics 151

in Section 2.5.5. Now we must apply that general knowledge to the
interconnect circuits in FPGAs.

Figure 3-16 shows the general form of a path between two logic ele-
ments. A signal leaves a logic element, goes through a buffer, enters the
routing channel through a programmable interconnect block, passes
through several more programmable interconnect blocks, then passes
through a final programmable interconnect block to enter the destination
LE. We have studied the circuit design of logic elements; now we need
to consider the circuits for programmable interconnect blocks. Brown et
al. [Bro92] concluded that most of the area in an SRAM-based FPGA is
consumed by the routing switches, so we must carefully design the pro-
grammable interconnect to make best use of the available area.

programmable
interconnection circuit

Antifuses provide low-impedance connections between wires. However,
the design of a programmable interconnection point for an SRAM-based
or flash-based FPGA requires more care because the circuitry can intro-
duce significant delay as well as cost a significant amount of area. The
circuit design of a pass-transistor-based programmable interconnection
point is shown in Figure 3-17. If we use pass transistors at the program-
mable interconnection points, we have two parameters we can use to
minimize the delay through the wire segment: the width of the pass tran-
sistor and the width of the wire. As we saw in Section 2.3, the current

SRAM
cell

SRAM
cell

... ...

Figure 3-17 Organization of
a pass-transistor-based
interconnection point.

SRAM
cell

SRAM
cell

... ...

Figure 3-18 Organization of
a three-state buffer-based
interconnection point.

 152 Chapter 3 FPGA Fabrics

through a transistor increases proportionately with its width. The
increased current through the transistor reduces its effective resistance,
but at the cost of a larger transistor. Similarly, we can increase the width
of a wire to reduce its resistance, but at the cost of both increased capac-
itance and a larger wire. Rather than uniformly change the width of the
wire, we can also taper the wire as described in Section 2.5.3.

We can also ask ourselves whether we should use three-state buffers
rather than pass transistors at the programmable interconnection points.
The use of three-state buffers in programmable interconnect is illus-
trated in Figure 3-18. The three-state buffer is larger than a pass transis-
tor but it provides amplification that the pass transistor does not.

pass transistor and wire
sizing

Betz and Rose [Bet99] considered the effects of pass transistor and wire
sizing as well as the merits of three-state buffers as programmable inter-
connection points; their studies used a 0.35 µm technology. They use the
product of area and wire delay as a metric for the cost-effectiveness of a
given circuit design. Figure 3-19 compares the product of switch area
and wire delay as a function of the width of the pass transistor at a pro-
grammable interconnection point. The plot shows curves for wires of
different lengths, with the length of a wire being measured in multiples
of the size of a logic element. The plot shows a clear minimum in the

Wpass (x Minimum Width); Log Scale

Switch Area -
Wire Delay

Product
(Dominant

Delay
Constant

* Switch Area
/ Lwire)

1 2 4 5 10 16 32 64
0

0.5

1

1.5

2

2.5

3
Lwire = 16 logic blocks
Lwire = 8 logic blocks+

Lwire = 4 logic blocks∆

Lwire = 1 logic block

+∆

+∆

+∆ +∆
+∆ +∆

+
∆

+

∆

Figure 3-19 Switch area * wire delay vs. routing pass transistor width (from Betz and Rose [Bet99],
© 1999 IEEE).

Circuit Design of FPGA Fabrics 153

area-delay product when the pass transistor is about ten times the mini-
mum transistor width.

Figure 3-20 shows the area-delay curve for a three-state buffer. The min-
imum area-delay product occurs when the three-state driver’s transistors
are about five times the minimum transistor size; the three-state requires
smaller transistors than does the pass transistor because it provides
amplification. Betz and Rose also found that increasing the width of the
wire uniformly gave very little improvement in delay: doubling the wire
width reduced delay by only 14%. Uniformly increasing the wire width
has little effect because the wire capacitance is much larger, swamping
the effects of reduced resistance.

