

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

JavaJavaScript

Components

AppDevMozilla-07 Page 238 Thursday, December 4, 2003 6:30 PM

239

C H A P T E R

Overlay
database

XBL
definitions

Keyboard

Desktop
themes

GUI
toolkits

Fonts

DTDs

Mouse

RDF

Widgets

Default
CSS

W3C
standards

Skins

Screen

JavaScriptcript

UR
L

7

Forms and Menus

AppDevMozilla-07 Page 239 Thursday, December 4, 2003 6:30 PM

240 Forms and Menus Chap. 7

This chapter describes most of the XUL tags used for data entry. It also
explains how to submit forms over the Web. Widgets and tags more concerned
with user movement are covered in Chapter 8, Navigation.

The best way to assist users with their input is with guidance and feed-
back. For paper-based systems, this means using a particular style of layout
called a form. GUI toolkits provide widgets that are electronic versions of
paper forms. In Chapter 4, First Widgets and Themes, buttons were consid-
ered at length. This chapter describes the other basic form controls that go
with buttons: menus, check boxes, text boxes, and so on. Each of these con-
trols, plus the various menu controls, expresses either a uniquely new widget
or a unique combination of widgets.

The NPA diagram that precedes this chapter shows where in Mozilla
form and menu technology sits. Unsurprisingly, XUL form and menu tags are
heavy users of the desktop’s GUI toolkit. Each widget must contribute some-
thing new and unique to XUL, and that new functionality is best found in the
features the desktop provides.

Forms and menus have the same constraint as the

<button>

 tag: They
must look like forms and menus to be recognized. Style information, therefore,
plays an important part in these widgets. The NPA diagram also notes the
importance of XBL definitions (bindings). Form and menu tags are usually
manipulated extensively by scripts, and the programmer needs to have XBL
definitions for those tags at hand in order to remember what properties and
methods are available.

Finally, the NPA diagram shows that some XPCOM components are rele-
vant to the forms environment. Submitting a form to a Web server is a classic
use of the Mozilla technology, and the first example of using the platform as
client software to some server.

HTML’s form tags have been wildly successful. XUL forms are similar to
HTML, so we begin with a brief comparison of the two. After that, we will look
at all the XUL tags involved.

7.1 XUL

AND

 HTML F

ORMS

 C

OMPARED

HTML/XHTML has a

<FORM>

 tag. This tag collects

<BUTTON>

,

<SELECT>

,

<INPUT>

, and

<TEXTAREA>

 tags into a group. The

<FORM>

 tag’s DOM object
has methods that combine the values of the form members together into an
HTTP GET or POST request. This automates the process of permanently cap-
turing form data by sending it to some Web server. As a result, Web-based
HTML-based applications are now common.

XUL has no equivalent to the

<FORM>

 tag. XUL form control equivalents
are not bound into groups (except via

<radiogroup>

). There is no equivalent
to

<INPUT TYPE="reset">

 or

<INPUT TYPE="submit">

 in XUL, and XUL
has no semiautomatic form submission process. If a plain XUL document is
presented to the user, then nothing happens to the data the user enters.

AppDevMozilla-07 Page 240 Thursday, December 4, 2003 6:30 PM

7.1 XUL and HTML Forms Compared 241

This means that if a XUL application is to behave like an HTML form,
then form submission must be added by hand. This is done with scripts, which
are added to each XUL document that is to be formlike. Fortunately, such
scripts are trivial to write.

On the other hand, XUL form controls are more varied than HTML ones.
The

<button>

,

<textbox>

, and

<menu>

 tags are all more flexible than the
HTML equivalents. In addition, XUL has many high-end tags, such as

<menubar>

,

<listbox>

, and

<tree>

, that are far more sophisticated than
anything HTML has to offer. These better-than-forms tags are discussed in
later chapters.

Table 7.1 lists the tags in XUL that are closest to HTML’s form and menu
tags.

Table 7.1

HTML and XUL form and menu tags compared

HTML tag XUL tag Notes

<FORM> none Use XMLHttpRequest
object.

<BUTTON> <button>

<INPUT TYPE=“button”> <button>

<INPUT TYPE=“text”> <textbox>

<INPUT TYPE=“radio”> <radio> Or use <button
type=“radio”>.

<INPUT TYPE=“checkbox”> <checkbox> Or use <button
type=“checkbox”>.

<INPUT TYPE=“password”> <textbox type=“password”>

<INPUT TYPE=“submit”> none Use <button> and a script.

<INPUT TYPE=“reset”> none Use <button> and a script.

<INPUT TYPE=“file”> none Use the FilePicker object.

<INPUT TYPE=“hidden”> none Use a plain JavaScript
variable.

<INPUT TYPE=“image”> <button> Use a script for any form
submit.

<SELECT> <menulist> or <listbox>

<OPTGROUP> none Use <menuseparator>
instead.

<OPTION> <menuitem>

<TEXTAREA> <textbox multiline=“true”> Supports rows and cols
attributes.

AppDevMozilla-07 Page 241 Thursday, December 4, 2003 6:30 PM

242 Forms and Menus Chap. 7

7.2 W

HERE

TO

 F

IND

 I

NFORMATION

ON

 M

ENUS

Forms and menus tend to appear together in GUI-based applications. XUL’s
support for menus is nearly as varied as its support for buttons. Unlike the
overview of buttons in Chapter 4, First Widgets and Themes, menus are
described in several different places in this book. There is a brief comparison
of all menu types in “Menu Variations” in this chapter. Otherwise, look here:

☞

This chapter describes drop-down menus used as form controls. These
controls are based on the

<menulist>

 tag.

