

Class
libraries

XPIDL
definitions

Type
libraries

Mozilla
registry

Digital
Certificates

RDF

JSlib

RDFlib

Preferences

XP
CO

M

XPConnect

JavaJavaScript

AppDevMozilla-05 Page 136 Thursday, December 4, 2003 6:29 PM

137

C H A P T E R

Overlay
database

Keyboard

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

DTDs

Skins

Mouse

RDF

XBL
definitions

DOM

W3C
standardsJavaScriptcript

UR
L

5

Scripting

AppDevMozilla-05 Page 137 Thursday, December 4, 2003 6:29 PM

138 Scripting Chap. 5

JavaScript is a lightweight programming language with C-like syntax that is
an essential part of the Mozilla Platform. JavaScript programs, or program
fragments, are called scripts. By adding scripts to XUL, read-only documents
become dynamic interfaces that can do something in response to the user’s
commands. Writing scripts is a task for a programmer, not for a Web page
author or a content provider. Mozilla applications can be developed only by a
programmer.

This chapter describes the JavaScript language itself. It also provides an
overview of the many services of the Mozilla Platform that are exposed to
JavaScript scripts. These features and services are examined in more detail
throughout the rest of this book. Whole books have been written on Java-
Script. This chapter is a complete description, but it is also brief.

JavaScript scripts that are part of a Mozilla application might follow
one or more traditional programming styles, depending on how ambitious
the application is.

Lightweight Mozilla applications contain scripts similar to the scripts
used in Web pages. In Web pages, these scripts are often added to HTML con-
tent as an afterthought. When such scripts become larger, they are sometimes
called Dynamic HTML. Even so, such scripts do little more than rearrange
HTML content in a pleasing way. Simple macros used in products like
Microsoft Word are similarly lightweight.

Middleweight Mozilla applications use scripting more systematically
than lightweight applications. Other environments like this are 4GL tools
such as Sybase’s PowerBuilder or Oracle’s SQL*Forms. In such cases, scripts
are responsible for much of the basic activity put into the software. Use of
Python in the Zope application server is an Open Source example.

Heavyweight Mozilla applications, like ActiveState’s Komodo develop-
ment environment, have so much scripting that the scripts overwhelm the
basic browser-like features of the platform. In such cases, JavaScript can act
like other standalone scripting environments such as Visual Basic, Perl, and
Tcl/Tk, or perhaps emacs’ elisp. In such heavily engineered programming,
scripts drive the behavior of the Mozilla Platform from beginning to end.

It is the middleweight approach, however, that application programmers
use the most. XUL, JavaScript, XPCOM, and default platform processing are
combined into a final application. JavaScript is the glue that holds the other
technologies together.

The NPA diagram at the start of this chapter shows the bits of Mozilla
that are most responsible for scripting support. From the diagram, JavaScript
is both away from the user and away from the computer’s operating system.
This is because JavaScript and its scripts are embedded technologies that hide
within other software. Scripts rarely drive Mozilla from the outside. The two
most important boxes, XPConnect and the DOM, are deep inside the Mozilla
Platform. They have a large number of APIs (Application Programming Inter-
faces), which are all available to JavaScript scripts. The scripted use of these
interfaces is the main construction task when developing a Mozilla-based

AppDevMozilla-05 Page 138 Thursday, December 4, 2003 6:29 PM

5.1 JavaScript’s Role as a Language 139

application. Being able to manipulate these interface script saves the pro-
grammer from having to use more laborious languages like C and C++.

The simplest use of JavaScript involves XML and the

<script>

 tag. For
both XUL and HTML documents, the following content will change the words
in the title bar of a document’s window:

<script> window.title = "Scripted Title"; </script>

Scripts like this can change any part of a displayed Mozilla window,
including any part of the content. Such scripts can also interact indirectly with
the wider world, including the Internet. The content of the

<script>

 tag
itself is highly meaningful and needs to be specially processed, just as the
CSS2 content of the

<style>

 tag is specially processed.
The Mozilla Platform itself is partly made out of JavaScript scripts. Such

scripts are mostly found in the chrome, although a few outside exceptions, like
preference files, also exist. Since the chrome is designed to contain Mozilla
applications, it is no surprise that many scripts are stored there.

Before plunging into the language syntax, it’s worth asking: Why pick
JavaScript? That question is answered next.

5.1 J

AVA

S

CRIPT

’

S

 R

OLE

AS

A

 L

ANGUAGE

JavaScript is a member of the C family of programming languages. The most
visible members of this family are C and ANSI C, Objective-C, C++, Java,
JavaScript, PHP, C#, and awk.

The members of this family share syntax and some structure. These lan-
guages are all third-generation procedural languages, meaning that programs
are specified as a series of ordered steps. They all contain the

if

 keyword.
Some of these languages are advanced enough to include support for objects.
Objects provide structure on top of procedural steps.

JavaScript’s essential qualities make it a (nearly) unique member of this
group. It is designed to be the most accessible and easiest to use language in
the family. It is also designed to be a take-anywhere language. It is highly por-
table, has tiny resource requirements, and doesn’t need the support of a tradi-
tional compiler. This ease of use gives it wide appeal.

JavaScript code runs inside an interpreter, a virtual machine like Java’s
JVM, but one that is very small by comparison with that technology. It can be
used in embedded devices, although the device must support 32-bit shifts and
floating-point operations. Because JavaScript code is interpreted, variables
are late-bound and weakly typed. This makes for an environment where it is
very easy to get small programs working quickly, but very hard to get the last
bugs out of big programs.

Because it is so small, JavaScript is heavily dependent on other software
(called host software) before it can do anything meaningful. This is very simi-
lar to C, which can’t do much without access to its companion

stdio

 libraries,

AppDevMozilla-05 Page 139 Thursday, December 4, 2003 6:29 PM

140 Scripting Chap. 5

or a

stdio

 equivalent. The Mozilla Platform, in the form of a set of libraries
and an executable, provides a host for the JavaScript interpreter.

Because the host is typically large, most of the time spent scripting in
JavaScript is spent exploring what the host has to offer. Inside Mozilla, JavaS-
cript has a role similar to Visual Basic for Applications (VBA) as used inside
Microsoft Word and Microsoft Excel. This is also the kind of use with which
Web developers are familiar.

5.2 S

TANDARDS

, B

ROWSERS

,

AND

<

SCRIPT

>

Mozilla supports the ECMA-262 standard, specifically ECMAScript version 1,
edition 3. This standard is also named ISO-16262. ISO is the international
standards organization (but ISO is not an acronym). ECMA is the European
Computer Manufacturers’ Association. Web addresses are

www.iso.org

 and

www.ecma.ch

. ECMAScript standards in PDF form can be downloaded for
free. With a little effort, the standard is useable as an everyday language ref-
erence. There are two other ECMAScript standards. Mozilla does not support
either of them.

ECMA-327 “ECMAScript Compact Profile” is a near-identical version of
ECMAScript intended for embedding in tiny devices. It removes a few features
considered too complex for tiny implementations. It can be viewed as an
attempt to compete against the WAPScript language, and other languages
designed for embedded use.

ECMA-290 “ECMAScript Components” specifies how to create modular
JavaScript programs using XML-based module files. It is the basis of
Microsoft’s Windows Scripting Components technology. Mozilla uses XBL
instead.

ECMAScript is the official name for JavaScript, because Sun Microsys-
tems owns the Java trademark. Trademark protection includes words that
extend an existing mark or derive from one. Long ago, JavaScript’s pre-release
name was LiveScript. Mozilla’s implementation of ECMA-262 edition 3 is
called JS 1.5 and is nicknamed SpiderMonkey. It is an interpreter imple-
mented as a C library.

SpiderMonkey also supports old versions of JavaScript, including the
somewhat unusual version 1.2. That version contained a variety of new fea-
tures, some of which failed to become popular. Support for early versions can
be turned on if required, following the approach of older Netscape browsers. In
a XUL application, the latest version should always be used. In other mark-
ups, such as HTML, any version may be chosen. The

<script>

 tag, supported
in both HTML and XUL, is the way to make this choice.

The correct way to include JavaScript code in an XML document is like
this:

<script type="application/x-javascript" src="code.js/>

AppDevMozilla-05 Page 140 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 141

This next method is deprecated, so avoid it, even though it will still work:

<script type="text/javascript" src="code.js/>

Another method can be used to choose specific versions of JavaScript:

<script type="JavaScript1.2" src="code.js/>

This final method assumes the language is JavaScript and defaults to the lat-
est version:

<script src="code.js/>

For a new Mozilla application, the first syntax is ideal. The final syntax is a
useful alternative, but to be correct and precise, the

type

 attribute should
always be added. All these examples have the default encoding of

encod-
ing="UTF-8"

.
Chapter 2, XUL Layout, under “Good Coding Practices,” explains why

JavaScript code should always be stored outside an XML document in a sepa-
rate file. The section “Using XPCOM Components” later in this chapter shows
how to include a JavaScript file from another JavaScript file.

The Mozilla organization has a second JavaScript interpreter, one writ-
ten in Java rather than in C. This version, called Rhino, is not used or pack-
aged with the Mozilla Platform; however, it is available to download. It is also
ECMA-262 version 1 edition 3 compliant.

5.3 ECMAS

CRIPT

 E

DITION

 3

This section describes the features of the JavaScript language that come from
the ECMAScript standard. Enhancements are discussed in the next section.
Objects provided by the host software rather than by the standards are dis-
cussed after that.

5.3.1 Syntax

Here we look at the text of the JavaScript language. Because the ECMAScript
standard is nearly readable by itself, this chapter goes over that syntax only
briefly. Where it is possible, an attempt is made to explore consequences of the
syntax.

Mozilla JavaScript scripts are stored in plain text files. The content of
those files must be encoded in UTF-8 format. This means that characters from
the ASCII character set are stored as a single byte. This is normal for English-
speaking places, and no special preparation is required. Just use a plain text
editor for scripts.

Some computers use the unused ASCII values from 128 to 255, perhaps
for European characters such as the

é

 in

résumé

. In the past, this tradition has
been a handy way to create text in other languages. Such practices do not fol-

AppDevMozilla-05 Page 141 Thursday, December 4, 2003 6:29 PM

142 Scripting Chap. 5

low the UTF-8 encoding rules, which demand two or more bytes for all non-
ASCII characters. Embedding such 8-bit European characters won’t work in
scripts. “

Ã©

” is the correct UTF-8 encoding for

é

, or at least that is what the
correct encoding looks like when viewed with a simple-minded text editor.

Even correctly specified, multibyte UTF-8-encoded characters have
restricted use. They can only appear inside JavaScript string literals, inside
comments, and sometimes in variable names. In general, stick to ASCII char-
acters for your code; don’t use other characters except as data. If you are Euro-
pean and want to use Latin1 characters for variable names, then in general
they are safe if correctly expressed in UTF-8. For the fine points of Unicode
support, see section 7.6 of ECMA-262 edition 3 and section 5.16 of the Unicode
3.0 standard.

Working with arbitrary Unicode characters is still possible in strings. See
the section entitled “Data Types” for details.

5.3.1.1 Text Layout

JavaScript is a free-format language like XML and C.
Statements aren’t restricted to a single line. Recognized whitespace charac-
ters include space and tab; recognized end-of-line characters include linefeed
(hex 0A) and carriage-return (hex 0D). Beware that Windows, Macintosh
MacOS 9, and UNIX all have a different concept of end-of-line. This doesn’t
affect the interpretation of scripts, but it can make editing them on the wrong
computer harder.

Comments in JavaScript are written C-style. Single line comments are
supported:

// Single line comment

as are parenthetic comments:

/* comment that can span
 multiple lines */

All combinations are possible except that multiline comments cannot
appear inside other multiline comments. JavaScript does not have a special
comment used for documentation. Scripts are not preprocessed before they are
interpreted. There is no preprocessor like C’s

cpp

.

5.3.1.2 Statements

The basic unit of work in JavaScript is the statement. A
statement is terminated by a semicolon, but that semicolon is optional. The
one place that it is not optional is between the three expressions in a

for(;;)

statement. In all other cases, the JavaScript interpreter will automatically
assume that a semicolon is present if it is left off. Three equivalent statements
are

x = 5;
x = 5
x = 5 // same as previous line, even with this comment

AppDevMozilla-05 Page 142 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 143

This semicolon feature is designed to allow Visual-Basic style developers
to feel comfortable with JavaScript. It is recommended that semicolons always
be used. Not only is it clearer, but future versions of JavaScript will insist that
one be present.

Scripts do not require a

main()

 or any other kind of structure. Like Perl,
statements can appear outside functions and outside objects from line 1
onward. JavaScript also supports the do-nothing statement:

;

JavaScript supports compound statements using the brace characters

{

and

}

, but they are different from compound statements in C (see the section
entitled “Scope Rules.” Bare compound statements aren’t that useful in Java-
Script, even though they are supported:

{ x = 5; y= 5; }

In this chapter,

statement

 means either a single statement with trailing
semicolon or a compound statement without a trailing semicolon.

5.3.1.3 Data Types

JavaScript has the following native data types:

Undefined Null Boolean Number String Object

There is also a hidden data type with no name that is a 32-bit signed integer.
In JavaScript, types are associated with data items, not with structures

that hold data, like variables. There is an ancient analogy between program-
ming variables and shoeboxes. In this analogy, a piece of data is a shoe, and a
structure for holding it (a variable) is a shoebox. In JavaScript the type of
information is attached to the shoe; it cannot be found in the shoebox. Vari-
ables holding types

Boolean

,

Number

,

or

String

 imply a shoebox with a sin-
gle shoe of one kind in it. Type

Object

 refers to a shoebox containing many
shoes tied together into a single bundle. Type

Null

 refers to a shoebox with
nothing in it, and type

Undefined

 refers to a shoebox whose contents aren’t
yet specified.

The

typeof

 operator can be used to identify types. It will return one of
the following strings for normal JavaScript data, or a custom string if the data
tested come from the host software:

"undefined" "boolean" "number" "string" "object" "function"

“

object

” is returned if the data is of the

Null

 type. Let’s consider each type in
turn.

The

Undefined

 type has just one value (undefined) and no literal values.
The global object (see later) has a single property named undefined that has
this value. If necessary, the undefined value can be generated with the void
operator, or with undefined:

x = void 0;
X = undefined;

AppDevMozilla-05 Page 143 Thursday, December 4, 2003 6:29 PM

144 Scripting Chap. 5

The Null type has just one value: null. null is also a literal and can be
used to empty a variable or in a comparison.

x = null;

The Boolean type has two values, true and false. true and false are
literals for these values. False does not equal 0 (zero) as it does in C, but the
conversion process between false and 0 is so seamless that any subtle differ-
ence can usually be ignored.

x = true;

The Number value stores a 64-bit double-precision floating-point number,
as described in the IEEE 754 standard. That standard is not free, but a near
identical draft can be had from http://www.validlab.com/754R/.

