

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

JavaJavaScript

Components

AppDevMozilla-10 Page 324 Thursday, December 4, 2003 6:33 PM

325

C H A P T E R

Overlay
database

XBL
definitions

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

W3C
standards

DTDs

Skins

RDF

Frames

Keyboard

Screen

Mouse

JavaScriptcript

10

Windows and Panes

AppDevMozilla-10 Page 325 Thursday, December 4, 2003 6:33 PM

326 Windows and Panes Chap. 10

Only the most trivial of applications will fit a single window. Eventually, either
part of the current window’s content will need to be replaced, or a second win-
dow will be required. This chapter explains how to do both.

Some aspects of Mozilla are complicated; some aspects are simple. Work-
ing with windows is pretty simple. The tools available to XUL applications are
much like the tools used in traditional Web development. If you’ve used the
DOM method

window.open()

 before, then this chapter will just be a review.
Mozilla’s XUL (and HTML) have a few new features to consider, but little
described here is groundbreaking. Working with windows is just a matter of a
few lines of code.

Mozilla provides a wide range of external windows ranging from tiny fly-
over help boxes (called tooltips by Microsoft and Mozilla) to large and complex
application-specific XUL tags. Mozilla also provides internal (or inset or
embedded) windows that appear as content inside other documents. Here
these windows are called

panes

. Security hobbles devised for HTML browsers
restrict these window types, but not when the application is installed in the
chrome or is otherwise secure.

Mozilla’s windows do contain a few surprises. XML namespaces can be
employed to mix content types. There are improved tools to manage existing
windows. Perhaps the most significant enhancement to window content is
overlays. That subject is important enough to be covered separately in Chap-
ter 12, Overlays and Chrome.

The NPA diagram at the start of this chapter shows the bits and pieces of
Mozilla that have a little to do with window management. From the diagram,
windows are a little about JavaScript and a little about frames. An object that
exists outside the normal content of a document needs a container more com-
plex than an ordinary

<box>

 tag’s frame, so there are several frame types to
consider. There is also an XPCOM component or two worth considering. Over-
all, it’s simple stuff.

10.1 O

RDINARY

<

WINDOW

>

 W

INDOWS

Before looking at new XUL tags, we briefly revisit the

<window>

 tag. The win-
dow tag supports the following special attributes:

sizemode windowtype screenX screenY width height

sizemode

 applies only to the topmost

<window>

 (or

<dialog>

) tag. It
records the appearance of the matching window on the desktop. It can be set
to

normal

,

minimized

, or

maximized

.

windowtype

 is used to collect windows of like type. This attribute can be
set to any programmer-defined string. This attribute takes effect when two or
more windows with the same

windowtype

 are displayed. Mozilla will make
an effort to ensure that when the second or subsequent windows are opened,

AppDevMozilla-10 Page 326 Thursday, December 4, 2003 6:33 PM

10.2 Popup Content 327

that they are offset from the existing windows of the same type. This assists
the user by preventing exact overlap of two windows.

screenX

 and

screenY

 locate the window’s offset from the top-left corner
of the desktop in pixels.

width

 and

height

 state the window’s horizontal and vertical dimen-
sions on the desktop, in pixels.

None of

screenX

,

screenY

,

width

, or

height

 can be modified to affect
the window’s position once the window is displayed.

A dialog box can be built from a

<window>

 tag, as described under the

window.open()

 topic. On UNIX, it is not yet common for dialog boxes to be
modal, so those semantics are not yet necessary. In general, it is nearly point-
less to use a

<window>

 tag for a dialog box when the

<dialog>

 tag exists spe-
cifically for that purpose.

10.2 P

OPUP

 C

ONTENT

XUL content in a given window can be covered by additional content from the
same document using these tags:

<tooltip> <menupopup> <popup> <popupgroup> <popupset>

Not all of these tags are recommended, however.

<menupopup>

, for example,
should generally be used only inside a

<menu>

 or

<menulist>

 tag. The follow-
ing XML attributes can sometimes be applied to other XUL tags:

tooltiptext grippytooltiptext popup menu context contextmenu
contentcontextmenu

Not all these attributes are recommended either. The

<menupopup>

 tag
is discussed in Chapter 7, Forms and Menus. The other bits and pieces are dis-
cussed here.

The

<deck>

 tag can also be used for visual effects. It is discussed in
Chapter 2, XUL Layout.

10.2.1 Defining Popup Content

Mozilla’s popup system has a little history associated with it. This history
affects which tags are used to define popup content. It is best to use the XUL
tags that are forward looking, rather than linger over the tags that were used
in the past but that are now out of favor. Even so, older tags are still robust
and unlikely to be desupported for any 1.x version of Mozilla.

There are three kinds of popup content: flyover help (tooltips), context
menus, and ordinary menus.

When using the most modern XUL tags, state flyover help and context
menu content inside the

<popupset>

 tag. This is a user-defined tag with no
special meaning, in the style of

<keyset>

. There may be more than one

<pop-

AppDevMozilla-10 Page 327 Thursday, December 4, 2003 6:33 PM

328 Windows and Panes Chap. 10

upset>

 if required. Flyover help should be stated with the

<tooltip>

 tag, and
context menus, with the

<menupopup>

 tag. Ordinary menus can also be stated
inside the

<popupset>

 using

<menupopup>

, but it is recommended that ordi-
nary menus be stated elsewhere, using tags like

<menu>

 and

<menulist>

.
Well-established but old-fashioned practices involve stating context

menus with the

<popup>

 tag. The

<context>

 and

<popupset>

 tags are
rarely seen and even older than

<popup>

. These tags (and others) can be con-
tained in a single very old

<popupgroup>

 tag.

<popupgroup>

 can only be
used once per document. Do not use any of these three tags, even though

<popup>

 is still common in the Mozilla chrome. They are deprecated and part
of the past.

10.2.2 Flyover Help/Tooltips

Flyover help is a small window that appears over a GUI element (a XUL tag)
if the mouse lingers in place more than about a second. The design intent is to
give the user a short hint about the element in question, which might be cryp-
tic (badly designed) or partially hidden. Tooltips can be fully styled, so the
default yellow color is not fixed.

The

<tooltip>

 tag supports the following attributes:

label crop default titletip

If the

<tooltip>

 tag has no content, it acts like a label. The

label attribute
supplies label content, and crop dictates how the tooltip will be truncated if
screen space is short.

If default is set to true, then the tooltip will be the default tooltip for
the document. If titletip is set to true, then the tooltip is for a GUI ele-
ment that is partially hidden. These two attributes apply only to tooltips that
appear on the column headings of a <tree> tag.

The <tooltip> tag can contain any content—it acts like a <vbox>. Fill-
ing it with content is of limited value because the user cannot navigate across
the face of the tooltip with the mouse pointer. Tooltips can be sized with min-
width and minheight, but that can confuse the layout of the parent window.
Those attributes are not recommended.

To associate a tooltip with another tag, set the tooltip attribute of the
target tag to the id of the <tooltip> tag. A shorthand notation that requires
no <tooltip> tag is to specify the tooltip text directly on the target tag with
the tooltiptext attribute. A further alternative is to include a <tooltip>
tag in the content of the tag requiring a tooltip. If this is done, the parent tag
should have an attribute tooltip="_child" set.

The grippytooltiptext attribute applies only to the <menubar> and
<toolbar> tags and provides a tooltip for the <toolbargrippy> tag, when
one is implemented.

The contenttooltip attribute applies only the <tabbrowser> tag and
provides a tooltip for the embedded content of that tag.

AppDevMozilla-10 Page 328 Thursday, December 4, 2003 6:33 PM

10.3 Dialog Boxes 329

A tooltip will also appear over the title bar of a window if the title text
does not appear in full.

The currently visible tooltip’s target tag can be had from the win-
dow.tooltipNode property.

10.2.3 Context Menus

Context menus are a form of dropdown menu. They appear the same as other
menus, except that they are exposed by a context click (apple-click in Macin-
tosh, right-click on other platforms). When the context click occurs, the context
menu appears at the point clicked, not at some predetermined point in the
document.

Context menus should be defined with the <menupopup> tag described
in Chapter 7, Forms and Menus. Such a menu is associated with a target tag
by setting an attribute on that tag to the <menupopup>’s id. The attribute set
should be contextmenu for most tags and contentcontextmenu for the
<tabbrowser> tag.

In the past, other attributes such as popup, menu, and context filled
the role of the contextmenu attribute. They should all be avoided, even con-
text, which still works.

The popupanchor and popupalign attributes apply to <menupopup>
context menus, just as they do to normal <menupopup>s.

The currently visible context menu’s target tag can be had from the win-
dow.popupNode property.