simultaneous driver and
pass transistor sizing

Chandra and Schmit [Cha02] studied the effect of simultaneously opti-
mizing the sizes of the drivers at the LE outputs and the pass transistors
in the interconnect. Figure 3-21 shows how delay through the wire var-
ies as the driving buffer and routing switch size change; these curves
were generated for a 0.18 µm technology. Each curve shows the delay
for a given size of driver. The curves are U shaped—as the routing
switch increases in size, delay first decreases and then increases. The
initial drop in delay is due to decreasing resistance in the switch; the
ultimate increase in delay happens when the increases in capacitance
overwhelm the improvements obtained from lower resistance. This plot

Buffer Size (x Minimum Size); Log Scale

Delay / Lwire

* Switch Area
(Delay per

Logic Block
Spanned

* Switch Area)

1 2 4 5 10 16 32 64
0

2

4

6

8

10

12
Lwire = 16
Lwire = 8+

Lwire = 4∆

Lwire = 1

+

+
+ +

+
+

+

∆

∆
∆ ∆

∆

∆

∆

Figure 3-20 Switch area * wire delay vs. routing three-state buffer size (from Betz and Rose [Bet99],
© 1999 IEEE).

 154 Chapter 3 FPGA Fabrics

0 5 10 15 20 25 30 35
1.5

2

2.5

3

3.5

4
x 10

6

Switch sizes (in microns)

S
u

m
o

f
al

ln
et

d
el

ay
s

Sum of net delays with switch sizes for different driving buffer sizes

50u
90u
250u
470u
670u

Figure 3-21 Variation of delay with routing switch and driving buffer sizes (from Chandra and
Schmit [Cha02], ©2002 IEEE).

Architecture of FPGA Fabrics 155

shows that there is a best size for the pass transistor routing switch for
any given choice of driver size.

clock networks FPGAs have specialized clock wiring because the clock signal com-
bines a large number of destinations (all the registers in use in the sys-
tem) with low delays and skew between the arrival of the clock at
different points on the chip. A clock network is particularly difficult
because it must go to many different places. As illustrated in Figure 3-
22, clock signals are often distributed by trees of drivers, with larger
transistors on the drivers near the clock source and smaller transistors on
the drivers close to the flip-flops and latches. This structure presents a
much larger capacitive load than does a point-to-point wire. Buffers
must be distributed throughout the clock tree in order to minimize delay.

 3.7 Architecture of FPGA Fabrics

issues in fabric
architecture

In addition to designing the circuits of the FPGA, we need to design the
FPGA’s architecture—the characteristics of the logic elements and inter-
connection that form the FPGA fabric.

φ
Figure 3-22 A clock driver
tree.

 156 Chapter 3 FPGA Fabrics

We need to answer quite a few questions to move from the concept of an
FPGA to a specific FPGA fabric:

• How many logic elements on the FPGA? Logic elements and inter-
connect are, to some extent, mutually exclusive, since we have only
a limited amount of area on chip. Wires do exist on several levels but
the transistors for the interconnection points and amplifiers take up
area that could be devoted to logic elements.

• What functions should the logic element perform? How many inputs
should it have? Should it provide dedicated logic for addition or
other functions?

• What different types of interconnect do we need? Do we need global
interconnect, local interconnect, and other types? How much of each
type do we need?

• How long should interconnect segments be? Longer segments pro-
vide shorter delay but less routing flexibility.

• How should we distribute the interconnect elements? Interconnect
may be distributed uniformly or in various patterns.

We can answer all these questions and more using the same basic meth-
odology shown in Figure 3-23: choose an FPGA fabric to evaluate;
select a set of benchmark designs; implement the benchmarks on the test

FPGA
fabric

architecture

logic
benchmarks

place
and

route

area and
performance
evaluation

metrics

Figure 3-23 Methodology for
evaluating FPGA fabrics.

Architecture of FPGA Fabrics 157

fabric; evaluate the resulting metrics. An FPGA fabric is different from
a custom chip in that it is intended to be used for many different logic
designs. As a result, the standard by which the fabric should be judged is
the quality of implementation of a typical set of logic designs. Compa-
nies that design FPGAs usually do not use them to build systems, so
they may collect benchmarks from customers or from public sources.
By implementing a set of designs and then measuring how well they fit
onto the fabric, FPGA designers can get a better sense of what parts of
their fabric work well and what need improvement.