<menulist>

 is built from

<menupopup>

,

<menuitem>

, and more, and those tags are discussed
here, too.

☞

Buttons that are menulike are discussed in Chapter 4, First Widgets and
Themes.

☞

Menus that do not drop down appear flat inside a document as a multi-
line box. They are called listboxes in HTML and XUL. XUL’s

<listbox>

is described in Chapter 13, Listboxes and Trees.

☞

Menus that appear in menu bars using the

<menu>

 tag are described in
Chapter 8, Navigation.

<menu>

 used as a submenu is discussed here.

☞

Context menus based on the

<menupopup>

 tag are described in Chapter
10, Windows and Panes.

The only real distinction between menus in XUL is between

<listbox>

and

<menulist>

.

<listbox>

 is the far more sophisticated tag of the two. All
the other tags and uses noted are variations on

<menulist>

. All popup menus
are implemented using the

<menupopup>

 tag.

7.3 F

ORMS

The form, in which a number of user-modifiable items are collected into a
structured group, is central to both HTML and XUL. HTML is hypertext, and
the hypertext concept doesn’t really include the idea of a form, but forms are
so useful that their addition to HTML is just a matter of history. XUL, on the

<LABEL> <label> See discussion on accessi-
bility.

<FIELDSET> <groupbox>

<LEGEND> <caption>

<INPUT TYPE=“radio” NAME=> <radiogroup>

Table 7.1

HTML and XUL form and menu tags compared (Continued)

HTML tag XUL tag Notes

AppDevMozilla-07 Page 242 Thursday, December 4, 2003 6:30 PM

7.3 Forms 243

other hand, is meant for forms from the beginning. If XUL achieves wide-
spread acceptance, then the forms module of future XHTML standards might
be no more than a reference to part of XUL.

Mozilla’s HTML and XUL forms are quite similar. The simplest of the
form elements are nearly identical. Event handlers and navigation work much
the same in both. Any HTML primer that contains a little JavaScript is good
preparation for XUL forms. Don’t, however, expect every fine detail to be iden-
tical. The two form systems are implemented separately, although they share
some common code.

The simplest of XUL’s form tags are discussed here. This set of simple
tags is

<button> <checkbox> <radio> <radiogroup> <textbox> <label>

7.3.1 Form Concepts

One form widget is called a form control (from Microsoft terminology) or a
form element (originally from graphic design, adopted by Netscape and the
W3C). Such elements might interact with the user in different ways, but they
are united by some common design.

7.3.1.1 Navigation

If the user is to enter anything into a form, then interact-
ing with one form widget at a time is a simple approach. Both XUL and HTML
allow one widget to be selected at a time. Interactive form widgets are also
ordered within a document. In W3C terms, this is called the

navigation order

.
In Mozilla, the ordered collection of these widgets is called the

focus ring

because stepping one beyond the last widget leads back to the first one. All
form elements are members of the focus ring.

The focus ring is discussed in more detail in Chapter 8, Navigation.

7.3.1.2 Common Properties of XUL Form Elements

In the process of devel-
oping the CSS3 standard, the W3C produced a draft document, “User Inter-
face for CSS3.” Although old, it is still available at

www.w3.org/TR/1999/
WD-css3-userint-19990916

. This document is an early attempt at some of the
newer features that CSS3 hopes to support. It is at least ironic and coinciden-
tal that this part of CSS3 is (1) the part most similar to Microsoft’s .NET and
(2) one of the slowest parts of CSS3 to be finalized.

Mozilla implements many features of this draft document. In particular,
it implements four style properties that represent the interactive potential of
the simple XUL form elements. In Mozilla, the

nsINSDOMCSS2Properties

interface implements these styles. They appear as

-moz

 styles in the
stylesheet system. The four style properties are

user-input user-modify user-select user-focus

These style properties are somewhat independent of each other and are
important because they make understanding the user input system easier.

AppDevMozilla-07 Page 243 Thursday, December 4, 2003 6:30 PM

244 Forms and Menus Chap. 7

Such an understanding has been hard to come by in the past because the
results of applying event handlers like

onclick

 and DOM methods like

focus()

 tend to depend on many of these four states at once. Now that these
states are identified, it is easier to understand what effect form element han-
dlers have. You can take a set of four states and an event and write down new
states that will result if a form element with those states gets that event.

Beyond these four styles, form elements share two other concepts. The
first such concept is private state. All simple form elements are stateful and
share at least the disabled attribute, which can be set to

"true"

. Figure 7.1
illustrates disabled and nondisabled form controls.

Finally, all simple form elements share a bundle of event handlers and
matching object methods for interactive events like focus and blur.

7.3.1.3 Accessibility

Accessibility is a feature of software designed to make
it usable for those with disabilities. HTML hypertext content, links, and XUL
application windows can be made accessible. Form elements are of particular
interest because governments want to provide services over the Internet that
supply equity of access to disabled citizens and other minorities.

In all discussion to date, the XUL

<label>

 tag has appeared to be identi-
cal to the

<description>

 tag, except that it can be reduced to a label
attribute. In the area of accessibility, the

<label> tag first differs from the
<description> tag. The <label> tag can provide the alternate content that
is needed for an accessibility system.

If a form element has a label attribute, Mozilla will present its content as
the guide information that the accessibility system expresses to the user. If
the form element doesn’t have such an attribute, then Mozilla will look for a
child tag that is a <label> tag and will use that tag. If no suitable child tag
exists, it will look for a <label> tag whose id matches the id stated in the
form element tag’s control attribute. If that isn’t found, then there is no acces-
sibility information to supply.

Mozilla has accessibility support for all the simple XUL form elements.
The <menuitem>, <menulist>, and <tab> tags also have accessibility sup-
port.