Floating point is an inexact attempt at representing a real number and is
accurate to at least 15 digits, unless mathematical operations introduce fur-
ther error. The IEEE 754 standard allows for Not-a-Number values (possibly
resulting from dividing zero by zero, or taking the inverse sine of 2), and for
Infinite values (possibly caused by overflow). The isNaN() and isFinite()
methods can be used to test for these conditions. JavaScript has no literals for
these values, but the global object has an NaN and an Infinity property, and
the Math object has several handy properties:

POSITIVE_INFINITY NEGATIVE_INFINITY NaN MAX_VALUE MIN_VALUE

These properties can be used for comparisons. Floating-point literals
support exponential notation up to about +/- 10300:

x = -3.141592654; y = 1.0e+23; z = 234.555555E-100;

Number literals can also be specified in hexadecimal by using a 0x or 0X pre-
fix, followed by the digits 0–9 and A–F in upper- or lowercase.

x = 0xFEFF;

JavaScript’s method of comparing NaN values matches the recommendations
in IEEE 754, but the unique identity of different IEEE 754 NaN values is not
preserved by the ECMAScript language.

Because floating-point numbers are inexact and subject to error, they are
poor choices for programming counters and indices. Integers are a better solu-
tion for such common tasks. Inside Mozilla’s JavaScript interpreter, Number
data are actually stored as 31-bit signed integers until there is a clear need for
floating-point accuracy. The end result is that by avoiding division and by
keeping numbers below about 46,000 (the square root of 231), most simple cal-
culations in JavaScript are exact integer arithmetic without any floating-point
error. These whole integers are also big enough to store any Unicode value or
any CSS2 RGB (Red-Green-Blue) color value.

Several situations can cause a value to be stored as a true floating-point
number. Some examples are: if a number literal has a decimal point; if division

AppDevMozilla-05 Page 144 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 145

occurs where a remainder would result; if a function that has a real result
(like sin()) is applied; or if mathematics results in a number bigger than 231.
At all other times, Numbers are stored as integers.

If a number is converted from integer to floating-point representation,
floating-point errors do not automatically occur. The IEEE 754 floating-point
representation has 54 bits of precision, which is enough accuracy for all but
the most intensive and repetitive calculations.

The String type represents a Unicode sequence of characters stored in a
UTF-16 encoding (i.e., two bytes per character). Each string appears immuta-
ble as in Java; strings cannot be worked on “in place” as they can in C. String
literals are delimited by a pair of single or double quotes. Special notation can
be used for common nonprintable characters. This notation is inspired by spe-
cial characters used in C strings. The JavaScript versions are

\b \t \n \v \f \r \" \' \\ and \x and \u

These characters are backspace, tab, newline, vertical tab, formfeed, car-
riage return, double quote, single quote, backslash, and the byte and Unicode
leader characters. The byte leader character must be followed by two hexadec-
imal digits and specify a Unicode character whose code-point (character
index) is between 0 and 255. This includes the ASCII characters and the non-
breaking whitespace character (0xA0). It also includes ISO 8859 (Latin 1 -
European) characters. The Unicode leader character must be followed by four
hexadecimal digits and specifies any Unicode character you can think of. A
trivial example is

str = "hello, world\n";

The Object type will be discussed in its own section shortly.
JavaScript provides automatic type conversion between most types. This

means that a piece of data used in a context where a certain type is expected
will be converted to that type before use. Such conversion is also discussed
later. JavaScript does not have a casting system, but methods that can convert
between types explicitly are available.

5.3.1.4 Variables JavaScript is a 3GL and therefore has user-defined vari-
ables. Variable names must start with an alphabetic letter or underscore or
with $. $ should be avoided because it is rarely used in handwritten code.
There is no limit on the length of a variable name. Alphanumeric characters,
the dollar sign, and the underscore are the allowed characters. Variable names
are case-sensitive.

my_variable x counter5 interCapName not$common _secret

Naming conventions recommend that all capitals be used for constants,
with underscore as word delimiter (like Java); an initial capital be used for
object constructors; and an initial underscore be used to indicate a variable is
not intended for informal use.

AppDevMozilla-05 Page 145 Thursday, December 4, 2003 6:29 PM

146 Scripting Chap. 5

Variables are undefined unless declared with the var keyword. If they
are used without being declared, then that is a syntax error. If they are
declared but nothing is assigned to them, then they are undefined. Variables
are therefore defined when declared or on first use, whichever comes first. Ini-
tial assignment of variables in JavaScript is not restricted to constant expres-
sions as is the case in C. Any expression may be used for initial assignment,
and a variable can be declared anywhere in a script.

var x;
var y = 2, z = 3.45;
var product = x * y * z;

JavaScript variables store one item of data each. That item of data is either a
simple value or a reference to an object. In the section entitled “Objects,” it is
explained that variables are also properties. JavaScript does not have point-
ers, and there is no syntax supporting references explicitly. Variables names
may not be reserved words like if. The thing named this is a special variable
that always refers to the current object.

5.3.1.5 Arrays JavaScript supports single-dimensioned arrays, like C, but
their size can be specified by a nonconstant expression. Arrays are created
using the new keyword, which is used to create objects of many kinds. There
are several syntactic options for array creation:

var arr1 = new Array(); // zero-length array
var arr2 = new Array(5); // array of 5 items
var arr3 = new Array(11,12,13); // array of 3 items
var arr4 = new Array(2,"red",true); // array of 3 items

All array elements will be undefined unless content for the elements is
specified at creation time. Each element of an array may contain data of any
type. An array may also be created from a literal array, using the [and]
bracket characters. These examples match the last ones, and are often pre-
ferred because the Array() method is a little ugly and confusing:

var arr1 = []; // zero length array
var arr2 = [, , , , ,]; // array of 5 items
var arr3 = [11,12,13]; // array of 3 items
var arr4 = [2,"red",true]; // array of 3 items

Array literals can be nested so that array elements can themselves be
arrays:

var arr5 = [6, ["red","blue"], 8, [], 10];

Array elements are referred to by their indices, which start at 0. The
length property of an array is an integer one larger than the highest array
index in the array. It is not equal to the number of elements in the array. It is
kept up to date automatically:

AppDevMozilla-05 Page 146 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 147

a[0]; // first element of array a
b[2]; // third element of array b
c.length; // one greater than highest index in c
c[c.length-1]; // last element of array c
d[1][4]; // see below

The last line in the preceding example is an array d whose second ele-
ment d[1] is an array. Therefore, d[1][4] is the fifth element of the d[1]
array.

Arrays are not fixed in size. The length property can be changed, either
by assigning to it or by setting an element with a higher index.

arr1 = new Array(3); // length is 3
arr1.length = 5; // length is now 5;
arr1[8] = 42; // length is now 9;

Arrays are sparse. In the preceding example, when the element with
index 8 is set, the elements between index 5 and 8 are not created unless they
are used in later statements. Because indices have the range of 32-bit
unsigned integers, gaps between elements can be very large.

Looking ahead a little, arrays are also objects (of type Array). All objects
support a little syntax that allows them to act like an array. When this is done,
the object treated like an array does not gain a length property; it is merely
allowed to use the square-bracket array notation. This array syntax can be
used to find properties on all object-like data, but this flexibility doesn’t benefit
arrays, only other objects, as this example shows:

obj.prop_name == obj["prop_name"] // legal and always true
obj[1] != obj.1 // illegal syntax

The syntax in the second half of the first line is useful when an object
property needs to be created whose name is not a legal variable name. For
example,

obj["A % overhead"] = 20;

A subtle trap with this array syntax support is caused by type conversion.
Array element indices that are not integers are not rounded to the nearest
integer. They are converted to strings instead:

obj[12.35] == obj["12.35"];

This example results in an object property being set rather than an array
element because there are no floating-point indices. Array indices are typically
stored in variables. If an index has been converted from an integer to a float-
ing point as a result of some calculation, then this subtle type conversion can
happen invisibly. It is difficult to spot because the property that is set will be
used somewhat reliably, until the floating-point value is rounded or accumu-
lates a fractional part due to calculation error. At that point, it will convert to
a subtly different string that points to a different property. The value set also
can’t be recovered via a normal object property because the property name

AppDevMozilla-05 Page 147 Thursday, December 4, 2003 6:29 PM

148 Scripting Chap. 5

12.35 is an illegal variable name. The moral is: Don’t do complex mathematics
on indices.

5.3.1.6 Expressions JavaScript expressions follow C, C++, and Java’s
expressions very closely and provide a means to do mathematics, bit opera-
tions, Boolean logic, and a few operations on objects. Expressions consist of
variables, literals, and the operators noted in Table 5.1.

Table 5.1 JavaScript operators

Name Binary? Precedence Symbol

Force highest precedence Unary 0 ()

Array literal Unary 0 []

Object literal Unary 0 { }

Function call Unary 0 ()

Property of 1 .

Element of Binary 1 []

Object literal Unary 1 { }

Create object Unary 2 new

De-reference property Unary 3 delete

Convert to undefined Unary 3 void

Reveal type as a string Unary 3 typeof

Pre- and postincrement Unary 3 ++

Pre- and postdecrement Unary 3 --

Same sign Unary 3 +

Opposite sign Unary 3 -

32-bit bitwise NOT Unary 3 ~

Logical NOT Unary 3 !

Multiplication 4 *

Division 4 /

Modulo 4 %

Addition, concatenation 5 +

Subtraction 5 -

32-bit left shift 6 <<

32-bit signed right shift 6 >>

AppDevMozilla-05 Page 148 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 149

Precedence of 0 is the highest precedence. JavaScript roughly follows the
left-to-right and right-to-left conventions of C for equal-precedence operators.
It also supports short-circuit Boolean expressions, which means that an
expression consisting of many && and || operations is processed from left to
right only until the final result is sure, not until the final term is evaluated.

One area where JavaScript Boolean logic is closer to Perl than C is in
multiplexed value sematics. In this arrangement, && and || used in expres-
sions are evaluated as control-flow conditions similar to ?: rather than as
simple Boolean expressions. Thus in

var x = flag && y;

variable x evaluates to y if flag is true, and false otherwise, rather
than evaluating to the Boolean result of “flag and y.”

For mathematical expressions, a mixture of Numbers stored as integers
and floating points results in all Numbers being promoted to floating points. If
bitwise operations are attempted on Numbers stored as floating points, the
floating-point numbers are first chopped down to 32 bits in a manner that is
generally useless and unhelpful. Make sure that bit-operations only occur on
Numbers stored as integer values.

32-bit unsigned right shift 6 >>>

Matches given type 7 instanceof

Matches object property 7 in

Ordinal comparisons 7 < > <= >=

Equality 7 == !=

Strict equality 7 === !==

32-bit bitwise AND 8 &

32-bit bitwise XOR 9 ^

32-bit bitwise OR 10 |

Logical AND 11 &&

Logical OR 12 ||

Conditional Ternary 13 ?:

Simple assignment 14 =

Compound assignment 14 *= /= %= += -= <<= >>=
>>>= &= ^= |=

List element delimiter 15 ,

Table 5.1 JavaScript operators (Continued)

Name Binary? Precedence Symbol

AppDevMozilla-05 Page 149 Thursday, December 4, 2003 6:29 PM

150 Scripting Chap. 5

5.3.1.7 Flow Control JavaScript supports C-style flow control. The standard
forms are as follows, with the placeholder statement being either a single
statement or a list of statements surrounded by { and }.

if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression)
for (expression; expression; expression) statement
switch (expression) {
 case expression: statement; break;
 case expression: statement; break; // as many as needed
 default: statement; break;
}

The argument to switch() can be anything, not just a variable. The case
selectors are not restricted to literals either. The following two ifs are the
same:

if (a) statement else if (b) statement else statement
if (a) statement else {if (b) statement else statement}

As for many C-like languages, beware of the dangling if trap in which an
else clause is attached to the last if, regardless of indentation; that trap is
avoided by using the second, explicit syntax in this last example.

The for statement has a variant for stepping through the properties of a
JavaScript object. Only the properties that are not DontEnum (see section
8.6.1 of ECMA-262) participate:

for (variable-name in object) statement

JavaScript has no goto statement. It does have labels, which are named
as for variables but they are in a separate namespace. continue ends the cur-
rent iteration of a loop; break leaves a loop or a switch statement perma-
nently. A label can be used to break up more than one level when loops are
nested several levels deep:

mylabel: statement;
break;
break label;
continue;
continue label;

JavaScript also has an exception system. It is not an optional add-on. It
is part of the core language. It catches run-time errors and exceptions.

try { statement; }
catch (variable) { statement; }
finally { statement; }

There can be more than one catch block. The finally block is optional.
Inside a try block, or anywhere, throw can be used to generate an exception:

throw expression;

AppDevMozilla-05 Page 150 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 151

The expression thrown can equate to any type of information from a sim-
ple number to a complex purpose-built object. To mimic the exceptions thrown
by the XPConnect part of the platform, always throw a 32-bit integer, prefera-
bly including one of the values of the Components.results object.

Scripts are often written hastily with a quick purpose in mind, and
exception handling is a less well-understood feature of 3GL languages. In real-
ity, for a robust script, most processing should be contained in try blocks, as
exceptions should never, ever reach the user. The simplest and most efficient
way to ensure this is to wrap everything in a single, top-level try block

The with statement is discussed under “Scope.”

5.3.1.8 Functions JavaScript supports functions. Functions are untyped and
support a variable number of arguments, like C’s printf(). Functions can
also have no name, in which case they are anonymous. Listing 5.1 shows a typ-
ical function:

Listing 5.1 Ordinary JavaScript function syntax.
function sum(x, y)
{
 if (arguments.length != 2)
 {
 return void 0;
 }
 return x + y;
}

var a = sum(2,3); // a = 5
var b = sum(1,2,3); // b = undefined
var c = sum("red","blue"); // c = "redblue"
var d = sum(5, d); // d = 5 + undefined = NaN
var e = sum; // e is now a function
var f = e(3,4); // f = 7

The arguments object acts like an Array object, except that it is static—
if more elements are added to the array, its length property will not be
updated. It contains all the arguments passed in to the function. Functions
can be anonymous as well:

var plus = function (x,y) { return x + y; }
var a = plus(2,3);

The benefit of anonymous functions is that they don’t automatically cre-
ate an extra variable with the name of the function. Consequently, it is possi-
ble to set methods on objects without globally defined function variables
hanging around. Globally defined function names can also be avoided by plac-
ing a named function’s definition inside an expression:

var five = (function sum(a,b){return a+b;})(2,3);

AppDevMozilla-05 Page 151 Thursday, December 4, 2003 6:29 PM

152 Scripting Chap. 5

If a function is called by itself, not as an object method, then any use of
the keyword this is resolved by scoping rules.

