

Class
libraries

XPIDL
definitions

JSlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

JJJJJJJJJJJJJJJJJJJJa aJavaJa aJa aSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc pppppppppppppppppppppppp

RDFlib

RDF
Components

AppDevMozilla-14 Page 496 Thursday, December 4, 2003 6:37 PM

497

C H A P T E R

Overlay
database

XBL
definitions

Keyboard

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

W3C
standards

DTDs

Skins

Mouse

SJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc ppppppppppppppppppppppppiiiii ti ti ti ti ti ti ti ti ti ti ti ti ti ti tcri tcriptc ptc pppppppppppppppppppppppp

Templates

RDF

UR
L

14

Templates

AppDevMozilla-14 Page 497 Thursday, December 4, 2003 6:37 PM

498 Templates Chap. 14

This chapter describes how to specify content for a XUL document using a
stream of RDF data. This is done with a combination of ordinary XUL tags,
XUL template tags, and RDF tags.

Mozilla’s template system is a subset of XUL’s tags. These tags are used
to create a document whose content is not fixed. Such a document is the basis
for display of data that varies over time, either because of user interaction, or
because of its origin. It is also the basis for applications whose UI depends on
external information. That external information might be as simple as a file,
as complex as a database, or as remote as a network device. In all cases, such a
document has an appearance that varies according to the viewing occasion.

The template system enables many classes of application. When the
template-based information is updated by equipment, the user interface acts
like a telemetry application, such as a network manager or environmental
control system. When the template-based information is updated by the end
user, the user interface acts like a data management application. The tem-
plate system is particularly good at supporting drill-down data management
activities, like category analysis, work breakdowns, content and document
management systems, and network visualizations. It can also be used for the
more traditional data entry style of application.

In the traditional Web application environment, an HTML document
with dynamic appearance can be achieved in two ways. HTML can be gener-
ated by a program installed behind a Web server (like a CGI program), or
existing HTML can be heavily scripted (Dynamic HTML). In either case, 3GL
code has to be written to produce the desired results.

Mozilla’s template system requires no 3GL code and no Web server. It is,
of course, specific to Mozilla. All that is required is an RDF document and a set
of rules that state what to do with that RDF. These rules are expressed as
XUL tags. The Mozilla Platform automatically pumps the RDF facts into the
XUL template document when it is being loaded. The set of rules is used to
modify the final content displayed, as directed by the pumped-in facts. The
XUL template system is therefore a data-driven system. Some templates
require full security access to the platform, such as is provided by the chrome
area.

The RDF content consumed by templates has two possible origins. Con-
tent might come from an ordinary RDF document stored as a file on some file
system. In this case, the content can be RDF facts on any topic. The NoteTaker
running example in this book ultimately does that. Alternately, that content
might be produced “live” by the Mozilla Platform. In that case, the content
consists of RDF facts on a platform-specific topic. An example is window man-
agement within the Mozilla Platform. The DOM Inspector consults that inter-
nal RDF information in order to build the

 File | Inspect a Window…

 menu. This
menu consists of currently open windows.

Understanding templates means understanding the template rules sys-
tem. Sets of rules can be trivial or complex. In the most trivial case, the rules
are implicit and not stated directly. In the complex case, rules are a bit like a

AppDevMozilla-14 Page 498 Thursday, December 4, 2003 6:37 PM

14.1 An Example Template: Hello, World 499

database query and a bit like JavaScript

switch

 statements. Both cases have
the use of special template variables.

Like many aspects of XUL, the template system starts with direct and
obvious syntax:

<template>
 <rule> ... </rule>
 <rule> ... </rule>
</template>

Templates are as complex as trees, and this basic syntax doesn’t last
long—it has a number of subtle points.

Templates do not carry any content of their own: None of the template
tags are boxlike tags. Template tags are more like macro processing instruc-
tions and the

#ifdef

 features of C’s preprocessor. These tags are always used
inside some other XUL tag; they are not top-level tags like

<window>

.
The NPA diagram at the start of this chapter shows the extent of the

template system. From the diagram, templates are a small system of their
own, somewhat separate from the rest of Mozilla’s processing. They are the
final step in the content assembly process when a XUL document is loaded.
Templates have nothing to do with presentation of XUL content. Because tem-
plates work intimately with RDF, both RDF files and URL/URI names are
heavily used by templates. As for most features of the platform, a few XPCOM
objects are responsible for much of the template functionality.

14.1 A

N

 E

XAMPLE

 T

EMPLATE

: H

ELLO

, W

ORLD

Listing 14.1 is a XUL document containing a trivial template that implements
“hello, world” one more time.

Listing 14.1

XUL application showing “hello, world” use of template technology.

<?xml version="1.0"?>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">

 <vbox datasources="test.rdf" ref="urn:test:seqroot">
 <template>
 <label
 uri="rdf:*"
 value="Content: rdf:http://www.example.org/Test#Data"/>
 </template>
 </vbox>

</window>

From the listing, the template system consists of its own tags, like

<tem-
plate>

, and special-purpose attributes like

ref

 that are added to other tags.

AppDevMozilla-14 Page 499 Thursday, December 4, 2003 6:37 PM

500 Templates Chap. 14

Mozilla provides several syntax options for rules that make up the template
query system. In this example, the most trivial syntax of all is used. Only one
template rule exists, and it is implied. That rule says: Process all facts in the
nominated RDF container, and generate content to represent those facts. The
nominated container has URI

urn:test:seqroot

, and the content to repre-
sent the facts is a

<label>

 tag. Note that there are nontemplate XUL tags
both outside and inside the

<template>

 tag.
Listing 14.2 is an RDF file that matches the RDF graph structure that

this template expects:

Listing 14.2

Trivial example of an RDF file used for templates.

<?xml version="1.0"?>
<RDF
 xmlns:Test="http://www.example.org/Test#"
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <Description about="http://www.example.org/">
 <Test:Container>
 <Seq about="urn:test:seqroot">
 <li resource="urn:test:welcome"/>
 <li resource="urn:test:message"/>
 </Seq>
 </Test:Container>
 <Description about="urn:test:welcome" Test:Data="hello, world"/>
 <Description about="urn:test:message" Test:Data="This is a test"/>

</RDF>

This RDF file has no special features other than a

<Seq>

 tag whose
resource name is used in the XUL template code in Listing 14.1. This URN is
used as the starting point for the template.

Test

 is an

xmlns

 namespace.

Data

 and

Container

 are made-up property (predicate) names for that
namespace. The URNs and the

"http://www.example.org/Test"

 URL are
all equally made up. No formal process is required to allocate these names;
just make good design choices. The

Data

 property also appears in the

<label>

 tag in Listing 14.1, where it is quoted with its full URL.
If these two listings are saved to files, and Listing 14.1 is loaded into the

platform, then Figure 14.1 is the result. Diagnostic styles have been turned on
to show the structure of the resulting window.

This screenshot shows that two

<label>

 tags have been generated in the
final XUL. The value of each tag consists of both fixed content (“

Content:

”)
and a string that matches one of the two

<Description>

 facts in the RDF doc-

Fig. 14.1 XUL document created by a template and two facts.

AppDevMozilla-14 Page 500 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 501

ument. By comparison, the

<vbox>

 tag appears only once. The structure of this
final document can also be examined using the DOM Inspector. Figure 14.2
shows a full DOM Inspector breakdown of Figure 14.1.

This screenshot shows that the template system has indeed added two
tags to the document, one for each RDF fact in the

<Seq>

 tag. The highlighted

<label>

 tag is the original template label; the other two

<label>

 tags are
the template-generated content. So the final document contains two sub-
trees—one for the specification of the template, and one for the generated con-
tent. The subtree starting the

<template>

 tag contributes no visual content
to the document. When the template system generated the tags in the other
subtree, it gave them ids equal to the URN of the resource in the matched
RDF fact.

The XUL for this template can be made far more complex by using the
extended features of the template rule system.

Before diving into the XUL syntax of the template system, we first take
a big step back and consider what it all means from the point of view of facts.
After all, templates require RDF content to work on, and that means fact
processing.

14.2 T

EMPLATE

 C

ONCEPTS

Mozilla’s template system extends all the standard features of Mozilla appli-
cations: XUL, JavaScript, and RDF. There is also the matter of data sources.
These extensions are explained and then tied together with an example.

14.2.1 RDF Queries and Unification

The XUL template system is a query system. It searches through data and
returns the items that match the search specification. The data searched

Fig. 14.2 DOM Inspector view of a template-generated document.

AppDevMozilla-14 Page 501 Thursday, December 4, 2003 6:37 PM

502 Templates Chap. 14

through is a set of RDF facts. A template query is therefore an RDF-specific
piece of processing.

The queries that XUL templates do are often described as a pattern-match-
ing system. In the most general computer science sense, this is true, but pattern
matching also has a simple, everyday meaning. That everyday meaning is used
for file name masks like

*.txt

 and for regular expressions like “

^[a-zA-
Z]*66$

”. Tools like command line shells, Perl,

grep

,

vi

, and even JavaScript
use everyday pattern matching, which is very similar to simple filtering. In sim-
ple filtering, a large list of items (or characters) is reduced to a smaller list.

XUL template queries are not filters and do not do pattern matching in
the everyday sense. If an RDF document contains a certain fact, then a XUL
template that queries that document can do much more than just choose or
ignore that fact. Template queries are not just simple filters.

Instead of simple filtering, template queries do

unification

. Unification is
where a set of data items is combined into a final result. Solving a jigsaw puz-
zle is a real-world example. When all the jigsaw puzzle’s pieces are fitted
together, the result (a finished picture) is achieved. If there are more puzzle
pieces than are needed (perhaps several puzzle sets have been mixed
together), then some pieces will be discarded as irrelevant. Unification can
have more than one outcome. If there are enough jigsaw pieces, then several
pictures might be put together at once, not just one. If the jigsaw pieces are
similar shapes, then even more pictures might be possible because of the
many possible arrangements of pieces.

In Mozilla, the jigsaw puzzle pieces are the subjects, predicates, and
objects of a set of RDF facts. The desired result is stated by a XUL template’s
query. Any combination of pieces that fits the query specification (the rules in
the template) is returned as a number of pieces of information—a new tuple. If
more than one combination of pieces fits, more than one tuple is returned.

Such a system might sound familiar. The SELECT statement in SQL acts
exactly like this when it contains a join—that is, a FROM clause with two or
more tables. The column names in the returned rows are drawn from all the
joined tables. The set of returned columns does not exactly match one table
row; instead, it matches pieces of rows from several tables. More than one row
can be returned in a SELECT query’s result set.

In fact, XUL template queries are examples of relational calculus, just as
SQL queries are examples of relational algebra. University researchers have
shown that these two relational approaches are fundamentally the same, even
though they are programmed differently and have little syntax in common.

The XUL syntax for templates is unusual and best avoided to start with.
To learn about template queries, let’s return instead to the boy, dog, and ball
example of Chapter 11, RDF.

Recall that example was used to describe a “pure” fact system, free of any
RDF or XML syntax. It is used again here to show “pure” examples of fact que-
ries and fact unification. The example facts from Chapter 11, RDF, are
repeated in Listing 14.3.

AppDevMozilla-14 Page 502 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 503

Listing 14.3

Predicate triples for boy and dog example, from Chapter 11.

<- 1, is-named, Tom ->
<- 1, owner, 2 ->
<- 1, plays-with, 5 ->
<- 2, is-named, Spot ->
<- 2, owned-by, 1 ->
<- 2, plays-with, 5 ->
<- 5, type-of, tennis ->

<- 5, color-of, green ->

The information modeled is “Tom and his dog Spot play with a green ten-
nis ball,” and each thing in the model has an identifying number. We can query
this set of facts using a single- or multi-fact query.

14.2.1.1 Single-Fact Queries

In Chapter 11, RDF, we noted that facts (and
RDF documents) are often ground. Ground facts are a good thing because
every piece of a ground fact is just a literal piece of data, with no unknowns.
Literals are easy to work with. A fact that isn’t ground was also shown in
Chapter 11, RDF. That fact, slightly changed, is repeated here:

<- 1, owner, ??? ->

Because the object part of this triple isn’t known, this fact is not ground. It
is useless as a piece of data, but it is useful as a starting point for a fact query.
Let’s use a placeholder variable for the unknown part. Such variables start
with a question mark (

?

) just as DOS variables start and end with

%

, or just as
UNIX shell variables start with

$

. A variable cannot be in the ground state, or
else it wouldn’t be a variable—it would be a literal again. We say that the pro-
cess of turning a variable with unknown value into a variable with a known
value is “grounding the variable” or that it is done “to ground the variable”:

<- 1, owner, ?dogId ->

When a query is run, unification causes all variables to be turned into lit-
erals from the set of available facts. That is a very fancy way of saying,
“Ground All Variables, Please.” For this simple example, the second fact stated
in Listing 14.3 matches this variable-laden query:

<- 1, owner, 2 ->

?dogId

 has no value, and if the value

2

 were to replace it, a fact match-
ing an existing fact would be constructed. The variable

?dogId

 can therefore
be ground to the value

2

. This is a trivial example of a query that returns one
resulting fact.

Suppose that Tom has a second dog, called Fido. These additional facts
would then exist:

<- 1, owner, 3 ->
<- 3, is-named, Fido ->

AppDevMozilla-14 Page 503 Thursday, December 4, 2003 6:37 PM

504 Templates Chap. 14

If the fact containing

?dogId

 is again treated as a query, then there are
two facts that can fit the query:

<- 1, owner, 2 ->
<- 1, owner, 3 ->

?dogId can be ground to either 2 or 3, so there are two solutions. We can
say the result set contains two facts, two rows, or two items.

The preceding fact that acts like a query can also be expanded. It might
read:

<- ?personId, owner, ?dogId ->

In this case, a match requires a combination of values that satisfies both
variables at once (?personId is ground and ?dogId is ground). If we use the
existing facts, the result set is still two rows: either (?personId is ground to 1
and ?dogId is ground to 2), yielding one fact, or (?personId is ground to 1
and ?dogId is ground to 3), yielding the other fact. Adding extra variables
does not always mean more facts will appear in the results. It just means that
more things need to match correctly.

Suppose that Jane (with person id = 4) also owns Fido, but not Spot. Fido
is shared, but Spot is exclusively owned by Tom. There are then two more facts
in the fact store:

<- 4, is-named, Jane ->
<- 4, owner, 3 ->

If the last query is posed again, then three solutions result:

☞ ?personId ground to 1 (Tom) and ?dogId ground to 2 (Spot)
☞ ?personId ground to 1 (Tom) and ?dogId ground to 3 (Fido)
☞ ?personId ground to 4 (Jane) and ?dogId ground to 3 (Fido)

Even though ?personId can be set to 4 (Jane) and ?dogId can be set to
2 (Spot), no fact results from this combination because no such fact (Jane own-
ing Spot) appears in the fact store. When a fact is matched against a query
fact, there must be a complete fit, not a partial fit.

Finally, note that the information to be ground in this last single-fact
query has an alternate notation. It can be written as a collection of unknowns
that need to be solved. That collection can be written as a tuple. In this exam-
ple, such a tuple is a double, not a triple. That tuple-to-be-ground can be stated
like this:

<- ?personId, ?dogId ->

This tuple doesn’t describe the query at work. It merely explains what
unknowns are involved and therefore what variables will be set when the
query returns solutions. That is useful information for programmers, and
somewhat similar to the INTO clause of Embedded SQL’s SELECT. If someone
else is responsible for creating the query, then such a tuple is all you really
need to know to grab the results returned.

AppDevMozilla-14 Page 504 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 505

In the last example, the three solutions found fill this tuple like so:

<- 1, 2 ->
<- 1, 3 ->
<- 4, 3 ->

The tuple of two variables neatly collects the unknown information together.
The query processor still needs information that matches the structure of the
facts in the fact store. That is why queries are always posed using the longer
syntax shown earlier.

If the query processor isn’t given enough information, it can’t guess what
to do. It is not enough to say, “Smart computer, please fill these variables for
me somehow.” The query must tell the query processor what to look at. In a
single-fact query, the prescription given is very simple: “Dumb computer,
examine all triples for a match against this query triple.”

Mozilla’s template system supports single-fact queries. Single-fact que-
ries can be specified using the template extended query syntax. Single-fact
queries cannot be specified using the template simple query syntax.