How accessibility works is discussed in more detail in Chapter 8, Naviga-
tion.

Fig. 7.1 Enabled and disabled simple form controls.

AppDevMozilla-07 Page 244 Thursday, December 4, 2003 6:30 PM

7.3 Forms 245

7.3.2 Simple XUL Form Tags

Figure 7.2 shows the simple form tags with additional styles applied so that
their structure is clearer. Dashed lines indicate <label> tags, thick solid lines
indicate <box> tags, and thin solid lines indicate <image> tags. The middle
two sections are <radiogroup> tags, of which the second one contains <but-
ton type="radio"> tags.

It’s easy to see from Figure 7.2 that all simple form tags contain at least
one other tag, even if that other tag is a contentless <image>. All these form
tags are defined in XBL.

Inside Mozilla there are special event handlers written in C/C++. These
are installed on the XUL document object with the C/C++ version of add-
EventListener(). These event handlers capture and process some of the
event information associated with these simple controls. This is how the non-
XBL form element functionality is implemented. There is no simple way to
interact with these embedded handlers from JavaScript and no need to do so.

These tags have DOM interfaces that closely match the equivalent
HTML interfaces. The XPCOM interface names all start with nsIDOMXUL pre-
fixes.

7.3.2.1 <button> The <button> tag is discussed extensively in Chapter 4,
First Widgets and Themes. Recall that the type attribute allows it to act like
a checkbox, radio button, or menu start point if required.

7.3.2.2 <checkbox> The <checkbox> tag is made out of plain XUL content
tags. It has an XBL definition. The checkbox graphics that appear when this
widget is displayed are formed from ordinary images. They can be styled
larger or smaller, or they can be replaced. <checkbox> has the following cus-
tom attributes:

src label crop checked disabled accesskey

src is passed to an optional <image> that appears between the checkbox
and the text. crop is passed to a <label> containing the text. checked is the

Fig. 7.2 Simple XUL form elements with internals exposed.

AppDevMozilla-07 Page 245 Thursday, December 4, 2003 6:30 PM

246 Forms and Menus Chap. 7

boolean state of the <checkbox>, and disabled grays out the checkbox com-
pletely if it is set to true. The checkbox label can appear on the left of the
checkbox if dir="rtl" is specified. Checkbox states are independent of other
checkboxes. If the text (the <label>) of a checkbox is mouse-clicked, that is
the same as clicking the Checkbox icon itself.

Using the command system described in Chapter 9, Commands, the
<checkbox> tag sends a CheckboxStateChange event when its state
changes. This event can be observed by application code if that is desired.

7.3.2.3 <radio> The <radio> tag is made out of plain XUL tags. It has an
XBL definition. The radio button icons are formed from ordinary images and
can be styled larger, smaller, or differently. The <radio> tag has the following
custom attributes:

src label crop selected disabled accesskey

These attributes are the same as for <checkbox> except selected sub-
stitutes for checked. If the <radio> tag is in a <radiogroup>, only one such
tag may have selected set. The bottom <radio> tag in the first <radio-
group> in Figure 7.2 has dir="rtl" set. Both the <label> text of a radio
button and the button itself may be clicked.

Until very recent Mozilla versions, the <radio> tag occasionally became
confused about when it should have focus. Look for recent reports in Mozilla’s
bug database to clarify the status of <radio> in your version.

7.3.2.4 <radiogroup> The <radiogroup> tag binds a set of <radio> or
<button type="radio"> tags together into one unit. If any radio tag in the
unit is selected, the others in the unit are deselected. The <radiogroup> tag
supports the following attributes:

disabled selectedItem focusedItem selectedIndex

disabled grays out the whole radio group. selectedItem and
focusedItem report the radio item in the group that is currently selected or
focused. selectedIndex reports the number of the radio item in the group
that is currently selected, starting with 0.

Using the command system described in Chapter 9, Commands, the
<radio> tag sends a RadioStateChange event and a selected event when
its state changes. These events can be observed by application code if that is
desired.

7.3.2.5 <textbox> The <textbox> tag allows the user to enter text. It is
four tags in one: normal, password, multiline, and autocompleting. <text-
box> has an XBL definition. The <textbox> tag is implemented using the
HTML <input type="text"> or <textarea> tags. The standard <text-
box> tag has the following special attributes:

value disabled readonly type maxlength size multiline

AppDevMozilla-07 Page 246 Thursday, December 4, 2003 6:30 PM

7.3 Forms 247

These attributes match the HTML <input type="text"> tag’s
attributes, except for multiline and type. Multiline can be set to true,
and type can be set to password or autocomplete. If set to password,
<textbox> acts like HTML’s <input type="password"> tag; however, they
are the same otherwise. If the multiline attribute is set to true, then
<textbox> has an alternate set of attributes:

value disabled readonly rows cols wrap

These attributes match the attributes of HTML’s <textarea> tag. Because
XUL has no anonymous content, initially displayed text cannot be included
between start and end tags as it is for HTML’s <textarea>.

For all these first three variants, an initial value for the textbox can only
be set if the textbox is not multiline. For multiline textboxes, an initial value
must be set from JavaScript using the value property of the matching object.
An example for a <textbox id="txt"/> tag is

document.getElementById("txt").value = "initial text";

The fourth <textbox> variant occurs if type is set to autocomplete. It
is a complicated tag, with a great deal of application-specific functionality.
After substantial testing, this book recommends against using the <textbox
type="autocomplete"> tag as a basic tool for your own application. This is
because it is not general enough yet.