We can measure the quality of a result in several ways:

• logic utilization;

• size of the logic element;

• interconnect utilization;

• area consumed by the connection boxes for the interconnect;

• worst-case delay.

This methodology works because we use computer-aided design (CAD)
tools to implement logic designs on FPGAs. We will discuss CAD tools
in more detail in later chapters; at the moment it is only necessary to
know that we can map logic designs onto FPGAs automatically.

3.7.1 Logic Element Parameters

factors in LE design The most basic question we can ask about a lookup table logic element
is the number of inputs it should have. This choice is subject to delicate
trade-offs:

• If the LE has too few inputs, each lookup table and the associated
interconnect have a higher proportion of overhead circuitry. Fewer
transistors are devoted to logic.

• If the LE has too many inputs, the logic designs that are mapped into
the LEs may not be large enough to make use of all the capacity of
the lookup tables, thus wasting the capacity of the LEs.

The choice of a size for the lookup table therefore depends on both the
circuit design of lookup tables and the characteristics of the designs to
be implemented in the FPGAs.

Many experiments [Bro92] have found that a lookup table with four
inputs (and therefore 16 entries) is the best choice.

 158 Chapter 3 FPGA Fabrics

LE clusters Betz and Rose [Bet98] studied logic element clusters. As shown in Fig-
ure 3-24, a logic cluster has several logic elements and some dedicated
interconnect. The i inputs to the cluster are routed to the LEs and to the
n cluster outputs by a local routing network. Each LE has l inputs.
Because this local network does not provide for full connectivity
between the cluster inputs and LEs, it requires much less chip area than
programmable interconnect, but it provides only certain connections.
This leads one to ask whether clusters are better than monolithic logic
elements and what sort of cluster configuration is best.

LE

LE

local
routing

i n

l

l

Figure 3-24 A logic element
cluster.

Fraction of Inputs Accessible (I/4N)

Fraction
of BLEs

Used
(20

Benchmark
Average)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

...

Figure 3-25 Logic utilization vs. number of logic cluster inputs (from Betz and Rose [Bet98], ©1998
IEEE).

Architecture of FPGA Fabrics 159

LUT utilization Figure 3-25 shows how well the lookup tables are used as a function of
the number of accessible inputs. Ideally, we would like to be able to use
all of the bits in the lookup tables, but the fixed interconnect in the clus-
ter may not match well with the logic functions to be implemented.
However, the figure shows that utilization reaches 100% when only 50%
to 60% of the lookup table inputs are accessible; the common inputs and
locally generated outputs do not cause a problem.

Betz and Rose also studied the number of routing tracks to which each
pin should connect. When a cluster has a large number of pins, it is not
necessary that all the pins be able to connect to all of the tracks. They
found that an organization that allows each of the routing tracks to be
driven by one output pin on each logic block was sufficient to ensure
high utilization.

area efficiency vs.
cluster size

Figure 3-26 shows how area efficiency varies with cluster size. Clusters
in the 1 to 8 size range showed good area efficiency.

Cluster Size (N)

Transistors
Required

per
BLE
(20

Benchmark
Average)

0 2 4 6 8 10 12 14 16

750

800

850

900

950

1000

Figure 3-26 Area efficiency vs. cluster size (from Betz and Rose [Bet98], ©1998 IEEE).

 160 Chapter 3 FPGA Fabrics

3.7.2 Interconnect Architecture

interconnect channel
considerations

The design of the interconnect architecture is distinct from the design of
the interconnect circuits. The circuit designs for drivers and amplifiers
that we discussed in the last section are for a single wire; the intercon-
nect architecture, in contrast, describes the entire set of wires that are
used to make all the connections in the FPGA.

interconnect structures The connection between two LEs must in general be built through three
types of connections:

• the logic element must connect to the wiring channel;

• the wire segments in the wiring channel must be connected
together to reach an intermediate point or destination;

• a connection must be made between wiring channels.