Looking ahead slightly, to query a single fact, the <conditions> tag of
the query must be arranged one of two ways. If the facts sought are RDF con-
tainer containment facts, with predicates rdf:_1, rdf:_2, and so on, then
<conditions> should hold a <content> and a <member> tag. If the facts
sought have well-known predicates, then the <conditions> tag should hold
a <content> and a <triple> tag. Template queries that are single-fact que-
ries are discussed further under “Common Query Patterns.”

In summary, a single-fact query tries to ground a query fact against a
real fact, and when it succeeds, the ground results are called solutions.

14.2.1.2 Multifact Queries The XUL template system supports multifact
queries. A multifact query is a bit like an SQL join, and a bit like navigating a
tree data structure.

A multifact query poses a question that requires two or more whole facts
to be combined. In other words, it requires some deduction. Mozilla’s support
for deduction is like simplistic Prolog predicate calculus, except the similarity
is heavily disguised by syntax. We consider “pure” multifact queries first,
before examining the XUL syntax.

Using the boy and dog example, suppose that a needed query is: “What is
the name of the dog that Tom owns?” Using variables, that query could be
stated as three facts to be unified:

<- ?personId, is-named, Tom ->
<- ?personId, owner, ?dogId ->
<- ?dogId, is-named, ?dogName ->

Forming a multifact query such as this takes a little practice. It is the
same kind of practice required to learn how to do multitable SQL joins or mul-
tivariable regular expressions. The core problem is that you are required to
write the query straight down direct from your brain.

AppDevMozilla-14 Page 505 Thursday, December 4, 2003 6:37 PM

506 Templates Chap. 14

This particular query was constructed as follows. First, the things we
already knew were identified (“Tom”). Next, the things we didn’t know, but
wanted to know, were noted: dogName. We looked at the available tuples to see
where these known and unknown things might fit in. That gave us two tuples,
the first and third in the final query. Looking at those tuples, we saw what
some of the predicates must be: is-named is the useful predicate for both
tuples. To ground those tuples fully, some other unknowns (the tuple subject
terms) would have to be found: personId and dogId. So we added those vari-
ables to the list of unknowns. We noticed that these two tuples don’t share any
unknowns, so they weren’t “connected.” We then looked again for more tuples
that might connect the ones we really need together. We discovered the second
tuple, which links personId and dogId. With that addition, we were satisfied
that all required unknowns were present, and that the set of tuples was con-
nected so that the tuples formed a single query.

If these three facts are submitted as a single query to the query proces-
sor, then all variables must be ground at once if a solution is to be found.
Because ?personId and ?dogId appear in two triples each, whatever value
they take on must simultaneously match both triples. In this way, triples with
data items in common can be linked (or joined or tied) together. The only possi-
ble solution in the example fact store (without Fido or Jane) is:

<- 1, is-named, Tom ->
<- 1, owner, 2 ->
<- 2, is-named, Spot ->

Compare these three facts with the preceding query. This solution unifies
the unknown variables

<- ?personId, ?dogId, ?dogName ->

to a single set of possibilities

<- 1, 2, Spot ->

The value Spot is the value sought; the other variables are just used to
tie the facts together. So Spot is the name of the dog that Tom owns, and the
query has been answered. The other variables can be examined or ignored
according to need. This multifact query shows why variables undergo “unifica-
tion” rather than simply being “set”: They must all be matched at once before a
solution is found.

How does the Mozilla query processor find this solution? There are many
possible techniques. The simplest technique is to go though every combination
of three facts in the fact store and compare each combination against the
query. That is a “brute force” solution and very inefficient. It is not done in
Mozilla. Mozilla uses a narrower approach, which involves exploring part of
the fact graph structure only. We’ll see more on that shortly.

If Fido and Jane are put back into the fact store, then the same query
would report two solutions:

AppDevMozilla-14 Page 506 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 507

<- 1, is-named, Tom ->
<- 1, owner, 2 ->
<- 2, is-named, Spot ->

<- 1, is-named, Tom ->
<- 1, owner, 3 ->
<- 3, is-named, Fido ->

The values that the unknown variables are ground to are thus

<- 1, 2, Spot ->
<- 1, 3, Fido ->

Note how the query is designed to match the particular facts in the fact
store. Subject and objects are matched up using variables like ?personId.
The results, on the other hand, are just a set of ground variables that make up
one tuple per solution. In this example, there are three variables, so the result
tuple is a triple. Any number of variables might be used, though.

This example is equivalent to a three-table join in SQL. Listing 14.4
shows an imaginary SELECT query that does the same job as the last fact
query. Each of the three imaginary tables matches one of the facts in the pre-
ceding three-fact query.

Listing 14.4 SQL SELECT analogous to a three-fact query.
SELECT p.personId, d.dogId, d.dogName
FROM persons p, owners o, dogs d
WHERE p.personName = "Tom"
AND p.personId = o.personId
AND o.dogId = d.dogId

Just as the join in the SQL query links tables (relations) together, the
variables in a factual query link facts together. Compare the use of personId
in the two types of query, and you should be able to see a little similarity, even
though the syntax is vastly different.

In the general case, this example shows how a big bucket of facts can be
examined using a carefully constructed query that contains variables. If the
bucket of facts is an RDF document, then clearly Mozilla’s templates can do
simple but general-purpose queries on that document.

The template system supports multifact queries in two ways. The simple
template syntax automatically performs a two-fact query, provided that the
RDF data is organized correctly. The extended template syntax allows multifact
queries of any length to be created by stringing together one <content> tag,
any number of <member> and <triple> tags, and any number of <binding>
tags. Each such tag (except for <content>) represents one fact in the query.

14.2.1.3 Query Solution Strategy Chapter 11, RDF, explains how a collec-
tion of facts can be viewed in one of three ways: as a simple unstructured set of
items, as a complex graph-like data structure, or as a simple set that has use-

AppDevMozilla-14 Page 507 Thursday, December 4, 2003 6:37 PM

508 Templates Chap. 14

ful subsets of items identified with RDF containers like <Seq>. Mozilla uses a
combination of the RDF graph (the second view) and containers (the third
view) to get its XUL template queries done.

To the application programmer, it appears that Mozilla uses a drill-down
algorithm to solve queries. This drill-down process is equivalent to a depth-first
tree traversal. This algorithm requires that the query have a starting point that
is known—the root of the query. In the preceding example, Tom is a known
starting point. In practice, the starting point in Mozilla should be a fact subject,
as well as a fact object. Such a fact subject is always a URI (a URL or URN).

After this starting point is known, the Mozilla query processor navigates
through the graph of the RDF facts from that starting point. Each fact in the
query equals one arc (one predicate or property) traversed. So for a three-fact
query, the processor will penetrate only three hops into the graph from the
starting point. It will only look that far for solutions to the query.

This query system can be visualized using actual RDF graphs. We return
to a variation of the boy and dog example. In this variation, the dog Spot has
discovered that he can play by himself. He has also managed to get ownership
of a softball, which is entirely his. Figure 14.3 shows the graph that results
from these additional facts, with a particular query highlighted.

In Figure 14.3, all facts are part of the fact store. The query illustrated is
a two-fact query that starts at Tom’s identifier, which is one (1). Perhaps the
query is something like “What things do Tom’s pets play with?” The dark lines
on the graph show fact terms that are reached by the query—a two-fact query
must traverse exactly two arrows. The pale lines are not reached. There are
three initial solutions to this query. Each one matches a unique path that
starts from the (1) identifier: path 1-2-Spot, path 1-2-7, and path 1-2-5. To be
more specific, we might require that the first fact have an owner predicate (a

is-named

o
w

n
er

plays-with

color-of

type-of
1

5

2

Tom

Spot

tennis

green
is-named

o
w

n
er

7 softball
plays-with

Fig. 14.3 Enhanced boy and dog graph showing a query path.

AppDevMozilla-14 Page 508 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 509

pet of Tom’s) and the second fact have a plays-with predicate. In that case, the
1-2-Spot combination would no longer be a solution, and just two solutions
would be found: “Tom’s dog Spot plays with a softball” and “Tom’s dog Spot
plays with a tennis ball.”

We can experiment a little further with this example. Figure 14.4 shows
a different query on the same graph of facts.

This is again a two-fact query, but this time it starts at Spot’s identifier
(2). There are again three solutions. This time, note that the path 2-1-Tom is
not a solution. This is because the arrows point the wrong way in that path.
Rather than 2 being a fact subject and 1 being an object, it is the other way
around. The query system can’t go in reverse like that. Even for the solutions
possible, this second query probably doesn’t make much sense. The predicates
in the possible solution paths are all quite different. If this query seemed nec-
essary, it would be fair to guess that either the data model behind the facts
was wrong, or the query was poorly thought up.

The disadvantage of this system is that not all the facts in the fact store
are looked at. In theory, a query might miss some of the solutions. The advan-
tage of this system is speed. In practice, if the RDF facts are neatly ordered, a
quick search from a known starting point is sufficient to provide all answers.

This drill-down approach is part illusion; the template system is actually
more complicated than that. It is, however, a good enough approximation and
is a recommended way to interpret XUL template code.

The way to organize an RDF document so that this system works is to
use an RDF container: a <Seq>, <Bag>, or <Alt>. The known starting point
provided to the query system could be the URI of the fact holding the con-
tainer. The sought-after data should be facts within that container. The query
then drills down into the container, retrieving the required facts. This is an
indexing strategy.

is-named

ow
ner

plays-with

color-of

type-of
1

5

2

Tom

Spot

tennis

green
is-named

o
w

n
er

7 softball
plays-with

Fig. 14.4 Enhanced boy and dog graph showing second query path.

AppDevMozilla-14 Page 509 Thursday, December 4, 2003 6:37 PM

510 Templates Chap. 14

Listings 14.5 and 14.6 show an RDF fragment and a matching query.

Listing 14.5 Example RDF fragment useful for a multi-fact query.
<Description about="http://www.example.org/">
 <NS:Owns>
 <Bag about="urn:test:seq">
 <li resource="urn:test:seq:fido"/>
 <li resource="urn:test:seq:spot"/>
 <li resource="urn:test:seq:cerebus"/>
 </Bag>
 </NS:Owns>
</Description>
<Description about="urn:test:seq:fido" NS:Tails="0"/>
<Description about="urn:test:seq:spot" NS:Heads="1"/>
<Description about="urn:test:seq:cerberus" NS:Heads="3"/>

NS in Listing 14.5 stands for some namespace, presumably declared with
xmlns elsewhere in the code. The namespace would have some URL like
www.test.com/#Test. Listing 14.6 uses the NS namespace to identify the fact
items equivalent to those in Listing14.5. Use of NS in Listing 14.6 has no partic-
ular meaning because the facts stated in that listing are neither XML nor code.

Listing 14.6 Example RDF query for drilling into an RDF container.
<- http://www.example.org/, NS:Owns, ?bag ->
<- ?bag, ?index, ?item ->
<- ?item, NS:Heads, ?heads ->

In this query, the first fact to be ground drills down to the RDF fact with
the bag as subject (one fact only). The second fact drills further down to facts
with bag items as subject (three facts for the sole bag). The third fact drills
down to the fact stating how many heads that bag item has (zero or one fact
per bag item, depending on whether the Heads property exists). The end
result is that two solutions are found. The set of variables to be unified are

<- ?bag, ?index, ?item, ?heads ->

and the two solutions found are

<- urn:test:seq, rdf:_2, urn:test:seq:spot, 1 ->
<- urn:test:seq, rdf:_3, urn:test:seq:cerberus, 3 ->

Recall that RDF automatically assigns predicate names starting with
rdf:_1 to each of a container’s children. The first container child was not
reported by this query because the last of the three query facts couldn’t be
matched to a fact with NS:Tails instead of NS:Heads.

Support for this kind of query is the first priority of Mozilla’s template
query system. This is the most reliable and useful way to work with templates.

In the preceding example, the ?index variable is used to stand in for
the predicate of a fact. Mozilla’s query system cannot use a variable for a

AppDevMozilla-14 Page 510 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 511

predicate term, but it has a <member> tag that can achieve a similar but
more limited effect.

In summary, by poking into an RDF graph of facts from a certain point, a
set of query facts can be tested for matches against a neatly ordered collection
of facts near that point.

14.2.1.4 Stored Queries The queries that XUL templates specify live as long
as the document they are contained in. They do not run once and are then
thrown away. They are useable until the window that they are displayed in is
torn down.

A collection of RDF facts (perhaps loaded from a file) can be modified
anytime after it is created because such a collection is stored in memory in a
fact store. Facts can be added to the store, removed, or changed. The template
query system can be advised of these changes.

When fact changes occur, each template’s query can update its under-
standing of what solutions exist for that query. If new solutions are possible,
they are added to the set of results. If some solutions are no longer possible,
they are removed from the result set. Updates to existing solutions are also
possible.

The net result is that the solution sets can change over time. Template
queries are not always passive “read consistent views” (to use RDBMS jargon).
They can be live and fully up-to-date actively changing “event lists” (to use
telemetry jargon).

This live updating requires a little scripting assistance from the applica-
tion programmer. In the end, the query must repeatedly poll (check) the fact
store if the solutions are to be kept up to date. Scripts can be written so that
this is done in an efficient way, and only when required.

In a XUL document, template queries hang around.

14.2.1.5 Recursive Queries The drill-down strategy used by Mozilla tem-
plate queries can be applied recursively. Each drill-down end point for a query
can be reused if it yields a solution. That end point can be used as the new
starting point for a repeat of the same query. This allows the query system to
drill down further into the RDF graph structure, possibly finding another
solution or solutions. Only when no additional facts exist to consider is the end
point of the recursion reached.

This recursive use of queries is useful for treelike data structures. Such
structures can have any depth, which equals any number of arc hops in an
RDF graph. Without recursion, it wouldn’t be possible to retrieve the whole of
a tree because the depth searched by a query equals the number of facts in the
query.

In a XUL document, template queries inside <tree> tags do extra work.

14.2.1.6 Query Lists The Mozilla template system allows a number of que-
ries to be put together into a simple list.

AppDevMozilla-14 Page 511 Thursday, December 4, 2003 6:37 PM

512 Templates Chap. 14

When query processing starts, all queries in such a list are run at the
same time. Any solution found that fits more than one query will be assigned
to just one of those queries. The query chosen will be the one nearest the head
of the list.

The way this is done is simple: For each drill-down hop into the RDF
graph, the query processor examines the query list for queries that are part-
solved by the facts found so far. Those queries that are part-solved are consid-
ered again after the next hop, while the rest are ignored from that point on.
When the query processor has finished drilling down, only those queries com-
pletely solved by the found facts remain.

This system allows a set of facts to be assessed according to one set of cri-
teria (one query) and, if that fails, to be reconsidered according to another set
of criteria (a second query). This is much like the boolean conditions in a series
of if … else if … statements.

Query lists in Mozilla allow several completely different sets of content to
be generated from the one set of facts. Each query can provide fact solutions
for one such set.

That concludes template queries. After the query succeeds, something
needs to be done with the solution.

14.2.2 XUL Content Generation

In the ordinary case, all a XUL template does with retrieved RDF data is dis-
play it.

A template does this by mixing the retrieved data with ordinary XUL
content. It acts like a simple pretty-printer or like a report-writing tool. The
output content is contributed to the XUL document and appears for the user’s
consumption, just like any XUL content.

If the XUL tag surrounding the template is a <menupopup>, <listbox>,
<toolbar>, <tree>, or even <box>, then the contents of that XUL tag (the
menu items, toolbar buttons, tree or listbox rows) can be generated entirely by
the template. This means that interactive interfaces can derive directly from
an RDF file, rather than be hard-coded.

A simple example illustrates this generation process. Listing 14.7 is an
RDF file containing two facts inside a container. Each fact has a single prop-
erty/value pair. These pairs are usually the interesting part of an RDF docu-
ment, and they are usually displayed as XUL content.

Listing 14.7 Simple RDF document used to illustrate displayed content.
<?xml version="1.0"?>
<RDF xmlns:Test="http://www.test.com/Test#"
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <Description about="urn:test:top">
 <Test:TopSeq>
 <Seq about="urn:test:seqroot">
 <li resource="urn:test:message1"/>

AppDevMozilla-14 Page 512 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 513

 <li resource="urn:test:message2"/>
 </Seq>
 </Test:TopSeq>
 </Description>

 <Description about="urn:test:message1" Test:Foo="foo"/>
 <Description about="urn:test:message2" Test:Bar="bar"/>
</RDF>

The two properties can be dug out of this file and displayed using a tem-
plate. Figure 14.5 shows two sets of template-generated content from the same
RDF file. This requires two templates in the same XUL document.