Where this last tag excels is within the Classic Browser. A simple decla-
ration as follows is enough to provide easy access to the browser’s history,
email address, and LDAP address mini-databases:

<textbox type="autocomplete" searchSessions="addrbook"/>

Because none of these mini-databases are available to a standalone
application, this use of <textbox> is rather limited. It is possible, however, to
apply it to any mini-database, even one as simple as a JavaScript array of val-
ues. To do so is to struggle with an interface that isn’t all that clean or even
intended for reuse. With about a day’s work, you can analyze the autocom-
plete.xml XBL definition for this tag and come up with some workarounds
and hacks for your data. This might do for a one-off use, but you might as well
create your own autocomplete XBL definition from scratch if you have a seri-
ous application in mind.

7.3.3 Form Submission

XUL does not tie form elements to a target URL the way HTML does, and yet
the purpose of filling in a form is to have the information go somewhere. In
Mozilla, the options for storing data are as general and as wide as for any pro-
gramming environment. That is not much comfort if you are trying to produce
a quick prototype. Fortunately, two options in Mozilla allow XUL form data to
be submitted to a Web server efficiently.

AppDevMozilla-07 Page 247 Thursday, December 4, 2003 6:30 PM

248 Forms and Menus Chap. 7

7.3.3.1 HTML Submission of XUL Forms The first XUL form submission
method, which is very quick and dirty, is to use XML namespaces. It is possi-
ble to create a document that starts with XUL but that includes all of HTML’s
features. Listing 7.1 shows such a document.

Listing 7.1 Mixing of HTML and XUL forms.
<?xml version="1.0"?>
<!DOCTYPE window>
<window
 xmlns=
"http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
 xmlns:html="http://www.w3.org/1999/xhtml">
<vbox>
 <script>
 function copy()
 {
 var getID = document.getElementByID;
 getID("h1").value = getID("x1").value;
 getID("h2").value = getID("x2").value;
 return true;
 }
 </script>
 <html:form action="test.cgi" method="GET"
 enctype="application/x-www-form-urlencoded">
 <html:input id="h1" type="hidden"/>
 <html:input id="h2" type="hidden"/>
 <radiogroup>
 <button id="x1" label="Button 1" type="radio"/>
 <button id="x2" label="Button 2" type="radio"/>
 </radiogroup>
 <html:input type="submit" onsubmit="return copy();">
 </html:form>
</vbox>
</window>

This document displays a form consisting of two XUL buttons and one
XHTML submit button. It’s not possible to put buttons in a radio group in
plain XHTML, but that is done here because Mozilla supports mixing XUL
into HTML. The XHTML form elements are linked to the form submission
process, but the XUL form elements aren’t. A simple JavaScript function cop-
ies the required data to hidden fields before the submission occurs.

It is possible to create a legal XHTML + XUL document without resort-
ing to xmlns namespaces. To do that, start with a “pure” XHTML (or XUL)
document, and add DTD entities for the XUL (or XHTML) application to the
<!DOCTYPE> declaration. Such a document does not include the special xmlns
triggers that Mozilla uses to detect the document type. That means that no
special processing (support) for those extra tags will be used. This lack of
detection is the reason why adding an <A> tag to a XUL document does not
result in an XHTML link being rendered.

AppDevMozilla-07 Page 248 Thursday, December 4, 2003 6:30 PM

7.3 Forms 249

7.3.3.2 XMLHttpRequest Object The second XUL form submission tech-
nique uses the XMLHttpRequest object. This is a scriptable AOM object avail-
able to all XML documents, much like the Image object that is available to
HTML documents. It allows HTTP requests to be submitted directly from
JavaScript. A server response to such a request does not replace the currently
displayed document. Such a response document is just read in as a big string.
This XMLHttpRequest object is based on the following XPCOM component:

@mozilla.org/xmlextras/xmlhttprequest;1

This component implements the nsIXMLHttpRequest and nsIJSXM-
LHttpRequest XPCOM interfaces, which are well explained in their defini-
tion files. These interfaces allow an HTTP request to be submitted
synchronously or asynchronously. Synchronous submission means that the
script halts until the full response is received. Asynchronous submission is a
“fire and forget” system, except that progress can be tracked, and the final
result can be recalled. Listing 7.2 shows synchronous requests at work.

Listing 7.2 Examples of synchronous XMLHttpRequests.
var req = new XMLHttpRequest(); // Request
var res = null; // Response
var params = encodeURI("param1=value1;param2=value2");

// -- GET request

req.open("GET", "test.cgi" + "?" + params);
req.send("");
if (req.status / 100 == 2) // HTTP 2xx Response?
 res = req.responseText;

// -- POST request

req.open("POST", "test.cgi");
req.send(params);
if (req.status / 100 == 2) // HTTP 2xx Response?
 res = req.responseText;

The function encodeURI() is the ECMAScript version of escape();
both are supported. The second argument to open() is any valid URL.
Because send() doesn’t return until the HTTP request-response pair is com-
plete, the programmer should provide the user with some kind of “waiting ...”
indicator just before send() is called so that the user knows that the applica-
tion hasn’t locked up.

Asynchronous form submissions are useful when multiple HTTP
requests are needed. It is more efficient to schedule all the requests at once
and then to check back later on progress. The simplest way to perform an
asynchronous submission is to put a synchronous submission into a function
and to schedule the function with setTimeout(). Listing 7.3 shows a more
formal and structured approach using the nsIXMLHttpRequest interface.