10.3 DIALOG BOXES

If new content to be displayed is more than trivial, then a dialog box is a sim-
ple design solution. Dialog boxes are no more than XUL windows with a very
narrow purpose. Normally they are not standalone but operate in the context
of (using the resources of) some other more general window.

Dialog boxes have two design purposes. The first is to expose complexity.
When a user performs a command, the ideal result is that the command com-
pletes immediately and silently. Introducing a dialog box causes the user to
deal with a set of further choices before their command completes. In terms of
usability, this is an obstacle to the smooth flow of an application. The second
design purpose is to focus the user on a specialist task. Such dialog boxes typi-
cally bring the application to a halt while the users tidy up the task thrust
upon them by so-called modal dialog boxes. This second use is a disruption to
the normal user navigation of the application.

Neither of these design goals is particularly compatible with a high-
performance application. In a perfect world, there would be no dialog boxes at
all. A well-designed application keeps dialog boxes to a minimum and avoids
displaying meaningless configuration options. Too much configuration is a

AppDevMozilla-10 Page 329 Thursday, December 4, 2003 6:33 PM

330 Windows and Panes Chap. 10

symptom of poor process modeling at design time. If extensive configuration is
required, it should be designed as an application in itself, like the Mozilla pref-
erence system.

When dialog boxes are required, Mozilla has plenty of support.

10.3.1 <dialog>

The <dialog> tag is the main building block for dialog boxes. It is a replace-
ment for the <window> tag and adds extra content and functionality to a stan-
dard XUL window. The <dialog> tag does not create a modal dialog box (one
that seizes the application or desktop focus) unless additional steps are taken.

To use the <dialog> tag, just replace <window> with <dialog> in any
XUL document. Beware that the <dialog> tag is designed to work from
within the chrome, and using it from a nonchrome directory on Microsoft Win-
dows can freeze Mozilla completely. No such problems occur on UNIX. Figure
10.1 compares the different uses of <dialog>.

In this example, standard diagnostic styles are turned on, and the word
Content is a <description> tag that is the sole content of the document. In
the top line of the image, the same content is displayed, first with the <dia-
log> tag and then with the <window> tag. The <dialog> tag adds extra
structural <box> tags to the document plus two <button> tags. In the second
line of the image, the buttons attribute of the <dialog> tag has been used to
turn on all the buttons that <dialog> knows about. In the last line, extra con-
tent has been added to the document in the form of six buttons. These buttons
override the standards <dialog> buttons, and so those standard buttons don’t
appear in the bottom box where they otherwise would. Note that the button
text in the Full and Modified cases differs. Let’s examine how all this works.

The <dialog> tag has an XBL definition that supplied boxes and but-
tons as extra content. In the normal case, four of these buttons are hidden.

Fig. 10.1 Variations on the use of the <dialog> tag.

AppDevMozilla-10 Page 330 Thursday, December 4, 2003 6:33 PM

10.3 Dialog Boxes 331

The tag also relies on a properties file in the chrome. That file contains button
label text suitable for the current platform. Access to this properties file is one
good reason for installing dialog boxes in the chrome. The <dialog> tag sup-
ports the following attributes:

buttonpack buttondir buttonalign buttonorient title buttons

The buttons attribute is a comma-separated list of strings. Spaces are
also allowed. It is a feature string, similar to the feature string used in the
window.open() method, but it’s simpler in syntax. Allowed values are

accept cancel extra1 extra2 help disclosure

These values do not need to be set to anything. An example of their use is

<dialog buttons="accept,cancel,help"/>

The following event handlers, plus those of the <window> tag, are also
available:

ondialogaccept ondialogcancel ondialogextra1 ondialogextra2
ondialoghelp ondialogdisclosure

The title attribute sets the content of the title bar of the window, as for
the <window> tag. buttonpack/dir/align/orient serve to lay out the
<hbox> at the base of the dialog window as for the standard pack/dir/align/
orient attributes. The buttons attribute states which of the standard dialog
buttons should appear.

These standard buttons appear with standard content and standard
behavior. For example, the cancel button shuts down the dialog box. The
extra1 and extra2 buttons are available for application use, but they must
include a replacement for the properties file if those buttons are to have labels.
The event handlers noted earlier match the buttons one-for-one and fire when
the buttons receive a command event (when they are clicked).

These <dialog> attributes are sufficient to explain the first three varia-
tions in Figure 10.1, but not the bottom one. That last variation depends on
the dlgtype attribute, which typically appears on a <button> tag.

The dlgtype attribute can be set to any one of the standard button
types:

accept cancel extra1 extra2 help disclosure

The dlgtype attribute has no meaning to the <button> tag itself, or to
whatever tag it appears on. Instead, the <dialog> tag is quite smart. It
searches all the content of the dialog window for a tag with this attribute, and
if it finds one, it uses that tag instead of the matching dialog button. This
brings flexibility to the dialog by allowing the application programmer some
control over the placement of the dialog window controls. Only tags that sup-
port a command event may be used as replacement tags. If the replacement tag
does not have a label attribute, it is supplied one by the <dialog> tag from
the standard set of property strings.

AppDevMozilla-10 Page 331 Thursday, December 4, 2003 6:33 PM

332 Windows and Panes Chap. 10

A <dialog>-based window can be opened the same way as any other
window. To add modal behavior, use the window.openDialog() method dis-
cussed shortly.

A <dialog> tag should not be explicitly sized with width and height
attributes.

10.3.2 <dialogheader>

Although this tag is defined in the chrome, it is simple content only. It pro-
vides the heading area inside the Preferences dialog box, but it’s no more than
a <box> and some textual content. It has no special meaning to dialog boxes.

10.3.3 <wizard>

The <wizard> tag is an enhancement of the <dialog> tag. It and <wizard-
page> are discussed in Chapter 17, Deployment.

10.3.4 Java, JavaScript, and Others

For completeness, note that dialog windows can also be created from Java,
using standard Java techniques. The JVM and standard class libraries can be
used to create windows that have nothing to do with the semantics of the
Mozilla Platform. Such dialog boxes can exist outside the rectangular browser
area occupied by HTML-embedded applets and can survive the destruction of
the window that created them. They can appear in their own windows as the
Java Console does. A starting point for such dialog boxes is to create a canvas.

Dialog windows can also be created from JavaScript using XPCOM and
AOM/DOM resources. Some techniques for doing so are discussed next.

Embedded programmers can use languages such as Perl and Python to
drive all the windows that an application based on the Mozilla Platform cre-
ates. Such uses are not documented here.

10.4 JAVASCRIPT WINDOW CREATION

New application windows can be created from JavaScript.
Recall that the JavaScript interpreter environment supplies the applica-

tion programmer with a global object. In a XUL document, that global object
has a property named window that is effectively the global object. This object
supports many methods useful for creating windows.

The Mozilla hierarchy of JavaScript properties is a constructed system
that is separate from the many XPCOM interfaces. Although some JavaScript
properties, like window and window.document, appear to be identical to
XPCOM components, these properties are just convenient fakes hiding the
real components that make up a Mozilla window.

AppDevMozilla-10 Page 332 Thursday, December 4, 2003 6:33 PM

10.4 JavaScript Window Creation 333

This last point is important. It is easy to become convinced that AOM
JavaScript properties exactly match a particular Mozilla component, but this
is not always true. Deep inside Mozilla, a number of separate abstractions
make up a window displaying document content. It is best to view window and
document as separate systems that closely match a few of the XPCOM inter-
faces rather than as direct replicas of some unique platform object.

The DOM Inspector, while very useful for examining content nodes like
DOM elements, is not as revealing for the window and document JavaScript
objects. For these objects, available JavaScript properties should be compared
against the XPCOM XPIDL interfaces so that differences can be seen.

The window object reports its type as ChromeWindow. There is no such
XPCOM object, although there is an nsIDOMChromeWindow. Interfaces more
relevant to the features of the ChromeWindow object are nsIJSWindow and
nsIDOMWindowInternal.

10.4.1 Navigator Versus Chrome Windows

JavaScript access to windows is designed with the traditional Web developer
in mind. By default, a new window means a new Navigator window. A Naviga-
tor window is a XUL window that contains a standard set of XUL content that
supplies all the features of a Web browser. This includes toolbars, other win-
dow decorations, bits of the DOM 0 document object model, a pane in which to
display Web pages, and security. The alternative to a Navigator window is a
chrome (plain XUL) window.

Navigator windows present a restricted interface to Web developers. The
window and window.document objects apply only to the content loaded into
the content pane. Web developers cannot access the XUL content that sur-
rounds that pane; to such a developer, the XUL Navigator controls are a black
box. The only options available to Web developers are a few flags that can be
supplied to the window.open() method. These flags allow a new Navigator
window to hide some of the XUL content, like toolbars.