5.3.1.9 Regular Expressions JavaScript supports Perl5 regular expressions,
with some obscure and rarely seen differences. Obscure differences exist
because regular expression syntax is subtle in detail and always evolving and
being fixed. UNIX systems have file, normal, and extended variants of regular
expressions. Perl and JavaScript support extended regular expressions that
very, very roughly match egrep(1), or the “Wildcards” feature of Microsoft
Word’s Find dialog box. The Perl man(1) manual page perlre is easier to
understand than the ECMAScript definition, but not much. Look for an online
tutorial.

All regular expression operations in JavaScript are methods of the String
object or the RegExp object; they do not have standalone existence like Perl’s
m// operator:

match(re) // "red".match(/e/) == ["e"];
replace(re,string) // "red".replace(/e/,"o") == "rod";
replace(re,function) // "red".replace(/e/,myfn);
search(re) // "red".search(/e/) == 1;
split(re) // "red".split(/e/) == ["r","d"];

replace() returns a string; search(), an integer; and match() and
split() return an array of strings each.

Regular expressions have a literal syntax that can be typed into source
code anywhere that a string literal might occur. It is converted immediately to
a RegExp object. The syntax is

/pattern/flags

pattern is any of the convoluted syntax of regular expressions; flags is zero or
more of g (replace everywhere), i (ignore case), and m (match lines of multiline
targets separately).

5.3.2 Objects

JavaScript has objects, but at version 1.5, it is not fully object oriented. Java-
Script’s report card for the many descriptive terms that apply to object-like
systems is shown in Table 5.2.

All Objects and their attributes are late-bound in JavaScript. Attempting
to write fully object-oriented code is a technical feat that should generally be
avoided. JavaScript is designed for simple manipulation of objects, not for cre-
ating complex (or any) class hierarchies. Most of the objects used in a Java-
Script script come from the host software and are implemented in another
language.

There are no class definitions in JavaScript 1.5; there are only run-time
types. A normal object class system allows objects to be created using an
abstract specification—a class. This is like using a sketch plan to carve a

AppDevMozilla-05 Page 152 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 153

statue. JavaScript uses a prototype system to create objects instead. This is
like carving a statue by starting with another statue. All JavaScript objects,
except Host objects, are created using another object as the initial ingredient.
This is more flexible than a class-based system, but to do anything sophisti-
cated with it in JavaScript results in somewhat messy syntax.

5.3.2.1 Plain Objects A piece of data of type Object in JavaScript has a set
of properties that are the contents of the object. Some properties contain Func-
tion objects and therefore are also called object methods. The special global
object’s properties are also called variables and functions. Just about every-
thing in JavaScript is a property of some other object. There is no information
hiding: In C++ or Java terms, all properties are public.

All properties have attributes, but these attributes are a subtle feature of
the language and have no syntax of their own. You can read about attributes
in the ECMAScript standard, but you should really just forget them. They are
different from XML attributes.

To create an object of your own, use either new or an object literal as in
Listing 5.2.

Listing 5.2 Examples of object creation in JavaScript.
// explicit approach
var obj = new Object;

Table 5.2 JavaScript object support

Object system concept Syntax support Ease of use

Aggregation High Easy

Containment High Easy

Delegation High Medium

Encapsulation Low Medium

Inheritance Medium Difficult

Information hiding Low Medium

Interfaces None Difficult

Late-binding High Easy

Object-based High Easy

Object-oriented None Difficult

Multiple inheritance None Difficult

Run-time type reflection High Easy

Templates None Difficult

AppDevMozilla-05 Page 153 Thursday, December 4, 2003 6:29 PM

154 Scripting Chap. 5

obj.foreground = "red";
obj.background = "blue";

// literal approach
var obj = { foreground:"red", background:"blue" }

To add a method to an object, just use a function or an anonymous func-
tion as a property’s value. Anonymous functions can also appear in object liter-
als as shown in Listing 5.3.

Listing 5.3 Examples of method creation in JavaScript.
function start_it() { this.run = true; }

// explicit approach
var obj = new Object;
obj.start = start_it;
obj.stop = function (){ this.run = false; }

// literal approach
var obj = { start: function (){ this.run = true; },
 stop: function (){ this.run = false; }
 }

// execute the methods
obj.start();
obj.stop();

The this operator refers to the object that the function using this is a
property of.

Objects may contain other objects:

var obj = {
 mother:{name:"Jane", age:34},
 father:{name:"John", age:35}
};
var my_ma_name = obj.mother.name;

Containment and association are the same thing in JavaScript because
there is no information hiding. It is possible to do some information hiding by
messing around with the properties of Function objects in the prototype
chain. This can create permanent properties that are in scope only when a
function runs—effectively a private variable. That obscure technical trick is
generally unnecessary. Only do it if you are supplying a library of precreated
objects for someone else’s consumption, and you want the library to be abso-
lutely rock-solid. See also the section entitled “Language Enhancements” for
information on property getters and setters.

If many objects with similar properties are to be created, then fully spec-
ifying each one by hand is a tedious solution. An object constructor is a better
solution. This is a function called as an argument to new. Inside the function,

AppDevMozilla-05 Page 154 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 155

whatever standard properties the object needs are set. The constructor func-
tion can then be reused for each new object, as Listing 5.4 shows.

Listing 5.4 Examples of object construction using a constructor function().
function Parents(ma, pa)
{
 this.mother = { mother:ma; };
 this.father = { father:pa; };
 this.dog = "Spot";
}
var family1 = new Parents("Jane","John");
var family2 = new Parents("Joanne","Joe");

This system can be further improved. As soon as the constructor function
exists, its prototype object can be modified. The prototype object for a construc-
tor is an object that contributes default properties to the constructed object.
The following lines could be added to Listing 5.4, immediately after the func-
tion definition for Parents:

Parents.prototype.lastname = "Smith";
Parents.prototype.ring = function (){ dial(123456789); };

When family1 and family2 get new parents, they will also have prop-
erties matching those in the prototype, for a total of five properties. Not only
will they both have a dog named Spot, but they will both be Smith and both be
able to ring on the same number. In fact, the lastname and ring properties
are shared between the two objects. If one object updates its lastname prop-
erty, that value will override the prototype’s lastname property, and the
object will cease to share the lastname property of the prototype. If the proto-
type object’s lastname property is updated, then any objects sharing that
property will see the change. This is not the case for the dog property, which is
unique to each object created.

The purpose of this system is to allow an object to be extensively modeled
once (by the prototype object) and then to permit that model to be reused by
the constructor when a copy is created. The constructor can be restricted to
dealing with construction parameters and running any initialization methods
that might be required. Unfortunately, the prototypes system is somewhat
unencapsulated because the prototype properties must be set outside the con-
structor.

See also the section entitled “Prototype Chains” in this chapter.

5.3.2.2 Host Objects Host objects exist outside JavaScript in the host soft-
ware in which the interpreter is embedded. In Mozilla, such objects are typi-
cally written in C++. A piece of C code attached to the JavaScript interpreter
finds them when they are asked for, constructs a simple internal interface that
looks like a JavaScript object, hooks this up to the Host object, and thus
exposes the Host object to scripting. The tricky part is finding the object in the

AppDevMozilla-05 Page 155 Thursday, December 4, 2003 6:29 PM

156 Scripting Chap. 5

first place, and JavaScript needs assistance from the host software (the
Mozilla Platform) for that. The document object is an example of a host object.

Host objects appear the same as plain JavaScript objects to program-
mers, unless you try to turn them back into code using toString(). Because
functions and methods are also objects in JavaScript, this difference applies to
single functions or methods as well. For example, this piece of code attempts to
discover the function body of the alert() function (which in XUL is a method
of a host object of type ChromeWindow):

var str = "" + alert;

The resulting string, however, shows that alert() has no JavaScript
source:

"\nfunction alert() {\n [native code]\n}"

5.3.2.3 Native Objects A JavaScript interpreter has its own range of objects.
Their names and types are

Object Array Boolean Number String Math Date RegExp Function Error

Objects can be created automatically and on the fly by the JavaScript inter-
preter, or they can be created by hand, which requires a constructor. These
object names are also the names of the matching object constructor objects.
Therefore, construct an object of type Boolean with the Boolean object con-
structor object. That constructor object is named Boolean:

var flag = new Boolean();

Technically it makes a difference whether an object prototype object or
an object constructor object is used with new, but in practical terms they are
the same. The latter case requires function parenthesis, whereas the earlier
case doesn’t.

The Object and Array types have already been discussed. Array
objects maintain a length property, whereas Object objects don’t.

The Boolean, Number, and String objects match the basic data types of
the same name. JavaScript freely and automatically converts between simple
data and objects of the same kind, even for literals. This example shows auto-
matic conversion of literals to objects, which then execute a single method.

"Test remark".charAt(3); // result: "t"
1.2345.toFixed(2); // result: 1.23
true.toString(); // result: "true"

The Math object provides numerous basic mathematical operations, such as
Math.sin().

The Date object stores dates and has many accessor methods. Date
objects only support a version of the Western Gregorian calendar extended for-
wards and backwards in time. They support dates before the UNIX Epoch (1
January 1970) and are not 32-bit time_t values. They are IEEE double preci-

AppDevMozilla-05 Page 156 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 157

sion and reach backward and forward 280,000 years. Dates are accurate to one
millisecond, provided that the computer has an accurate clock. The zero value
for dates matches the UNIX Epoch, so all time_t’s are valid Date values. Do
not use the getYear() method, which is old; use the getFullYear() method
instead.

The RegExp object holds a regular expression pattern and flags. Some
methods related to regular expressions also exist on the String object.

The Function object is the object that represents functions and meth-
ods. It has clumsy constructor syntax. Anonymous functions or the function
keyword syntax are almost always preferred to using “new Function”.

The Error object reports run-time errors and exceptions that aren’t
caught by catch or finally. It is little use to application programmers, who
can just look at Mozilla’s JavaScript Console for the same information.

When studying one of these objects, use the ECMA-262 standard as a ref-
erence. The properties and methods for object of type X are described in section
15 under “Properties of the X Prototype Object” and “Properties of X Instances.”
This rule applies for all cases except the Math object (see the next section).

5.3.2.4 Built-in Objects and Similar Effects When the JavaScript inter-
preter starts, some objects are made available without any user scripting.
These are called built-in objects if they are native objects. It’s also possible for
host objects to appear before any scripting occurs. Such automated setup is
always done for convenience reasons. The best examples are the Global
object, the Math object, and the document object.

The global object sits at the top of an object containment hierarchy. It is
the root object in JavaScript. It is not the property of any other object, and a
global object cannot be created without creating a separate and independent
run-time environment. In Mozilla, the Window object (for HTML) and
ChromeWindow objects (for XUL) are global objects. Therefore, each Mozilla
window is a separate run-time environment. These global objects are imple-
mented so that they have a window property. That window property refers
back at the global object (a loop). Programmers use this window object as the
“top-level object” in scripts.

A Math object is also created every time a JavaScript instance starts.
This is referenced by a property of the global object called Math. It allows the
following shorthand syntax for mathematical operations:

var one = Math.sin(Math.PI/2);

If a document is loaded into a Mozilla window, then that loading process
can automatically populate JavaScript with many additional objects. These
objects are familiar to Web programmers as the Document Object Model, level
0. In HTML, these objects form a large containment hierarchy commonly used
like this:

window.document.form3.username.value = "John";

AppDevMozilla-05 Page 157 Thursday, December 4, 2003 6:29 PM

158 Scripting Chap. 5

The explicit use of a window. prefix is optional. Equivalent prefixes are
this and self.

By comparison with HTML, XUL has a very limited set of precreated
objects. It uses an XPCOM name service to find host objects that are not pre-
created.

5.3.3 Processing Concepts

Separate to visible syntax is the way the JavaScript interpreter crunches
through your script. There are a number of novel concepts to the language.

5.3.3.1 Operator Precedence Precedence of operators is noted in Table 5.1.
The left-to-right and right-to-left ordering that JavaScript uses is similar to
that of C, C++, and Java.

5.3.3.2 Argument Passing All function and method arguments are passed
by reference, except for Booleans, numbers, null, and undefined. Those few
cases are passed by value (copied).

5.3.3.3 Type Conversion JavaScript automatically converts data between
all simple types and the Number, String, and Boolean types. It forces type
conversion so that expressions can be evaluated in all cases. Every object in
JavaScript has a toNumber() method and a toString() method that are
used to assist in this process. Casts are not required; it is done according to an
extensive set of rules in the ECMA-262 standard. These rules can be boiled
down to just two rules:

Rule 1: Never assume that conversion will work when trying to change
a string into a number.

Rule 2: Don’t use binary operators on objects whose types you aren’t
sure of.

Rule 1 exists because the contents of a string might be an invalid number
literal. This code will cause the JavaScript interpreter to return NaN and, in
worse cases, the interpreter may halt:

var str = "123stop45";
var x = str * 3; // str isn't a number.

Halting can only occur if syntax errors or run-time errors occur. To guard
against such things, use the parseInt() and parseFloat() functions
explicitly instead:

var x = parseInt("123stop45") * 3;

Rule 2 exists because the comparison operators (<, ==, etc.) and + are
overloaded for Strings and Numbers. The rules that decide whether to ulti-
mately treat both operands as strings or numbers are not immediately obvi-

AppDevMozilla-05 Page 158 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 159

ous, and they have different senses for comparison and concatenation
operators. If in doubt, see Rule 1.

5.3.3.4 Scope Scope is the process of deciding what variables, objects, and
properties are available to use at what point in the code. Scope in JavaScript
has two sides.

The first side is traditional variable scoping. This is the same as C and
C++ where variables may be local to a function or global. In JavaScript, func-
tions can have a local variable with the same name as a variable outside the
function. When the function is interpreted, the local variable is used. When
statements outside the function are interpreted, the global variable is used.

In C and C++, in addition to function and global scopes, every statement
block has its own block scope. This means that the scope of a variable declared
inside a set of statements surrounded by { and } is different from that of vari-
ables declared outside. In JavaScript, such a statement block does not create a
new scope. It has no such effect.

In C and C++, variables declared partway through a scope are valid from
that point onward in the scope. In JavaScript, variables declared partway
through a function (or through a global section of code) are valid for the entire
scope. This code, illegal in the equivalent C/C++, is valid JavaScript.

function f() {
 alert(x); // reports "undefined"
 var x = 42;
 alert(x); // reports "42";
}
f();

The second side to scope is JavaScript’s unusual concept of scope chains.
A scope chain is an ordered list of objects that has at one end the global object.
When a function call occurs, the interpreter must first find the function match-
ing the function call. It does so by looking at the objects in the scope chain. The
first object found that has a method with the same name as the function will
be executed as that function. This is the mechanism that allows event han-
dlers in Web pages to call functions based on the window object, even though
the current object is something else. A scope chain makes services from sev-
eral objects available at the same time.