AppDevMozilla-07 Page 249 Thursday, December 4, 2003 6:30 PM

250 Forms and Menus Chap. 7

Listing 7.3 Example of an asynchronous XMLHttpRequest.
var req = new XMLHttpRequest(); // Request
var res = null; // Response
var url = "test.cgi?text1=value1";

// Stuff specific to the async case

function finished() { res = req.responseText; }

function inprogress() {
 if (req.readyState != req.COMPLETED) {
 res = "Waiting ...";
 setTimeout(inprogress, 100);
 }
}

req.COMPLETED = 4; // from the interface
req.onload = finished;

// -- GET case (POST is similar)

req.open("GET", url, false); // false == asynchronous
req.send();

// next statement executes immediately.
setTimeout(inprogress,100);

In this example, the send() method returns almost immediately, leaving
the HTTP request still in progress. The function finished() is installed as
an event handler that fires when the response finally does complete. In
between those two times, setTimeout() is used in a simple way to check the
request progress regularly. The user might not require progress reports when
such an asynchronous request is sent. Nevertheless, the programmer must
take care to ensure that actions taken by the user subsequently don’t confuse
the handling of the response when it arrives. For example, users buying stocks
shouldn’t be able to empty their bank accounts while the stock purchase is in
progress.

7.4 MENUS

Menus and forms go together like wine and cheese. Mozilla’s menu tags are
built out of simpler XUL tags, just like most other XUL tags discussed so far.
Menus, however, are a bit more complicated for several reasons:

☞ Popup menus don’t fit into the normal flow of a two-dimensional XML
document.

☞ Menus contain many separate values (menu items), not just one value.

AppDevMozilla-07 Page 250 Thursday, December 4, 2003 6:30 PM

7.4 Menus 251

☞ Menus have complex internal structure.
☞ Menus can be used separately from forms, but they still need to fit in

with the constraints imposed by other form elements.

Mozilla does not use XUL menus for so-called listboxes, which lie flat
inside an XML document. The <listbox> tag fills that role. XUL menus are
only used for popup-style menus. Mozilla’s menus follow the design rules that
apply to simple form elements and so can be considered a simple form element
of sorts.

This topic describes XUL’s menu support, starting from the smallest tag.
Tags that an application programmer might use for simple popup menus
include

<menulist> <menupopup> <menuitem> <menuseparator> <menu> <button>
<toolbarbutton>

The following additional structural tags might be used by an application
programmer who needs to examine the XUL menu system closely. Generally,
they do not have to be stated in an XUL document.

<dropmarker> <arrowscrollbox> <scrollbox> <autorepeatbutton>

Figure 7.3 illustrates the structure of a fully featured but simple XUL
menu with two menu items.

Fig. 7.3 Full structure of an XUL menu.

AppDevMozilla-07 Page 251 Thursday, December 4, 2003 6:30 PM

252 Forms and Menus Chap. 7

This figure shows two aspects of the same menu. The left-hand break-
down is the tags that the application programmer specified. The right-hand
menu is made up of the tags actually created by the XUL/XBL system inside
Mozilla. It’s obvious that there are many tags at work. The menu system is
designed so that it is always built from a full set of menu content, but the
parts that aren’t needed are hidden. For example, the <autorepeatbutton>
tags are hidden when the list of menu items is small enough to appear all at
once. A second example is the various labels and images. Each menu item can
have an icon and a shortcut key, as well as the ordinary text of the menu item,
for a total of one <image> and two <label> tags. These tags are exposed by
tag attributes supplied by the programmer and by the circumstances of the
menu display.

The complex tag structure of menus does not translate into complex
event handling. The command event and oncommand event handler are all you
need to hook up simple menus to your application logic.

Various tag-level customizations of XUL menus are also possible. On the
inside, the <menuitem> tags can be replaced with <menuseparator> or
<menu> tags. On the outside, the tags that surround the <menupopup> tag
can be reorganized by changing the <menulist> tag to something else.

7.4.1 <menuitem>

The <menuitem> tag stands for a single menu option. It has several XBL defi-
nitions, of which just one is applied. Attributes with special meaning to
<menuitem> are

type disabled
image validate src checked
label accesskey
acceltext crop
value

The type attribute is not used in the simple case, but it can be set to
“radio” or “checkbox”. These options will cause the menu item to look and
act like the equivalent form control. The disabled attribute grays out the
menu item so that it can’t be selected.

The next row of attributes relates to the icon for the menu item. When
specified, this icon appears by default on the left, but standard box alignment
attributes like dir can change this. Both image and src specify the URL of
the icon’s image. For a standard <menulist> menu, the currently selected
item appears on the menu button when the menu is not popped up. If src is
used, the menu item’s icon will be carried to the menu button if its menu item
is selected. If both type and src or image are set, the Radio or Checkbox icon
takes precedence over the specified icon. validate has the same meaning as
for the <image> tag; checked has the same meaning as for the <radio> and
<checkbox> tags.

AppDevMozilla-07 Page 252 Thursday, December 4, 2003 6:30 PM

7.4 Menus 253

The third row of attributes is related to the normal text of the menu
item. This text can be missing. label provides that text. accesskey provides
an accessibility key for the item, as described in Chapter 8, Navigation.

acceltext and crop apply only to menus based on the <menu> tag.
crop acts on the menu item text as it does on a <label>. acceltext pro-
vides text to the right of the menu text that states what key combination
selects that menu item. It is never cropped. Normally this text spells out a
keyboard shortcut, like “Shift-A.” If acceltext is stated, its value is dis-
played. If it is not present, and a key attribute is present, then the text will
come from the matching <key> tag. That key tag will provide text from its
keytext attribute or, failing that, from its key attribute or, failing that, from
its keycode attribute. In all three cases, the text will be modified by the con-
tents of the <key>’s modifier attribute. This simply reminds the user how
any keystroke matches the menu item and links that keystroke to the menu.

The value attribute sets an internal data value for the menu item. This
value may be used to provide an identifier for the menu item because the
item’s label may have been translated into another language by the platform’s
locale system.