The connections between wire segments in a channel can generally be
made to adjacent wires. The connections into the wiring channel or
between wiring channels should be richer but that richness comes at the
cost of additional programming circuitry. The logic elements in an anti-
fuse-based FPGA are generally connected to one wire segment in the
channel. SRAM-based FPGAs generally allow an input or output of a
logic element to connect to any of several wires in the wiring channel.
Connections between wiring channels would ideally be crossbars that
allow any wire in one channel to be connected to any wire in the other
channel. However, few FPGAs offer such rich inter-channel intercon-
nections due to the cost of the programming circuitry.

segmented wiring As described in Section 3.2, one of the key questions in the design of
interconnect is the length of the routing segment in a general-purpose
interconnection network. An individual segment may run for several
LEs before it stops at a programmable interconnection point. The seg-
ment will not be able to connect to some LEs but it will provide less
delay than a segment that is broken at every LE by an interconnection
point. Segmented routing channels may also use offset wiring segments
so that not all logic elements connect to the same wire segments.

routing segment length
vs. delay

Brown et al. [Bro96] studied the effects of routing segment length on
delay. Figure 3-27 shows routing delays for a number of different fab-
rics that have different proportions of segment lengths. In this graph, the
vertical axis shows the percentage of tracks that were of length 2 while
the horizontal axis shows the percentage of tracks that were of length 3;
for data points where the sum of length 2 and length 3 tracks was less
than 100%, the remaining tracks were of length 1. The figure shows that

Architecture of FPGA Fabrics 161

the sweet spot in the design space is centered around a point where more
of the tracks are of length 3 and most of the remainder are of length 2.

Betz and Rose [Bet98] studied FPGAs with varying routing channel
widths. Their study was motivated by commercial FPGAs which had
larger routing channels with more wires in the center of the FPGA and
smaller routing channels with fewer wires toward the edge of the chip.
They found that, in fact, using the same size routing channels through-
out the chip made the FPGA more routable, although if the design had
the positions of its I/O positions constrained by external requirements,
making the routing channels that feed the I/O pins 25% larger aided
routability.

3.7.3 Pinout

Another concern is how many pins to provide for the FPGA. In a custom
design the number of pins is determined by the application. But since an
FPGA provides uncommitted logic we must find some other way to pro-
vide the right number of pins. If we provide too many pins we will drive
up the cost of the chip unnecessarily (the package is often more expen-

Figure 3-27 Routing delays of segmentation schemes (from Brown et al. [Bro96], © 1996 IEEE).

100 8.3

90 8.4 8.2

80 8.4 8.1 8.0

70 8.6 8.3 8.0 7.9

60 9.0 8.5 8.2 7.9 7.7

50 9.5 8.9 8.4 7.9 7.7 7.6

40 10.3 9.5 8.7 8.2 7.9 7.5 7.5

30 11.1 10.1 9.4 8.7 8.2 7.7 7.5 7.4

20 11.9 11.0 10.2 9.3 8.6 8.0 7.7 7.4 7.5

10 12.4 11.7 10.9 10.1 9.2 8.3 7.9 7.6 7.4 7.5

0 12.8 12.5 11.8 10.8 9.9 9.0 8.4 7.9 7.5 7.4 7.5

0 10 20 30 40 50 60 70 80 90 100

 162 Chapter 3 FPGA Fabrics

sive than the chip itself). If we don’t provide enough pins then we may
not be able to use all the logic in the FPGA.

Rent’s Rule The best characterization of the relationship between logic and pins was
provided by E. F. Rent of IBM in 1960. He gathered data from several
designs and plotted the number of pins versus the number of compo-
nents. He showed that the data fit a straight line on a log-log plot. This
gives the relationship known as Rent’s Rule:

(EQ 3-1)

where Np is the number of pins and Ng is the number of logic gates. The
formula includes two constants: β is Rent’s constant while Kp is a pro-
portionality constant. These parameters must be determined empirically
by measuring sample designs. The parameters vary somewhat depend-
ing on the type of system being designed. For example, Rent measured
the parameters on early IBM mainframes as and ; oth-

ers have measured the parameters for modern microprocessors as
 and .