The with statement in JavaScript adds objects temporarily to the scope
chain. In Listing 5.5, you can see that the toString() function is used
repeatedly, and each time it is found in a different object. At the same time,
the myflag variable is always found in the window object because none of the
other objects has a myflag property.

Listing 5.5 Example of JavaScript scope chains at work.
// scope chain = window
var myflag = "Test String";

AppDevMozilla-05 Page 159 Thursday, December 4, 2003 6:29 PM

160 Scripting Chap. 5

var x = toString(); // "[object ChromeWindow]"
with (document)
{
 // scope chain = document, window
 x = toString(); // "[object HTMLDocument]"
 x = new Object;
 with (x)
 {
 // scope chain = x, document, window
 var y = toString(); // "[object Object]"
 var x = myflag; // window.myflag
 }
}

Scope chains are a distant cousin to the vtables inside C++ that imple-
ment inheritance, except that scope chains are not fixed sizes and do not
implement classical object inheritence. For application programmers, scope
chains are handy but usually require no thought.

5.3.3.5 Stacks and Garbage Collection C, C++, and Java use two kinds of
memory for data: a stack and a pool (also called a heap). The stack is used
automatically as required, and the pool is used whenever new or malloc() is
called. JavaScript has no stack, or at least no stack with which the program-
mer can work. Everything goes into the memory pool. Neither array elements
nor function arguments are guaranteed to be contiguous. Stacks are used to
implement passing of function arguments in the Mozilla SpiderMonkey imple-
mentation, but that stack mechanism is not visible to JavaScript program-
mers.

Java is a pointer-free garbage-collected language, as is JavaScript. Java-
Script has one garbage collector per run-time instance. It is possible for objects
in one window to contain references to objects in other windows. When a win-
dow is destroyed, any user-defined JavaScript objects are marked for collec-
tion. JavaScript’s garbage collector does not run in a separate thread as Java’s
does.

5.3.3.6 Run-time Evaluation JavaScript has the capability to interpret new
code at run time. The most powerful and general way to do this is by using the
global object’s eval() method. eval() can be used to execute any legal Java-
Script:

var x = 5;
var code = "x = x + 1;";
eval(code); // x = 6
x = x + 1; // x = 7

Other methods for evaluating code at run time are not specific to the
interpreter itself. In Mozilla, they include the setTimeout() and setInter-
val() methods, the very limited parseInt() and parseFloat(), and the

AppDevMozilla-05 Page 160 Thursday, December 4, 2003 6:29 PM

5.3 ECMAScript Edition 3 161

javascript: URL. See the section entitled “Using XPCOM Components” for
a further script-evaluation mechanism.

5.3.3.7 Closures JavaScript supports closures. This example illustrates:

function accumulate(x) {
 return function (y) { return x + y };
}
var subtotal = accumulate(2);
var total = subtotal(3); // total == 5

When the anonymous function is called, what will the return value be? If the x
argument’s state is cleaned up when the accumulate() function’s scope ends,
then it won’t be available to contribute to the return value of the subtotal()
call.

Closures are a solution to this problem. A closure is a collection of data
that needs to live beyond the end of a function. It is basically a copy of scoped
variables that refer to other objects. The copies are returned; therefore, the
referred-to data doesn’t lose its last reference when the originals are cleaned
up. This prevents garbage collection of created objects when the scope ends.
Closures are invisible to the programmer. Closure behavior makes sense for
any language that supports run-time code evaluation.

5.3.3.8 Prototype Chains Perhaps the most complex feature of JavaScript is
the prototype system. It is specified in a rather dense fashion in section 4.2.1
of the ECMAScript, 3rd Edition standard. Earlier we noted that every con-
structor has a prototype object, and that such a prototype object can be used to
model the common parts of the objects that a constructor constructs.

In fact, every object in JavaScript has a prototype object, which is named
__proto__, including objects used as prototype objects. This makes the fol-
lowing code perfectly valid:

MyConstructor.prototype.__proto__.value = 5;

Such a set of prototypes, whether explicitly stated or not, is called a pro-
totype chain. The chain comes to an end with the Object.prototype object,
which has no prototype of its own. All elements of the chain contribute proper-
ties to a final constructed object. The chain is an ordered list of its elements, so
properties are contributed in that order. One effect of this order is shadowing,
in which properties contributed later can override the values of properties
with the same names contributed earlier.

Prototypes can be used to implement object-oriented inheritance. The
simplest way to do this is to change a prototype to a new “base class,” that is,
to a new prototypical object. From Listing 5.4, this could be done as follows:

function Family() { }; // Some constructor.
Family.prototype = new Parents; // New base "class".

AppDevMozilla-05 Page 161 Thursday, December 4, 2003 6:29 PM

162 Scripting Chap. 5

The prototype property can also be set from within the constructor, pro-
viding that enough variations on shared, unshared, and cloned parts of the
chain allow many tricks. Even multiple inheritances can be implemented, but
they are applied rather awkwardly. Before attempting to work with multiple
inheritance, read carefully section 4.2.1 of the standard. For most purposes,
this complexity should be avoided. One base class as shown here is usually
enough. Give it methods but no other properties.

Mozilla applications occasionally use the prototyping system to create
custom objects. This is mostly done when more than one object of a given type
is required. It is verbose to create explicitly several objects using object liter-
als, so an object constructor is created once and used for each object needed
instead.

5.4 LANGUAGE ENHANCEMENTS

Mozilla’s JavaScript language has a few features beyond ECMA-262 Edition 3.

5.4.1 Mozilla SpiderMonkey Enhancements

Mozilla’s interpreter, SpiderMonkey, is relaxed about what constitutes a valid
statement:

x++ % y++;

This is standards-compliant behavior but other JavaScript implementa-
tions do not support it.

Perhaps the most useful standards extension is a feature that allows
JavaScript get and set methods to be attached to an object property. In other
words, when the property is read or written to, a whole function runs as a side-
effect. The function must implement the normal action that occurs when a
property is read or written as well. Listing 5.6 illustrates these extensions at
work.

Listing 5.6 Creating an active property on a JavaScript object.
var obj = {
 get foo () { effect1(); return this._real_foo; },
 set foo (val) { effect2(); return this._real_foo = val;},
 _real_foo: "bar"
 }

var x = obj.foo; // effect1() runs, and x = "bar"
obj.foo = "zip"; // effect2() runs, and _real_foo = "zip"

In this example, the _real_foo property stores the true state of the foo
property, which really only exists as an interface. In ECMAScript standards

AppDevMozilla-05 Page 162 Thursday, December 4, 2003 6:29 PM

5.4 Language Enhancements 163

terminology, these special functions allow you to implement the [[Get]] and
[[Put]] operations on a property with functions of your own design.

Mozilla also provides some management functions that can be used on
the same getters and setters. These functions are

_defineGetter__("property-name", function-object);
_defineSetter__("property-name", function-object);
_lookupGetter__("property-name");
_lookupSetter__("property-name");

The first two functions have the same effect as the syntax noted in the
previous example. The second two functions return the function installed as
either the getter or setter.

Mozilla also supports a __parent__ property that reflects the
[[Scope]] internal property of function objects. Mozilla’s JavaScript also
provides this property on all native and host objects.

Finally, Mozilla supplies a __proto__ property that can be used to set
explicitly or read the internal [[Prototype]] property described in the stan-
dard.

5.4.2 ECMA-262 Edition 4 Enhancements

Edition 4 of ECMAScript, currently in draft, is an overhaul of the language
with numerous goals. In general, it is an attempt to broaden the language to
include full object-oriented support, packages, better interfaces to other lan-
guages, and numerous other small enhancements. It replaces the prototype
system with classes and has a strict mode that requires all code to match Edi-
tion 4. It also has a nonstrict mode for backward compatibility.

Few of the proposed features of Edition 4 are present in SpiderMonkey
1.5, but the standard is close to being finished. A starting point for Edition 4
issues is http://www.mozilla.org/js/language/.

A simple Edition 4 extension is support for constants:

const varname = 5;

Mozilla has a javascript.options.strict preference, which can be set to
true. This also appears in the Debug part of the preferences dialog box if a
nightly build of the platform is used. This option is not the same as edition 4
strict mode; it is just additional checks against normal edition 3 code. For
developers, it is a recommended preference.

SpiderMonkey 2.0 is planned to be equivalent to Edition 4 of the stan-
dard.

5.4.3 Security Enhancements

The Mozilla Platform runs interpreted scripts on the user’s computer, which is
a potential security problem. Features in the platform address security prob-

AppDevMozilla-05 Page 163 Thursday, December 4, 2003 6:29 PM

164 Scripting Chap. 5

lems in a variety of ways, and a couple of these apply to JavaScript. For a more
general discussion on security, see Chapter 16, XPCOM Objects.

A script will generate an error if processing exceeds a very large (4194304)
number of backflow instructions. Roughly, one backflow instruction is any
script processing that is a function return, a new loop iteration, or an aborted
scope due to an exception. Such processing is seen as a denial-of-service attack
that prevents user input from being processed. In a browser, such an error
results in a popup warning to the user, who can then stop the script.

It is still possible to do lengthy, CPU-intensive processing in a script—
just divide the work into chunks, and submit each chunk via the setTime-
out() or setInterval() methods. This creates a scheduling opportunity
between chunks that allows user input to be received and in turn prevents
popup warnings.

Mozilla’s general strategy on security is the “same origin” principle. A
script loaded from one Web site (domain and path) may not interact with a
document or resource from another Web site (less qualified path). This keeps
Mozilla windows separate from each other. Attempts to set variables in win-
dows where access is disallowed by security results in an exception (an error).

Scripts stored inside the chrome are released from security restrictions.
The largest restriction is that the Components property of the Window or
ChromeWindow object is fully accessible. This property is the entry point to all
of Mozilla’s XPCOM components. None of these components are directly acces-
sible from outside the chrome. Some of these objects underlie other functional-
ity that is independently made accessible. An example is the object that
implements the Form object that is made available in HTML documents.

JavaScript scripts may be signed using digital certificate technology. In
that case, the script may be granted capabilities equal to those of chrome
scripts.

5.5 MOZILLA’S SCRIPTABLE INTERFACES

Like a hand in a glove, a JavaScript interpreter and the host software in
which it is embedded go together. This topic describes the host software’s con-
tribution to that partnership.

As for C, the JavaScript language has no input or output operations. All
input and output must be done via host objects. At least a trivial piece of host
software is required to provide those host objects.

If basic input/output (I/O) features are provided, then a script can draw
in other scripts from elsewhere. In theory, such scripts can be used to create
very large programs. This is similar to Perl’s module environment, but it is not
common practice in JavaScript. In JavaScript, the expectation is that most of
a program’s functionality will be implemented by host objects. Because of this
expectation, learning the language syntax and semantics is trivial compared
to learning typically extensive object libraries.

AppDevMozilla-05 Page 164 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 165

Host objects are a JavaScript concept. Although such things appear as
objects inside a script, the host software services behind those objects needn’t
be objects in turn. In Mozilla’s case, scriptable functionality provided by the
platform consists of sets of interfaces. Many of these interfaces are indistin-
guishable from objects, and many of these interfaces are implemented as C++
objects. They may also be implemented in pure JavaScript. Such things are
called interfaces just to make the point that they formally and precisely
expose features of the platform. The concept of interface in Mozilla follows
Java’s and Microsoft COM’s concepts of interface—a selection of features that
an object might provide, a selection that is not necessarily all of the object’s
functionality.

5.5.1 Interface Origins

All host objects are the same from a script’s point of view, but host objects
come from different places. Technologies that contribute host objects include:

☞ World Wide Web Consortium standards. The W3C DOM standards
describe extensive programming interfaces to XML documents. These
interfaces give scripts almost total control over document content.

☞ Application and Browser Object Models (AOM and BOM). In addi-
tion to DOM objects, the Mozilla Platform provides further objects that
are available when an HTML or XUL document is displayed in a window.
Some of these objects are supported by other Web browsers; some are not.

☞ XPConnect and XPCOM. This system is unique to the Mozilla Plat-
form and provides access to all the components that make up that plat-
form. Those components do much of the processing that goes on inside an
application. Components also represent a library or toolbox of tools use-
ful for standard programming problems, like access to sockets.

☞ XBL bindings. The XBL markup language, described in Chapter 15,
XBL Bindings, combines an XML document, JavaScript, and a style rule
to add scriptable interfaces to an XML document. Although these inter-
faces are specified in files outside the Mozilla Platform, logic in the plat-
form is responsible for parsing them and tying them to scriptable objects.

These interfaces are all combined in the Mozilla environment. In particu-
lar, they can all be used inside a single window, which represents the root glo-
bal variable of JavaScript’s object system. Together they make for a rich
programming environment.

Mozilla also has smaller scale JavaScript support. Some aspects of the
platform, such as the preference system and the install system, have their
own, independent JavaScript environments. These environments include a
very small number of host objects dedicated to a specific purpose. The inter-
preted scripts that use them are cut off from the rest of the platform and its
services. This chapter calls these environments island interfaces.

AppDevMozilla-05 Page 165 Thursday, December 4, 2003 6:29 PM

166 Scripting Chap. 5

5.5.2 W3C DOM Standards

The Document Object Model standards are numbered starting from 0 (zero)
and are designed to be independent of any particular piece of software. Mozilla
supports all of DOM 0, all of DOM 1, most of DOM 2, a little of DOM 3, and
numerous nonstandard extensions. Non-Mozilla Web browsers, like Internet
Explorer 6 and Opera, support at least DOM 0 and DOM 1. There are many
programming libraries that can be used to add DOM 1 support to an applica-
tion that must process XML content.

Where Mozilla implements a DOM feature, that feature is exactly the
same in Mozilla as in the standard. It is very straightforward.

The downloadable PDF (Portable Document Format) versions of these
standards are good enough that they can be used as electronic help while pro-
gramming. All versions from 1 onward are available at www.w3.org. To save
not-yet-final drafts, which are typically available only in XHTML, use a recent
version of Mozilla and save the file as “Web page, complete.” Displaying such
XHTML files saved locally might be slow if you are offline. If that happens,
choose File | Work Offline for an immediate solution.

The appendices in these standards include a JavaScript binding for each
interface, but those bindings are quite wordy. The IDL syntax used throughout
those documents is close in syntax to JavaScript. It can be read and trivially
translated into JavaScript scripts. That is the recommended way to go.

If you can understand the IDL syntax in these standards documents,
then you are perfectly placed to understand the XPIDL files that describe
Mozilla’s XPCOM components. We will discuss those components in more
detail shortly.

5.5.2.1 DOM 0 Mozilla supports DOM 0 in HTML documents only. Many
objects available in XUL are inspired by equivalent DOM 0 objects, so DOM 0
should be used as a guide that says what to expect in XUL.