Figure 7.4 shows many of these menu options at work. It is built out of
several bits of real code. Note that it’s not possible to drop down two menus in
real life (occasionally technical writing gets an edge on programming).

It appears from Figure 7.4 that <menuitem> is quite flexible. This tag
also has an armory of styles that can be used to modify its appearance further.

7.4.2 <menuseparator>

The <menuseparator> tag is a near-anonymous XUL tag with some style
rules associated with it. It provides a horizontal line that provides visual sepa-
ration between menu items. Look at the Mozilla menu toolbar for many exam-
ples. Use it in place of the <menuitem> tag. This tag has no specialist
attributes, but it is occasionally useful to give it an id.

Fig. 7.4 Examples of <menuitem> variations.

AppDevMozilla-07 Page 253 Thursday, December 4, 2003 6:30 PM

254 Forms and Menus Chap. 7

The Mozilla Platform recognizes this tag when dealing with menu oper-
ations.

7.4.3 <arrowscrollbox> and <scrollbox>

The <arowscrollbox> and <scrollbox> tags allow the user to navigate a
rectangle of content that won’t easily fit on the screen. Both are discussed in
Chapter 8, Navigation, but they also have applications to menus. One of each
is created automatically when a menu is specified.

The <arrowscrollbox> tag is used to display a menu that is too long to
fit on the screen. If the menu is lengthy, then the <autorepeatbutton>s that
are part of that tag automatically appear. The easiest way to see the scrolling
at work is with the Personal Toolbar of Mozilla’s Navigator.

To see this scrolling, make sure that a bookmark folder appears on this
toolbar, and that the folder contains many bookmark items. There should be
enough items to take up more than half the screen’s height. Move the naviga-
tor window so that the Personal Toolbar is about halfway down the screen,
and press the bookmark folder button for the folder that contains many items.
A list of bookmarks with <arrowscrollbox> icons at top and bottom should
appear. They will also appear if you set the maxheight attribute on the
<menupopup> tag to something small, like 200px.

The <scrollbox> tag implements the moving area inside the
<arrowscrollbox>. It shows scrollbars only when they are used inside a
<textbox type="autocomplete"> tag. When used inside the
<arrowscrollbox>, it has no style class and generally should be left alone.

The buttons on the <arrowscrollbox> can be styled. <arrowscroll-
box> cannot scroll sideways, only up and down.

7.4.4 <menupopup>

The <menupopup> tag is the heart of XUL’s menu system. It is responsible for
creating a window that is outside the normal flow of the XUL document’s lay-
out and that might extend outside the borders of the whole Mozilla window. In
order to do this, it uses features of the native GUI toolkit. <menupopup> has
significant support from the C/C++ side of Mozilla. It also has an XBL defini-
tion.

The <menupopup> tag is quite general. Within the small window it cre-
ates, it acts like a <vbox>, and most simple XUL content can be put inside.
Reasons for doing so are obscure, but this feature does allow for very decora-
tive menus. The only content that is selectable within a <menupopup> are
<menuitem> and <menu> tags. A <menupopup> tag may be specified without
any content. That content can be added later via JavaScript, templates, or
other XUL techniques.

When creating a menu, the application programmer must specify this
tag. The attributes with special meaning to <menupopup> are

AppDevMozilla-07 Page 254 Thursday, December 4, 2003 6:30 PM

7.4 Menus 255

popupanchor popupalign position allowevents
onpopupshowing onpopupshown onpopuphiding onpopuphidden

popupanchor chooses the corner of the parent tag that the <menupopup>
will appear near—the so-called anchor point. popupalign chooses the corner
of the popup menu that will be fixed in position over the anchor. Thus, the
popup is aligned corner to corner with its parent tag. Both of these attributes
may take on one of these values:

topleft topright bottomleft bottomright none

The position attribute is an older, less flexible way of specifying this
alignment and should be avoided. It is obsolete.

The allowevents attribute can be set to true, but this is not recom-
mended in ordinary uses. The Mozilla Platform has special event processing
for menus. Figure 7.4 illustrates the complex set of tags that make up a menu.
If the full DOM Event model were to apply to these tags, then selecting a
menu item would generate many events. The Mozilla Platform reduces these
many events down to a single, manageable command event.

The remaining four attributes are event handlers for the DOM Events
noted earlier. They are paired event targets. The showing and shown variants
fire at the start and end of the process that reveals the popup. The hiding
and hidden variants fire at the start and end of the process that takes down
the popup. The display process works in three stages, and the Mozilla code
marks each stage by setting one of these three temporary attributes to true:

menutobedisplayed menugenerated menuactive

The first indicates that something is going to happen but hasn’t happened yet.
The second indicates that the content has been assembled for the menu. The
third indicates that the menu is revealed and has the focus.

7.4.5 <menu>

The useful content that a <menupopup> can hold consists of three tags:
<menuitem>, <menuseparator>, and <menu>. <menu> is very similar to
<menuitem> except that it generates a new menu to the side of the existing
one. The attributes specific to <menu> are

label accesskey crop acceltext disabled

These attributes have the same meaning as they do for <menuitem>. A
<menu> tag cannot contain an icon representing the menu’s action as content,
but an icon can be sneaked in with a suitable style. It does contain an auto-
matically supplied arrow-like icon that provides a hint that a submenu exists.
The only tag that can appear inside a <menu> tag is a <menupopup>.