 3.8 Summary

FPGA fabrics are complex so that they can support realistic system
designs. They contain several different components: logic elements,
multiple types of interconnection networks, and I/O elements. The char-
acteristics of FPGA fabrics are determined in part by VLSI technology
and in part by the applications for which we want to use FPGAs.

 3.9 Problems

Q3-1. You have a two-input lookup table with inputs a and b. Write the
lookup table contents for these Boolean functions:

a. a AND b.

b. NOT a.

c. a XOR b.

Q3-2. You have a three-input lookup table with inputs a, b, and c. Write
the lookup table contents for these Boolean functions:

a. a AND b.

Np KpNg
β=

β 0.6= Kp 2.5=

β 0.45= Kp 0.82=

Problems 163

b. a AND b AND c.

c. a XOR b XOR c.

d. a + b + c (arithmetic).

Q3-3. You have a logic element with two lookup tables, each with three
inputs. The output of the first lookup table in the pair can be connected
to the first input of the second lookup table using an extra configuration
bit. Show how to program this logic element to perform:

a. a + b + c (arithmetic, sum only not carry).

b. a - b (arithmetic, difference only not borrow).

Q3-4. Redesign the logic element of Figure 3-11 to be controlled by a0
OR a1 in the first stage and b0 AND b1 on the second stage. Draw the
schematic and write the truth table.

Q3-5. Design each of these functions using a tree of multiplexers:

a. a | ~b.

b. a & (b | c).

c. (a & ~b) | (c & d).

Q3-6. Program the logic element of Figure 3-13 to perform these func-
tions:

a. a & b.

b. a | b.

c. a NOR b.

d. ab + bc + ac.

Q3-7. How many two-input LUTs would be required to implement a
four-bit ripple-carry adder? How many three-input LUTs? How many
four-input LUTs?

Q3-8. Prove that the fast arithmetic circuitry of the Actel Axcelerator
performs a correct two-bit addition with carry.

Q3-9. Draw a transistor-level schematic diagram for the programmable
interconnection point shown in Figure 3-6. The interconnection point
should be controlled by a five-transistor SRAM cell.

Q3-10. Populate the array of logic elements in Figure 3-2 with wires and
programmable interconnection points. Each wiring channel should have
two wires. Assume that each logic element has two inputs and one out-
put; each logic element should be able to connect its inputs to the chan-
nel on its left and its output to the channel on its right. When two wiring

 164 Chapter 3 FPGA Fabrics

channels cross, you should be able to make connections between all the
crossing wires.

Q3-11. Redo your routing design of Question Q3-10 but add local con-
nection wires. Each local wire should be the output of an LE to one of
the inputs of the LE on its right. Each end of the local connection should
be controlled by a programmable interconnection point.

Q3-12. Your FPGA has 128 logic elements, each with four inputs and
one output. There are 128 vertical and 128 horizontal routing channels
with four wires per channel. Each wire in the routing channel can be
connected to every input of the LE on its right and the output of the LE
on its left. When two routing channels intersect, all possible connections
between the intersecting wires can be made. How many configuration
bits are required for this FPGA?

Q3-13. Draw a transistor schematic for two programmable interconnec-
tion points that are connected in a scan chain. Each programmable inter-
connection point should be implemented by a five-transistor SRAM cell.

Q3-14. Draw a schematic for a four-input multiplexer that uses a combi-
nation of pass transistors and static gates. The first stage of multiplexing
should be performed by pass transistors while the remaining multiplex-
ing should be performed by static gates.

Q3-15. Draw a transistor-level schematic for a programmable intercon-
nection point implemented using a three-state buffer.

Q3-16. Draw eight LEs and a routing channel with eight wires. The
routing channel should have two sets of length 1 segments, two sets of
length 2 segments, and four sets of length 3 segments. Each LE should
be able to be connected to at least one length 2 and one length 3 seg-
ment.

Q3-17. Draw a block diagram for a logic element cluster with two two-
input LEs and four inputs to the cluster. The local interconnect network
in the cluster should be able to connect the two inputs of an LE to two of
the cluster inputs.