To a XUL programmer, such Navigator windows are either a blessing or
a nuisance. If the programmer is making minor enhancements to the existing
Navigator system (such as overlays), then a Navigator window provides a
great deal of functionality for free. If, however, the programmer is building a
new application, all the Navigator functionality is just unwanted junk. In that
case, simple steps (like the -chrome option) must be taken to avoid that con-
tent.

10.4.2 window.open()

The window.open() method opens an independent window. It is a DOM 0
interface commonly used in Web development. Its signature in Mozilla is

target = window.open(URL, name, features);

AppDevMozilla-10 Page 333 Thursday, December 4, 2003 6:33 PM

334 Windows and Panes Chap. 10

☞ URL is a valid URI and can be set to a zero-length string or
“about:blank” for empty content. It does not need to be URL encoded.

☞ name is an identifier for the new window. It can be set to null or to
“_blank” for a nameless window.

☞ features is a comma-separated list of feature keywords (a feature
string) that controls the appearance and behavior of the new window.

☞ Finally, the returned value is a reference to the global (window) object of
the target window. The target window’s AOM can be accessed from the
window that keeps this reference, provided that any security restrictions
are obeyed.

The feature string is widely used but poorly documented, so here is a full dis-
cussion.

Each feature stated is a name=value pair. It is case insensitive. Such
pairs are either boolean flags or a scalar. In the boolean case, the =value part
can be left off or set to “=yes” for a value of true. Anything else is a value of
false. In the scalar case, the =value part is a number, and any trailing char-
acters are ignored. The features must be separated by commas and may have
additional spaces, although spaces present portability problems for HTML
documents displayed on older browsers. To summarize in an example:

"toolbar,location=yes, menubar=no,top=100, left=100px,width=100cm"

This example turns the Navigation toolbar on, the Location toolbar on,
and the menu bar off. It positions the window 100 pixels from the top and the
left, making it 100 pixels wide (cm is ignored).

The feature string dictates whether a window will be a Navigator
browser window (the default) or a plain XUL chrome window. Navigator is the
default. A plain chrome window requires this feature:

chrome

chrome defaults to false. If it is left off, then the following features are
specific to a Navigator window:

toolbar location directories personalbar status menubar scrollbars
extrachrome

These features default to true if no feature string at all is provided.
The extrachrome feature is a boolean value that determines whether a

new Navigator window will load and display user-defined content (called the
sidebar in the Classic Browser). In technical terms, this feature enables or dis-
ables the loading of programmer- or user-defined overlays installed in the
chrome. The other features are standard Web options.

The following features apply to both Navigator and chrome XUL win-
dows:

resizable dependent modal dialog centerscreen top left height width
innerHeight innerWidth outerHeight outerWidth screenX screenY

AppDevMozilla-10 Page 334 Thursday, December 4, 2003 6:33 PM

10.4 JavaScript Window Creation 335

If stated without a value, resizable and centerscreen default to
true; dependent and modal, to false. An exception is that if the current win-
dow is modal, then the new window is made to be modal=true. The remain-
der are scalars and so must have a value supplied.

resizable enables the resize drag points supplied to the window by
Microsoft Windows and X11 window managers. These resize drag points are
separate from any <resizer> tag.

dependent ensures that the new window will be closed if the parent
window is closed. The new window will always be on top of the invoking win-
dow.

modal ensures the original window cannot get focus until the new win-
dow is closed.

dialog tells the window manager to strip all buttons, except the Close
button, from the new window’s title bar.

centerscreen positions the new window in the middle of the desktop.
The remaining options are scalars that affect the position and size of the

new window. If just one of top, left, screenX, or screenY is set, the other
direction will be set to zero. The sizing and positioning features for a Naviga-
tor window are overridden if the persist attribute is used, which it is for
Classic Browser windows.

Some features work only if the window is created with security privi-
leges, for example from the chrome. These features are

titlebar close alwaysLowered z-lock alwaysRaised minimizable

titlebar and close default to true; the others, to false.
titlebar enables the decorations added by the window manager: the

title bar and window frame borders. close enables the Close window button
on the title bar. alwaysLowered and z-lock keep the new window behind all
other windows when it gets the focus; alwaysRaised keeps the window in
front of other windows when it loses the focus. minimizable appears to do
nothing.

If the close feature is turned off, the window can still be closed by the
user using the window manager. For example, on Microsoft Windows, the Win-
dows icon in the task bar retains a close menu item on its context menu.

10.4.3 window.openDialog()

The window.openDialog() method is available only when the document
calling this method is secure. Installed in the chrome is a secure case. It takes
nearly the same arguments as the window.open() method and produces
nearly the same result.

win = window.openDialog(URL,name,features,arg1, arg2, …);

arg1, arg2, and so on are arbitrary JavaScript function arguments
passed to the window.arguments array of the new window.

AppDevMozilla-10 Page 335 Thursday, December 4, 2003 6:33 PM

336 Windows and Panes Chap. 10

The openDialog() method is equivalent to adding the feature string
“chrome=yes,dialog=yes”. If either of those features is set to false by the
feature string, the values supplied override the openDialog() defaults.
openDialog() also supports this feature keyword:

all

The all attribute turns on all features that grant the user control
over the window. That means the Close and Minimize icons on the title bar
and so on.

10.4.4 window.content, id=“content” and loadURI()

In a Classic Browser window, the XUL tag with id="content" is a <tab-
browser> tag that represents the content panel. This tag is invisible to Web
developers, but highly useful for application developers who are customizing
browsers. It is heavily loaded with scriptable functionality and is worth
exploring with the DOM Inspector.

If the window is a standard XUL-based browser window, then this <tab-
browser> object is available as the content property of the window object.
In addition to implementing the nsIWebNavigation interface, that content
property has a document property that points to the HTML (or XML) docu-
ment that appears in the current tab.

The nsIWebNavigation interface provides all the methods used to con-
trol the in-place loading, reloading, and navigating of content in a single
browser content pane. The <tabbrowser> AOM object has a webNavigation
property that exposes this interface. The most useful method is loadURI().
loadURI() is similar to the XmlHttpRequest object discussed in Chapter 7,
Forms and Menus. The main difference is that the XmlHTTPRequest object
returns an HTTP request’s response as pure data, whereas loadURI() also
stuffs the response document into the display so that it is visible and inte-
grated with other Classic Browser features like history. loadURI() has this
signature:

void loadURI(uri, flags, referrer, postData, headers)

☞ uri is the Web resource to display.
☞ flags (default null) is a set of bitwise ORed flags that modify the load

behavior. These flags are supplied as webNavigation properties pre-
fixed with LOAD_FLAGS and provide options to bypass the browser cache,
reload the page, and so on.

☞ referrer (default null) is the HTTP referrer for the load request. The
programmer may override the referrer the Mozilla Platform supplies
with this argument.

☞ postData (default null) is a string of HTTP POST request data.
☞ headers (default null) is a string of additional HTTP headers.

AppDevMozilla-10 Page 336 Thursday, December 4, 2003 6:33 PM

10.4 JavaScript Window Creation 337

The last two options are rarely used from JavaScript. If you require
them, then the string supplied must be specially crafted to match the nsIIn-
putStream interface. To do so, use XPCOM as shown in Listing 10.1.

Listing 10.1 Construction of a string-based nsIInputStream.
var str, C, obj, iface, arg;

str = "put data here";
C = Components;
obj = C.classes["@mozilla.org/io/string-input-stream;1"];
iface = C.interfaces.nsIStringInputStream;

arg = obj.createInstance(iface);
arg.setData(str, str.length);

loadURI("page.cgi", null, null, arg, null);

10.4.5 alert(), confirm(), and prompt()

These three methods of the window object are basic user feedback windows in
the style of Microsoft’s MessageBox functionality. They are specialized, modal
dialog boxes. alert() is also the simplest way to put a breakpoint in your
JavaScript code: Execution halts until the alert is dismissed. See any Web
development book.

The small dialog windows created by these methods have been re-
designed for Mozilla. In Netscape 4.x and earlier, and in Internet Explorer,
these windows hold the output of a single C-like printf() statement. There
was no support for Unicode characters, only ASCII. In Mozilla, these windows
are full XUL windows, as Figure 10.2 reveals.

Dotted boxes in this diagram represent <description> tags. To see this
structure, apply diagnostic styles to the userChrome.css file in your Mozilla
user profile directory and restart the platform. This screenshot was produced
with this line of code:

alert("Line 1\nLine2");

Fig. 10.2 XUL structure of an alert() dialog box.