The two templates are side by side in this screenshot. Only the final
results of the template content generation are visible. The template on the left
generates <description> tags with a border style applied. Those tags are
contained inside a <vbox>. The template on the right generates <treeitem>
tags, each with <treerow> and <treecell> content. Those tags are con-
tained inside <tree> and <treechildren> nested tags. It is easy to see that
the content extracted from RDF is the same in both cases, but the structure,
appearance, and use of the data are different. For example, the tree items are
user-selectable but the plain text on the left isn’t.

In summary, templates merge separately stored solution data with other
content that determines how the data are to be presented.

14.2.2.1 Template and Content Subtrees The XUL tags that make up a
template are not displayed in the final, displayed document. The content tags
generated by the XUL system are displayed. Both types of tags exist in the
XUL document at the same time, but the template tags are styled to have no
display.

The template tags form one DOM subtree of the XUL document. After
the template has generated its content, these tags exist only for reference pur-
poses. The template system might reread them at a later point if the applica-
tion programmer adds scripts that make this happen.

The generated content tags form one DOM subtree for each solution
found by the template query. Three solutions mean up to three subtrees. These
subtrees occur where any user interaction or scripting support ultimately
occurs.

Fig. 14.5 Output from two templates using the same RDF data.

AppDevMozilla-14 Page 513 Thursday, December 4, 2003 6:37 PM

514 Templates Chap. 14

Each of these generated subtrees has a topmost tag. That tag acquires a
unique id attribute that matches the URI of a fact subject from the query
results. This id acts as a unique key and is used to identify each generated
subtree. This id comes from the uri attribute, described under content tags.

The “hello, world” example at the start of this chapter shows these differ-
ent subtrees in a screenshot.

14.2.2.2 Dynamic Content Templates can change over their lifetimes. The
content generated by a template can also change over the template’s lifetime.
Both effects require the use of JavaScript, and both might require a template
rebuild. Templates can also delay the generation of content.

Rebuilding a template requires a line of JavaScript code. No document or
page needs to be fetched or reloaded. The portion of the XUL document con-
taining the template and its results is changed in-place. Surrounding content
is unaffected, except possibly for changes to layout. A typical line of code that
does this is

document.getElementByTagName('tree').database.rebuild();

The template tags themselves can be altered using DOM 1 operations
like removeChild() and appendChild(). If this is done, then the next time
the template content is rebuilt the displayed content will be replaced with con-
tent generated by the changed template.

If the template is not altered, the content displayed can still change. This
occurs when the RDF data that the template uses is changed. If the template
content is rebuilt, then content associated with new query solutions will be
added, and content associated with old solutions that are no longer relevant
will be removed. The template system does these content changes itself using
DOM 1 operations.

In a XUL document, the queries not only hang around but also can be
reused anytime.

14.2.2.3 Lazy Building Content generation can be delayed until later. This is
only possible for recursive queries. When this system is used, only the topmost,
most immediate solutions to a template query are sought. These immediate
solutions yield content. Later on, if an indication comes from the user or the
platform that more content is needed, further solutions are sought. Any extra
content generated from those further solutions is added to the displayed
results.

Lazy building only works if the template content tag that holds the uri
attribute is one of these tags:

<menu> <menulist> <menubutton> <toolbarbutton> <button> <treeitem>

The children of these tags, like the <menu> tag in a <menulist>, are the
pieces built lazily.

AppDevMozilla-14 Page 514 Thursday, December 4, 2003 6:37 PM

14.2 Template Concepts 515

Templates that use <tree>s or <menu>s can put off some of the recur-
sive query work until later.

14.2.2.4 Common Source Content Two or more templates can use the same
RDF data. If the RDF data changes, then those changes can be reflected in all
the templates simultaneously. The templates must be rebuilt for the changes
to appear. Each template can be like a big observer of the RDF fact data.

This feature of templates is very powerful and useful. It allows multiple
views of a set of data to be displayed at the same time, and all are kept up to
date. This is particularly useful for applications that use a desktop metaphor.
Examples are design tools and Integrated Development Environments (IDEs).
These applications have power users who appreciate being able to visualize
the data they work with in several different ways. This is also used in the
Classic Mozilla/Netscape browser suites, in the bookmarks system, address
book, and elsewhere.

To see this coordination at work, perform the following test:

1. Start the Classic Brower so that a Navigator window appears.
2. Make sure that the Personal Toolbar and Navigation Toolbar both appear

(View | Show/Hide).
3. Create a bookmark on the Personal Toolbar by dragging any URL onto

that toolbar (drag the bookmark icon to the left of the Location textbox).
4. Display the Bookmark Manager window (Bookmarks | Manage Bookmarks).
5. Make sure that the new bookmark is visible in both the Bookmark Man-

ager and the Personal Toolbar at the same time.
6. In the manager, delete the new bookmark by selecting it and choosing

Delete from the right-click context menu.
7. The new bookmark disappears from both the toolbar and manager at the

same time.

The Bookmark Manager window contains a template based on a <tree>
tag. The Personal Toolbar contains a template based on a <toolbar> tag. The
Delete menu item runs a script that deletes the facts that hold information for
the new bookmark. That script then causes both templates to rebuild them-
selves. The piece of content associated with those deleted facts (a <treeitem>
in one case, and a <toolbarbutton> in the other) disappears everywhere as
a result.

14.2.3 JavaScript Access

The template system adds objects to the AOM of the XUL document. The tem-
plate system also uses a number of XPCOM components and interfaces, par-
ticularly RDF ones. These can be manipulated from JavaScript. JavaScript
can perform any of the following tasks:

AppDevMozilla-14 Page 515 Thursday, December 4, 2003 6:37 PM

516 Templates Chap. 14

☞ Use the database AOM object property to manipulate facts and the
sources of the RDF data used by the template.

☞ Use the builder AOM object property to control the template build
process.

☞ Create a custom view for a template.
☞ Fill a template with facts when it has none to start with.
☞ Add observers to the template system.
☞ Control sorting of <tree>- and <listbox>-based templates.
☞ Use the DOM 1 standards to modify template tags (occasionally done)

and template-generated tags (unwise).

These tasks are all described under “Scripting” in this chapter. These
tasks often require working with the XPCOM components that support RDF.
Those RDF components are discussed in Chapter 16, XPCOM Objects.

14.2.4 The Data Source Issue

A final technical aspect of templates is data sources.
The RDF data that templates use can come from an ordinary RDF docu-

ment or from a preexisting source inside the Mozilla Platform. In both cases,
an object called a data source sits between the template processing code and
the true origin of the RDF facts.

Mozilla templates can draw facts from more than one data source at a
time. This means that facts from several RDF files (for example) can contrib-
ute to the content generated by a single template. There is a many-to-many
relationship between data sources and templates.

Data sources are discussed extensively in Chapter 16, XPCOM Objects.
Here we simply note that the choice of data source for a template is absolutely
critical. If the wrong data source is chosen, very little will work. Know your
data sources.

Here is a brief overview of the main points. Each template has a composite
data source. To work on the template’s data source from a script, it is often nec-
essary to find and use one of the data sources that contribute to the composite
data source. Such a data source gives the programmer access to the fact store
containing the RDF facts of that source. In principle, a full range of database-
like operations is possible. In practice, only the data sources associated with
RDF files and with the bookmark system are highly useful. The bookmark sys-
tem has the drawback that it is cryptic. Of the other internal data sources,
some are easily read and some are not. The rdf:null data source is a conve-
nient choice when the programmer wants to start with an empty set of facts
and fill it by hand. It is often used when a custom view is built.

The scripting topic in this chapter describes some of the common tem-
plate manipulations that require data sources. Chapter 16, XPCOM Objects,
is also recommended.

AppDevMozilla-14 Page 516 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 517

14.3 TEMPLATE CONSTRUCTION

This discussion explains how templates are put together, and describes the
individual tags. The overall composition of a template is shown in Listing 14.8,
which is pseudo-code, not pure XUL:

Listing 14.8 Basic containment hierarchy for template tags.
<top>
 <stuff/>
 <template>
 <rule>
 ... simple or extended rule info goes here ...
 </rule>
 ... zero or more further <rule> tags go here ...
 </template>
 <stuff/>
</top>

The tag named <top> can be any ordinary XUL tag—<top> is not a spe-
cial tag. Although the template proper starts with the <template> tag, some
attributes specific to templates must also be added to the <top> tag. Other
XUL content can precede, follow, or surround the <top> tag, whatever it is.
Typical candidates for <top> are <tree>, <toolbar>, <menulist>, and
<listbox>, but <top> could be a <box> or even a <button>.

The tags named <stuff> can also be any ordinary XUL tag—<stuff> is
not a special tag. These tags are optional and can be repeated and nested as
much as required. The tags between <top> and <template> are copied and
generated only once for each template, and they are all displayed before the
template content, even if they appear after the <template> tag in the XUL.

The <template> tag is a real XUL tag. Any content within this tag is
generated once per query solution found. The <template> tag surrounds all
content that might be repeated.

The <rule> tag is a real XUL tag. It is the only content allowed inside
<template>. There can be one or more rule tags, and there is a shorthand
notation that allows for zero rule tags. Each rule tag is one template query, as
described under “Query Lists” earlier. Each rule tag also holds content. This
content is duplicated each time a solution for the rule query is found.

The template system has several different syntaxes for the content of the
<rule> tag.

The most flexible and powerful syntax is the extended template syntax.
This syntax requires that template query variables be defined in one spot and
then applied later in another spot. This system uses variables called extended
template variables. The extended syntax requires that each <rule> contain a
set of specialist template tags as part of its content.

A convenient and short syntax is the simple template syntax. This syntax
is designed for the special but common case where the query is looking

AppDevMozilla-14 Page 517 Thursday, December 4, 2003 6:37 PM

518 Templates Chap. 14

through an RDF container for data. The “hello, world” example in Listings
14.6 and 14.7 uses this syntax. This syntax uses variables called simple tem-
plate variables. The simple syntax requires that each <rule> contain only
plain XUL content. That content might contain simple template variables. The
simple system generates that content when a query solution is found, replac-
ing the variables with fact data in the process.

If a template has only one rule, then the simple syntax has a shorthand
version. The <rule> and </rule> tags can be left out. This shorthand version
is otherwise the same as the simple syntax.

See the <rule> tag for more detail on rules.

14.3.1 Special XUL Names

The XUL template system uses a number of special literal values. Template
variables are used nowhere except inside the <template> tag.

14.3.1.1 Extended Template Variables Mozilla’s extended template vari-
ables are the variables used to create single fact queries and flexible multifact
RDF queries. Such variables always appear inside XML strings.

Extended template variables start with a question mark (“?”) and can
contain any character. They are case-sensitive. They end with either a space
(“ ”) or a caret or circumflex (“^”) or by the termination of the string that they
are embedded in. The space or caret is not part of the variable name. If a space
is detected, it is left as the first nonvariable name piece of content. If a caret is
detected, it is silently consumed, and has no further role.

The following ordinary names are identical. The third example has an
XML character entity reference for space.

"?name " "?name^" "?name "

These further names are also valid variable names. Meaningful names
are always recommended over unreadable names, though.

"?name_two" "?nameThree" "?name-four" "?name66" "?66name" "?$%@$z+"

14.3.1.2 Simple Template Variables The simple template notation for rules
(see “<rule>”) has its own “variables.” These variables are really just the
URIs of fact predicates. Such variables always appear inside XML strings.

Simple template variables have the format:

rdf:URI

Such variables end with either a space (“ ”) or a caret (“^”), or by the termina-
tion of the string they are embedded in. The space or caret is not part of the
variable. If a space is detected, it is left as the first nonvariable piece of con-
tent. If a caret is detected, it is silently consumed, and has no further role.

The URI part of a simple template variable should be a valid URI. If it is
to be processed meaningfully, it should be constructed to suit the context in
which it is used.

AppDevMozilla-14 Page 518 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 519

Examples of meaningful URIs are

"rdf:urn:test:example:more"
"rdf:http://www.test.com/Test#Data"

14.3.1.3 Variable Interpolation Both extended and simple variables are used
only inside XML attribute values. In the content part of a template rule, vari-
able names are replaced with content when content is generated.

If a rule’s query finds a solution, content generation will follow. When
that happens, variable names are simply replaced with their values in the
strings they contain. If the variable name has no ground value as a result of
the query (possible if a <binding> tag is used), then it is replaced with a zero-
length string.

14.3.1.4 Special URIs and Namespaces The template system uses a few
special URIs and namespaces. The URI scheme rdf is used to represent RDF
data that originates from inside the Mozilla Platform itself. The currently
implemented URIs in this scheme are

rdf:addressdirectory rdf:bookmarks rdf:charset-menu
rdf:files rdf:history rdf:httpindex rdf:internetsearch
rdf:ispdefaults rdf:local-store rdf:localsearch
rdf:mailnewsfolders rdf:msgaccountmanager
rdf:msgfilters rdf:smtp rdf:subscribe
rdf:window-mediator

There are two special values for this rdf URI scheme. The URI

rdf:null

means use a data source that contains zero facts. Such a data source usually
has facts added later via JavaScript. The URI

rdf:*

is Mozilla-specific notation that means “match any and all predicates.” The use
of asterisk (“*”) is inspired by the use of asterisks in CSS2—in CSS2, * also
means “match all.” This URI should be seen as a special case of a simple tem-
plate variable. It does not identify one fixed resource. There is also an old nota-
tion for this special URI:

...

This notation is identical to the ellipses (three dots) character, except
that it consists of three separate, single, full-stops (periods). This old notation
means the same thing as rdf:*, but it should not be used any more.

Table 11.3 lists a set of XML namespaces that Mozilla uses for the RDF
facts managed by the platform. If templates use Mozilla-internal data sources,
then these namespaces can be used to identify predicates/properties within
those data sources.

AppDevMozilla-14 Page 519 Thursday, December 4, 2003 6:37 PM

520 Templates Chap. 14

It is common in XML to use the xmlns attribute to provide a shorthand
alias for a long namespace URL. Within the template system, in nearly all
cases, the full URL, not an alias, must be used. This is not a consequence of
any XML standard; it is just the way the Mozilla Platform works. XML
namespaces do not perform alias substitution inside attribute values, so there
is no help from XML itself. That leaves detection of those names up to the plat-
form. Mozilla does not know how to detect or expand xmlns aliases or relative
URLs inside an attribute value, so full URLs are required. The only place
where an xmlns alias can be used is as an attribute of the <rule> tag. In that
case, the alias is used in the attribute name, not in the attribute’s value,
where it is handled by standard XML parsing.

14.3.2 The Base Tag

The topmost template tag is the parent tag of a <template> tag. It is called
the base tag of the template. It is an ordinary XUL tag like <tree> or <box>.
This tag must carry part of the template configuration information if the tem-
plate is to work.

The special attributes that can be added to such a topmost tag are

datasources flags coalesceduplicatearcs allownegativeassertions
xulcontentgenerated ref containment

The datasources attribute states what RDF data are to be used in the
template. It is a space-separated list of RDF file names like test.rdf, and
named data sources like rdf:bookmarks.

Because the datasources attribute takes one or more arguments, it is
always a composite data source (with interface nsIRDFCompositeData-
Source).

If the XUL document is installed in the chrome, or is otherwise secure,
then the internal data source rdf:local-store is automatically added to
the start of the data sources list. This data source adds the current user pro-
file’s localstore.rdf configuration information. This is important because
it is common to work on the data sources of a template from a script, and so
the application programmer must remember that this data source is present.

The flags attribute is used to optimize the performance of the tem-
plate query process. It applies only to recursive queries and accepts a space-
separated list of keywords. Two keywords are currently supported:

☞ dont-build-content. This keyword is specific to tree-based templates.
It tells the standard template builder to drop responsibility for sending
generated content to the display. Instead, the tree builder is responsible
for that. The template-building system still generates RDF-based con-
tent, but it acts as a view that the tree builder uses. Chapter 13, List-
boxes and Trees, describes the different builders. The benefit of this
system is that generating content is put off until it needs to be displayed.

AppDevMozilla-14 Page 520 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 521

This is efficient for systems where generating content is expensive, such
as querying a directory server. It also prevents the template system from
“flashing” content to the screen once before the query has generated its
own content.