DOM version 0 has no W3C standard and represents early JavaScript
support for HTML only. The contents of DOM 0 are roughly equivalent to the
scriptable features of version 3 Web browsers. The best documentation on
those features is available on Netscape’s DevEdge Web site—http://
devedge.netscape.com—where historical documents are still retained.
Look for guides to early versions of Navigator under “archived information.”

DOM 0 applies to HTML, not XML or XUL. As noted earlier, it provides a
standard set of precreated objects that are made available to the scripter when
an HTML document is loaded. The most famous example is the Image object
that has been used extensively to implement the DHTML image rollover tech-
nique. See any book on intermediate Web page design.

DOM 0 objects often exactly match one HTML tag; for example, the
<input> tag has an InputElement or FormElement object. In XUL, use the
HTML tag nearest the XUL tag as a guide to the DOM 0 object for that XUL
tag.

AppDevMozilla-05 Page 166 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 167

5.5.2.2 DOM 1 Mozilla supports DOM 1 completely.
Of the many features that the DOM 1 standard provides, the interfaces

named Node, NodeList, Element, and Document provide 90% of the needs of
scripts. The important properties and methods of these interfaces are listed in
Table 5.3.

Table 5.3 Most useful features in the DOM 1 standards

Property or method DOM interface Use

parentNode Node The parent tag of the cur-
rent tag

childNodes Node All the child tags of the
current tag, as a
NodeList

firstChild Node First child tag of the cur-
rent tag

nextSibling Node Next child tag of the cur-
rent tag’s parent tag

Node insertBefore(aNode, existingNode) Node Add a tag or text before
the stated child tag or
text

Node removeChild(existingNode) Node Remove a tag or text
from the immediate chil-
dren of this tag

Node appendChild(aNode) Node Add a tag or text to the
end of the children of this
tag

String getAttribute(attString) Element Return the value of an
existing attribute on this
tag, or ““

void setAttribute(attString, value) Element Set attribute=“value”
text for this tag

void removeAttribute(attString) Element Remove the given
attribute, if any, from
this tag

Boolean hasAttribute(attString) Element Report existence of the
stated attribute

Element createElement(tagString) Document Create a tag; the tag
exists separate from the
current document

Node createTextNode(value) Document Create text; the text
exists separate from the
current document

AppDevMozilla-05 Page 167 Thursday, December 4, 2003 6:29 PM

168 Scripting Chap. 5

Because Element and Document interfaces are also Nodes, all the prop-
erties and methods noted against Node apply to those other interfaces.

The DOM1 standard ignores the history of DOM 0 and starts out afresh.
It consists of two parts.

The first part is very general and applies to all XML documents, includ-
ing MathML, SVG, and XUL. It also applies to XHTML and HTML. It breaks
a text document up into a treelike structure, much as you might see in the
“auto-indented tag view” of an HTML editor. Mozilla will display such a struc-
ture if you load an XML document whose XML application type it doesn’t
understand. This structure is a containment hierarchy.

Everything in DOM 1 part 1 is a Node object. Documents, tags, tag
attributes, and tag contents are all objects that are subtypes of Node. The doc-
ument tree is a tree of Nodes, with the top node being the Document object.
The DOM 1 part 1 tree knows nothing about specific tags (such as XUL tags).
So there is no <button> object. There is only a generic Element object, used
for all tags. Processing is the same for XML, HTML, or XUL.

There are two ways to navigate such a tree. The first way uses a query
system. You can use the DOM 1 equivalent of Microsoft’s document.all(), or
a Mozilla enhancement:

document.getElementsByTagName("button"); // all XML
document.getElementsByAttribute("class", "*"); // only XUL

The "*" parameter indicates that all values for the attribute are
allowed. The other navigation technique is to step through the tree explicitly,
using data structures and algorithms. For example, this code reaches down
two levels into a document:

document.firstChild().firstChild().getAttribute("type");

DOM 1 part 1 also provides a complete set of features for inserting,
updating, and deleting XML content, but this must be done by constructing
objects, not by submitting fragments of XML content. Constructing objects can

Element getElementById(idString) Document Get the tag with the spec-
ified id

NodeList getElementsByTagName(tagString) Element,
Document

Get all the tags with the
specified tag name

Node item(i) NodeList Get the ith node in the
list

length NodeList Return the number of
nodes in the list

Table 5.3 Most useful features in the DOM 1 standards (Continued)

Property or method DOM interface Use

AppDevMozilla-05 Page 168 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 169

be a lengthy and unwieldy process if the content changes are significant.
Mozilla has a single enhancement to make these jobs easier: the innerHTML
property. This improvement is inspired by Internet Explorer and allows XML
content to be added directly to a tag’s content. Despite the name, this works
for XML and XUL as well as HTML:

tag_object.innerHTML = '<box><button value="On"/></box>';
old_content = tag_object.innerHTML;

Mozilla does not support the Internet Explorer extensions innerText, out-
erHTML, or outerText.

The second part of DOM 1 is intended to be HTML-specific. DOM 1 part 2
provides handy methods and attributes for a HTML document. If a tag is an
HTML tag, then the matching node in the DOM tree will have properties
matching the HTML attributes of that tag. So a <FORM> tag is a node in the
tree with action, enctype, and target properties, among others.

DOM 1 part 2 provides two more ways to access tag collections:

document.getElementsByName('myform1');
document.getElementById('testid');

getElementById() is also supported for XUL and is used everywhere.
getElementsByName() is not recommended, not even for HTML, because
the name aspect of HTML is being dropped from the standards.

To summarize, DOM 1 breaks down a whole XML or HTML document
into a big data structure that’s fully modifiable. If the document is an HTML
document, then attributes are reflected as object properties for known tags. In
either case, collections of similar tags can be extracted from the data structure
simply. You can call DOM 1 the “canonical” (authoritatively accepted) inter-
face.

5.5.2.3 DOM 2 Mozilla almost fully supports DOM 2.
The DOM 2 standard fills in a number of gaps in the DOM 1 standard. It

is a superset of DOM 1. DOM 1 is written in one document, but DOM 2 is writ-
ten in six documents. They are:

1. DOM 2 Core
2. DOM 2 HTML
3. DOM 2 Events
4. DOM 2 Style
5. DOM 2 Traversal and Range
6. DOM 2 Views

The DOM 2 Core and HTML documents are the same as the DOM 1 docu-
ment. Some small fixes are present, but recent editions of the DOM 1 standard
also have these fixes. A minor enhancement remains. The DOM 2 Core/HTML
standards call everything in DOM 1 the “fundamental interface.” The “extended

AppDevMozilla-05 Page 169 Thursday, December 4, 2003 6:29 PM

170 Scripting Chap. 5

interface” in DOM 2 provides several nice-to-have features that are allowed
only in XML, not HTML. These features are interfaces that give access to

☞ Entity references like &
☞ Processing instructions implemented by languages such as XSLT
☞ The <!ENTITY> declarations in the document’s defining DTD

The DOM 2 Events standard also provides the well-known Web browser
events. In addition to the mouse events ('click') and HTML-specific events
('submit'), there are general XML events ('DOMFocusIn'). There are also
events that fire when the document tree is changed or “mutated.” No key press
events ('keydown') are documented in DOM 2 Events. The DOM 2 Events
standard also says how events travel around the document tree. Events are
discussed in detail in Chapter 6, Events.

The DOM 2 Style standard compliments the CSS2 standard, giving Java-
Script access to styles. In DOM 1, the only thing you can do is update the style
attribute of a tag (an inline style). The DOM 2 standard lets you work with style
rules as though they are objects, not just text content. It also lets you examine
and change the fully cascaded style of any given tag. The following code

document.getElementById("greeting").style.color ="red";

changes a piece of text to red, regardless of what mix of external or inline
styles exist. This interface, however, is not supported in XUL. It is supported
in HTML only.

The DOM 2 Traversal and Range standard caters to user cut ‘n’ paste
actions. This feature requires careful examination of the DOM tree to see what
tags the user has selected. For this examination, better ways of stepping
through the tree are needed. That is the Traversal part, where new objects
called Iterators and TreeWalkers are specified. The Range part creates a
collection of tag objects matching the tags selected with the mouse. In Mozilla,
cut ‘n’ paste, where it exists, is done using this standard. The Range standard
also does a little sophisticated processing of tags. It can chop tags in two,
insert content between tags, and perform a few other conveniences. The ability
to insert content more easily into an XML document while being guaranteed
that the document will remain well formed is a powerful feature.

The DOM 2 Traversal and Range standard is mostly intended for build-
ing new software. This is even more true for the DOM 2 Views standard. Its
purpose is to provide interfaces that let the DOM tree display in several win-
dows at once. The most obvious use of this is in a Web page editor like Home-
Site, where there is a user view, a source code view, and a document structure
view, all visible at once. Updating the underlying model via one view updates
the others. DOM 2 Views explains the interfaces needed so that you can build
such an editor.

Of the six DOM 2 documents, two are from DOM 1, two are very useful
(events and styles), and two are more obscure. You might call the DOM 2 stan-

AppDevMozilla-05 Page 170 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 171

dards the “user interaction” standards in the sense that they provide features
that accommodate user input and page display.

5.5.2.4 DOM 3 Mozilla supports only a little of the DOM 3 standards.
The DOM 3 standards are very new, but they are near completion as this

book goes to print. Much of the standardized functionality is not available in
browsers yet. There are five parts to DOM 3:

1. DOM 3 Core
2. DOM 3 Events
3. DOM 3 Load and Save
4. DOM 3 Validation
5. DOM 3 XPath

DOM 3 Core makes minor changes to the DOM 2 Core. Two things are
significant. This DOM 3 example

document.getInterface("SVG");

allows other standards implemented in the browser to be revealed to script
use. This is equivalent to use in Perl. If SVG support in the browser provides
an SVG interface to JavaScript, and it’s not visible to you by default, this is
the way to make it visible.

The second significant change is this example:

document.setNormalizationFeature("format-pretty-print");

which gives you additional control over an XML processor. The processor
engine makes many decisions when loading a XUL or an HTML file, like how
whitespace is handled and when errors are reported. As soon as DOM 3 Core
is implemented, you will be able to control these decisions.

DOM 3 Events supplies the keypress events (now called text events)
missing from DOM 2 Events. Most of the PC keys like Alt, Caps Lock, and F12
are specified. Multiple event handler listeners are also new. This feature
allows two event handlers on the same tag to fire when just one event occurs.
This is the only part of DOM 3 that Mozilla comes close to supporting.

The DOM 3 Abstract Schemas and Load and Save standard, which bears
quite a lengthy name, is another two-part standard. The Abstract Schemas
part provides full read-write access to the DTD of an XML document. This is
more likely to be useful in an XML database than in a browser. The Load and
Save part describes how to go from XML text to a DOM tree and back again. It
is a serialization or encoding standard. This is the standards-based solution to
the problem that the innerHTML property solves.

DOM 3 Validation adds a constraint system to document manipulation
operations. Using the other DOM standards, it is possible to change a docu-
ment so that it no longer conforms to its document type. For example, it is pos-
sible using the DOM 1 interfaces to add a <circle> tag to the content of an

AppDevMozilla-05 Page 171 Thursday, December 4, 2003 6:29 PM

172 Scripting Chap. 5

HTML document, even though <circle> is not an HTML tag. The DOM 3
Validation standard checks the type definition of a document (either a DTD or
an XSchema definition) every time one of the other DOM interfaces is used to
modify the document. If the modification would break the rules implicit in the
document type, the change is not allowed. It acts as a type of police officer.

Finally, DOM 3 XPath brings yet another method of stepping through the
DOM tree to JavaScript, based on the W3C XPath standard. DOM 3 XPath
exposes the XPath system to JavaScript.

You might call the DOM 3 standards the “heavy engineering” DOM stan-
dards. It will probably be a long time before the DOM 3 standards are ever
used for publicly accessible XML pages. On the other hand, they are of vital
interest to application developers working on high-end tools like WYSIWYG
(What You See Is What You Get) document processors. Perhaps one day
Mozilla will have full support.

It is unlikely that a DOM 4 set of standards will appear any time soon,
if ever.

5.5.2.5 DOM Compatibility Ticks The DOM standards supply a DOMImple-
mentation interface, which contains a hasFeature() method. This method
can be called from JavaScript to reveal the standards that Mozilla claims to
support. A suitable line of script is

f = document.implementation.hasFeature("XML","1.0");

Some past debate on hasFeature is recorded in Mozilla’s bug database.
Table 5.4 shows the results for Mozilla 1.0 and 1.4. “FALSE” is capitalized in
the table only for ease of reading.

The results are the same for both XUL and HTML scripts, which makes
reporting of the “HTML” feature incorrect when in an XUL document. XUL
also has support for its own so-called KeyEvents, but that is not yet reported
by hasFeature().

A result of false for a particular feature is not a disaster. If a standard is
completely implemented except for a single item, then false is the correct
value to report. Finished parts of the implementation may still be used if they
are known to exist. Knowing that they exist is a matter of reading and research.

If a feature has DOM support, the relevant DOM interfaces are available
to script. Interfaces are used by programming languages. There are, however,
other ways to interact with the services of a browser. Stylesheets and XML are
two examples. A feature may have stylesheet support but not DOM support, or
vice versa. hasFeature reports only on DOM support.

Some browser features may eventually make their way into the DOM stan-
dards. The Mozilla 1.0 features most likely to receive standards attention are
drag-and-drop support, keystroke events, scrolling events, and key shortcuts.

Separate from HTML DOM 0 support is XUL DOM 0 support. XUL DOM
0 has no standard or central design document yet. It is undocumented except
for remarks about specific tags in this book.

AppDevMozilla-05 Page 172 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 173

Mozilla specifies object interfaces using its own XPIDL language. The
XPIDL files that programmers need when working with XPCOM objects are
also used for DOM objects. Because XPIDL and IDL syntax are so similar, it is
trivial to translate from one to the other. Mozilla’s XPIDL definitions, however,
located in the source directory dom/public/idl, are the official word on
DOM and DOM-like interface support. They include restatements of both the
DOM IDL definitions and the available XUL DOM-like interfaces. They also
state Mozilla-specific enhancements to those standards. Beware that some
implemented event handlers do not appear in these files.

5.5.3 Mozilla AOMs and BOMs

DOM objects are about XML documents. Some of these objects are made avail-
able when an XML document loads because they’re handy to have. The Docu-
ment object, and the document variable that points to it, is an obvious
example.

Table 5.4 DOM standards support for Mozilla 1.0 and 1.4

Feature string Version string hasFeature reports

HTML 1.0 true

XML 1.0 true

Core 2.0 true

HTML 2.0 true

XML 2.0 true

Views 2.0 true

StyleSheets 2.0 true

CSS 2.0 true

CSS2 2.0 true

Events 2.0 true

UIEvents 2.0 FALSE

MouseEvents 2.0 true

MouseScrollEvents Not a W3C feature true

MutationEvents 2.0 FALSE

HTMLEvents 2.0 true

Range 2.0 true

Traversal 2.0 FALSE

Xpath 3.0 true

All other DOM 3 features 3.0 FALSE

AppDevMozilla-05 Page 173 Thursday, December 4, 2003 6:29 PM

174 Scripting Chap. 5

There are other objects you might want to script that have nothing to do
with documents. The window the document resides in is an obvious example.
You might want to change the text of its titlebar, make a modal dialog box
appear, or change the document that the window displays.