AppDevMozilla-10 Page 337 Thursday, December 4, 2003 6:33 PM

338 Windows and Panes Chap. 10

Mozilla takes the string supplied to alert(), confirm(), and
prompt() and splits it on all end-of-line characters supplied. Each split piece
is allocated a <description> tag and, therefore, can wrap over multiple
lines if required. Each <description> tag has a maxwidth of 45em. An
empty description tag at the top can be styled by the application programmer
and has id="info.header".

These dialog boxes originate in the chrome, in files prefixed commonDia-
log in toolkit.jar. The same XUL document is used for all three dialog
boxes.

10.4.6 nsIPromptService

This XPCOM pair is the technology behind the alert(), confirm(), and
prompt() dialog boxes:

@mozilla.org/embedcomp/prompt-service;1 nsIPromptService

An object can be created by this pair only when the document has full security
access, but such an object can create a wide variety of small dialog boxes.
Table 10.1 lists these boxes.

The nsIPromptService interface contains extensive documentation on
the arguments for each of these methods. Use this interface when building a
chrome-based application, rather than the simpler alert(). alert() is
really intended for HTML.

Table 10.1 Mozilla CSS2 font name extensions

Method name Dialog box created

alert() Same as the AOM alert().

alertCheck() Same as the AOM alert(), but with an extra line contain-
ing a checkbox and a text message.

confirm() Same as the AOM confirm().

confirmCheck() Same as the AOM confirm(), but with an extra line con-
taining a checkbox and a text message.

confirmEx() A fully customizable dialog box with up to 3 buttons,
each with custom or standard text, and an optional
checkbox and message.

prompt() Same as the AOM prompt().

promptUsernameAndPassword() A dialog box showing a user name and password field,
and an optional checkbox and message.

promptPassword() A dialog box showing a password field, and an optional
checkbox and message.

select() A dialog box showing a <listbox> from which a single
item may be selected. Each item is plain text.

AppDevMozilla-10 Page 338 Thursday, December 4, 2003 6:33 PM

10.4 JavaScript Window Creation 339

10.4.7 Special-Purpose XPCOM Dialog Boxes

Mozilla provides several special-purpose dialog boxes, all of which are located
in toolkit.jar in the chrome. The following dialog boxes are implemented:
Ask the user to specify a file; assist the user with printing; assist the user
when searching content in pages; and report progress for a file being down-
loaded.

All of these special-purpose dialog boxes have a matching XPCOM com-
ponent and must be controlled via XPCOM interfaces, not via the URLs of
their chrome components.

Two of these dialog boxes are briefly examined next.

10.4.7.1 FilePicker The FilePicker is an XPCOM component and interface. It
is also a set of dialog windows. Sometimes these dialog windows are Mozilla
windows containing XUL, and sometimes they are standard file dialog win-
dows provided by the operating system. Such native dialog windows cannot be
inspected with the DOM Inspector.

The following XPCOM technology is used to implement the FilePicker:

component @mozilla.org/filepicker;1 interface nsIFilePicker

The nsIFilePicker interface has very straightforward methods for
customizing the dialog box, as a brief examination of the XPIDL file will
reveal. To use the dialog box, proceed as follows:

1. Create a FilePicker object using XPCOM.
2. Initialize it with the init() method.
3. Add filters and choose which one is selected.
4. Set any other defaults required.
5. Call the show() method, which blocks until the user responds.
6. Extract the user’s response from the object.

The last stage, extracting the user’s response, is not as straightforward
as it might seem. Files nominated by the user cannot be specified with a string
containing a simple path. This is because some operating systems require a
volume as well as a path in order to specify a file’s location fully. The Macin-
tosh (and VMS, mainframes, and others) are examples. Chapter 16, XPCOM
Objects, describes the objects and interfaces Mozilla uses to manage files. That
is recommended reading before attempting to use the FilePicker.

Listing 10.2 is an example of the FilePicker used to ask the user for a file
that is to be the location of written-out content.

Listing 10.2 Acquiring an nsILocalFile using the FilePicker dialog box.
var Cc = Components.classes;
var Ci = Components.interfaces;
var fp;

AppDevMozilla-10 Page 339 Thursday, December 4, 2003 6:33 PM

340 Windows and Panes Chap. 10

fp = Cc["@mozilla.org/filepicker;1"];
fp = fp.createInstance(Ci.nsIFilePicker);
fp.init(window, "Example File Save Dialog", fp.modeSave);
fp.show();

// fp.file now contains the nsILocalFile picked

10.4.7.2 PrintingPrompt Mozilla provides XPCOM objects that interface
to the native printing system, objects that provide native printing dialog
boxes, and some print dialog windows that are built from XUL. In very recent
versions of Mozilla, XUL documents can be printed as for HTML documents.
Just load the XUL content in a browser window and print. Before version 1.3
or thereabouts, only HTML documents could be printed.

The printing system is nontrivial and is not covered in detail here. Start-
ing points for exploring the printing system are the nsIPrintingPrompt-
Service and nsIWebBrowserPrint XPCOM interfaces.

10.5 EMBEDDING DOCUMENTS IN PANES

The alternative to putting content in a new window is to create a pane in an
existing window whose content can be flexibly managed. A traditional televi-
sion is such a device, with many channels but only a single pane for display. In
this book, a pane is different from a panel. A panel is an area of a window that
displays related information in one spot. A pane is a panel whose related infor-
mation is sourced from a document that is separate from the rest of the window.

Mozilla’s XUL allows unrelated content to appear in part of an existing
window. Several tags that can achieve this exist.

10.5.1 <iframe>

The <iframe> tag is at the core of all Mozilla’s document embedding solu-
tions. It has the same purpose as an HTML <iframe>, but it is less flexible.
No content can be specified between start and end <iframe> tags, and it can-
not float beside other content. A XUL <iframe> allows focus to enter the con-
tent in the <iframe>’s area. XUL <iframe>s can be sized and resized as for
any boxlike tag:

<iframe minwidth="100px" flex="1" src="about:blank"/>

The <iframe> tag has only one special attribute: src. This can be set to
the URL of the document to be displayed in the <iframe>. Since the contents
are often HTML, it is useful to set the name attribute as well so that the win-
dow to which the content belongs has a name that can be used from inside the
content.

AppDevMozilla-10 Page 340 Thursday, December 4, 2003 6:33 PM

10.5 Embedding Documents in Panes 341

In Chapter 8, Navigation, it was remarked that the <scrollbox> tag
represents a special case of a boxlike tag, with its own interface. The
<iframe> tag is another such special case. It is the sole example of a compo-
nent named

@mozilla.org/layout/xul-boxobject-iframe;1

The AOM object for the <iframe> tag has a boxObject property as for
all XUL tags that are boxlike. Like <scrollbar>, <iframe>’s boxOb-
ject.QueryInterface() method can be used to retrieve a special-purpose
interface. In this case, it is called nsIIFrameBoxObject. Although this inter-
face has only one property, docShell, that property in turn reveals the nsI-
DocShell interface, which is extensive.

DocShell stands for “Document Shell.” A DocShell is a shell for docu-
ments in the same way that ksh, bash, or DOS is a shell for a set of operating
system commands. It is used to manipulate whole documents, just as DOS is
used to manipulate whole files and programs.

The extensive properties and methods of the nsIDocShell interface pro-
vide all the basic operations required to load and manage a document
retrieved by the Mozilla Platform. This interface can also be used to access all
the other interfaces that are handy for document management. The nsIDoc-
Shell interface is therefore something like the driver’s seat of a car—most of
the controls are within easy reach of it. This interface is well commented and
worth looking over. The downloadable files described in the Introduction
include this interface.

In simple cases, an application programmer merely uses an nsIDoc-
Shell that appears as a result of some content being loaded. Only in ambi-
tious projects does an application programmer need to hand-create a
document shell and drive the loading of documents through scripts.

Since the <iframe> tag supports this interface, its contents must have the
status of a full XML document. Most boxlike tags only have the status of a sin-
gle DOM element object and its children. The <iframe> tag is the fundamental
tag required to create a Mozilla Browser window: It implements the pane in
which the downloaded content appears. It is the heart of the Browser window.

To summarize, the <scrollbar> tag has a simple box-object enhance-
ment that allows its content (an XML document fragment) to be moved within
the tag’s display area. The <iframe> tag’s box-object enhancements are far
more complicated: Its content (a whole XML document) can be extensively
managed within the tag’s display area. In both cases, the display area is an
undecorated plain rectangle. Clearly, <iframe> is an extensive enhancement
on a plain <box>.