☞ dont-test-empty. This keyword tells the query processor not to exam-
ine containers to see if they are empty. This is a performance optimiza-
tion that saves doing a test that can be expensive. It also allows the
template system to handle specialized hierarchical data where testing for
empty is impossible. Dynamic network discovery is a practical case
where such a situation might exist. In that field, it is impossible to
answer the question: “Is the number of network elements out there
zero?” It is impossible because the code must wait forever to be sure that
no answer arrives. dont-test-empty is a good choice for templates
based on the rdf:null data source.

coalesceduplicatearcs, allownegativeassertions, and xulcon-
tentgenerated are also performance tweaks and further modify how queries
work.

☞ The coalesceduplicatearcs attribute, when set, affects the facts that
can be extracted from a template’s set of data sources. Most flaglike
attributes in Mozilla are set to true when specified, but this attribute is
set to false. It affects JavaScript access to facts, not the results of tem-
plate queries. If this attribute is not set, identical facts inside the tem-
plate’s data sources will be reported only once, not once for each copy. If it
is set to false, then all facts are reported, duplicate or not. Template
data sources go faster if this attribute is set.

☞ The allownegativeassertions attribute, when set, also affects the
facts that can be extracted from a template’s set of data sources. Most flag-
like attributes in Mozilla are set to true when used, but this attribute
can also be set to false. It also affects JavaScript access to facts, not the
results of template queries. If this attribute is not set, a fact that is
stated (asserted) both positively and negatively will never be reported
because the two facts cancel each other out. RDF documents contain only
positively asserted facts. Negatively asserted facts can be made using
JavaScript only. If this attribute is set, no cancelation is done, and all
facts are reported. Template data sources go faster if this fact is set.

The xulcontentgenerated attribute is applied to any content tag in
the template, or any generated content tag produced by the template. It is
listed here because it is also a performance optimization. Experiment with
this attribute only after you have a full understanding of templates.

☞ The xulcontentgenerated attribute can be set to true. It affects
when template query and content generation occur. If a template does
lazy building, then at any time, some of the possible content will be gen-

AppDevMozilla-14 Page 521 Thursday, December 4, 2003 6:37 PM

522 Templates Chap. 14

erated and some may not. If a DOM operation (like adding a child tag)
were attempted on a tag with incomplete lazy content, confusion could
result. Where would such a child tag be put when the final set of children
is yet to be determined by the query? Mozilla handles this by forcing the
template to build that tag’s children completely before starting the DOM
operation. The xulcontentgenerated attribute is a programmer-
supplied hint that advises there is nothing to rebuild at this point in the
XML tree. This speeds up DOM operations and saves unnecessary pro-
cessing.

The ref attribute states the starting point for the template query. It
holds the full URI of a fact subject. That subject should be the name of an RDF
<Seq>, <Alt>, or <Bag> container.

ref and containment are also discussed in the following subtopic.

14.3.2.1 ref and containment: Container Tests The ref and contain-
ment attributes can be used to specify a starting point for a template query
that doesn’t use an official RDF container tag. This is useful for plain RDF
facts that form a simple hierarchy but that don’t use <Seq>, <Bag>, or <Alt>.
Such pretend containers require a little explanation.

Consider a normal RDF container. An example is shown in Listing 14.9.

Listing 14.9 RDF container fragment equal to three facts.
<Description about="urn:eg:ownerA">
 <prop1>
 <Seq about="urn:eg:ContainerA">

 <Description about="urn:eg:item1" prop2="blue"/>

 </Seq>
 </prop1>
</Description>

The predicates in this example are deliberately kept simple. Listing 14.9
is equivalent to three facts:

<- urn:eg:ownerA, prop1, urn:eg:containerA ->
<- urn:eg:containerA, rdf:_1, urn:eg:item1 ->
<- urn:eg:item1, prop2, blue ->

The first fact has the RDF container as its subject. This is the fact that
“owns” the container. The second fact states that item1 is a member of the
container. The third fact records some useful color information about item1.
This is all normal RDF. These three facts result directly from the <Seq> syn-
tax in Listing 14.9.

Suppose that a program was presented with these three facts rather
than with the RDF markup. How could it tell if a container were present? In
this simple example, detecting the predicate rdf:_1 is enough to tell that

AppDevMozilla-14 Page 522 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 523

containerA is an RDF container. Inside Mozilla, a different test is used
(involving the rdf:instanceOf predicate), but in this example, testing for
rdf:_1 will do.

Now suppose that a single change is made to these three facts. Suppose
that the predicate rdf:_1 is changed to rdf:member (or anything else). Then
the three facts would be

<- urn:eg:ownerA, prop1, urn:eg:containerA ->
<- urn:eg:containerA, rdf:member, urn:eg:item1 ->
<- urn:eg:item1, prop2, blue ->

Listing 14.10 shows an RDF fragment that could produce these slightly
different facts. This fragment is just a series of nested facts.

Listing 14.10 RDF non-container fragment equal to three facts.
<Description about="urn:eg:ownerA">
 <prop1>
 <Description about="urn:eg:ContainerA">
 <rdf:member>
 <Description about="urn:eg:item1" prop2="blue"/>
 </rdf:member>
 </Description>
 </prop1>
</Description>

Is there still a container in these three facts? After all, the three facts are
very similar in both before and after cases. Purists would argue that the
answer is No. Mozilla says that the answer is Maybe.

It is easy to argue that a container does exists. First, the organization
of the three facts hasn’t changed. Second, the choice of rdf:member as a
predicate suggests that item1 belongs to something. Third, any query built
for a <Seq> tag might work just as well with the new predicate as it did with
the old.

The point is this: When RDF markup is boiled down to simple facts,
whether containers exist or not is just a matter of opinion. It is easy to create
an RDF document with no RDF container tags, but still think of containers
as being present. There is no reason why Mozilla should work with one
arrangement but not with the other. Mozilla and templates work with both
arrangements.

That brings us back to the ref attribute. It can be set to “urn:eg:Con-
tainerA”, and that resource will be used as a starting point for a template
query, regardless of whether the original RDF looks like Listing 14.9 or 14.10.
An RDF <Seq>, <Bag>, or <Alt> is not necessary.

There is one catch to this flexible use of ref. Mozilla must still determine
whether the ref URI can act like a container. By default, there are three ways
that the ref URI can pass this test:

1. The URI is a <Seq>, <Bag>, or <Alt> tag’s about value.

AppDevMozilla-14 Page 523 Thursday, December 4, 2003 6:37 PM

524 Templates Chap. 14

2. A fact exists with ref as subject and http://home.netscape.com/
NC-rdf#child as predicate.

3. A fact exists with ref as subject and http://home.netscape.com/
NC-rdf#Folder as predicate.

These tests are the Mozilla equivalent of testing for rdf:_1.
If you don’t want to use the child or Folder predicates in your facts,

then you don’t need to. You can use your own predicate. To do that, create the
RDF content as you see fit, and in the XUL template code, add the contain-
ment attribute to the template’s base tag.

The containment attribute can be set to a space-separated list of predi-
cates. These predicates will be added to the list of container tests. These predi-
cates will be tested for just like the items in the preceding list. For example,
setting

containment="http://www.test.com/Test#member"

means that the RDF <Description> tag in this code will be considered a con-
tainer by Mozilla, provided that xmlns:Test="http://www.test.com/
Test#” is declared somewhere:

<Description about="urn:foo:bar">
 <Test:member resource="urn:foo:bar:item1"/>
<Description>

In summary, template queries work even if official RDF container tags
aren’t present, but in that case, you must tell the template system what predi-
cates are used to implement the unofficial container.

14.3.2.2 Attributes Specific to <tree> If the <tree> tag is used for a tem-
plate, then some extra attributes apply:

flex="1" statedatasource flags="dont-build-content"

Trees do not have a default height. If a <tree> template does not have
flex="1", the template content often does not appear. Always use flex="1"
on a <tree> template.

The statedatasource attribute is set to a named data source that is
used to store the current state of the displayed tree. If the user has opened or
closed a number of subtrees in the display, then information about which sub-
trees are open or closed will be persisted to the nominated data source. Cur-
rently, this is used only in the Classic Mail & News client, in the pane where
the Mail and Newsgroup folders are listed.

If statedatasource is not set, then the data source named in the
datasources attribute is used instead.

The “dont-build-content” value for the flags attribute is also tree-
specific. It is described under “The Base Tag.”

AppDevMozilla-14 Page 524 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 525

14.3.2.3 Sort Support for <template> Siblings The template system
allows a column of data to be sorted. This feature works with XUL menus, list-
boxes, and trees.

The sorting process uses several attributes. These can be set either on
the base tag of the template or on an individual <listcol> or <treecol>
tag. These attributes are

resource resource2 sortActive sortDirection sortResource
sortResource2

☞ resource holds a template variable. This attribute is set by the XUL
document author on the column to be sorted. The data that are used for
the sort key is specified by this attribute. The template variable it names
represents a fact predicate/property associated with each row’s solution
to the template query. The data used as the sort key are the object/value
of that predicate. In other words, this attribute specifies a property
whose value per-row is to be sorted.

☞ sort is an alternate syntax for resource. It is also used to detect the sort
column in a tree or listbox. Use resource and sortActive instead of
this attribute.

☞ resource2 is a secondary predicate for the sorting system. The sort per-
formed on the resource values is not a stable sort. This means that after
sorting, a secondary column of information might be very disordered. The
resource2 attribute causes a second column to be sorted if values in the
primary column are equal. A third or subsequent column may still be dis-
ordered.

☞ sortActive can be set to true and indicates whether the data are cur-
rently sorted. Mozilla automatically sets this attribute on the specific col-
umn and on the tree or listbox. It can be set by the application
programmer as well. It is also used to detect the column to be sorted, so it
should always be set if sort is not set.

☞ sortDirection may be set to ascending, descending, or natural.
This attribute may be set by the XUL document author or automatically
by Mozilla after a sort. Mozilla will set it on both the specific column
sorted and on the base tag.

☞ sortResource and sortResource2 are the same as resource and
resource2. Mozilla sets these attributes. The secondary sort criteria
can be specified by the application programmer using JavaScript, but not
directly using XUL.

☞ sortSeparators can be set to true. If that is done, then special pro-
cessing occurs for bookmarks. A sort will not move an item across a book-
mark separator if this attribute is set and the rdf:bookmarks data
source is used.

AppDevMozilla-14 Page 525 Thursday, December 4, 2003 6:37 PM

526 Templates Chap. 14

14.3.3 <template>

The <template> tag holds all the details of a template that are not specified
in the base tag. It holds a set of rules, each of which is a query-content pair.
The <template> tag has no special attributes of its own. The only tag that
the <template> tag can hold is the <rule> tag. It can have any number of
<rule> tags as children.

If no <rule> tags appear in the template, but other content does, then
the content is assumed to be the content of a single rule that uses the simple-
rule syntax.

A <template> tag can contain simple and extended rules.

14.3.4 <rule>

The <rule> tag defines a single template query and the content that is gener-
ated to pretty-print the results of the query. A set of <rule> tags makes a
query list, so the first <rule> in the list that is satisfied by a set of facts will
pretty-print the template variables ground to those facts.

A rule can be expressed in either simple syntax or in extended syntax. If
the first child tag of the <rule> tag is a <conditions> tag, then the rule is in
extended syntax. In all other cases, simple syntax applies. A <rule> tag may
be a singleton tag with no content.

14.3.4.1 The Standard Fact Arrangement All simple syntax queries and
many extended syntax queries rely on the facts in an RDF file being arranged
a particular way. This arrangement is used repeatedly. It is the case where the
RDF data has a three-step, two-fact arrangement. These steps consist of a con-
tainer term, its item terms, and their property-value terms. Listings 14.1 and
14.2 and the accompanying discussion gives an example of this arrangement.

This standard arrangement also has an equivalent in JavaScript:

var container = {item1:{p1:v1,p2:v2}, item2:{p1:v1,p3:v3} }

In this literal, container collects two items. item1 and item2 are
objects, each with a set of properties pN. Each property has a value vN. There
can be any number of items, each with any number of properties. The whole
point of this structure is just to make a set of objects and their interesting
properties easy to get at. In RDF, Listings 14.2, 14.5, 14.7, and 14.9 are all cor-
rect examples of this structure. An RDF equivalent to this JavaScript is shown
in Listing 14.11.

Listing 14.11 Required RDF structure for an RDF rule using simple syntax.
<Seq about="container">
 <li resource="item1"/>
 <li resource="item2"/>
</Seq>
<Description about="item1" p1="v1" p2="v2"/>
<Description about="item2" p1="v1" p3="v3"/>

AppDevMozilla-14 Page 526 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 527

To make the RDF syntax neat, the <Seq> tag is usually wrapped up
inside a <Description> tag, not shown in Listing 14.11. RDF has flexible
syntax, and there are several other ways of expressing this same structure.
Also, <Seq> can be replaced with <Bag> or <Alt>. A <Description> tag
that acts like a container can be used instead.

All facts processed with simple syntax queries must have this standard
arrangement.

14.3.4.2 Simple Syntax for <rule> The simple rule syntax has no special-
purpose tags.

All the content of the <rule> tag is generated each time the rule’s query
finds a solution. The content of the <rule> tag can contain simple template
variables embedded in any XML attribute value. The content is generated out
as for the <action> tag, except for two minor differences: The simple syntax
requires that the uri attribute be set to rdf:*, and the simple syntax cannot
use the <textnode> tag.

When simple syntax is used, the <rule> tag has several special
attributes:

type iscontainer isempty predicate="object" parsetype

All these attributes determine whether the rule’s query will be successful. Part
of the rule’s query comes from the assumption that the RDF facts are in the
standard fact arrangement. These attributes make up the rest of the query.

The type attribute comes from the official RDF XML namespace http:/
/www.w3.org/1999/02/22-rdf-syntax-ns#. It is usually quoted as
rdf:type, with that namespace included somewhere in the XUL document
using xmlns. rdf:type can be set to a full predicate name, such as http://
home.netscape.com/NC-rdf#version. This attribute is used to test for the
existence of a predicate. rdf:type therefore tests to see if any objects in the
container have a given property. If they don’t, the rule fails for that query solu-
tion candidate.

The iscontainer attribute can be set to true or to false. The default
is don’t care., which cannot be set explicitly. It tests to see if a given fact sub-
ject is a container, using the container tests described earlier under “ref and
containment: Container Tests.” If the test fails, the rule fails for that query
solution candidate.

The isempty attribute can be set to true or to false. The default is
don’t care, which cannot be set explicitly. It tests to see if a given URI has any
kind of content. In the true case, it tests to see if container-like URIs have
any contained items, or if item-like URIs have no properties. If the test fails,
the rule fails for that query solution candidate.

The predicate="object" attribute stands for any pair of predicate
and object names. Because predicate names are often long, they are usually
shortened by adding an xmlns declaration at the top of the XUL document. If
that is done, then a predicate="object" pair like

NC:version="0.1"

AppDevMozilla-14 Page 527 Thursday, December 4, 2003 6:37 PM

528 Templates Chap. 14

will test whether a fact exists with a version predicate in the NC namespace
(perhaps http://home.netscape.com/NC-rdf#) and whether it has an
object literal of “0.1”—in other words, whether an object in the container has
a version property set to “0.1”. The following reserved names cannot be used
for the predicate part because they have other uses:

property instanceOf id parsetype

These three attributes, plus any number of predicate="object" tests,
can be stated in the one <rule> tag. They are boolean ANDed together and
make up all the query of the rule. If none of these attributes is present, then
every fact in the container is a solution to the rule’s query. If any of these
attributes is present, then the rule fails for a given solution candidate if any of
these attributes does not match.

The final attribute, parsetype, can be set to Integer. If this is done, all
predicate="object" pairs in the <rule> tag will have their object part
interpreted as an integer during the query. Any values that are not integers
will cause the whole rule to be ignored. If this attribute is not used, all such
parts will have their object part treated as a string. The query system has no
support for integer mathematics like addition. It just performs comparisons on
a string or integer basis.

The query of a simple rule can usually be expressed as an extended rule.
Listing 14.12 is an example of simple syntax that uses several of the special
attributes:

Listing 14.12 Simple template query showing all options.
<rule iscontainer="true"
 isempty="false"
 rdf:type="http://home.netscape.com/NC-rdf#version"
 NC:title="History"
>

The equivalent extended syntax rule is shown in Listing 14.13.