These nondocument objects are part of the Browser Object Model that
exists in most Web browsers. This object model is small when compared with
the DOM. It consists of a few objects only in a small hierarchy. The top of the
hierarchy is a so-called Window object that represents the desktop window
that the document is displayed in. The window variable refers to this object.
The small BOM hierarchy is very familiar to Web developers and contains
objects such as

navigator screen history location frames

This book doesn’t dwell on these objects much (any Web-oriented JavaS-
cript book covers them extensively). There is some further discussion on the
window object in Chapter 10, Windows and Panes.

The Mozilla Platform is not just a Web browser but also a basis for appli-
cations. When XUL documents are being displayed, it makes more sense to
talk about an Application Object Model rather than a BOM. XUL windows
also start with a window variable that is the top-most object in the application
hierarchy, but the matching object type is a chrome window, not a window. Fig-
ure 5.1 shows the AOM hierarchy for a chrome window.

Each word in Figure 5.1 is an object property that holds an object,
although occasionally one may hold null or an empty string instead. The hier-
archy that starts at window is always present. The hierarchy that starts with
Element exists for every DOM 1 Element object. Dark lines exist for both XUL
and HTML; lighter lines exist only for XUL. A dashed line means that the
object is available only when security barriers are lifted. Where these terms
match names in the Web browser BOM, the meanings are the same. The other
terms are discussed throughout this book.

A brief summary of the XUL-specific AOM objects goes like this: argu-
ments is passed in when a window is open; content points to the document
held in a <browser> tag in the XUL page; controllers is a set of command
controllers, either for the window or for one tag; commandDispatcher is also
part of the command system; focus controls the focus ring; boxObject con-
tains all the details of a single tag’s frame, for both ordinary XUL tags and
special XUL tags like <scrollbox>; builder exposes a tree builder for the
<tree> tag; and database and datasource are part of the XUL template
system.

In addition to these objects, Chapter 10, Windows and Panes, explores
some of the less obviously exposed objects. Many of these objects are associ-
ated with the overall mechanics of displaying a XUL or HTML document.

The XUL window object is very similar to the HTML window object. It
has a history property, for example. This arrangement is quite misleading
because it implies that these properties do something. They don’t do anything.

AppDevMozilla-05 Page 174 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 175

They exist because the many scripts and XUL documents that together make
up a browser application expect them to be in place. Under normal conditions
(a Classic Browser), these properties rely on extra scripting support to func-
tion. That scripting support isn’t present in a plain XUL window, unless your
XUL is designed to reimplement the features of a browser. Ignore these
HTML-like properties.

As for HTML, all the implemented DOM interfaces are directly available
to XUL. The properties and methods of the window.document object are the
entry points to those interfaces.

Both HTML and XUL windows contain one special property: the Compo-
nents property. That property is the starting point for the majority of
Mozilla’s unique interfaces. These interfaces are discussed next.

5.5.4 XPCOM and XPConnect

The DOM standards provide interfaces that make content accessible to
scripts. By comparison, XPConnect and XPCOM provide interfaces that make
the building blocks of the Mozilla Platform itself accessible to scripts.

window arguments

Components classes
interfaces
manager
results

content document

controllers

document commandDispatcher

focus

implementation

location

navigator

screen

boxObject

builder

controllers

database

datasource

Element

XUL and HTML

XUL

Security barriers lifted

Fig. 5.1 Mozilla’s XUL Application Object Model.

AppDevMozilla-05 Page 175 Thursday, December 4, 2003 6:29 PM

176 Scripting Chap. 5

XPCOM is entirely internal to the Mozilla Platform. XPConnect is the
glue that turns XPCOM-compliant objects and their interfaces into JavaScript
host objects. Chapter 16, XPCOM Objects, describes application-oriented use
of this system extensively. This chapter just gives an overview of these two
technologies.

From the application programmer’s perspective, the XPCOM system
appears mainly as the window.Components object (see Figure 5.1). The
classes and interfaces properties of this object are lists of all the avail-
able XPCOM Contract IDs and interface names. The manager property is the
XPCOM component manager. The results property is a list of all the possible
exceptions that might be thrown and result values that might be returned.
Results are 32-bit numbers.

These lists could in theory change dynamically, but that is not done in
the standard platform. The standard platform registers all the known compo-
nents at startup time, and a large part of that registration overhead is per-
formed only once the first time the platform starts. The set of components
registered can be recalculated by running the tool regxpcom (regxpcom.exe
on Microsoft Windows). That tool is provided with any standard platform
installation bundle. Using regxpcom is necessary only when new components
(i.e., whole modules, not merely objects; see Chapter 16, XPCOM Objects) are
created or installed.

From the application programmer’s perspective, the XPConnect system
is all but invisible, making the interfaces of C/C++-based components avail-
able to JavaScript. In order to do this, the XPConnect system relies on a set of
type libraries (with .xpt extensions) that are stored in the components
directory under the platform installation area. XPConnect also provides script
access to browser plugins, to the DOM interfaces, and to Java and Java
applets. Although these things may seem unrelated to XPCOM, in the end
they are all XPCOM components.

All XPCOM components that provide more than one XPCOM interface
should implement the nsISupports interface. This interface provides the
QueryInterface() method, which can be used to find other interfaces sup-
ported by an object.

5.5.4.1 Finding XPCOM Components The Mozilla Platform is large, and
many parts of it have been separated into building blocks: Each is an XPCOM
component that has some identity of its own. Not all of Mozilla is so separated;
there are still bits that sit anonymously inside the platform.

There are at least a thousand XPCOM components, each with one or
more interfaces. That is an overwhelming number and is equivalent to a huge
class library. This large number presents problems for the newcomer. At first
glance, Mozilla functionality seems like a fragmented mess. It is not. There is
simply too much to learn in one sitting, and structure is not obvious. Finding
documentation on all the components of Mozilla is also problematic. At two

AppDevMozilla-05 Page 176 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 177

pages per component, that’s two thousand pages. Such huge books might exist
one day, but they don’t as this goes to print.

To find a suitable component, you need to look. The thing you ultimately
want is an object that is used for a specific task. Not all objects need to be
accessed directly via their XPCOM interfaces. Many objects exist in other
forms. Before diving into XPCOM, ask yourself: Could the needed object
appear in any of these other forms?

☞ As a standard JavaScript object (e.g., Date or Math). If so, look at the
ECMAScript standard.

☞ As a piece of the DOM. If the object relates to any kind of XML document
fragment, it will be covered in the W3C DOM standards.

☞ As a part of the BOM. A Web-based JavaScript book will tell you if the
object is a standard feature of HTML scripts. The AOM in this chapter
advises of standard XUL scriptable objects.

☞ As an XBL binding. Nearly all objects that have a matching XUL tag also
have an XBL binding. The binding definition can be read from the file
toolkit.jar in the chrome.

☞ As a floating object service. Some objects are separate from the DOM but
still available for immediate use (e.g., Image and Option [HTML];
XMLHttpRequest and SOAPService [HTML and XUL]).

If there is no choice but to look for an XPCOM object, then here is how to
proceed. An object is manufactured from an XPCOM interface and an XPCOM
component that implements that interface. So you must locate these two
things. Interfaces have names; components have Contract IDs (which are also
names). To find these things, any of the following strategies will do:

☞ Look in the index of this book under a keyword that matches your prob-
lem area. Many component-interface pairs are recommended throughout
this book.

☞ Download the summary reports from this book’s Web site (at
www.nigelmcfarlane.com), and look through those.

☞ Download the XPIDL bundles from this book’s Web site (at
www.nigelmcfarlane.com) or from the mozilla.org source, and look
though those.

☞ Explore the chrome-based applications that come bundled with Classic
Mozilla. That code contains many tested and proved examples.

☞ Search the mozilla.org organization’s resources, like Web sites, news-
groups, and IRC. Well-stated questions posed in those fora often attract
quality responses.

Of all these strategies, reading this book and acquiring a copy of the XPIDL
files and other reports is the most immediate solution.

AppDevMozilla-05 Page 177 Thursday, December 4, 2003 6:29 PM

178 Scripting Chap. 5

In the end, most, but not all, useful interfaces start with this prefix:

nsI

and all components’ Contract IDs start with this prefix:

@mozilla.org/

As soon as you have a component-interface pair, the object can be created
as follows.

5.5.4.2 Using XPCOM Components Here is a simple example of using a
component. The Perl language has the 'require' keyword, which allows one
Perl script to load in the contents of another script. JavaScript has no such
equivalent, but Mozilla has a component to do the job. Listing 5.7 illustrates.

Listing 5.7 Inclusion of JavaScript scripts using a Mozilla XPCOM component.
var comp_name = "@mozilla.org/moz/jssubscript-loader;1";
var comp_obj = Components.classes[comp_name];

var if_obj = Components.interfaces.mozIJSSubScriptLoader;

var final_obj = comp_obj.createInstance(if_obj);

final_obj.loadSubScript("file:///tmp/extras.js");

This script is equivalent to running eval() on the contents of the file
/tmp/extras.js.

The two pieces of information needed to create an object are the compo-
nent name (comp_name, a string) and the interface to use (if_obj, a property
name). After the object is retrieved (final_obj), its methods can be put to
use. In this case, the loadSubScript() method imports the contents of the
file extras.js as though it were a string processed by eval().

Typical of a Mozilla component, a line of documentation in the XPIDL
definition for mozIJSSubScriptLoader states that the loaded JavaScript
must be located on the local computer. Brief and sparse documentation is
usual for Mozilla components.

5.5.4.3 Object Creation Alternatives In Lis t ing 5 .7 , the createIn-
stance() method was used to create the object. That is one of two main alter-
natives. The other main alternative is to use getService() . The
getService() method is used when a given XPCOM component is designed
to provide a single instance of an object only (the object is a singleton). Such
objects may contain static or global information that cannot be coordinated
across multiple object instances. In Listing 5.7, the equivalent line of code that
uses getService() would be

var final_obj = comp_obj.getService(if_obj);

AppDevMozilla-05 Page 178 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 179

How do you tell which of createInstance() or getService() is
required? If the Contract ID or the interface name contains the word service
(any capitalization), then use getService(); otherwise, use createIn-
stance().

The createInstance() and getService() methods also have a zero
argument form. If no argument is supplied, then the object created or
returned has the nsISupports interface. That interface can then be used to
acquire whatever other interface might be needed. We can modify Listing 5.6
to create an example of this use for createInstance():

var anon_obj = comp_obj.createInstance();
var final_obj = anon_obj.QueryInterface(if_obj);

If several objects of the same kind are to be created, then it is possible
first to create a constructor, and then to use that constructor object to create
the individual objects. This code replaces the first four lines of Listing 5.7:

var Includer = Components.Constructor(
 "@mozilla.org/moz/jssubscript-loader;1",
 "mozIJSSubScriptLoader",
 null
);
var final_obj = new Includer();
// var another_obj = new Includer()

Note that in this case the interface name is spelled out as a string. The
third argument of the Constructor() method is an optional string. If stated,
it is the name of a method to call as the initialization method when an object
instance is created. Any arguments passed as arguments to the Includer
object constructor will be passed to this initialization method.

Finally, it is possible to create objects with XPCOM interfaces directly in
JavaScript. This can be done only for simple interfaces that have no special
processing of their own. Continuing the variations on Listing 5.6, we can cre-
ate an object using the code of Listing 5.8.

Listing 5.8 Creation of a JavaScript object with XPCOM interfaces.
var final_obj = {

 // interface nsISupports
 QueryInterface : function(iid) {
 var Ci = Components.interfaces;
 if (!iid.equals(Ci.nsISupports) &&
 !iid.equals(Ci.mozIJsSubSCriptLoader)
 throw Components.results.NS_ERROR_NO_INTERFACE;
 return this;
 },

 // interface mozIJSSubScriptLoader
 loadSubScript : function (url) {

AppDevMozilla-05 Page 179 Thursday, December 4, 2003 6:29 PM

180 Scripting Chap. 5

 // code to load a script goes here
 return;
 }
};

This object supports both the nsISupports and the mozIJsSub-
ScriptLoader interfaces. If it were certain that no calls to QueryInter-
face() would ever be made on this object, then the nsISupports part of the
object could be left off. Of course, this object has a major problem: How can it
properly implement the second interface? It would need to contain a long piece
of code that opens a file system file, reads the contents, and then calls eval()
on that content. For that effort, you might as well use the existing implemen-
tation of the object. This by-hand construction of objects is sometimes highly
useful. The most frequent use is in the creation of call-back objects used for
observers and listeners—see Chapter 6, Events.

The createInstance() method is itself implemented by the nsICom-
ponentManager interface; getService() is implemented by the nsISer-
viceManager interface.

5.5.4.4 Plugins and DOM Browser plugins have been scriptable since ver-
sion 3.0 Web browsers. At that time, Netscape enhanced the version 1.1
NPAPI plugin standard to be scriptable, and hundreds of plugins were created
to work with it. Mozilla still supports this standard, but very recent versions
of both the platform and the plugins (especially Macromedia’s Flash) are
required if everything is to work without hiccups.

A series of scriptable XPIDL interfaces exists for plugins. Using these,
individual plugins can be driven directly from JavaScript. The easiest way to
handle plugins is still to use the HTML <embed> (deprecated) or <object>
(recommended) tag and the DOM 0 plugins array. See Chapter 10, Windows
and Panes, for a discussion on combining HTML and XUL.

A series of scriptable interfaces also exists for the DOM standards, so
DOM interfaces can be retrieved using the Components object. There is little
need for this, however, because those interfaces are automatically available on
the window object, and on the DOM objects that are made and retrieved by the
window object.

5.5.4.5 Java Web browsers have supported scripting Java applets since ver-
sion 3.0; Mozilla also supports scripting Java. The architecture used in the
Mozilla 1.x platform is different from that used in Netscape Communicator
4.x, but it is backwardly compatible for script writers.

In Netscape Communicator 4.x, the browser depended entirely on Java
1.1’s security model. For that browser to make any security decisions, a
request that Java examine a special class library provided by Netscape was
required. Java and JavaScript were connected, and this was done by a technol-
ogy called LiveConnect.

AppDevMozilla-05 Page 180 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 181

In Mozilla, this Java dependency is gone. Netscape manages its own
security. No Java is required, and Java is no longer tightly integrated in the
platform. There is no LiveConnect in the original sense; there is only XPCon-
nect. Integration features provided by LiveConnect still exist, but they are
buried in the code behind XPCOM. Mozilla’s visible Java support now consists
of a set of XPCOM interfaces like everything else, and Java support is consid-
ered to be similar in status to a plugin. The functionality of LiveConnect is
still visible when Java and JavaScript objects are wrapped up for access in the
language alternate to their origin.