<iframe> has an XBL definition in general.xml and in toolkit.jar
in the chrome. This definition provides properties that are shorthand for com-
monly used parts of nsIDocShell:

docShell contentWindow webNavigation contentDocument

AppDevMozilla-10 Page 341 Thursday, December 4, 2003 6:33 PM

342 Windows and Panes Chap. 10

☞ docShell is the starting point for management of the content.
☞ contentWindow is the equivalent of the JavaScript window property for

the content.
☞ webNavigation is the window.webNavigation property for the con-

tent.
☞ contentDocument is the window.document property for the content.

The commandDispatcher that is supplied with every XUL document
has an advanceFocusIntoSubtree() method that can move the focus into
an <iframe>’s content, if that content is capable of receiving the focus.

If an <iframe>’s content is taller or wider than the clipping area of the
frame, and the pane’s content is not XUL, then scrollbars will appear. Any
XUL document displayed in an <iframe> should start with a <page> tag.
<iframe> tags may be nested, provided that each level of nesting is contained
in a complete document.

10.5.2 <page>

The <page> tag is an alternative to the <window> tag. The <page> tag should
be used when the XUL document is to appear inside an <iframe>, rather
than in its own window. The <page> tag has no special attributes.

A document that uses <page> can still be displayed in a window by itself,
but that use is not recommended. <page> is intended for documents that only
appear inside <iframe> tags.

10.5.3 <editor>

The <editor> tag is a specialist box-object tag like <iframe>. It displays an
entire document as <iframe> does. The only special attribute for <editor> is
src, which holds a URL for the displayed content. Some versions of Mozilla
support an editortype="html" or "text" attribute. There is also the
type="content" or "content-primary" attribute; the latter makes the
window.content property refer to the editor’s contentWindow. <editor> is
an example of the XPCOM pair:

@mozilla.org/layout/xul-boxobject-editor;1 nsIEditorBoxObject

The nsIEditorBoxObject interface has the DocShell functionality
present in the <iframe> tag, plus the very extensive functionality of the
nsIEditor interface, hanging off an editor property. This second interface
provides all the technology required to implement visual editing of an HTML
document, like selection, insertion, and so on. The <editor> tag is the heart
of the Classic Composer tool, just as the <iframe> tag is the heart of the Clas-
sic Browser tool.

The <editor> tag provides no controls for the displayed edit pane.

AppDevMozilla-10 Page 342 Thursday, December 4, 2003 6:33 PM

10.5 Embedding Documents in Panes 343

10.5.4 <browser>

The <browser> tag is a custom tag like <iframe>. It displays an entire docu-
ment as <iframe> does and supports the src attribute as for <iframe>.
<browser> is a boxlike tag and an example of the component

@mozilla.org/layout/xul-boxobject-browser;1

This component implements the nsIBrowserBoxObject interface,
which is nearly identical to the nsIIFrameBoxObject interface. <browser>
and <iframe> are identical at heart.

The <browser> tag differs from the <iframe> tag in its XBL definition.
That definition is in browser.xml in toolkit.jar in the chrome. The XBL
binding for <browser> is very extensive with many methods and properties.
Implementing simple tasks with the <iframe> tag means digging through a
few interfaces, finding the right properties, and making a few method calls.
The <browser> tag provides a range of convenient methods that do this dig-
ging for you. The <browser> tag’s XBL definition also adds and coordinates
history, security, and drag-and-drop support.

The <browser> tag also adds caret browsing functionality. Caret brows-
ing occurs if F7 is pressed: The user can then navigate a read-only HTML page
by moving the insertion point around the page, as though it were an editor
session.

<iframe> is more efficient than <browser> when the document dis-
played is static and never changes. <browser> is more convenient when the
document in the pane might be replaced several times or when basic naviga-
tion is needed.

10.5.5 <tabbrowser>

Just as <browser> is an enhancement of <iframe>, <tabbrowser> is an
enhancement of <browser>. Unlike the other two tags, <tabbrowser> has
no XPCOM component identity; it is just one very large XBL definition in
tabbrowser.xml in toolkit.jar in the chrome.

<tabbrowser> is a combination of <tabbox> and <browser> tags.
Each <tabbox> tab is a <browser>, and tabs can be dynamically added.
<tabbrowser> is ultimately used to implement the content display area of
the Classic Browser window.

<tabbrowser> supports the following special attributes:

onnewtab contenttooltip contentcontextmenu

onnewtab is an event handler that fires when the user creates a new tab by
pressing the New Tab button, or by using the menu system. contenttooltip
and contentcontextmenu are stripped of the prefix content and passed to
the <browser> tags inside the <tabbox> tabs.

AppDevMozilla-10 Page 343 Thursday, December 4, 2003 6:33 PM

344 Windows and Panes Chap. 10

Although it is possible to automate the actions of the <tabbrowser>
through its many methods, there is little point in doing so because the tag is
designed for user viewing of multiple read-only documents. The most an appli-
cation programmer might do is examine the current state of the tab system.

10.5.6 <IFRAME>,<iframe> and <FRAME>,<frame>

These HTML or XHTML tags are used to place documents inside a frame in
an HTML page. A XUL document can be displayed inside such a frame.

10.5.7 Non-Tags

When embedding documents, there are several do-nothing combinations.
By default, the <html> tag does nothing in a XUL document. It acts like

any user-defined tag. It can be made more useful with an XML Namespace, as
described in “Mixing Documents.”

The <window> tag does nothing when embedded in other XUL content,
so <window> tags do not nest, and neither do <dialog> or <page> tags. Out-
ermost tags only nest when they are in separate documents and an <iframe>
is between them.

The chromehidden attribute of the <window> tag does nothing for the
application programmer. It is set by the window.open() method, or by tool-
bar logic in the Classic Browser, or by the toolbar toggle widget on MacOS X,
on the Macintosh only. The windowtype attribute of the <window> tag takes
a string and is used for window management (see “Managing Existing Win-
dows”). It has no special meaning to <window>.

If there was ever a <package> tag, then it is gone now. It occasionally
appears in older Mozilla documentation.

10.6 MIXING DOCUMENTS

It is possible to combine documents so that their individual tags are mixed
together, without isolating one document in an <iframe>.

10.6.1 Mixing XML Document Types

A very powerful yet complex feature of Mozilla is the capbility to render a doc-
ument that contains tags from several standards. This means that a document
can contain HTML, SVG, MathML, and XUL content, all mixed together. This
is done simply by adding XML namespaces. All tags from the added
namespace are then available. Mozilla, however, will only recognize XUL con-
tent from a .xul file extension or from the correct XUL MIME type, so that
much is mandatory if XUL is involved. This system was touched on in Chapter
7, Forms and Menus, where HTML and XUL forms were mixed.

AppDevMozilla-10 Page 344 Thursday, December 4, 2003 6:33 PM

10.6 Mixing Documents 345

There is a distinction between deeply mixing and lightly mixing types of
content. The distinction is that layout is harder to perfect for deeply mixed
content.

When different content is lightly mixed, a few large chunks of different
content are put together. An example of light mixing is an HTML document
that contains a few equations, each written in a chunk of MathML.

When different content is deeply mixed, individual tags from different
content types sit side by side. This usually occurs when the document author
naïvely assumes that any tag from any standard can be used anywhere.

Lightly mixing content generally works. Deeply mixing content doesn’t
always work. HTML and MathML is the least problematic deep mixture.
Deeply mixing XUL and HTML or MathML requires care. Deeply mixing SVG
with something else doesn’t work because SVG content requires its own dedi-
cated display area.

Mixing standards can be useful, but it is also something to be wary of.
There are several reasons for caution:

☞ The layout models for different standards are not identical. A precise set
of rules for laying out mixed content is very difficult to find. You can
spend much time fiddling with styles.

☞ Mixed standards are not well tested. The number of tests required to con-
clude that two standards are fully compatible is huge. By the grace of a
good internal design, mixing does work. If you press hard, though, you’ll
find effects that no one has thought of or tested yet.

☞ The renderable standards in Mozilla do not share the same document
root. This means that the C/C++ object that implements the DOM 1 docu-
ment interface is different for each standard. The set of features avail-
able depends on what the root document is. XUL embedded in HTML is
not the same as HTML embedded in XUL. For heavily scripted docu-
ments, like XUL and DHTML, the right interfaces are very important.

It’s very tempting to add an HTML tag to XUL so that your
splash or help screen includes a link back to the vendor’s Web site. It’s very
tempting to add an HTML <FORM> tag and auto-submit forms from XUL. Both
of these tasks, however, can be done without any HTML. It is better to keep
your XUL clean.

The more recent DOM standards include interface methods like createEl-
ementNS() and getAttributeNS(). NS stands for Namespace. These methods
let you specify the namespace of content items in a given merged document.