Listing 14.13 Simple template query showing all options.
<rule>
 <conditions>
 <content uri="?uri"/>
 <member container="?uri" child="?item"/>
 <triple subject="?item
 predicate="http://home.netscape.com/NC-rdf#version"
 object="?version"/>
 <triple subject="?item"
 predicate="http://home.netscape.com/NC-rdf#title"
 object="History"/>
 </conditions>

AppDevMozilla-14 Page 528 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 529

The extended syntax can do everything the simple syntax can do, except
for the options iscontainer="false" and isempty="true" (the opposites
of the preceding example). These two options are not possible in the extended
syntax. The extended syntax can check for the existence of facts but not for the
absence of facts. These simple tests can still be done with extended syntax by
stating two rules instead of just one. The first rule tests for particular facts,
but generates no content; the second rule catches the remaining cases, where
that content is missing, and generates whatever content is required.

14.3.4.3 Extended Syntax for <rule> When extended rule syntax is used,
the <rule> tag has no special attributes. This syntax is the most flexible and
powerful template syntax. “Common Query Patterns” later in this chapter pro-
vides recipes for most common uses. This topic covers the syntax options.

The extended rule syntax consists of a <rule> tag with two or three
immediate children. The <conditions> tag must be the first child and con-
tains the query of the rule. The <bindings> tag is the optional middle child
and allows extra variables to be created. The <action> tag holds the content
to generate each time the query finds a solution. These tags are described
under their individual headings.

The extended rule syntax uses extended syntax variables, and these vari-
ables may be used in siblings of the <template> tag. A common use is to put
them in the column definition tags of listboxes and trees.

If the query is recursive, then only the <conditions> part of the rule
dictates the recursive behavior.

14.3.5 <conditions>

The <conditions> tag contains a template query described using the
extended template syntax. This tag has no special attributes of its own. If it is
present, it must be the first child tag of <rule>. The recursive nature of a
recursive query is fully specified by the content of the <conditions> tag.

This tag can contain <content>, <triple> and <member> tags. Its first
child must be a <content> tag, and there can be only one <content> tag per
condition. The <conditions> tag must also contain at least one <member> or
<triple> tag.

The <conditions> tag can also contain a <treeitem> tag. If the tem-
plate is based on a <tree> tag, then <treeitem> may be used instead of
<content>. In that case, it is written and acts exactly the same as a <con-
tent> tag. There is no special reason for this variation; it is just a leftover
requirement from the early days of templates. <treeitem> is deprecated in
favour of <content>, but for older versions <treeitem> must be used if the
template is based on a <tree>.

When these tags are used, their order should be the same as the drill-
down order used by the template query processor. That order is also the same
as the hierarchical arrangement of the facts being examined.

AppDevMozilla-14 Page 529 Thursday, December 4, 2003 6:37 PM

530 Templates Chap. 14

14.3.5.1 <content> The <content> tag must be the first child of the
<conditions> tag. It has only one special template attribute:

uri

This attribute is set to an extended template variable. That variable is then
ground to the value supplied to the ref attribute in the template’s base tag.
That value is the starting point for the rule’s query. If the query is recursive,
the uri attribute of the parent query is used instead of ref. The <content>
tag always has the same form, so by convention it is usually written exactly
like this:

<content uri="?uri"/>

The uri attribute is also used on tags that are children of the <action>
tag. The variable used in the <content> tag’s uri attribute must never be
used as the value of uri attributes appearing inside <action> content. If it is
used in that way, no solutions to the template query will be found, and no con-
tent will be generated. The variable used in the <content> tag’s uri
attribute may appear elsewhere in the <action> tag’s content.

If the template is based on a tree, then for versions less than 1.5, the
<treeitem> tag is used instead, exactly like this:

<treeitem uri="?uri"/>

The <treeitem> tag can also be part of the generated content. In that
case, it can also appear in the <action> tag, but any uri attribute must have
a variable different from ?uri as its value.

14.3.5.2 <triple> The <triple> tag represents one hop (one RDF arc) in
the query process. Each <triple> tag used increases the number of hops by
one, and increases the number of facts required for a solution by one. The
<triple> tag is used to link facts using variables and to select facts.

The triple tag has the following special attributes, which must always be
present:

subject predicate object

☞ subject may be set to an extended template variable or a URI.
☞ predicate must be set to a URI that is a property/predicate name.
☞ object may be set to an extended template variable, a URI, or a literal

value.

Variables may not be used in the predicate attribute.
It is possible to construct a set of <triple> tags that drills down into the

RDF facts and then drills back up somewhere else. It is also possible to con-
struct a set of <triple> tags that create a cycle. Neither of these things are
handled correctly in Mozilla. A <triple> tag with zero variables is useless.

AppDevMozilla-14 Page 530 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 531

14.3.5.3 <member> The <member> tag is used to find the contained items of
a container tag. It has the special attributes

container child

The container attribute is the URI of the container tag. The child attribute
will be matched to the object of facts that have the container URI as their sub-
ject. In all uses of this tag, both attributes are present, and both are set to
extended template variables, like so:

<member container="?uri" child="?item"/>

Because the containment relationship inside an RDF container is just a
single fact (with rdf:_1 and so on as the predicate), an ordinary <triple>
tag can also be used to find these contained items. The <member> tag is just a
specialized version of the <triple> tag.

The advantage <member> has over the <triple> tag is that no predi-
cate needs to be supplied. The <member> tag is free to apply a container test
using the several predicate possibilities described earlier under “Ref and
containment: Container Tests.” To do the same job with the <triple> tag
would require a separate query that hard-coded each URI that can be used as
a container test URI.

Although the container attribute for a <member> tag often holds the
URI starting point of the query, it can be any URI or extended syntax variable
used in the query.

14.3.6 <bindings>

The <bindings> tag is the optional part of an extended syntax query. It has
no special attributes of its own and can contain only <binding> tags. <bind-
ings> and <binding> appear elsewhere in Mozilla, particularly in XBL.
There is no connection between any other use and the template use. Explained
in SQL terms, this part of an extended query provides support for outer joins
and null values.

The <bindings> tag might better be called the <extra-groundings>
tag, since there are no bindings in the XBL (or XPConnect or IDL or XPIDL)
senses. A binding variable is just an additional variable that may be ground
by a given query. The same meaning applies to the <binding> tag.

The <bindings> section of the rule is where extra variables can be set
without further restricting the results of the <conditions> query. This is
done very simply. In the <conditions> section, all variables must be ground
if a solution to the query is to be found. Such a solution is passed to the bind-
ings section. The query processor also tries to ground all the variables stated
in the <bindings> section. If only some of the extra variables can be ground,
then the processor just gives up and sets the rest to the empty string. This
means that the <conditions> solution is never rejected by the <bindings>
section. In effect, the <bindings> section is similar to an RDBMS outer

AppDevMozilla-14 Page 531 Thursday, December 4, 2003 6:37 PM

532 Templates Chap. 14

join—if something matches, it is reported; otherwise, you get the rest of the
query’s matched data only.

The variables in the <bindings> section must all be extended template
variables. Variables from the <conditions> section may be reused here, but
the reverse is not possible. For the <bindings> section to make any sense, at
least one variable from the <conditions> section must be used.

14.3.6.1 <binding> The <binding> tag is identical to the <triple> tag in
attributes and in purpose. It differs from <triple> only in the rules used to
ground its variables, as noted under <bindings>.

14.3.7 <action> and Simple Syntax Content

The <action> tag is used in a <rule> using the extended query syntax. It
provides the content that is generated for each query result. The content of
simple syntax <rule> tags is generated the same way as <action> content
is. That generation system is described here.

The content of an <action> tag consists of ordinary XUL content with
embedded extended query variables. The template system substitutes a value
for every variable when generating content. Therefore, variables are used in
the <action> content, whereas they are defined and ground in the <condi-
tions> content (they are automatically defined and ground for simple syntax
queries). The template system also adds an id attribute to one tag each time
content is generated.

The content of <action> cannot include a <script> tag.
The content of the <action> tag should be organized as shown in List-

ing 14.14.

Listing 14.14 Example <action> content hierarchy.
<action> // simple syntax: <rule>
 <box id="A">
 <box id="B">
 <box id="C" uri="?var"> // simple syntax: uri="rdf:*"
 <box id="D"/>
 <box id="E">
 <box id="F"/>
 </box>
 </box>
 </box>
 </box>
</action>

This example is used to explain what works and how it works. In the gen-
eral case, tags may be nested to arbitrary depth within <action>, and any
ordinary XUL tag may be used. The special case of <tree>-based templates is
discussed separately.

AppDevMozilla-14 Page 532 Thursday, December 4, 2003 6:37 PM

14.3 Template Construction 533

The content of <action> is divided into the tag containing the uri
attribute, that tag’s ancestor tags, and that tag’s descendant tags. In Listing
14.14, C contains uri; A and B are ancestors; and D, E, and F are children.

Ancestor tags A and B are normally generated as content just once, no
matter how many solutions the query finds. If template variables (extended
ones for <action> content, simple ones for <rule> content) are used in A or
B, then they will have the value of the first solution found by the template. If
tags A or B have sibling tags, those siblings may not be generated reliably. It is
recommended that such sibling tags be avoided.

Tag C is the start of the repeated content because it contains the uri
attribute. Both tag C and all its content will be generated as a unit zero or more
times. There are two triggers required before the content will be repeated once.
First, a solution must be found to the query. Second, the value of the uri
attribute on tag C must be different in that new solution. The easiest way to
ensure this is to set that value to a variable quoted in the object of some tuple.
One example is the child part of a <member> tag: Use ?item in this case:

<member container="?seq" child="?item"/>

In the most general case, the uri attribute should therefore be set to a
subject or object that is different for every solution found by the query. This
unique value is put into the id attribute of each generated copy of tag C dur-
ing generation. Tag C should not have sibling tags; those sibling tags may not
be generated reliably. It is recommended that such sibling tags be avoided.

If lazy building is required, then tag C must be one of these XUL tags:

<menu> <menulist> <menubutton> <toolbarbutton> <button> <treeitem>

Tags D, E, and F are ordinary content tags that are generated once per
query solution. They may have siblings or extensive content of their own. If
these tags contain template variables, those variables will be substituted in
for each query solution found.

14.3.7.1 Content for <tree>-Based Templates Content for <tree>-based
templates can break the rule that ancestor tags of the uri tag are generated
only once.

If a template is based on a <tree> tag, then each <treeitem> in the final
tree might have a <treechildren> tag as its second child tag. That tag could
contain any number of subtree tags for that item. Fortunately, the content held
in <action> need only represent a single tree row. The template content
builder that processes <tree> templates is intelligent enough to duplicate this
content for subtrees. In other words, it is smart enough to detect the need for
recursive queries. The <action> content must be constructed carefully if this
arrangement is to work. Listing 14.15 shows the correct construction.

Listing 14.15 Example <action> content hierarchy for a <tree> template.
<action> //simple syntax: use <rule>
 <treechildren>

AppDevMozilla-14 Page 533 Thursday, December 4, 2003 6:37 PM

534 Templates Chap. 14

 <treeitem uri="?var"> //simple syntax: use uri="rdf:*"
 <treerow>
 ... any normal treerow content ...
 </treerow>
 </treeitem>
 </treechildren>
</action>

All the tags in this arrangement can have attributes added. An id should
not be added to the <treeitem> tag. The ?var variable usually matches a
variable for the object of a <member> or <triple> tag.

It is possible to vary this syntax a little, and even to nest templates
inside other templates—for example, so that a <treeitem> comes from one
RDF source but its <treechildren> sibling tag comes from another. Such
nested syntax needs to be explored carefully because it is not widely used or
tested.

Tree-based templates use recursive queries. For each recursion of the
query deeper into the tree of facts, the <action> content above the uri tag is
duplicated. This means one further copy of the <treechildren> tag stated in
Listing 14.15. This new copy is then the starting point for all the solutions
found by that new query.

14.3.7.2 <textnode> Simple and extended template variables can appear
in XML attributes’ values only. Some XUL tags generate content from text
between their start and end tags, like <Description>.

The <textnode> tag provides a way to put variables in plain, non-
attribute content. Suppose that the variable ?var contains the string "red"
at some point. The line

<tag><textnode value="big ?var truck"/></tag>

is the same as the line

<tag>big red truck</tag>

<textnode> can be placed anywhere inside the <action> tag. <text-
node> cannot be used in templates that have the simple query syntax.

<textnode> concludes the discussion of XUL template tags.

14.4 COMMON QUERY PATTERNS

Here are many of the common queries used in templates.

14.4.1 Containers

The most obvious template queries exploit the standard fact arrangement,
and that means using an RDF container. The simple query syntax supports
this arrangement.

AppDevMozilla-14 Page 534 Thursday, December 4, 2003 6:37 PM

14.4 Common Query Patterns 535

14.4.2 Single-Fact Queries

Single-fact queries (see the prior discussion) can be specified using the
extended query syntax only; they cannot be specified using the simple query
syntax. A single-fact query may return zero or more solutions. The only
unknown that can be queried for is the object of the single fact. The subject
and predicate must be known in advance and hard-coded in the query.

Such a query can be implemented with either a <member> or a <tri-
ple> tag. The <member> variation is

<rule>
 <conditions>
 <content uri="?uri"/>
 <member container="?uri" child="?data"/>
 </conditions>
 <action>
 <description uri="?data" value="?uri ?data"/>
 </action>
</rule>

In this case, if the predicate of the single fact is not a containment predi-
cate (e.g., rdf:_1, or a special Mozilla value like child), then the contain-
ment attribute on the template must specify that predicate. Several predicate
alternatives can be listed in that attribute.

The <triple> variation is

<rule>
 <conditions>
 <content uri="?uri"/>
 <triple subject="?uri"
 predicate="predURI"
 object="?data"/>
 </conditions>
 <action>
 <description uri="?data" value="?uri ?data"/>
 </action>
</rule>

“predURI” is the predicate to use, expressed as a literal. If predicate
alternatives are required, use more than one rule of this kind.

14.4.3 Property Set

A property set is a query whose purpose is to retrieve a number of information
items attached to a given fact subject. A typical example is treating a fact sub-
ject as a JavaScript object and retrieving the property values of that object. A
second example is treating a fact subject as the name of a record and retriev-
ing all the data items in that record. These semantic approaches are encour-
aged by the RDF standard’s use of the terms property and value.

AppDevMozilla-14 Page 535 Thursday, December 4, 2003 6:37 PM

536 Templates Chap. 14

If the subject with associated properties is a member of an RDF con-
tainer, or a container-like tag, then the simple query syntax is designed with
exactly this use in mind:

<rule>
 <box uri="rdf:*">
 <label value="rdf:http://www.test.com/Test#Prop1"/>
 <label value="rdf:http://www.test.com/Test#Prop2"/>
 <label value="rdf:http://www.test.com/Test#Prop3"/>
 <label value="rdf:http://www.test.com/Test#Prop4"/>
 </box>
</rule>

If the subject with the associated properties is not a member of a con-
tainer, then the extended query syntax must be used. In that case, the starting
point is the same as for the Single Fact Query pattern, using the <triple>
version. At least one property must be known to exist.

<rule>
 <conditions>
 <content uri="?uri"/>
 <triple subject="?uri" predicate="p1" object="?v1"/>
 <triple subject="?uri" predicate="p2" object="?v2"/>
 <triple subject="?uri" predicate="p3" object="?v3"/>
 <triple subject="?uri" predicate="p4" object="?v4"/>
 </conditions>
 <action>
 <description uri="?data" value="?v1 ?v2 ?v3 ?v4"/>
 </action>
</rule>

Here, the p again stands for full predicate URIs, like http://
www.test.com/Test#Prop1. There is one <triple> for each property in the
needed set. If some of the properties may not exist (or could be null), then the
matching <triple> tags for those properties can be changed to <binding>
tags and moved to the <bindings> section.

14.4.4 Singleton Solution

A single solution is any query that returns just one solution. This usually
occurs when the application programmer’s knowledge of the facts being que-
ried ensures that only one solution ever exists. That situation requires no spe-
cial syntax; it is just a consequence of design.

There is, however, another possibility. It relies on the uri attribute used
inside an <action> tag. Because <action> is required, this possibility only
applies to the extended syntax.