Mozilla provides two pieces of technology that accommodate Java. The
first is OJI (Open Java Interface). This is an API like the NPAPI (plugin) API
that is supposed to work with any vendor’s Java platform. XPCOM interfaces
provide access to the OJI. The second piece of technology is a LiveConnect
emulator for backward-compatibility. It also is an XPCOM interface, defined
in the interface nsIJRILLiveConnectPlugin. This emulator handles
Mozilla’s C/C++ requests that were previously sent to Netscape 4.x’s Java
JVM.

As for plugins, the easiest way to use Java inside Mozilla is still to use an
<applet> or <object> tag inside an HTML file. Again, see Chapter 10, Win-
dows and Panes, for a discussion on combining HTML and XUL.

Some programmers come to the Web from a Java background. If you have
a sophisticated Java environment and want to integrate it with Mozilla, tread
cautiously. On the one hand, the most simple and obvious interactions
between JavaScript and Java work fine. On the other hand, JavaScript, Java,
and Mozilla are all quite complicated systems, and perfect interaction on every
point is a large goal. Sophisticated interactions still have problems, and you’re
encouraged to study the remaining Java-related bugs in Mozilla’s Bugzilla bug
database carefully.

The best way forward is this: Stick to Sun Microsystem’s Java implemen-
tation, and then use only version 1.4 or greater. A very recent version of
Mozilla is recommended to keep the outstanding issues to a minimum.

Apart from some remarks in Chapter 10, Windows and Panes, that is all
this book has to say on Java.

5.5.5 Scripting Libraries

Mozilla relies on the XPCOM system to draw in functionality from elsewhere,
but a few small libraries written entirely in JavaScript exist. These libraries
attempt to simplify particular aspects of the XPCOM system.

The most useful of these libraries are JSLib and RDFLib. RDFLib is
really just a subset of JSLib. JSLib makes working with files and folders less
painful. The RDFLib subpart makes working with RDF data sources less pain-
ful. This library creates JavaScript objects that simplify the XPCOM objects
that they are based on.

AppDevMozilla-05 Page 181 Thursday, December 4, 2003 6:29 PM

182 Scripting Chap. 5

This library can be downloaded from http://jslib.mozdev.org. Files
in this library are written in ASCII, in UNIX format.

Beware that these libraries receive only occasional updates. Examine the
headers when downloading them to see whether they have been recently
maintained.

To use the library, include the top-level jslib.js file, which provides
utility routines and constants. The most important of these routines is the
include() function, which acts the same as Perl’s require (or cpp’s
#include). Then include whatever other JSLib functionality is needed. The
library contains nearly a dozen subdirectories, but the most significant ones
are io (for file processing) and rdf (for RDF processing). Figure 5.2 shows the
dependencies between these libraries.

Scripts with outgoing arrows require the targets of those arrows to be
loaded first. Files with no dependencies are not shown. Clearly the library is
divided into two main parts, which this book calls RDFLib and JSLib. There
are two separate implementations of RDF file access: rdf/rdfFile.js and
io/RDF.js. They present different interfaces for approximately the same
task; rdf/rdfFile.js is the more extensive interface and uses subobjects.

The library uses the window.Components.Constructor() method to
create object constructors for XPCOM components (see the section entitled
“Object Creation Alternatives” for instructions describing how to do this). It
also implements JavaScript object constructors using the JavaScript prototyp-
ing system. A prototype-based constructor is used to create a new JavaScript
object. During the construction process, XPCOM object constructors are used
to set properties on the new JavaScript object. Those properties hold one

jslib.js
“RDFLib”

rdf/rdf.js

rdf/rdfBase.js

rdf/rdfResource.js

rdf/rdfContainer.js

io/file.js

rdf/rdfFile.js io/io.js

io/fileUtils.js

io/dir.js io/filesystem.js

io/dirUtils.js

“JSLib”

A requires B

A B

Fig. 5.2 JSLib and RDFlib file dependencies.

AppDevMozilla-05 Page 182 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 183

XPCOM object each. The final JavaScript object therefore contains (or uses)
one or more XPCOM objects and is a wrapper or façade for those XPCOM
objects. This is a simple and widely applicable technique.

Such new JavaScript objects contain error-checking, coordination, and
translation code that makes the XPCOM components easier to use. They rep-
resent a simplification or specialist view of the XPCOM component system,
intended for common tasks. Table 5.5 shows the objects created by this library.

In Table 5.5, a “data-source” argument is an nsIRDFDataSource object,
not an rdf: URL. The JSLib library contains several other useful objects, but
they are not as extensive or as complete as the objects in Table 5.5. The Zip
object, for example, which is defined in the zip/zip.js file, performs only
about half the work required to unzip a compressed file.

Most of the files in the JSLib have extensive documentation in the form
of preamble comments. These preamble comments show how to use the objects
supplied.

Table 5.5 Objects created by JSLIb and RDFLib

Constructor Source file Uses objects Purpose

include() method jslib.js Include other .js
files.

Dir(filePath) io/dir.js FileSystem() Manage a folder on
the local disk.

DirUtils() io/dirUtils Find install-spe-
cific directories.

File(filePath) io/file.js FileSystem() Manage a file on
the local disk.

FileSystem(filePath) io/filesystem.js Manage any file
system entry on the
local disk.

RDF(url, urn, xmlns, sync_flag) io/rdf.js Read and write a
single special for-
mat RDF container
in an existing RDF
file.

RDFFile(file_url, urn, xmnls,
sync_flag)

io/rdf.js RDF() Read and write a
single special for-
mat RDF container
in a local RDF file.

Socket() network/socket.js Set up and read/
write a Domain
socket.

AppDevMozilla-05 Page 183 Thursday, December 4, 2003 6:29 PM

184 Scripting Chap. 5

5.5.6 XBL Bindings

JavaScript can also use interfaces supplied by XBL definitions. Those defini-
tions are included in an XML file with the -moz-binding CSS2 style prop-
erty. Such a binding attaches the definition to a tag or tags. Although XBL
definitions can include content, it is also possible to create a definition that is
just a set of functionality—an interface. Being able to add an arbitrary inter-
face to an arbitrary tag is clearly a powerful feature.

If the DOM 1 standard is used to retrieve an Element object for a tag
that is bound to an XBL definition, then the resulting JavaScript object will
include the properties and methods implied by that definition. Those proper-
ties and methods can then be manipulated as for any host object. The platform
automatically manages this task.

XBL definitions therefore make some DOM objects smarter by providing
them with custom features. XBL definitions can also establish themselves as
XPCOM components, so they are also accessible through XPConnect. The only
good reason for doing this is if the XBL component needs to be accessed from
C/C++ code.

Chapter 15, XBL Bindings, discusses XBL at length.

SocketListener() network/socket.js Handles asynchro-
nous reads from a
socket.

RDF(url, sync_flag) rdf/rdf.js RDFBase() Read and write an
RDF document
fact-by-fact.

RDFBase(datasource) rdf/rdfBase.js Read and write an
RDF document
fact-by-fact, using
an existing data
source.

RDFContainer(type ownerURI,
subjectURI, datasource)

rdf/rdfContainer.js RDFResource() Manage or create
an RDF <Seq>,
<bag>, or <alt>
container using
facts.

RDFResource(type, ownerURI,
subjectURI, datasource)

rdf/rdfContainer.js RDFBase() Manage or create a
URI that is useable
as an RDF subject,
predicate, or object.

Sound(url) sound/sound.js Play a sound from a
URL.

Table 5.5 Objects created by JSLIb and RDFLib (Continued)

Constructor Source file Uses objects Purpose

AppDevMozilla-05 Page 184 Thursday, December 4, 2003 6:29 PM

5.5 Mozilla’s Scriptable Interfaces 185

5.5.7 Island Interfaces

Mozilla has three scriptable island interfaces. These interfaces have their own
JavaScript interpreter and their own global object. Because they are separate
from the rest of Mozilla, they have their own AOM.

Mozilla’s preferences system is the first of these islands. Its AOM con-
sists of a single PrefConfig object that acts like a global object. It has only
two properties, both of which are methods: pref() and user_pref(). The
preference files, prefs.js, consist of repeated calls to these methods, but in
actual fact, the full JavaScript language is available. Any use of this language
availability is obscure at best. The preference system also presents two compo-
nents to XPCOM. They are named

@mozilla.org/preferences-service;1
@mozilla.org/preferences;1

When these components are scripted from the normal Mozilla scripting
environment, preferences can be changed, but the prefs.js files cannot be
modified directly. Changes to these preferences do affect the regenerated
prefs.js files that are written when the platform shuts down.

Mozilla’s network-enabled component installation system is the second of
these islands. Chapter 17, Deployment, discusses this environment and its
AOM fully. This system also exposes XPCOM components to general scripting,
but the interfaces provided are low-level and of little use to general tasks.
They allow the XPInstall system to be notified when content is available from
elsewhere (e.g., over the Internet) and accept that content for processing.
These limited interfaces mean that XPInstall is good for installation tasks
only.

xpcshell is Mozilla’s third island interface. It is a program separate
from the Mozilla Platform executable that isn’t available in the downloadable
releases. It is available in the nightly releases, or if you compile the software
yourself (it requires the --enable-debug option). xpcshell is a standalone
JavaScript interpreter that is used to test scripts, the SpiderMonkey inter-
preter, and the XPConnect/XPCOM system. Its AOM consists of a single global
object and XPCOM-related objects. The most useful properties of the global
object are listed in Table 5.6.

The Components array makes xpcshell a good place to test scripts that
make heavy use of Mozilla components. Because xpcshell uses plain stdin
and stdout file descriptors, it can easily be run in batch mode by automated
testing systems. xpcshell is Mozilla’s JavaScript equivalent of the Perl inter-
preter, except that it is little more than a test harness.

In theory, a script run through xpcshell could create and use enough
components to build up a whole browser. In practice, the Mozilla executable
sets up low-level initialization steps that the xpcshell doesn’t use. Therefore,
xpcshell is best left to simpler tasks.

AppDevMozilla-05 Page 185 Thursday, December 4, 2003 6:29 PM

186 Scripting Chap. 5

5.6 HANDS ON: NOTETAKER DYNAMIC CONTENT

In this section, we’ll add some scripts to the NoteTaker Edit dialog box. These
scripts will modify the way the XUL document works after the platform dis-
plays it. In the process, we’ll manipulate several types of objects discussed in
this chapter.

5.6.1 Scripting <deck> via the DOM

The first NoteTaker change involves keyword content in the dialog box. This
Edit dialog box actually supports two separate panes. Each panel is repre-
sented by one of the <toolbarbutton> tags, “Edit” and “Keywords.” We’d like
to display the dialog box with one or the other of the panes visible. Because the
content of the keyword panel isn’t yet decided, we’ll just use a placeholder.

To support this two-panel system, we’ll use a <deck> tag. The content for
the Edit panel will appear as one card of the deck; the content for the Keyword
panel will appear as the other card. Previously, the content underneath the
two <toolbarbutton> tags was for the Edit button. Now, we’ll make that
content one card of a deck and make the other card like this:

<hbox flex="1">
 <description>Content to be added later.</description>
</hbox>

Figure 5.3 shows the structure of the XUL document before and after
this change.

All we’ve done is add a <deck> tag and the new content at the right
spots. This could have been done in Chapter 2, XUL Layout; however, it’s not
possible to swap between the cards of a plain <deck> without using a script.
Now that we have JavaScript, we can do that swapping. Briefly sneaking
ahead to Chapter 6, Events, we note that <toolbarbutton> tags support an

Table 5.6 xpcshell global object properties

Property Description

Components The XPConnect/XPCOM components array, provides access to
most components in the Mozilla Platform.

dump(arg) Turns the sole argument into a Unicode string and sends it
raw to stdout.

load(arg1,arg2,…) Attempts to load and interpret the files (not URLs) specified.

print(arg1,args2,…) Turn arguments to strings and sends them slightly formatted
to stdout, using printf(“%s “).

quit() Stops xpcshell and exit.

AppDevMozilla-05 Page 186 Thursday, December 4, 2003 6:29 PM

5.6 Hands On: NoteTaker Dynamic Content 187

onclick event handler. We’ll hook the script logic in there so that it’s fun to
play with.

There are numerous ways to make this work, but they all come down to
adding some tag id attributes; writing a function, which we’ll call action();
and adding an onclick handler. The onclick handlers look like this:

<toolbarbutton label="Edit" onclick="action('edit')"/>
<toolbarbutton label="Edit" onclick="action('keywords')"/>

The new ids look like this:

<deck flex="1" id="dialog.deck">
<hbox flex="1" id="dialog.edit">
<hbox flex="1" id="dialog.keywords">

The action() function looks like Listing 5.9.

Listing 5.9 Simple NoteTaker function that accepts commands as arguments.
function action(task)
{
 var card = document.getElementById("dialog." + task);

 if (!card || (task != "edit" && task != "keywords"))
 throw("Unknown Edit Task");

 var deck = card.parentNode;
 var index = 0;

Fig. 5.3 Adding a <deck> to NoteTaker.

AppDevMozilla-05 Page 187 Thursday, December 4, 2003 6:29 PM

188 Scripting Chap. 5

 if (task == "edit") index = 0;
 if (task == "keywords") index = 1;

 deck.setAttribute("selectedIndex",index);
}

We want to get into the habit of passing command-like arguments to
functions, since that’s a very common practice for Mozilla applications. If we
include this code in the .XUL file with a <script> tag, we’ll have very obscure
errors as described in the section entitled “Debug Corner” in this chapter,
unless we’re careful and use a <![CDATA[]]> section. It’s better to put this
script in a separate file right from the start and include that

<script src="editDialog.js"/>

The action() function calls the window.document.getElement-
ById() method. This method is the most common starting point for script
access to the DOM. It is passed the value of an XUL or HTML id attribute and
returns an object for the tag with that id. You can then operate on that object
via its properties and methods.

The remainder of the function navigates to the <deck> tag using the
parentNode DOM property and sets the selectedIndex attribute there
using the setAttribute() DOM property. Because this is a property mean-
ingful to the <deck> tag, the XUL display system reacts to the change auto-
matically, and the numbered card is displayed.

If command-like arguments are avoided, we can achieve the same effect
with a quick-and-dirty solution. Equivalent onclick handlers that still use
DOM interfaces look like these:

document.getElementById("dialog.deck").setAttribute("selectedIndex",0);
document.getElementById("dialog.deck").setAttribute("selectedIndex",1);

Whether structured or quick, just three interfaces of the DOM 1 Core
standard are all we need to get most tasks done. These three are the Docu-
ment, Element, and Node interfaces.