10.6.2 Mixing XUL Documents

The <overlay> tag is similar to a sophisticated version of C/C++’s #include
directive. It allows several XUL documents to be merged seamlessly, using the
id attribute. It is described in Chapter 12, Overlays and Chrome.

AppDevMozilla-10 Page 345 Thursday, December 4, 2003 6:33 PM

346 Windows and Panes Chap. 10

10.7 MANAGING EXISTING WINDOWS

After windows are created, the application may wish to manage them. A sim-
ple example is the File | Inspect a Window menu option of the DOM Inspector,
which picks up a window for study. An even simpler example is the bottom
half of the Window menu in most Mozilla applications, which moves the focus
between windows.

Trying to juggle multiple windows can lead to very bad design. In most
cases, the user can close a window at any time. This wipes out all the state of
that window (except possibly for Java applets and shared XPCOM objects). It
is difficult to maintain a rational design when state can disappear arbitrarily.
Generally speaking, an application should have one master window, with any
other required windows being dependent on that master. The dependent and
modal features of window.open() are the simplest way to coordinate win-
dows. If a desktop metaphor is required, then either all windows must be inde-
pendent of each other, or a registration system must be implemented to track
who is still available.

Mozilla provides several components and interfaces for managing win-
dows. The simplest pair is

@mozilla.org/appshell/window-mediator;1 and nsIWindowMediator

This interface provides a list of the currently open windows. It is not fin-
ished (frozen) as of version 1.2.1 and may change slightly. The list has several
forms, depending on which method is used. Listing 10.3 illustrates how to get
a static list of currently open windows.

Listing 10.3 Retrieval of currently opened windows using nsIWindowMediator.
var C, obj, iface, mediator, enum, windows;
C = Components;
obj = C.classes["@mozilla.org/appshell/window-mediator"];
iface = C.interfaces.nsIWindowMediator;

mediator = obj.createInstance(iface);
enum = mediator.getEnumerator(null);
windows = [];

// record all windows using nsISimpleEnumerator methods
while (enum.hasMoreElements())
 windows.push(enum.getNext());

// do something with the first window
windows[0].document.GetElementById …

The getEnumerator() method can be passed a string that will filter the
list of windows retrieved. Only windows with an <html>, <window>, <dia-
log>, or <wizard> tag whose windowtype attribute matches the string will
be returned.

AppDevMozilla-10 Page 346 Thursday, December 4, 2003 6:33 PM

10.8 Style Options 347

To return only XUL windows, use getXULWindowEnumerator()
instead. The interface can also report stacking order for the currently open
windows. Iconized (minimized) windows are at the bottom of the stacking
order.

Windows open and close all the time, and an application might want to
track this dynamically, as the menus noted earlier do. One way to do this is to
add a listener to the window mediator object. This listener (an object imple-
menting nsIWindowMediatorListener) is advised if a window opens,
closes, or has its title changed. A more advanced solution, which requires little
code, is to use the rdf:window-mediator data source directly in XUL. RDF
and data sources are described in Chapter 11, RDF.

10.8 STYLE OPTIONS

The windowing aspects of XUL and HTML benefit from both trivial and sys-
tematic Mozilla enhancements to the CSS2 style system.

The trivial enhancements are as follows.
The <tooltip> tag displays -moz-popup, as for the <menupopup> tag

discussed in “Style Options” in Chapter 7, Forms and Menus. It is less useful
to display tooltips inline than menus, although that does provide a quick eye-
check that all visual elements have such tips.

The -moz-appearance style property, used to support native (desktop)
themes, also supports the following values:

window dialog tooltip caret

Systematic enhancements also exist for native theme support. It is useful
for windows, and for dialog windows in particular, to appear exactly like win-
dows created by the native desktop (e.g., Windows or GTK). Dialog boxes are
disruptive enough for the user, without including bizarre colors and shapes.
Mozilla includes color name and font name extensions designed to help dialog
boxes (and other content) mimic the dialog boxes that the desktop would pro-
duce. These color and font names can be used anywhere in a style rule that a
normal color or font name would appear.

In addition to these custom colors and fonts, Mozilla supports the desktop-
oriented colors and fonts specified in the CSS2 standard, section 18.2.

Extensive and careful use of these styles in a XUL application can
remove every hint that the application is Mozilla based. Well-styled applica-
tions designed this way may appear to be no different than traditional desktop
applications, such as Visual Basic Applications on Windows, or GTK-based
applications on UNIX.

Additional native-matching color names supported by Mozilla are noted
in Table 10.2. Recent updates to these colors can be found by examining the
source code file nsCSSProps.cpp.

AppDevMozilla-10 Page 347 Thursday, December 4, 2003 6:33 PM

348 Windows and Panes Chap. 10

Similarly, Mozilla supports the font name extensions listed in Table 10.3,
but these font names don’t appear to do anything as of version 1.4.

The special font name -moz-fixed does provide a real font and can be
used to ensure that a fixed-width font is displayed. It has the special property

Table 10.2 Mozilla CSS2 color name extensions

Native color name
Matches this native
item

Additional Macintosh-specific
color names

-moz-field Background of a form field -moz-mac-focusring
-moz-mac-menuselect
-moz-mac-menushadow
-moz-mac-menutextselect
-moz-mac-accentlightesthighlight
-moz-mac-accentregularhighlight
-moz-mac-accentface
-moz-mac-accentlightshadow
-moz-mac-accentregularshadow
-moz-mac-accentdarkshadow
-moz-mac-accentdarkestshadow

-moz-fieldtext Foreground of text in a
field

-moz-dialog Background of a dialog box

-moz-dialogtext Foreground of text in a
dialog

-moz-dragtargetzone Highlighted color of a drag
target when dragged over

-moz-hyperlinktext Clickable link text, such as
Windows Active Desktop
links

-moz-visitedhyperlinktext Clickable link text for a
visited link

Table 10.3 Mozilla CSS2 font name extensions

Native font name

-moz-window

-moz-document

-moz-workspace

-moz-desktop

-moz-info

-moz-dialog

-moz-button

-moz-pull-down-menu

-moz-list

-moz-field

AppDevMozilla-10 Page 348 Thursday, December 4, 2003 6:33 PM

10.9 Hands On: NoteTaker Dialogs 349

that it can be rendered at all point sizes, so text in that font is guaranteed to
appear regardless of the value of the font-size CSS2 property.

10.9 HANDS ON: NOTETAKER DIALOGS

In this “Hands On” session, we’ll take advantage of the windowing aspects of
XUL to clean up the NoteTaker Edit dialog box some more. We’ll also coordi-
nate the application window and the Edit dialog window a little so that they
work together. These two items consist of a number of tiny jobs:

1. Replace <window> with <dialog> in the Edit dialog box.
2. Replace plain <button> handlers with <dialog> button handlers.
3. Implement the notetaker-open-dialog command on the main

browser window so that window.openDialog() is used to display the
Edit dialog box.

4. Implement the notetaker-close-dialog command.
5. Find and implement a strategy for handling data that is used by more

than one window.
6. Work out what kind of window a NoteTaker note is.

First, we look at the Edit dialog box. Replacing the <window> tag is triv-
ial. The new dialog tag could do with a title as well. That new tag will be

<dialog xmlns="http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul"

 id="notetaker.dialog"
 title="Edit NoteTaker Note"
 onload="execute('notetaker-load')">

Unfortunately, we gain a little but also lose a little on the handler side.
We don’t need to hand-create <button> tags any more because <dialog>
supplies them, but at the same time we can’t easily use <command> tags with
<dialog> because there’s more than one possible command attached to that
tag. If we desire, we could suppress the buttons that <dialog> shows us and
keep our existing buttons. Instead, we’ll do it the way <dialog> suggests,
which is to use that tag’s own buttons. This gives us standard buttons on each
platform. We also might add these handlers:

ondialogaccept="execute('notetaker-save');execute('notetaker-close-
dialog');"

ondialogcancel="execute('notetaker-close-dialog');"

In fact, the notetaker-close-dialog command is not needed in some
cases because <dialog> will automatically close the window when Cancel is
pressed, or when the Close Window icon on the title bar is pressed. We might

AppDevMozilla-10 Page 349 Thursday, December 4, 2003 6:33 PM

350 Windows and Panes Chap. 10

as well get rid of it from the code since <dialog> does everything for us. We
can use an onclose handler at a later time if necessary. So only the ondia-
logaccept handler needs to be added.

That leaves the -open- and -close- commands to implement. We don’t
yet have a fully integrated toolbar, but we can use the fragment of XUL that
we do have to test the command’s implementation. The action() function
used by the toolbar needs a very simple enhancement:

if (task == "notetaker-open-dialog")
{
 window.openDialog("editDialog.xul","_blank","modal=yes");
}

We use modal because the Edit dialog box isn’t a full manager window
like many of Mozilla’s windows. We want the main browser window to freeze
while the user is working on the dialog box. In that way, we don’t need to
worry about focus jumping back and forth between the two windows, or worse,
between form fields on different windows.