It is possible for a query to find multiple solutions but to generate con-
tent for just one. This can happen only when the query is a multifact query.
An example illustrates this case. Suppose that the following RDF content
exists:

AppDevMozilla-14 Page 536 Thursday, December 4, 2003 6:37 PM

14.4 Common Query Patterns 537

<Description about="urn:example:root">
 <link1>
 <Description about="urn:example:child">
 <link2 resource="urn:example:X"/>
 <link2 resource="urn:example:Y"/>
 </Description>
 </link1>
</Description>

All the resources of these facts can be recovered with this query:

<rule>
 <conditions>
 <content uri="?uri"/>
 <triple subject="?uri" predicate="p1" object="?child"/>
 <triple subject="?child" predicate="p2" object="?res"/>
 </conditions>
 <action>
 <description uri="?res" value="?uri ?child ?res"/>
 </action>
</rule>

In this query, p1 and p2 should be replaced with suitable URIs for link1
and link2.

Since the variable ?res changes for each of the two solutions that will be
discovered (one with X and one with Y), two copies of the <action> content
are generated. If, however, the <description> tag is changed to the follow-
ing line, only one copy is generated:

<description uri="?child" value="?uri ?child ?res"/>

One copy is generated because the ?child variable can be ground to only
one value. The one copy that is generated usually matches the first solution in
the RDF document, but that order is not guaranteed.

14.4.5 Tree Queries

All template queries are equivalent to navigating a tree because the query sys-
tem uses a depth-first solution strategy. Template queries for trees appear
complex because (a) they are often recursive, and (b) extensive syntax is
required. Disguised by this syntax is the fact that tree-based templates
require very simple queries only. Listing 14.16 illustrates this point.

Listing 14.16 Simple extended syntax tree query.
<tree flex="1" datasources="test.rdf"
 ref="http://www.example.com/test.rdf">
 <treecols>
 <treecol id="colA" primary="true"/>
 </treecols>
 <template>
 <rule>

AppDevMozilla-14 Page 537 Thursday, December 4, 2003 6:37 PM

538 Templates Chap. 14

 <conditions>
 <content uri="?uri"/>
 <member container="?uri" child="?item"/>
 </conditions>
 <action>
 <treechildren>
 <treeitem uri="?item">
 <treerow>
 <treecell label="?item"/>
 </treerow>
 </treeitem>
 </treechildren>
 </action>
 </rule>
 </template>
</tree>

Listing 14.16 is a straightforward and minimal use of the tree-template
combination. Dark text is template markup; light text is tree markup.
Although there is a lot of syntax overall, the template specification is very sim-
ple. The <rule> section is no more than a single-fact query. The results of that
query are used in exactly one place. The code seems complex because the
markup overheads of the XUL template and XUL tree syntaxes are inter-
leaved. If the <tree> tag is replaced with a <box> tag and the generated con-
tent reduced to a <description> tag, then this template is no more than
Listing 14.17.

Listing 14.17 Simple extended syntax tree query.
<box datasources="test.rdf"
 ref="http://www.example.com/test.rdf">
 <template>
 <rule>
 <conditions>
 <content uri="?uri"/>
 <member container="?uri" child="?item"/>
 </conditions>
 <action>
 <description uri="?item" value="?item"/>
 </action>
 </rule>
 </template>
</box>

Clearly this is a very simple template.
This syntax can be further reduced to the simple syntax if the RDF con-

tent follows the standard fact arrangement. If the query is recursive, that
change is a little more complex than it first appears. The standard fact
arrangement requires two facts if a simple syntax query is to extract a single
RDF property value. Those two facts have as subject terms the container iden-

AppDevMozilla-14 Page 538 Thursday, December 4, 2003 6:37 PM

14.5 Template Lifecycle 539

tifier and the container member. Both facts must be repeated down the tree of
possible solutions that the query searches, since each query step consumes
two facts. That means a tree explored using the simple syntax must be twice
as big as a tree explored more economically with the extended syntax. In List-
ing 14.17, only one fact is required per step down the tree.

14.4.6 Unions

There are several ways to generate a set of query solutions that is the union of
two or more queries:

☞ The datasources attribute can refer to multiple RDF files or data
sources so that the facts examined by a single query are a union of sev-
eral fact sets.

☞ The containment attribute can add several different container predi-
cates to the one query.

☞ Multiple <rule> tags can be used to ensure that more than one type of
solution is found from a given set of facts.

☞ A set of <binding> tags can be used to explore several subtrees of a
given query at the same time.

14.4.7 Illegal Queries

This query cannot be handled by the template system:

<rule>
 <conditions>
 <content uri="?uri"/>
 <triple subject="?uri" predicate="a" object="?v1"/>
 <triple subject="?v1" predicate="b" object="?v2"/>
 <triple subject="?v2" predicate="c" object="?v3"/>
 <triple subject="?v4" predicate="d" object="?v3"/>
 </conditions>
</rule>

In this query, the last <triple> works backward from the ?v3 variable,
rather than using it as a subject. This effectively decreases the depth that the
query penetrates into the fact store by one. That is not implemented; all
<conditions> content must expand the query in the forward direction only.

14.5 TEMPLATE LIFECYCLE

Here is a summary of the processing steps that templates go through.
The first part of the process is the initial generation of XUL content.

1. Mozilla loads the XUL document containing the template. XUL content
surrounding the template is layed out as normal, leaving a spot for the
template-generated content.

AppDevMozilla-14 Page 539 Thursday, December 4, 2003 6:37 PM

540 Templates Chap. 14

2. All tags, including template tags, are formed into a DOM 1 content tree.
3. When the template part of the content is detected, the browser starts

loading facts into memory via the nominated data sources. This is done
asynchronously, like images that load inside an HTML Web page.

4. The template tags are examined for rules, and the rules are compiled
into an internal, private representation.

5. After the rules are known and the data source is fully loaded, the tem-
plate query system starts searching for solutions. If the application pro-
grammer has added observers, those observers are advised of progress
during the search.

6. If lazy building is in effect, the search process might mark parts of the
search “don’t do this now; maybe look at it later.”

7. As each solution is found, content is generated for it from the template
rules. This content is added to the XUL document. This is done asynchro-
nously, like images loading inside an HTML Web page.

8. When all nonlazy solutions have been found, initial content generation is
complete.

The second part of the process involves interactive response from the
template after the initial load is complete.

1. The generated XUL content can react to events and other interactions
exactly like ordinary static XUL content. It can exploit event handlers
and respond to changes in layout and general-purpose scripting.

2. If the template includes lazy building, then a user clicking on a twisty
can cause query processing to explore the RDF graph further. The pre-
ceding steps 5-8 are repeated in this case.

3. If the user performs drag-and-drop actions or clicks on sort direction
icons, then a <listbox>- or <tree>-based template must respond to
those actions, possibly by updating the fact store. Drag and drop requires
extra scripting by the application programmer.

4. If the template is told to rebuild, then the preceding steps 2-8 are
repeated, except that the existing generated content is replaced if neces-
sary, rather than created from nothing.

If the template is read-only, so that no fact changes are made, then clos-
ing the Mozilla window or removing all the template DOM subtree has no
effect on the source of the RDF facts. Such templates cannot damage RDF doc-
uments.

If the template includes scripting logic that writes changes to the under-
lying set of RDF facts, then those changes will be permanent only if (a) the
facts come from an RDF file or the Bookmarks file and (b) that file is explicitly
written out by a piece of script using the nsIRDFRemoteDataSource inter-
face.

AppDevMozilla-14 Page 540 Thursday, December 4, 2003 6:37 PM

14.6 Scripting 541

14.6 SCRIPTING

Here we will look at how to control and enhance templates from a script and
further explore some of the advanced tree concepts discussed in Chapter 13,
Listboxes and Trees. Chapter 16, XPCOM Objects, contains extensive discus-
sion of the RDF and data source objects that complement the template system.

14.6.1 Guidelines for Dynamic Templates

Templates expressed in XUL alone are relatively easy because they don’t ever
change, and they generate content once only. Templates expressed in a combi-
nation of XUL, JavaScript, and AOM and XPCOM objects can be very chal-
lenging because full functionality is the exception rather than the expected.
Here is some collected wisdom:

☞ The dont-build-content flag, and the other performance flags have
no effect when a template as a whole is rebuilt. They affect only the
progress of any recursive part of a template query, and the way multiple
data sources are merged.

☞ The ref template attribute or property can be changed any time, and the
generated content will be automatically rebuilt.

☞ Changes to any part of the template’s specification other than ref
require a manual call to rebuild().

☞ The nsIRDFCompositeDataSource that holds all the data sources for a
given template shouldn’t be used to assert new facts (either by Assert()
or by other means). Always extract and work on one of the data sources
that contributes to the composite.

☞ For applications, the most reliable data sources for asserting facts are the
in-memory-datasource (an initially empty data source that usually
replaces a value of rdf:null for the datasources attribute) and the
xml-datasource (used for externally stored RDF files, and for the
URLs stated in the datasources attribute). The xml-datasource will
only assert facts for URLs with a file: scheme. It will not assert facts
for chrome: or resource: schemes, or for any other scheme.

☞ If you are making extensive fact changes to a data source, remove it from
the template first, make the changes, and then add it back. That saves
many complex updates to the appearance of generated content. See also
the beginBatchUpdate() methods for trees in Table 13.3.

☞ The Flush() method is supported only for data sources based on file:
URLs.

☞ The Refresh() method is supported for http: and file: URLs. When
using this method to retrieve a file from a Web server, test equipment
must be set up correctly. All HTTP caching effects between the server
and Mozilla must be removed or else results may be confusing.

AppDevMozilla-14 Page 541 Thursday, December 4, 2003 6:37 PM

542 Templates Chap. 14

14.6.2 AOM and XPCOM Template Objects

The template system adds JavaScript properties to the objects representing
template tags. Properties are added to both the template specification tags
and the generated template content tags. These properties are in addition to
the properties that exist for the base tag of the template. Table 14.1 lists these
properties.

In this table, “Useful” means that the property gains a useful value;
“Null” means that the property is set to null; “Empty string” means that the
property contains a zero-length string.

☞ The database property is an object that contains references to the data
sources used in the template. It implements the nsICompositeData-
Source XPCOM interface. It exists even if the sole stated data source is
rdf:null. For chrome-based templates, it always contains the
rdf:local-store data source.

☞ The builder property is an object used to control the query and content
generation process of the template. It can be seen as a highly specialized
(and very limited) layout or rendering tool. It implements the nsIX-
ULTemplateBuilder interface. It is useful for <listbox> and <tree>-
based templates only.

☞ The resource property is an object that contains a compiled RDF URI.
That URI can be a subject, predicate, or object URI. If the tag is <tem-
plate>, it holds the template id as a non-URI resource. If the template
is a generated tag that has a uri attribute, then it holds the value of the
specified extended template variable. This object implements the nsIRD-
FResource interface.

☞ The datasources property holds the value of the datasources XUL
attribute.

☞ The ref property holds the value of the ref XUL attribute.

Table 14.1 JavaScript properties added by the template system

Property
name Base tag?

<template>
tag? Rules tags Generated tags

database Useful Null Null Null

builder Sometimes
Useful

Null Null Null

resource Useful Useful—holds
tag id

Null Useful—holds uri
value or null

datasources Useful Empty string Empty string Empty string

ref Useful Empty string Empty string Empty string

AppDevMozilla-14 Page 542 Thursday, December 4, 2003 6:37 PM

14.6 Scripting 543

The database object contains the AddDataSource(), RemoveData-
Source(), and GetDataSources() methods, which are used to manage the
data sources that feed facts into the template. The builder object contains
primarily the rebuild() method, which is used to completely re-create and
refresh the displayed contents of a template. The resource object and data-
sources and ref attributes are all available merely for convenience. None of
these objects may be replaced by the application programmer.

In addition to these AOM objects are the objects that support builder
observers, views, and delegates. They are discussed next.

14.6.3 Builders

Template builders are builders—a piece of code inside the Mozilla Platform
that generates the content of a tree. Builders cannot be implemented by an
application programmer, but they can be modified.

The simplest use of a builder is to re-create and redisplay a templated
<tree>. Only one line of code is required:

treeElement.builder.rebuild()

There are no options. This technique works only on templates whose base tag
is a <tree> or <listbox>. rebuild() does not work on other templated
tags.

When the tree is rebuilt, the open and closed states of any subtrees will
be preserved if lazy building is at work. To stop this from happening, use the
statedatasource attribute on the <tree> tag, and then take that data
source away just before rebuilding. To take it away, remove the data source
from the databases’ property, then remove the tree attribute using a DOM
operation, and then call rebuild().

Recall there are two builders used in Mozilla; the XUL content builder
and the XUL template builder. The latter deals with templates. This template
builder is based on this component and interface:

@mozilla.org/xul/xul-template-builder;1 nsIXULTemplateBuilder

This interface contains the rebuild() method. This builder cannot be
modified or replaced by the application programmer.

Inside Mozilla, this template builder has a specialization (a subclass)
that is specific to templated trees: the XUL tree builder.

@mozilla.org/xul/xul-tree-builder;1 nsIXULTreeBuilder

This builder cannot be replaced by the application programmer either. It
can, however, be enhanced. It can accept the registration of an object with the
nsITreeBuilderObserver interface. Although this interface acts somewhat
like an observer, it is also very similar to a delegate object. Which of these two
design patterns is most accurate is a question of opinion as much as it is of
fact.

AppDevMozilla-14 Page 543 Thursday, December 4, 2003 6:37 PM

544 Templates Chap. 14

This nsITreeBuilderObserver interface is a subset of the nsITree-
View interface that is used for custom views. It is used to enhance user inter-
actions with the tree, like column clicking and drag-and-drop gestures. In the
Mozilla application, two examples of such an observer exist: one in the Book-
mark Manager and one in the email folders pane of Classic Mail & News. Both
implement drag and drop for their respective trees, and their JavaScript code
is a suitable example to study.

This interface is used for drag and drop because of the way that <tree>
tags hold their content separate to the rest of the XUL document (see Chapter
13, Listboxes and Trees). The standard drag-and-drop techniques described in
Chapter 6, Events, can’t be used for a <tree>. In fact, there is no (simple) way
to do drag and drop for a <tree> that is not a template.

If an object with the nsITreeBuilderObserver interface is used, it
should be lodged as an observer with the tree’s DOM object using the add-
Observer() method of nsITreeView.

All the Mozilla tree builders also support the nsIRDFObserver interface,
which means the whole tree can in turn act like an observer. This interface can
be added to a data source object (interface nsIRDFDataSource), and it will
then be advised each time new facts relevant to the template’s queries appear.

14.6.4 Views

If the template is based on a tree, then properties relating to views are also
available. Chapter 13, Listboxes and Trees, explains that a view is an auto-
matically created object that is used by a tree builder to perform the actual
generation of tree content.

A custom view object completely replaces the content that would be dis-
played from a template-based RDF file. If the data source for the <tree> tem-
plate is rdf:null, then a custom view can do the whole job of populating the
tree. The simplest way to set this up is to use a <tree> tag with a normal
<treecols> section, plus one of these three options for the remaining content:

<children/>
<template><treechildren/></template>
<template> ... normal set of template rules ... </template>

Such a tree will display its ordinary content first, then when the view is
changed and tree rebuilt, the view will take over and determine the content
from that point onward. If the attribute flags="dont-build-content" is
added, then the ordinary content will not appear at all.

14.6.5 Delegates

A delegate is a very general term in object-oriented design, and many design
patterns and software objects have some delegate-like features. In Mozilla,
delegates are objects that are used to tie RDF fact URIs to an external system,

AppDevMozilla-14 Page 544 Thursday, December 4, 2003 6:37 PM

14.6 Scripting 545

so that each URI has other baggage associated with it. That other baggage
might be vital data of some kind.

In Mozilla, delegates are used to tie RDF facts that are about email infor-
mation to related information stored on a remote mail server, like an SMTP,
IMAP, or LDAP server.

Time and space do not permit a discussion of delegates in this chapter. A
starting point is to look closely at the nsIRDFResource and nsIRDFDele-
gateFactory interfaces, as well as at the XPCOM components whose con-
tract ID’s begin with

@mozilla.org/rdf/delegate-factory;1?key=

14.6.6 Common Scripting Tasks

Here is a brief list of strategies for common template scripting tasks. There is
extensive examination of scriptable RDF objects in Chapter 16, XPCOM
Objects. In particular, tricks that use the rdf:null data source and other
internal data sources are discussed there.