The <menu> tag is also used in menu bars:

<menulist id="foo" editable="true"/>

AppDevMozilla-07 Page 255 Thursday, December 4, 2003 6:30 PM

256 Forms and Menus Chap. 7

7.4.6 <menulist>

The <menulist> tag is the top-level tag for simple XUL menus. It is the
wrapper around a <menupopup> tag. It gives the user something to look at
and interact with when the popup is not displayed. It displays a button-like
widget showing the currently selected menu item, and a dropmarker used to
reveal the menu. <menulist> always has a currently selected menu item.
The <menulist> tag can only contain a <menupopup> tag. The attributes
with special meaning to <menulist> are

src label crop accesskey disabled editable value

The attributes are all the same as for <menuitem>, except that disabled set
to true disables the whole menu popup, and editable is new.

The editable attribute is something of a misnomer. If set to true, the
label on the <menulist>’s button is replaced with an HTML <input
type="text"> textbox. The user can then type in a string. When focus leaves
the <menulist>, this string will be compared to the existing menu items. If it
matches the main text of one such item, that item will be the currently
selected one. All the menu items are treated as though they had
type="checkbox" applied. The editable attribute does not provide inser-
tion, deletion, or update of menu items.

7.4.7 Menu Variations

The <menulist> tag is a wrapper for the <menupopup> tag. There are other
wrappers. For completeness, the entire list is

<menulist>
<menulist editable="true">
<menu>
<button type="menu">
<button type="menu-button>
<toolbarbutton type="menu">
<toolbarbutton type="menu-button">
<textbox type="autocomplete">
<menubutton>

Except for <textbox>, using any of these tags means adding a <menupopup>
tag as the sole content. The <menubutton> tag is an anonymous tag used to
hold styles and handlers for menus that appear in toolbars (see Chapter 8,
Navigation).

Under MacOS, it is possible to add a Preferences menu item and sub-
menu to the MacOS Application menu. To do this, ensure that a suitable
<menuitem> tag has the special id of id="menu_preferences".

7.5 STYLE OPTIONS

As for static content and buttons, Mozilla duplicates much of the information
about forms and menus in the style system.

AppDevMozilla-07 Page 256 Thursday, December 4, 2003 6:30 PM

7.5 Style Options 257

Perhaps the most powerful style features are style rules that affect which
XBL binding applies to which XUL tag. The type attribute (for <button>,
<toolbarbutton>, and <textbox>) and the editable attribute (for
<menulist>) are all specified in style rules. Those rules direct the basic XUL
tag to a specific binding, which ultimately affects its content, appearance, and
behavior. After you have learned XBL, it is possible to add more such bindings
and style rules. The type attribute can then provide more widget variants.

7.5.1 CSS Styles from HTML Forms

Some standard HTML form styles are available for use in XUL forms. Table
7.2 lists them. See the CSS3 draft document at www.w3.org/TR/1999/WD-
css3-userint-19990916 for details of the newer styles.

Table 7.2 XUL style extensions that follow HTML forms

Property or selector Values Use

:-moz-drag-over (selector) Any element under the drag item
when dragging with the mouse

:-moz-selection (selector) Near complete support for CSS3
::selection, as of version 1.21

-moz-key-equivalent See draft CSS3 draft key-equivalent

-moz-outline-radius As for margin, but
use px

These attributes mimic the mar-
gin attribute, except that they dic-
tate the roundness of the corners of
a border or outline

-moz-outline-radius-topleft
-moz-outline-radius-topright
-moz-outline-radius-bottomleft
-moz-outline-radius-bottomright

Px Roundness of a single outline cor-
ner; 0 for square

-moz-outline As for outline Near-complete CSS2 outline

-moz-outline-color As for color Near-complete CSS2 outline-color

-moz-outline-style As for border-style Near-complete CSS2 outline-style

-moz-outline-width As for border-width Near-complete CSS2 outline-width

-moz-user-focus See draft CSS3 draft user-focus

-moz-user-input See draft CSS3 draft user-input

-moz-user-modify See draft CSS3 draft user-modify

-moz-user-select See draft,
plus -moz-all

CSS3 draft user-select

AppDevMozilla-07 Page 257 Thursday, December 4, 2003 6:30 PM

258 Forms and Menus Chap. 7

The outline-related styles follow to a degree the border styles (see “Style
Options” in Chapter 2, XUL Layout, for an example). The -moz-all values for
the -moz-user-select style allows more than one form element to be
selected at once. This is useful if you are developing a visual IDE for XUL and
need to be able to group form elements with a select action.

7.5.2 Custom Widget Display Types

The <menupopup> tag relies on the following style:

display: -moz-popup

The -moz-appearance style property makes a given tag take on the
appearance of the native theme. These native theme appearance types work
for the widget-like tags described in this chapter:

radio checkbox textfield menulist menulist-button menulist-text
menulist-textfield checkbox-container radio-container

7.6 HANDS ON: NOTETAKER EVENTS AND FORMS

After many chapters laying the groundwork, we’ve now got some useful wid-
gets. In this session on the NoteTaker tool, we’ll clean out some of the odd-
ments the dialog box has accumulated and replace them with normal XUL
form elements. We’ll get rid of the properties file and submit the entered data
to a Web server. If the dialog box appears as the result of an HTTP GET
request, we’ll populate it with parameters from that request as well.

Cleanup comes first. We’ll throw away the subpanel attribute and the
handle_click() code. If we still choose to disable any of the content, it now
makes sense to use the form tags’ own disabling features. That means all the
broadcasters and half of the actions and keys can also be cleaned out. The task
that load_data() performs will still be needed, but we’ll throw away the cur-
rent implementation.

Finally, we’ll throw away the boxes.css / boxesTemp.css diagnostic
styles and their horrid placeholder <box> tags. Instead of those, we’ll have

1. A single line <textbox> for the Summary subpanel
2. A multiline <textbox> for the Details subpanel
3. Two <checkbox> tags for the Options subpanel
4. Four small <textbox> tags for the Size subpanel

As shown in Listing 7.4, the matching tags are trivial.