Similarly, the action() function for the Edit dialog box requires a triv-
ial enhancement:

if (task == "notetaker-close-dialog")
 window.close();

Penultimately, there is the matter of managing data. The NoteTaker
tool is designed to maintain one note at most per URL, and the user is
expected to work on one note at a time. But the tool spans two windows so
far. Both the toolbar and the dialog box contain form fields that the user can
enter information into. Which window holds the temporary state of the cur-
rent note?

The answer depends on how that state is stored. In later chapters, the
information will be stored in RDF, which is independent of a given XUL or
HTML window. In this chapter, we’ll store the data as a simple JavaScript
object. Such an object originates in a single window. We choose the browser
window to store the state because it’s the window that displays the Web page
to which the note is attached.

var note = {
 url : null;
 summary : "",
 details : "",
 chop_query : true, home_page : false,
 width : 100, height : 90, top : 80, left : 70
}

This object is automatically available to JavaScript in the Edit dialog
code using the simple syntax:

window.opener.note

AppDevMozilla-10 Page 350 Thursday, December 4, 2003 6:33 PM

10.9 Hands On: NoteTaker Dialogs 351

Each browser window will have one such object. This object can be further
enhanced at any point with methods that perform updates to or from the form
fields on the toolbar or in the dialog box. In this way, processing is centralized.
If the dialog box were more complicated, it might have its own state and its
own set of objects, but that is unnecessary in this case.

If we use the opener object, we must be very careful. Even though the
data are being put into a different window, the current JavaScript context
resides in the window that the script started in. Calls to setTimeout(),
setAttribute(), or other trickery will always run against the current
window, not the window being manipulated, even if the call is made through
a function that is defined in that other window. Listing 10.4 shows logic for
the dialog box’s action() function, which is implemented in the dialog box
window.

Listing 10.4 Save and load of NoteTaker dialog box data to the main window.
if (task == "notetaker-save")
{
 var field, widget, note = window.opener.note;

 for (field in note)
 {
 widget = document.getElementById("dialog." + field.replace(/_/,"-");

 if (!widget) continue;

 if (widget.tagName == "checkbox")
 note[field] = widget.checked;
 else
 note[field] = widget.value;
 }
}

if (task == "notetaker-load")
{
 var field, widget, note = window.opener.note;

 for (field in note)
 {
 widget = document.getElementById("dialog." + field.replace(/_/,"-");

 if (!widget) continue;

 if (widget.tagName == "checkbox")
 widget.checked = note[field];
 else
 widget.value = note[field];
 }
}

AppDevMozilla-10 Page 351 Thursday, December 4, 2003 6:33 PM

352 Windows and Panes Chap. 10

These two routines are the inverse of each other. The continue state-
ments let the dialog box ignore properties of the note object that the dialog box
doesn’t know about. With a bit more organization, we could make the object
property names and the form field name the same (even though “-” is not a
valid character for literal property names), which would slightly shorten the
code, but we haven’t bothered. The Edit dialog box now “saves” and “loads” its
information back to the main window, so the toolbar logic must be expanded
(later) to do a real save from the running platform to the external world. The
note object is now our official record of the current note.

Last of all is the question of the NoteTaker note itself. The purpose of the
note is to annotate a Web page with a comment from the viewer, so the note
must appear on top of the Web page somehow. The note’s data will be stored
locally, and its display will be generated locally, but the Web page may come
from any Web site. Because NoteTaker is installed in the chrome, and is there-
fore trusted, it has permission to obscure or alter any displayed Web page
without restriction, including covering part of the site with note content.

One implementation strategy for the note is to use pure XUL, XBL, and
JavaScript. A Web page in a browser window is displayed inside an <iframe>
that is part of a <tabbox> that is part of a <tabbrowser>. If the <iframe>
were wrapped in a <stack>, then the second card of the <stack> could be the
Web page, and the first card of the stack could be the note. That note could be
positioned using relative styles, and the Web page would “show through”
everywhere except where the note was located. The note could then be any
simple XUL content, like a simple <box> with some borders, background, and
content. Think of a message written on a window pane—the garden can still
be seen even though part of the glass has writing on it.

This strategy would require changes to the <tabbox> tag, which is
defined in XBL. We can do that, but replacing the standard <tabbox> tag is a
big move because it requires much testing. We would need to integration test
all the changes we make with every application installed on the platform.
That includes the browser itself. We’d rather not do that much work.

An alternate strategy is to implement the note in HTML and CSS. From
the chrome-installed NoteTaker, we could reach down into the displayed Web
page. Using DHTML techniques, we could add a tag and its content.
That tag would be styled to be absolutely positioned and to have a
high z-index so that it’s always on top. There’s a one-in-one-billion chance
that this will clash with existing content on the page, but that’s small enough
for us to live with. This strategy has the benefit that it doesn’t affect the rest of
the chrome. This is the strategy we’ll use.

A NoteTaker note will appear as shown in Figure 10.3. That figure is an
ordinary Web page.

We must use the lowest-common denominator HTML because we don’t
know what standard the Web page will be written to. That means valid XML
and valid HTML, just in case the page is displayed in strict mode. We are
free, however, to use any of Mozilla’s HTML enhancements because we know

AppDevMozilla-10 Page 352 Thursday, December 4, 2003 6:33 PM

10.9 Hands On: NoteTaker Dialogs 353

the browser will always be Mozilla. Compared with normal browser compati-
bility issues, that’s a little unusual. HTML for the previous note is given in
Listing 10.5.

Listing 10.5 HTML construction of a NoteTaker note.

 Note Summary

 All the details go here

In fact, we should go to some extra trouble to make sure that the xmlns
prefix for the tags is always correct, but we won’t bother here. This HTML
code has styles shown in Listing 10.6.

Listing 10.6 CSS style construction of a NoteTaker note.
#notetaker-note {
 display : block;
 position : absolute;
 z-index : 2147483646; /* one less than menu popups */
 overflow : auto;

 background-color : lightyellow;
 border : solid;
 border-color : yellow;

Fig. 10.3 Sample NoteTaker note constructed from HTML.

AppDevMozilla-10 Page 353 Thursday, December 4, 2003 6:33 PM

354 Windows and Panes Chap. 10

 width : 100px;
 height : 90px;
 top : 80px;
 left : 70px;
}
#notetaker-note-summary {
 display : block;
 font-weight: bold;
}
#notetaker-note-details {
 display : block;
 margin-top : 5px;
}

Sometime in the future, this Web note technology could get an upgrade.
Each note could be draggable, resizable, and iconizable, using the mouse. Each
one could be directly editable. Most of these additions are standard DHTML
tricks and aren’t pursued here. Such changes would also need to be detected
by the NoteTaker tool, which is not hard either.

To get a basic note in place, we can capture these two pieces of HTML
and CSS code in JavaScript strings. Instead of hard-coded values, we can use
placeholders so that

"… width : 100px …"

is stored as

"… width : {width}px …"

Using JavaScript regular expressions, we can substitute the values
entered by the user in the toolbar or Edit dialog box into this string. After we
have a finished string, we can create the note as shown in Listing 10.7.

Listing 10.7 Dynamic HTML creation of NoteTaker note.
function display_note()
{
 var style = generate_style();
 var html = generate_html();
 var doc = window.content.document;

 var stree = doc.getElementById("notetaker-styles");
 if (!stree) // add the topmost <style>
 {
 stree = doc.createElement("style");
 stree.setAttribute("id","notetaker-styles");
 var head = doc.getElementsByTagName('head').item(0);
 head.appendChild(stree);
 }
 stree.innerHTML = style;

 var htree = doc.getElementById("notetaker-note");

AppDevMozilla-10 Page 354 Thursday, December 4, 2003 6:33 PM

10.9 Hands On: NoteTaker Dialogs 355

 if (!htree) // add the topmost
 {
 htree = doc.createElement("span");
 htree.setAttribute("id","notetaker-note");
 var body = doc.getElementsByTagName('body').item(0);
 body.appendChild(htree);
 }
 htree.innerHTML = html;
}

The code uses getElementByTagName() to locate the <head> and
<body> tags in the HTML page—the id for those tags in unknown by us. It
then creates the topmost tag for the styles or the content and appends it to the
<head> or <body> tag’s existing content. Mozilla’s special innerHTML prop-
erty inserts the rest of the content from a string. For this simple system, we
assume that the displayed page is not a frameset, and that it contains a
<head> and a <body> tag. These assumptions can be lifted, but the result is
just more DHTML code, which doesn’t teach us much about Mozilla. The
generate_html() function looks like Listing 10.8 and is trivial; the
generate_style() function is analogous.