To change a template’s data source, use databases.getData-
Sources(), iterate through the provided list to find the right one, use data-
bases.removeDataSource() with that data source as the argument, and
then rebuild. Or remove that data source from the <tree> tag and rebuild.

To change the root URI for a template query, use setAt-
tribute("ref",newURI) on the base tag. The template will rebuild auto-
matically. Setting the ref property has the same effect.

To change rules, use DOM operations or innerHTML to change the tem-
plate tags directly in the XUL, and then rebuild by calling rebuild(). A bet-
ter solution is to create all possible rules and disable the one you don’t need.
Do this by placing a catch-all rule before the rules that should be disabled. The
catch-all rule finds solutions for all cases it receives, so the remaining (dis-
abled) rules are never considered.

To change facts in a data source, extract the specific data source using
databases.GetDataSources(). Use the Assert() or Change() methods
of the nsIRDFDataSource interface. The template will be rebuilt automati-
cally in some cases; to be sure, call rebuild().

To change the results of a query, step back a little. You can’t change the
solutions that result from the template queries because they are generated by
the query. You need to change the query or the original RDF data so that the
query solutions become different. To change the facts in the fact store, use the
@mozilla.org/rdf/rdf-service;1 component and other RDF components
to construct facts and pieces of facts, and then use the data source object’s
Assert() method to make those facts true. Then rebuild the template.

To change generated content, use normal DOM operations. (The changes
will be lost if a rebuild occurs.) To make such changes permanent, change the
<content> part of a rule rather than the generated content, and rebuild().

AppDevMozilla-14 Page 545 Thursday, December 4, 2003 6:37 PM

546 Templates Chap. 14

14.7 STYLE OPTIONS

The template system has no related style enhancements, but some new tricks
with the existing styles are possible.

Styles can be attached to content in a template, and the style and class
attributes can benefit from the use of template variables. This allows some
style information to be supplied by the RDF data that drives the template. It
also creates an architectural problem because it allows presentation informa-
tion and raw data to be mixed in one set of RDF facts. If this needs to be done
extensively, it is better to use two RDF data sources and keep presentation
facts in one and raw data facts in the other.

Styles can also be applied by using <rule> tags as data-driven style selec-
tors. Two rules can generate near-identical content, but differ slightly in their
queries. The near-identical content can just have different style information.

Finally, styles can be applied to the generated content of a template,
using JavaScript DOM operations. If the template is rebuilt, these styles may
disappear.

14.8 HANDS ON: NOTETAKER DATA MADE LIVE

This “Hands On” session is about using templates to get real data into an
application.

In this session, we’ll replace some of our NoteTaker XUL code with tem-
plates and then test it out with real Web note data.

To begin with, we have the RDF data model of Chapter 12, Overlays and
Chrome. Later on we’ll put this file in the user’s profile, where it belongs. For
now, we’ll just store it in the chrome with the rest of the NoteTaker tool. It will
be in:

chrome://notetaker/contents/notetaker.rdf

Templates are needed three times in the NoteTaker tool:

1. The form fields on the NoteTaker toolbar should be loaded with data
from the current note. We’ll see that this takes two templates.

2. The listbox of keywords in the Edit dialog box needs to be loaded with the
existing keywords for the current note.

3. The tree of related keywords in the Edit dialog box needs to be loaded
with all related keywords that match the keywords in the current note.

The last use requires a special technique; the tree is (very roughly) in a
master-detail relationship with the listbox and needs to be coordinated
against the contents of the listbox.

Data also appear in the HTML-based note displayed on the current Web
page. HTML does not support templates, so we must extract the needed data

AppDevMozilla-14 Page 546 Thursday, December 4, 2003 6:37 PM

14.8 Hands On: NoteTaker Data Made Live 547

from RDF using a nontemplate system. That is done in Chapter 16, XPCOM
Objects.

14.8.1 Creating Test Data

Before building templates, we need some test data. To that end we create a
NoteTaker RDF document containing two notes and their related information.
The first note is for a Web page named test1.html, which has four keywords.
The second note is for a Web page named test2.html, which has two key-
words. Listing 14.18 shows the full data for these two notes, plus an extra key-
word relationship.

Listing 14.18 Test data for NoteTaker XUL templates.
<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmnls:NT="http://www.mozilla.org/notetaker-rdf#">
 <Description about="urn:notetaker:root">
 <NT:notes>
 <Seq about="urn:notetaker:notes">
 <li resource="http://saturn/test1.html"/>
 <li resource="http://saturn/test2.html"/>
 </Seq>
 </NT:notes>
 <NT:keywords>
 <Seq about="urn:notetaker:keywords">
 <li resource="urn:notetaker:keyword:checkpointed"/>
 <li resource="urn:notetaker:keyword:reviewed"/>
 <li resource="urn:notetaker:keyword:fun"/>
 <li resource="urn:notetaker:keyword:visual"/>
 <li resource="urn:notetaker:keyword:cool"/>
 <li resource="urn:notetaker:keyword:test"/>
 <li resource="urn:notetaker:keyword:breakdown"/>
 <li resource="urn:notetaker:keyword:first draft"/>
 <li resource="urn:notetaker:keyword:final"/>
 <li resource="urn:notetaker:keyword:guru"/>
 <li resource="urn:notetaker:keyword:rubbish"/>
 </Seq>
 </NT:keywords>
 </Description>

<!-- details for each note -->
 <Description about="http://saturn/test1.html">
 <NT:summary>My Summary</NT:summary>
 <NT:details>My Details</NT:details>
 <NT:top>100</NT:top>
 <NT:left>90</NT:left>
 <NT:width>80</NT:width>
 <NT:height>70</NT:height>
 <NT:keyword resource="urn:notetaker:keyword:test"/>
 <NT:keyword resource="urn:notetaker:keyword:cool"/>
 </Description>

AppDevMozilla-14 Page 547 Thursday, December 4, 2003 6:37 PM

548 Templates Chap. 14

 <Description about="http://saturn/test2.html">
 <NT:summary>Good place to list</NT:summary>
 <NT:details>Last time I had a website here, my page also appeared on

Yahoo
 </NT:details>
 <NT:top>100</NT:top>
 <NT:left>300</NT:left>
 <NT:width>100</NT:width>
 <NT:height>200<NT:height>
 <NT:keyword resource="urn:notetaker:keyword:checkpointed"/>
 <NT:keyword resource="urn:notetaker:keyword:reviewed"/>
 <NT:keyword resource="urn:notetaker:keyword:fun"/>
 <NT:keyword resource="urn:notetaker:keyword:visual"/>
 </Description>

<!-- values for each keyword -->
 <Description about="urn:notetaker:keyword:checkpointed"

NT:label="checkpointed"/>
 <Description about="urn:notetaker:keyword:reviewed" NT:label="reviewed"/

>
 <Description about="urn:notetaker:keyword:fun" NT:label="fun"/>
 <Description about="urn:notetaker:keyword:visual" NT:label="visual"/>
 <Description about="urn:notetaker:keyword:breakdown"

NT:label="breakdown"/>
 <Description about="urn:notetaker:keyword:first draft" NT:label="first

draft"/>
 <Description about="urn:notetaker:keyword:final" NT:label="final"/>
 <Description about="urn:notetaker:keyword:guru" NT:label="guru"/>
 <Description about="urn:notetaker:keyword:rubbish" NT:label="rubbish"/>
 <Description about="urn:notetaker:keyword:test" NT:label="test"/>
 <Description about="urn:notetaker:keyword:cool" NT:label="cool"/>

<!--sufficient related keyword pairings -->
 <Description about="urn:notetaker:keyword:checkpointed">
 <NT:related resource="urn:notetaker:keyword:breakdown"/>
 <NT:related resource="urn:notetaker:keyword:first draft"/>
 <NT:related resource="urn:notetaker:keyword:final"/>
 </Description>
 <Description about="urn:notetaker:keyword:reviewed">
 <NT:related resource="urn:notetaker:keyword:guru"/>
 <NT:related resource="urn:notetaker:keyword:rubbish"/>
 </Description>
 <Description about="urn:notetaker:keyword:fun">
 <NT:related resource="urn:notetaker:keyword:cool"/>
 </Description>

<!-- single example of a cycle -->
 <Description about="urn:notetaker:keyword:cool">
 <NT:related resource="urn:notetaker:keyword:test"/>
 </Description>
 </Description>
</RDF>

AppDevMozilla-14 Page 548 Thursday, December 4, 2003 6:37 PM

14.8 Hands On: NoteTaker Data Made Live 549

The combination of RDF documents and XUL templates requires five
times as much care as <tree>. If just one little thing is incorrect, the template
will produce nothing, and there will be no clues why that happened. We start
by carefully testing our data using the advice in “Debug Corner.” If you haven’t
got a text editor with automatic XML syntax checking, then proceed this way:
Directly load the RDF document into the Classic Browser to catch all XML
syntax errors. Then change the file extension to .xml and load it again, to
catch tag-ordering problems. Finally, check it by eye against the format that
was decided in Chapter 11, RDF. When all that looks correct, we have a fair,
but not perfect, level of confidence that the test data are right.

14.8.2 Simple Templates for Form Elements

The first templates we’ll code are the ones in the NoteTaker toolbar. That tool-
bar requires one value for each of the two textboxes, and a set of values for the
dropdown menu. We must use a template that produces one solution for the
textboxes and another template that produces a set of zero or more solutions
for the dropdown menu.

The dropdown menu is easiest. Looking at the structure of the noteta-
ker.rdf file, we see that we need the label property of the individual key-
words. The keywords are collected in the urn:notetaker:keywords RDF
container, which is a <Seq> tag. This layout matched the standard fact
arrangement required for the simple (template) query syntax, so the template
should be easy to create.

We test the template on a simple document first, rather than add it to the
toolbar right away. That way we avoid complexities with the menu’s popup
content. Because templates and RDF give us little feedback, we must proceed
step by step. Listing 14.19 is the simple, template-free test document that
we’ll use.

Listing 14.19 Plain XUL document suitable as a basis for testing templates.
<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">
 <vbox>
 <description value="Static content"/>
 <hbox>
 <description value="Repeated content"/>
 </hbox>
 </vbox>
</window>

The details of the needed template follow:

☞ Use this RDF file: datasources="notetaker.rdf"
☞ Use this query starting point: ref="urn:notetaker:keywords"

AppDevMozilla-14 Page 549 Thursday, December 4, 2003 6:37 PM

550 Templates Chap. 14

☞ This simple variable is always required on the repeated content for the
simple syntax: uri="rdf:*"

☞ This property will be used as a simple syntax query variable:
rdf:http://www.mozilla.org/notetaker-rdf#label

Merging that information into Listing 14.18 yields Listing 14.20.

Listing 14.20 Plain XUL document templated for the menu query.
<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">
 <vbox
 datasources="notetaker.rdf"
 ref="urn:notetaker:keywords">
 <description value="Static content"/>
 <template>
 <hbox uri="rdf:*">
 <description value="Repeated content"/>
 <description
 value="rdf:http://www.mozilla.org/notetaker-rdf#label"/>
 </hbox>
 </template>
 </vbox>
</window>

The "Static content" content is outside the <template> tag, and so
we should always see it. The "Repeated content" content will appear once
for each solution found by the query. The third description tag displays the
values of the sole variable ground by the query. This simple query page results
in Figure 14.6.

Now we have the query working. In the preparation of this “Hands On”
session, numerous subtle syntax errors had to be ironed out to reach this
point; there is nothing wrong with the template system, except possibly a
shortage of debugging tools. We can now modify the template for the toolbar.
Listing 14.21 shows the dropdown menu both before and after the template is
installed.

Fig. 14.6 Simple template-generated output using a test page.

AppDevMozilla-14 Page 550 Thursday, December 4, 2003 6:37 PM

14.8 Hands On: NoteTaker Data Made Live 551

Listing 14.21 Templated popup menu for the NoteTaker toolbar.
<?xml version="1.0"?>

<menulist editable="true">
 <menupopup>
 <!-- static menu items removed -->
 </menupopup>
</menulist>

<menulist id="notetaker-toolbar.keywords" editable="true">
 <menupopup datasources="notetaker.rdf" ref="urn:notetaker:keywords">
 <template>
 <menuitem uri="rdf:*"
 label="rdf:http://www.mozilla.org/notetaker-rdf#label"/>
 </template>
 </menupopup>
</menulist>

The results of these changes are shown in Figure 14.7.
If there are no keywords at all, the menu will contain no items and will

lay out poorly in the toolbar. To fix this, we could add a dummy <menuitem>
tag above the <template> tag, or just make sure that this initial note-
taker.rdf contains at least one keyword. We’ll do the latter.

The other template required in the toolbar must retrieve a single solu-
tion, since there’s only one summary <textbox>, ever. To see what that tem-
plate’s query might be, we examine the structure of the notetaker.rdf file.
The note’s URL is a member of a named RDF container (urn:note-
taker:notes), and it has a property summary. So the standard fact arrange-
ment, required for a simple template query, is present. Perhaps we can use
that simple syntax.

In fact, we can’t use the simple syntax, because we want to be choosy
about which members of the sequence are retrieved. We only want one mem-
ber, which is the note for the currently displayed URL. Therefore we must
resort to the extended syntax. In the extended syntax, we don’t have to start

Fig. 14.7 Template-generated menu popup for the NoteTaker toolbar.

AppDevMozilla-14 Page 551 Thursday, December 4, 2003 6:37 PM

552 Templates Chap. 14

at the top of a sequence, so we can be more creative with our query. We can
start it directly at the URL of the current note. If we do that, an example of
the query fact would be:

<- http://saturn/test1.html, http://www.mozilla.org/notetaker-
rdf#summary, ?summary ->

Using the advice in this chapter under “Common Query Patterns,” we
create the template for the keyword textbox as shown in Listing 14.22:

Listing 14.22 Templated textbox for the NoteTaker toolbar.
<box datasources="notetaker.rdf" ref="http://saturn/test1.html">
 <template>
 <rule>
 <conditions>
 <content uri="?uri"/>
 <triple subject="?uri"
 predicate="http://www.mozilla.org/notetaker-rdf#summary"
 object="?summary"/>
 </conditions>
 <action>
 <textbox id="notetaker-toolbar.summary" uri="?summary"

value="?summary"/>
 </action>
 </rule>
 </template>
</box>

This code replaces the single tag <textbox/> in the existing toolbar.
We’ve surrounded the textbox with an invisible <box> just to get the template
working.

This template code has a fixed URL as the query start point. We’ll shortly
make this value dynamic using a script and setAttribute(). That concludes
the XUL changes to the NoteTaker toolbar. We now turn to templates required
for the Edit dialog box. The <listbox> and <tree> tags in that dialog box
both need templates.

14.8.3 An Extended Syntax Template for <listbox>

The <listbox> tag for this dialog box is the easier task, so that’s first. To
learn what the query should be, we examine the structure of the noteta-
ker.rdf file again. We see that a note is part of a sequence and contains a
keyword property, so it is in the standard data arrangement. The problem is
that the URL for the note is a known, fixed quantity rather than being every
note in the sequence. This is a similar situation to the <textbox> on the tool-
bar, so we’ll need an extended query.

Another reason for an extended query is to dig out the textual strings for
the keywords. Those strings are properties of each keyword rather than prop-

AppDevMozilla-14 Page 552 Thursday, December 4, 2003 6:37 PM

14.8 Hands On: NoteTaker Data Made Live 553

erties of the note. We can easily retrieve them by extending the query further
into the set of facts—one additional <triple> tag will link the keywords
found on the note to the labels on the keywords. The template we require looks
like Listing 14.23.

Listing 14.23 Templated listbox for the NoteTaker toolbar.
<listbox id="dialog.keywords" rows="3" datasources="notetaker.rdf"

ref="http://saturn/test1.html">
 <template>
 <rule>
 <conditions>
 <content uri="?uri"/>
 <triple subject="?uri"
 predicate="http://www.mozilla.org/notetaker-rdf#keyword"
 object="?keyword"/>
 <triple subject="?keyword"
 predicate="http://www.mozilla.org/notetaker-rdf#label"
 object="?text"/>
 </conditions>
 <action>
 <listitem uri="?keyword" label="?text"/>
 </action>
 </rule>
 </template>
</listbox>

Except for the addition of one <triple> tag, this code is effectively the
same as the code for the toolbar <textbox>.

We could also use a template for the Edit panel of the Edit dialog box.
There are good reasons for not doing that, so we’ll leave that panel as it is for
now. One of those good reasons is that we don’t know which note is the best
one to display when the URL loads.