5.6.2 Alternative: Scripting Styles via the DOM

The use of <deck> is just one of many ways to script a XUL document.
Another, equally valid alternative is just to modify CSS styles after the docu-
ment has been loaded.

Starting from the <deck> example, remove the opening and closing
<deck> tags. Now each set of content is enclosed in an <hbox> that can be
treated like an HTML <div>. Listing 5.10 shows an alternate version of the
action() method.

AppDevMozilla-05 Page 188 Thursday, December 4, 2003 6:29 PM

5.6 Hands On: NoteTaker Dynamic Content 189

Listing 5.10 Simple NoteTaker function that accepts commands as arguments.
function action(task)
{
 var card = document.getElementById("dialog." + task);

 if (!card || (task != "edit" && task != "keywords"))
 throw("Unknown Edit Task");

 var oldcard; // the content to remove
 if (task == "edit")
 oldcard = document.getElementById("dialog.keywords");
 else
 oldcard = document.getElementById("dialog.edit");

 oldcard.setAttribute("style","visibility:collapse");
 card.removeAttribute("style");
}

This solution uses the same DOM interfaces as Listing 5.6 but modifies
different attributes on the DOM hierarchy for the window. When the style rules
for the content change, the rendering system inside the platform automatically
updates the display. This use of the style attribute is a little clumsy. XUL pro-
vides a more useful collapsed attribute that can be set without affecting any
other inline styles that scripts might add. The replacement lines follow:

oldcard.setAttribute("collapsed","true");
card.removeAttribute("collapsed");

The XUL hidden attribute shouldn’t be dynamically updated because of the
damage it does to XBL bindings (described in Chapter 15, XBL Bindings).

In addition to the <deck> and styled approaches, the DOM interfaces
can be used to physically remove or add parts of the DOM hierarchy from a
document. This approach is the third way to make content appear or disap-
pear; however, it is an overly complex approach for simple tasks.

5.6.3 Alternative: Scripting <deck> via the AOM and XBL

When an XUL document is turned into a DOM hierarchy, more information is
present than the W3C’s standard DOM interfaces. There is also a set of inter-
faces resulting from Mozilla’s XBL system. These extra interfaces add proper-
ties and methods to the DOM objects that are XUL-specific. Those properties
and methods are extremely convenient and make the scripting job easier.
Sometimes the pure DOM standards are a bit clumsy to use.

Let’s see if the <deck> solution can be made easier using one of these inter-
faces. The tag we’re most likely to script is the <deck> tag. We start by looking
at the xul.css file. This file is stored in the toolkit.jar archive in the
chrome. It’s worthwhile keeping an unzipped copy of this JAR file somewhere
handy. Viewing that file with a simple text editor, we look for “deck” and find:

AppDevMozilla-05 Page 189 Thursday, December 4, 2003 6:29 PM

190 Scripting Chap. 5

deck {
 display: -moz-deck;
 -moz-binding: url("chrome://global/content/bindings/

general.xml#deck");
}

The -moz-binding line tells us that <deck> does have a binding, so
there are some goodies to look at. The binding is called deck, and it’s in gen-
eral.xml. So we view that file, and look for a line like

<binding id="deck">

Sure enough, it’s there. Part of the binding reads

<binding id="deck">
 <implementation>
 <property name="selectedIndex" ...

That’s all we need. Property names in XBL and attribute names in XUL
generally match each other, and those names also generally match the names
used for HTML objects. The selectedIndex property matches the selecte-
dIndex attribute of the <deck> tag. We’ll use that. In the action() method,
replace this

 deck.setAttribute("selectedIndex",index);

with this

 deck.selectedIndex = index;

That’s a trivial change, but it shortens the code enough that we can
throw away the index variable and save a few lines. If the deck binding had a
setCard() method, for example, then we could use that instead of writing
action(). Perhaps it will arrive one day. The last few lines of the action()
method can be collapsed to

 var deck = card.parentNode;

 if (task == "edit") deck.selectedIndex = 0;
 if (task == "keywords") deck.selectedIndex = 1;

5.6.4 Reading String Bundles via XPCOM

The second change we’ll make to NoteTaker is to put external data into the
displayed window from outside the XUL document. In short, we’ll load content
that appears inside the boxed areas. Over the course of this book, we’ll change
the way this information is loaded, saved, and displayed several times.

To get access to the outside, we don’t need to use XPCOM components.
We could submit a URL, which is explained in Chapter 7, Forms and Menus.
Here we’ll use a string bundle.

We can use string bundles, a.k.a. properties files from XUL or from Java-
Script. If we do it the XUL way, it’s the same as scripting <deck>—we add

AppDevMozilla-05 Page 190 Thursday, December 4, 2003 6:29 PM

5.6 Hands On: NoteTaker Dynamic Content 191

some tags, and look for an XBL definition that supplies useful interfaces.
Here, we’ll work with a string bundle in raw JavaScript. Because it uses
XPCOM, we must store our files inside the chrome.

We need an object that acts on properties files. In other words, we need a
useful XPCOM interface and a component that implements that interface. If
we choose to look through the XPIDL files (or this book’s index), then it’s easy
to spot the interfaces in the nsIStringBundle.idl file. There are two inter-
faces, nsIStringBundleService and nsIStringBundle. Because “Service”
is in the name of the first interface, it must be an XPCOM Service; that’s a
starting point for us. Recall that services produce an object using getSer-
vice(); nonservices produce an object using createObject().

We also note that the createBundle() method of that interface looks
like this:

nsIStringBundle createBundle(in string aURLSpec);

OK, so this method creates an object with nsIStringBundle interface
from a URL. That’s easy enough to understand. The nsIStringBundle inter-
face has a getStringFromName() method, which will extract a string from
the string bundle (properties) file. We’re not too concerned that the XPIDL
files use their own wstring and string types; we know that XPConnect will
convert those types to something that JavaScript can discern—a string primi-
tive value that will appear as a String object.

This interface file also states at the top the associated XPCOM Contract
ID, so we have found our XPCOM pair:

@mozilla.org/intl/stringbundle;1 nsIStringBundleService

We don’t need a Contract ID for the nsIStringBundle interface
because the service will create objects with that interface for us when we call
createBundle(). We do need to get the service object in the first place. It is
easy to ask for it using our discovered XPCOM pair:

var Cc = Components.classes;
var Ci = Components.interfaces;
var cls = Cc["@mozilla.org/intl/stringbundle;1"];
var svc = cls.getService(Ci.nsIStringBundleService);

If no errors appear in the JavaScript Console (and none should), then
svc now holds the service object we’ve grabbed. We’re ready to code. Listing
5.11 shows the results.

Listing 5.11 NoteTaker code to read in strings from a string bundle.
var Cc = Components.classes;
var Ci = Components.interfaces;
var cls = Cc["@mozilla.org/intl/stringbundle;1"];
var svc = cls.getService(Ci.nsIStringBundleService);
var URL = "chrome://notetaker/locale/dialog.properties";
var sbundle = svc.createBundle(URL);

AppDevMozilla-05 Page 191 Thursday, December 4, 2003 6:29 PM

192 Scripting Chap. 5

function load_data()
{
 var names = ["summary", "details", "chop-query", "home-page", "width",

"height", "top", "left"];
 var box, desc, value;

 for (var i = names.length; i>0; i--)
 {
 value = sbundle.getStringFromName("dialog."+ names[i]);
 desc = document.createElement("description");
 desc.setAttribute("value",value);
 box = document.getElementById("dialog." + names[i]);
 box.appendChild(desc);
 }
}

The sbundle variable contains a URL-specific XPCOM object. The URL
we’ve chosen must follow the rules for property files. The function
load_data() reads properties from that file and manipulates the DOM so
that a <description value="string"> tag is added to each placeholder
<box> tag as content. Note how the object for <description> is built up and
then added to the box tag at the end. That is more efficient than adding things
piece by piece to the existing DOM.

This code also relies on the XUL document having some ids in place. We
must add these ids by hand to the XUL. To do that, change every example of

<box class="temporary"/>

to something like

<box class="temporary" id="dialog.summary"/>

Finally, we’ll run this load_data() function from another event target
stolen from Chapter 6, Events: the <window> tag’s onload attribute. Doing it
this way ensures that the whole document exists before we start operating on it:

<window xmlns= "http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul" onload="load_data()>

Because the properties file is stored in the locale part of the chrome, the
locale needs to be set up as described in the “Hands On” section of Chapter 3,
Static Content. In other words, a contents.rdf file must be in place, and the
installed-chrome.txt file must be up to date. The properties file itself
might look like Listing 5.12.

Listing 5.12 dialog.properties property file for NoteTaker.
dialog.summary=My Summary
dialog.details=My Details
dialog.chop-query=true
dialog.home-page=false
dialog.width=100

AppDevMozilla-05 Page 192 Thursday, December 4, 2003 6:29 PM

5.7 Debug Corner: Script Diagnosis 193

dialog.height=90
dialog.top=80
dialog.left=70

The path of this file relative to the top of the chrome should be

notetaker/locale/en-US/dialog.properties

After all that work, the NoteTaker dialog box now looks like Figure 5.4.

We’ve now successfully used XPCOM to interact with resources outside
the loaded document. That’s a big step, even if all we did was read a file. We’ll
leave writing this information out to a file to another day. Writing files (and
reading them) is a long story. That story is told in Chapter 16, XPCOM
Objects.

To summarize this activity, we’ve worked with DOM, AOM, XBL, and
XPCOM objects. JavaScript has full access to the loaded content and, when
installed in the chrome, can do anything it wants to do to that content. Most of
the functionality we’ve added in this chapter has just been fancy little tricks.
In future chapters, we’ll replace those procedures with more professional
work.

5.7 DEBUG CORNER: SCRIPT DIAGNOSIS

JavaScript is not a fully compiled language; consequently, it leaves the pro-
grammer with quite a bit of work in the area of detecting bugs. Because vari-
ables, properties, and methods are all resolved at run time, many bugs can lie
hidden until very late in the development cycle. It’s essential that the test-
and-debug process have some structure and not be reduced to guesswork. This
section describes the tools that can be applied to that process.

Fig. 5.4 NoteTaker dialog box with scripted property strings.

AppDevMozilla-05 Page 193 Thursday, December 4, 2003 6:29 PM

194 Scripting Chap. 5

Good coding practices are probably the best defense against bugs. Keep
your JavaScript code separate from XML. Always use terminating semicolons,
meaningful variable names, and indentations. Always check arguments that are
supplied to your functions, and return meaningful values at all times. Always
use try blocks if the Mozilla interfaces you are using are capable of exceptions.
Heed the advice on preferences in Chapter 1, Fundamental Concepts.

The dump() method of the window object is a very useful tool. When it is
enabled, you can start Mozilla with the -console option and have diagnostic
text spew out to a window without affecting the platform’s own windows. That
output can also be captured to a log file. On UNIX, -console can be used only
from the command line. If your scripts include timed events, either generated
by you or received by you, logged output is sometimes the only way to know
what the order of events was in the processing.

Mozilla also supports a javascript: URL. This URL is useful for ad hoc
tests of a document’s state. If the document is loaded into a Navigator window
(XUL documents can be loaded into Navigator as for any Web document), then
javascript: URLs can be used to test the document’s content. This is most
useful when the document receives extensive input from the user. That input is
usually stored as state information, which can be probed with statements like

javascript:var x=window.state.formProgress; alert(x);

alert(), of course, is a small dialog box that displays one or more lines
of text. It can be placed anywhere in a script that is attached to a Mozilla win-
dow and can provide simple feedback on the state of the scripting environment
and its content. alert() also pauses the JavaScript interpreter, which is a
good thing for basic processing but a bad thing where information is supposed
to be consumed in a time-critical way by the script (like streaming media).
alert() is a trivial debugger.

Watchpoints are another trivial but extremely useful debugging tool.
Every JavaScript object created has a watch() method. This method is used
to attach a hidden function to a property of the object. This hidden function
acts a little like Mozilla’s “set function ()” syntax. Listing 5.13 illustrates.

Listing 5.13 Logging of object property changes using watchpoints.
function report(prop,oldval,newval)
{
 dump(prop + "old: " + oldval + "; new: " + newval);
 return newval; // ensures watched code still works
};

var obj = { test:"before" };

obj.watch("test",report);
obj.test = "after"; // report() called
obj.unwatch("test");

The function report() has arguments imposed on it by watch. When
the test property is watched, every change results in the report() function

AppDevMozilla-05 Page 194 Thursday, December 4, 2003 6:29 PM

5.8 Summary 195

being called as a side effect. When the property is unwatched, the side effect
ceases. This is also a tactic for logging changes as they occur.

Finally, the debugger keyword can be inserted in scripts anywhere. It
starts the JavaScript Debugger, whose commands can be learned about by typ-
ing /help in the command line at the bottom of its window. This debugger is
based on the XPCOM pair:

@mozilla.org/js/jsd/debugger-service;1 jsdIDebuggerService

If you don’t like the JavaScript Debugger, you can implement something
on top of this component and its jsdIDebuggerService interface yourself.

When obscure problems occur, shut down Mozilla completely, restart it,
and retest. Always show the JavaScript Console (under Tools | Web Develop-
ment), and always clear the console log before loading test documents so that
new errors are obvious. On Microsoft Windows, occasionally check if zombie
Mozilla processes are hanging around without any windows to identify them.

5.8 SUMMARY

The JavaScript language is small and easy to master. It is much like many
other languages in the C family of languages, except for its unique treatment
of objects. The scope and prototype chain features of the language are curious
and subtle, and many hours can be spent crafting clever uses. JavaScript 2.0
will de-emphasize prototype chains in favor of classes.

Compared with the core language, the interfaces that JavaScript uses
are very extensive. They range from simple and convenient to remarkably
obscure and encompass Java, plugins, and legacy browser support.

Well-trained Web developers will find Mozilla’s support for DOM inter-
faces easy to use, familiar, and powerful. It is immediately applicable to XUL-
based applications. The extensive standards support is something of a relief
after years of cross-browser compatibility checks. Beginner XML program-
mers are advised to study the XML half of DOM 1 closely until the concepts of
Node, Element, Document, and factory method sink in.

XPConnect and XPCOM infrastructure is the brave new world of Mozilla.
With over a thousand components (and a thousand interfaces), there’s only
one way to eat this elephant: one bite at a time. You will probably never use
some interfaces; your use of other interfaces will depend on how deeply you
attempt to customize the platform and how aggressive your application is.

XPCOM provides a world of objects with the potential to make Java-
Script programming as complex as the programming worlds of Java, C, or
C++. XPCOM interfaces each have an XPIDL definition that is easy to read
after it is located. Browsing through these interfaces can give you an early
hint of Mozilla’s full capabilities.

Rather than delve into XPCOM and never return, we next go back to the
world of user interfaces and consider user input.

AppDevMozilla-05 Page 195 Thursday, December 4, 2003 6:29 PM