Listing 10.8 Insertion of NoteTaker data into Dynamic HTML content.
function generate_html()
{
 var source =
 '{summary}' +
 '{details}';

 source = source.replace(/\{summary\}/, note.summary);
 source = source.replace(/\{details\}/, note.details);

 return source;
}

These changes are not so easy to test because they require integration
with the Web browser. A complete testing solution is to read about overlays,
which are two chapters in the future. A temporary solution is to hack the
browser code, which we’ll do here.

To hack the browser, make a copy of navigator.xul and put it in your
notetaker/content directory in the chrome. The original is in comm.jar in
the chrome. If we start Mozilla using this file:

mozilla -chrome chrome://notetaker/content/navigator.xul

then, voilà, a perfectly normal browser window appears. We’ll modify the copy
of this file. First, we add <script src=> tags for all the scripts needed for
the toolbar code. Second, we find this line:

<toolbar id="nav-bar" …

AppDevMozilla-10 Page 355 Thursday, December 4, 2003 6:33 PM

356 Windows and Panes Chap. 10

This is the main navigation toolbar. Immediately after that opening tag, we
add a <toolbarbutton> like so:

<toolbarbutton label="Test" onclick="display_note()"/>

When we save and load this file, a test button appears on the navigation
bar. Pressing it makes a note appear—provided an HTML page is loaded. We
can install any onclick handler we want on this button, including calls to
execute(), action(), and anything else. In fact, we could put the whole
NoteTaker <toolbar> content into this file (temporarily) if we wanted to.

This testing requires that the tester wait for a given HTML page to load
before pressing the Test button. In the final, automated NoteTaker tool, we
won’t have that luxury. Instead, we’ll need to detect the loading page. An unso-
phisticated solution is simply to poll the contents regularly to see if anything
arrived.

function content_poll()
{
 if (!window.content) return;
 var doc = window.content.document;
 if (!doc) return;
 if (doc.getElementsByTagName("body").length == 0) return;
 if (doc.location.href == "about:blank") return;
 if (doc.visited) return;

 display_note();
 doc.visited = true;
}
setInterval("content_poll()", 1000);

This code examines the currently displayed HTML page to see if a note
needs to be displayed. If there’s no document, or the document doesn’t have a
body yet, or it’s blank, or it already has a note, do nothing. Otherwise, find the
note and add it.

To summarize this “Hands On” session, we now have the windows that
make up the display portion of the NoteTaker tool. We have a memory-
resident version of the current note in the form of a JavaScript object. We
have some coordination between windows and some logic tying the note
object to the displayed note. We even have a way to store and load the note
on a Web server. With a little more work tying the user input to the JavaS-
cript note object, this tool could be finished. The note even reloads when the
Web page reloads.

The major thing missing is proper treatment of the Web page’s URL.
Each Web page is supposed to support a unique note. With the current
arrangement, we need to submit a form request to a server to get the note
back—that’s rather inefficient. Our only alternative so far, and that is merely
hinted at, is to write all the notes to a flat file. There’s a better way, and that
way is to store the notes as RDF. We discuss that option in the second half of
this book.

AppDevMozilla-10 Page 356 Thursday, December 4, 2003 6:33 PM

10.10 Debug Corner: Diagnostic Windows 357

10.10 DEBUG CORNER: DIAGNOSTIC WINDOWS

Before exploring window diagnostics, let’s consider a cautionary remark about
Microsoft Windows. When you are in the middle of constructing a still-buggy
XUL application on Windows, the Mozilla Platform can occasionally become
confused. The result of this confusion is that the platform remains in memory
even when the last Mozilla window is shut down. When subsequent windows
are started, they attach to the existing, confused instance of the platform. The
most obvious symptom of this problem is that, no matter how hard you try,
your changes to source files never appear in newly displayed windows.

To detect this problem, note that the splash screen only appears when
the platform is first started: no splash screen + no existing windows = con-
fused platform. To confirm the problem, use Control-Alt-Delete to review the
list of running processes, and do “End Task” on any Mozilla processes.

Fortunately, this problem is less frequently seen as the platform
matures. Being mindful of it can save hours of fruitless testing, though. There
are many sources of defects, and this behavior is only one. For the rest, you
must look to your own code.

When analyzing a complex application, nothing beats real-time informa-
tion about the state of the application, delivered neatly in a controllable win-
dow. Mozilla provides a number of alternate ways to achieve this.

The simplest method is to use the dump() method described in Chapter
5, Scripting. Its output appears in the Mozilla window that appears when the
platform is started with the -console option.

Nearly as simple to use are the many windows supplied by the Java-
Script Debugger. To enable the debugger, first open a debugger window by
hand. Turn on all the subwindows listed under View | Show/Hide as an experi-
ment. At the first scripting opportunity in the XUL or HTML page to be diag-
nosed, add this line:

debugger;

When this line of script is executed, control will be thrown to the debugger,
and you can step through the page’s scripts from that point on. Use the big
buttons in the debugger window and examine the content of each of the small
subwindows as you go.

In HTML, the document object has open(), close(), and write()
methods and a progressive rendering system that displays content before the
document is completely loaded. This system can be used as a logging system.
An HTML window can be opened from another window using win-
dow.open() and diagnostic content logged to it with document.write() as
required.

XUL does not support HTML-style incremental display, but a similar
system is still possible. Load a simple, empty XUL document into the window
destined for logging, using window.open(). That document should have no

AppDevMozilla-10 Page 357 Thursday, December 4, 2003 6:33 PM

358 Windows and Panes Chap. 10

content other than <window orient="vertical">. Use a sequence of state-
ments as in Listing 10.9 to insert new content into that page:

Listing 10.9 Insertion of diagnostic messages into a new XUL window.
var win = window.open(…new window …);

function logger(message)
{
 var obj = win.document.createElement("description");
 var txt = win.document.CreateTextNode(message);
 obj.appendChild(txt);
 win.document.appendChild(obj);
}

Note that the document elements are created using the document in the
new page, not the document in the existing page. Such a system can be
enhanced with scrollbars and other controls. If the application is secure (e.g.,
installed in the chrome) it is just as easy to use the JavaScript Console. This is
shown in Listing 10.10.

Listing 10.10 Logging messages to the JavaScript Console.
// Find the console
var C = Components;
var obj = C.classes["@mozilla.org/consoleservice;1"];
var iface = C.interfaces.nsIConsoleService;
var cons = obj.getService(iface);

// Log a message
cons.logStringMessage("test message");

A similar system can be used for logging to the Java Console. This con-
sole has the advantage that it is not a XUL window and doesn’t require a
debug build of the browser or command-line display (which dump() needs).
Messages can be logged to it without disturbing the normal state of any XUL
windows. The Java Console does not appear in any list of windows retrieved
using the earlier window mediator code either. This old-fashioned but familiar
line from Netscape 4.x days can be used to write directly to the Java Console
(it is a static class method):

window.java.lang.System.out.println("my message");

The console itself can also be exposed from code. The process is simple
and shown in Listing 10.11, but it requires a secure application.

Listing 10.11 Revealing the Java Console window from a script.
var C = Components;
var obj = C.classes["@mozilla.org/oji/jvm-mgr;1"];
var iface = C.interfaces.nsIJVMManager;

AppDevMozilla-10 Page 358 Thursday, December 4, 2003 6:33 PM

10.11 Summary 359

var cons = obj.getService(iface);

if (cons.JavaEnabled) cons.showJavaConsole();

Before exposing the window, the whole Java subsystem must be checked
to ensure that it is not disabled by the user.

10.11 SUMMARY

Managing windows in Mozilla is heavily inspired by technology used in tradi-
tional Web browsers. Much can be achieved with the window.open() method
and a few highly customized XUL tags. These tags are only of interest to appli-
cation developers whose applications are browser-like.

Mozilla’s XPCOM architecture reveals many interesting objects used to
manage documents retrieved by the platform, not the least of which is the idea
of a DocShell. These objects are saturated with functionality needed for ambi-
tious content-oriented applications.

Mozilla’s highly customizable windows also benefit from styles. Using
style information, application programmers can integrate a window with the
standard desktop appearance, which prevents the application from appearing
foreign.

Many of the XUL tags discussed so far in this book are content-like and
static. Software applications, however, are often data-centric and dynamic
rather than content-centric and static. Mozilla caters to these nonbrowser
needs with novel support for data-oriented processing tasks. That support is
the topic of the next few chapters, starting with the RDF language.

AppDevMozilla-10 Page 359 Thursday, December 4, 2003 6:33 PM