14.8.4 An Extended Syntax Template for <tree>

The last template we consider is for the <tree> of related keywords.
To gain some ideas what the query might be for this tree, we return to

the notetaker.rdf file. We will need the label property to display the key-
word. We will also need the related property to discover keywords related to
a given keyword. Finally, we want the level 0 (zero) of the tree to be the key-
words of the current note’s URL. We’ll use that URL as the top of the query,
but we’ll display only the children of that URL, not the URL itself.

The facts we seem to need for a full, recursive query go like this:

<- current-page-url, keyword, ?keyword -> // level 0
<- ?keyword, label, ?text ->

<- ?keyword, related, ?keyword2 -> // level 1
<- ?keyword2, label, ?text2 ->

AppDevMozilla-14 Page 553 Thursday, December 4, 2003 6:37 PM

554 Templates Chap. 14

<- ?keyword2, related, ?keyword3 -> // level 2
<- ?keyword3, label, ?text3 ->

... and so on ...

This set of facts doesn’t match the standard fact arrangement, so we
can’t use the simple query syntax. This set of facts also represents a recursive
query, so we really need to use a <tree> tag for testing.

What will the recursive query be? We need to concentrate on the nar-
rower question: What is the query needed to probe one level deeper into the
tree of solutions? There appear to be two facts per level, so it might seem that
each step in the recursive query is a two-fact query. If we examine the
notetaker.rdf fact structure, it appears that there is only one fact required
per level of the query because keywords are separated by a single predicate/
property. If we draw the query as an RDF diagram, we can quickly see that
one fact is the correct approach. Figure 14.8 shows this diagram.

Clearly, the recursive behavior requires one step along the (vertical)
arrows only. So the recursive query must be a one-fact query. The other arrows
are side information required at each level but not contributing to the recur-
sive behavior.

We consider first this recursive fact represented by vertical arrows. The
problem is that sometimes it is labeled with keyword and sometimes it is
labeled with related. In other words, there are two alternatives for the
recursive query:

<- current-page-url, keyword, ?keyword ->
<- current-keyword-urn, related, ?keyword ->

Somehow the template query must accommodate both cases. One solu-
tion is to use a separate <rule> for each possibility. In our case, the con-

label

label ?text

?text2

?text3
label

current page URL

?keyword3

?keyword2

?keyword

related

keyword

related

Fig. 14.8 RDF diagram for a recursive template query.

AppDevMozilla-14 Page 554 Thursday, December 4, 2003 6:37 PM

14.8 Hands On: NoteTaker Data Made Live 555

tainment template attribute is a simple solution. We are fortunate that,
given any URI, either there will be facts with the related property, or there
will be facts with the keyword property, but not both, which means that we
can use multiple container predicates at once. We will list both the related
and keyword predicates in this attribute’s value.

To see why we can use containment, consider the progress of the query.
When the query is discovering the top level of the tree, the keyword predicate
will find solutions and the related predicate won’t, because that’s the way
the facts are arranged in the RDF file. When the query is discovering solutions
deeper in the tree, the related predicate will find solutions and the keyword
predicate won’t. This is exactly what we want. Listing 14.24 shows the result-
ing template.

Listing 14.24 Recursive tree template for the NoteTaker Edit dialog box.
<tree id="dialog.related" flex="1"
 datasources="notetaker.rdf"
 ref="http://saturn/test2.html"
 containment="http://www.mozilla.org/notetaker-rdf#related http://

www.mozilla.org/notetaker-rdf#keyword"
 hidecolumnpicker="true"
 >
 <treecols>
 <treecol id="tree.all" hideheader="true" primary="true" flex="1"/>
 </treecols>
 <template>
 <rule>
 <conditions>
 <content uri="?uri"/>
 <member container="?uri" child="?keyword"/>
 </conditions>
 <action>
 <treechildren>
 <treeitem uri="?keyword">
 <treerow>
 <treecell label="?keyword"/>
 </treerow>
 </treeitem>
 </treechildren>
 </action>
 </rule>
 </template>
</tree>

The query contains a <member> tag to match the use of the contain-
ment attribute. Because this is a recursive query, we can’t test it with a plain
<description> tag. We must use one of the tags that explicitly supports
recursive queries, in this case <tree>.

We have therefore managed to build the recursive query. All that is
needed now is to add the ancillary information from Figure 14.8. That is easy

AppDevMozilla-14 Page 555 Thursday, December 4, 2003 6:37 PM

556 Templates Chap. 14

to do using a <binding> tag. We add this content just after the </condi-
tions> tag:

<bindings>
 <binding subject="?keyword"
 predicate="http://www.mozilla.org/notetaker-rdf#label"
 object="?text"/>
 </bindings>

Because <binding> tags don’t assist with the recursive process, we
haven’t damaged the query; we’ve just enhanced the information it retrieves.
Finally, we must change the <treecell> to report the label that the binding
discovers, rather than the URN of the keyword:

<treecell label="?text"/>

With these changes, we’ve completed the tree’s template, and all the
required templates for the NoteTaker tool. Even though the <listbox> and
<tree> tags have template-generated content, our event handlers from Chap-
ter 13, Listboxes and Trees, continue to work; they can browse the DOM struc-
ture for template-generated content as easily as they can a DOM structure
built from static XUL tags.

We do have one problem with the <tree> template. It does not display
related keywords as well as the custom view experiment did in Chapter 13,
Listboxes and Trees. It only displays what’s in the RDF file. We could improve
the output by adding the other keyword-keyword combinations to note-
taker.rdf, or we could somehow modify the template so that the facts used
in the template receive special processing before display, rather than being
read straight from the file. We’ll consider that latter possibility in Chapter 16,
XPCOM Objects.

14.8.5 Coordinating and Refreshing Template Content

The final feature we’d like to implement is keeping the displayed data up to
date. That means tying the data in the toolbar, Edit dialog box, and HTML
note to the RDF facts about the URL of the Web page currently displayed in
the browser. Keeping the HTML note up to date is too hard for the technology
we’ve explored so far, but the other updates are easy. Our plan follows:

1. Update the <textbox> on the toolbar every time the current note
changes.

2. Update the dropdown menu on the toolbar every time a note is saved or
deleted, in case the total set of keywords changed as a result of that save
or delete.

3. Update the Keywords pane of the dialog box every time it is opened.

To do this, we make the following small changes for the toolbar:

1. Update the JavaScript version of the current note to include a URL.
2. Provide a utility function that updates the toolbar display.

AppDevMozilla-14 Page 556 Thursday, December 4, 2003 6:37 PM

14.8 Hands On: NoteTaker Data Made Live 557

3. The timed checks that detect a newly displayed Web page need to update
the toolbar <textbox>.

4. A notetaker-delete command is needed on the delete button on the
toolbar.

5. A notetaker-save command is needed on the save button on the tool-
bar.

6. The notetaker-open-dialog command must update the dropdown
menu on the toolbar when the dialog box closes.

First, we must implement the existing note object as a full JavaScript
object and then give it methods clear() and resolve() and a url property.
clear() removes any current note data; resolve() turns a supplied URL
into the URL of an existing note and records the results. For this chapter,
these changes are trivial, but we’ll need to expand on them later. The code for
the new note object is shown in Listing 14.25.

Listing 14.25 Basic JavaScript object for a NoteTaker note.
function Note() {} // constructor

Note.prototype = {
 url : null,
 summary : "",
 details : "",
 chop_query : true, home_page : false,
 width : 100, height : 90, top : 80, left : 70,
 clear : function () {
 this.url = null;
 },
 resolve : function (url) {
 this.url = url;
 },
}

var note = new Note();

Second, we implement a utility refresh_toolbar() function that
updates the toolbar templates. Some of this function we’ll have to modify in
later chapters. Listing 14.26 shows this function.

Listing 14.26 Template rebuilding code for the NoteTaker toolbar.
function refresh_toolbar()
{
 var menu = window.document.getElementById('notetaker-toolbar.keywords');
 menu.firstChild.builder.rebuild();

 var box = window.document.getElementById('notetaker-toolbar.summary');
 box.parentNode.setAttribute('ref', note.url);
 box.parentNode.builder.rebuild();
}

AppDevMozilla-14 Page 557 Thursday, December 4, 2003 6:37 PM

558 Templates Chap. 14

The rebuild() method causes the template-generated contents to be
removed and re-created. In the case of the dropdown menu, the contents will
change only if the underlying RDF file changes. In the case of the textbox, the
template itself is modified, and so the query is different each time it is rebuilt.

Next , we look at the t imed checks. This is al l run from the
content_poll() function, so let’s rewrite it slightly so that it updates the
toolbar as well as the displayed note. Listing 14.27 shows the new version.

Listing 14.27 Poll the displayed Web page and make all required updates.
function content_poll()
{
 var doc;
 try {
 if (!window.content) throw('fail');
 doc = window.content.document;
 if (!doc) throw('fail');
 if (doc.getElementsByTagName("body").length == 0) throw('fail');
 if (doc.location.href == "about:blank") throw('fail');
 }
 catch (e) {
 note.clear();
 refresh_toolbar();
 return;
 }

 if (doc.visited) return;

 note.resolve(doc.location.href);
 display_note();
 refresh_toolbar();
 doc.visited = true;
}

If there’s no suitable URL present, then clear the current note and the
toolbar. Otherwise, find the new current note and update the toolbar, note, and
current page.

We can’t yet complete the remaining tasks 4 and 6 because we don’t
know how to modify RDF files yet—we only know how to read them. We can,
however, do the template update part of the nominated commands. We update
the action() function to call refresh_toolbar() wherever it’s needed.
Listing 14.28 shows this trivial code.

Listing 14.28 Full list of NoteTaker toolbar commands with template rebuilding.
function action(task)
{
 if (task == "notetaker-open-dialog")
 {
 window.openDialog("editDialog.xul","_blank","modal=yes");
 refresh_toolbar();
 }

AppDevMozilla-14 Page 558 Thursday, December 4, 2003 6:37 PM

14.9 Debug Corner: Template Survival Guide 559

 if (task == "notetaker-display")
 {
 display_note();
 }

 if (task == "notetaker-save")
 {
 refresh_toolbar();
 }
 if (task == "notetaker-delete")
 {
 refresh_toolbar();
 }
}

That completes management of the toolbar templates. For the dialog box,
we need an equivalent effect for the templates in the Keywords pane. We
choose to put this in the notetaker-load command. In the action() func-
tion that services that command, we add a call to refresh_dialog() and
implement refresh_dialog() as shown in Listing 14.29.

Listing 14.29 Template rebuilding for NoteTaker Edit dialog box.
function refresh_dialog()
{
 var listbox = window.document.getElementById('dialog.keywords');
 listbox.setAttribute('ref', window.opener.note.url);
 listbox.builder.rebuild();

 var tree = window.document.getElementById('dialog.keywords');
 tree.setAttribute('ref', window.opener.note.url);
 tree.builder.rebuild();
}

This is identical to the template updates for the toolbar drop-down menu.

14.9 DEBUG CORNER: TEMPLATE SURVIVAL GUIDE

When templates are phrased and used correctly, everything works. There are
almost no syntax-related bugs or unstable features to blame failure on. Most
problems come from syntax mistakes in the application code.

On Microsoft Windows, be sure to check that the Mozilla Platform has
been fully shut down when the last window is closed. If a badly formed tem-
plate is used, the Mozilla process can linger on and be reused in later tests,
which is very confusing. When this happens, the most common symptom is
that recent changes to the XUL code or JavaScript appear to have no effect. It
is safest to start each test with a new instance of the platform. If you leave the
Mozilla splash screen in place, you can use this as a hint to remind you when a
new instance has started.

AppDevMozilla-14 Page 559 Thursday, December 4, 2003 6:37 PM

560 Templates Chap. 14

A second platform flaw involves recursive queries. Only attempt to get
these working with a <menu> or <tree> widget; other results are unpredict-
able and can cause crashes.

The combination of RDF documents and XUL templates requires five
times as much care as the <tree> tag discussed in Chapter 13, Listboxes and
Trees. If just one little thing is incorrect, the template will produce nothing at
all, and there will be no clues why that happened. The right approach is
essential.

14.9.1 Building Up a Template

When creating a template, always start with test data stored in an external
RDF file. Mozilla has full-featured support for a file-based RDF source. Exter-
nal RDF files are easy to view. You can use the techniques described in “Debug
Corner” in Chapter 11, RDF, to run the data through Mozilla once. This lets
you confirm that it is loading the way that you expect. Load the file directly
into a browser so that Mozilla can report any syntax errors. Load the file as an
.xml file so that you can see any indentation problems. Alternately, try out
one of the RDF validation tools recommended by the W3C.

After gaining confidence with some test data, the next step is to prove
that the query output can be displayed in a XUL window.

If the template query is not recursive, then create a template using a
simple <vbox> tag as the base tag. Dump something out into a <descrip-
tion> or <label> tag without any fancy features in the rules. After you have
seen something appear, you can be sure that you have at least the query root
and part of the query structure right. Even if your goal is to use a deeply
nested tree structure, try displaying the top-level items by themselves in a
<vbox> first.

If your ultimate source of facts is an internal data source, read the advice
in Chapter 16, XPCOM Objects, on these data sources and extract into a test
page as much information as possible from that data source. Some data
sources can be manipulated directly from a template; others need a script. You
need to be familiar with the exact content generated, or your template queries
won’t work.

Next, build up your queries. The template system is flexible and can han-
dle some changes to the order of content inside <template>, but making those
changes is not recommended. For the least headaches, stick closely to the order
of tags suggested in this chapter. Even though such order can be varied a little,
doing so can confuse the internal rule creation system about what template
variables are what. Swapping things around can stop data from appearing.

If the template is to be a recursive one, then you can’t easily test the
recursion outside of a <menu> or <tree> tag; you can only test the first level
of the recursion. To test the recursion through multiple levels, use a <tree>
tag, not a <menu> tag. It is not possible to build a recursively generated set of
menus out of a single <rule>—at least two rules are required. One rule is for

AppDevMozilla-14 Page 560 Thursday, December 4, 2003 6:37 PM

14.10 Summary 561

menu items that are <menu>s; the other is for menu items that are <menu-
item>s. So for recursive queries, the <tree> tag is the simplest test vehicle.

Only after the queries are yielding results should you think about the real
widget you want to use as the base tag. In the case of <tree>, always start with
the recommended content described in this chapter, and always make sure that
the tree has a primary column. You can alter the other details later. Carefully
review the flags and options that can be added to the base tag—some are vital.
Automatically add flags="dont-build-content" and flex="1" attributes
to trees, until you can think of a good reason for omitting them.

After your template works properly, you might want to script it so that it
has dynamic behavior. “Guidelines for Dynamic Templates” contains very
important wisdom. Outside of those guidelines, very little is currently sup-
ported.

Finally, note the remarks in “Data Sources” in Chapter 16, XPCOM
Objects, about data sources. If your final RDF source is internal, not external,
then the data source used needs to be carefully assessed for available function-
ality. Most internal data sources have unpublished formats for the RDF facts
they supply. As a last resort, examine how they are used in the chrome by the
already working Mozilla applications.

14.10 SUMMARY

Mozilla’s template system extends RDF with a query system and with format-
ted output of the query results. Those results and output can change dynami-
cally to match dynamic changes to the information underlying the query.
Templates work on top of the XUL language and are integrated with the con-
tent layout system. They can be used to create dynamic GUI interfaces or just
to display changing data in a fixed-sized widget. Templates are not static—
they can easily be refreshed or updated if conditions change.

The template system is a technical challenge to learn. It has unfamiliar
concepts, it has its share of quirks and stumbling blocks, and it provides very
little feedback to the programmer. Awkwardly, the data sources that feed data
into the template system are a motley group of individuals whose quirks
require further effort to appreciate.

For all those version 1 problems, templates are very powerful tools. An
RDF file stored at any URL in the world can be read and displayed using a
very brief and concise set of XUL tags. Such simplicity augers well for the
future data processing capabilities of the XUL language and the Mozilla Plat-
form. It is likely that templates are only an early step in the data processing
capabilities of the platform.

JavaScript and the DOM can be used to generate new content in a XUL
document. RDF and templates achieve a similar end, but by a different route.
A third way exists to generate content in a XUL document. That method
involves XBL, the subject of the next chapter.

AppDevMozilla-14 Page 561 Thursday, December 4, 2003 6:37 PM