Listing 7.4 New form element tags for the NoteTaker dialog box.
<textbox id="dialog.summary"/>
<textbox id="dialog.details multiline="true" flex="1"/>

AppDevMozilla-07 Page 258 Thursday, December 4, 2003 6:30 PM

7.6 Hands On: NoteTaker Events and Forms 259

<checkbox id="dialog.chop-query" dir="rtl" label="Chop Query"
checked="true"/>

<checkbox id="dialog.home-page" dir="rtl" label="Home Page"
checked="true"/>

<textbox id="dialog.width" value="100" maxwidth="3" size="3"/>
<textbox id="dialog.height" value="90" maxwidth="3" size="3"/>
<textbox id="dialog.top" value="80" maxwidth="3" size="3"/>
<textbox id="dialog.left" value="70" maxwidth="3" size="3"/>

This cleanup, together with a little layout adjustment, yields a dialog box
similar to that in Figure 7.5.

Before replacing load_data(), we can experiment briefly. The DOM
objects for XUL formlike tags are very similar to the DOM objects for HTML
formlike tags. Either by looking at the DOM 2 HTML standard, or the XBL
bindings for <checkbox> and so on, or just repeating from memory tricks
used in Web pages, we can get a long way. Suppose that we replace this code in
load_data()

desc = document.createElement("description");
desc.setAttribute("value",value);
box = document.getElementById("dialog." + names[i]);
box.appendChild(desc);

with this

if (box.value) box.value = value;

Since most form “elements” have a value property, we’ve succeeded in
loading most of the properties file into the form with a trivial effort.

Having cleaned up the form, we would like to process the data the user
enters, which is the description of a note. Until now, we have used a read-only
properties file for that description. Now we want to read and write the form.
There are any number of places to put the information, but we’ll try using a
Web server. Perhaps one day we’ll be able to access that note from any Mozilla
Browser in the world.

To save the NoteTaker note, we use the code described in this chapter,
which we’ll slightly customize and put in the action() method. We also keep

Fig. 7.5 Form-based dialog box.

AppDevMozilla-07 Page 259 Thursday, December 4, 2003 6:30 PM

260 Forms and Menus Chap. 7

the names array, formerly local to load_data(), but now it’s a global array.
Listing 7.5 shows this new logic.

Listing 7.5 Posting a NoteTaker note to a Web server.
if (task == "save")
{
 var req = new XMLHttpRequest(); // Request
 var params = "";

 var i = names.length -1; // build up params
 while (i>=0)
 {
 var widget = document.getElementById("dialog." + names[i]);
 if (widget.tagName == "checkbox")
 params += names[i] + "=" + widget.checked + ";";
 else
 params += names[i] + "=" + widget.value + ";";
 i--;
 }

 params = encodeURI(params);
 req.open("POST", "test.cgi");
 req.send(params);
 if (req.status / 100 != 2) // HTTP 2xx Response?
 throw("Save attempt failed");
}

Of course, we also need a test.cgi, or some equivalent on the Web
server. If we’re running from the chrome, test.cgi can be replaced with any
URL for any Web server.

The NoteTaker tool works with the Classic Browser, so it’s unlikely to be
loaded from a remote URL. Nevertheless, it’s possible that arguments could be
passed to it when the window is created. Since it shares the same program-
ming environment as all the rest of the chrome, those arguments could be
passed in any number of imaginative ways. One simple way is to append
HTTP GET–style parameters to NoteTaker’s URL. Instead of using

chrome://notetaker/content/editDialog.xul

the same document can be loaded using

chrome://notetaker/content/editDialog.xul?top=440;left=200

This information can be examined at any subsequent time using the
window.location AOM property. We’ll do that by creating a new task for the
action() method: This one will be called 'load'. Rather than matching any
element of the GUI, 'load' is a task that is only performed by scripts. The
new onload handler of the <window> tag will be

onload="action('load')"

AppDevMozilla-07 Page 260 Thursday, December 4, 2003 6:30 PM

7.7 Debug Corner: Diagnosing Events and Forms 261

The logic added to the action() method is shown in Listing 7.6. The
window.location object is one of very few AOM objects that exists in both
HTML and XUL documents. It provides an object with the nsIDOMLocation
interface and is useful in XUL only as used here.

Listing 7.6 Reading form parameters from a GET-style URL.
if (task == "load")
 {
 var pair, widget;
 params = window.location.toString();
 if (params.indexOf("?") == -1)
 return;
 params = params.replace(/.*\?/,"");
 params = params.split(/[;&]/);
 i = params.length - 1;
 while (i >=0)
 {
 pair = params[i].split(/=/);
 pair[0] = decodeURI(pair[0]);
 pair[1] = decodeURI(pair[1]);

 widget = document.getElementById("dialog."+ pair[0])
 if (widget.tagName == "checkbox")
 widget.checked = (pair[1] == "true");
 else
 widget.value = pair[1];
 i--;
 }
 }

This code uses the regular expression support in ECMAScript 1.3. The
replace() method is used to chop off all the characters leading up to the ?
symbol, which starts the parameter string. split() divides the remaining
string into an array of strings, with the separation points everywhere that a reg-
ular expression match occurs. In this case, the match occurs on each ; or & char-
acter. Finally, each param=value pair is split again, and the two halves are
used to find a form element with a matching id. That element is then updated.

7.7 DEBUG CORNER: DIAGNOSING EVENTS AND FORMS

Forms and events aren’t that challenging, unless you are in the business of con-
structing your own widgets. A few standard techniques can make life easier.

7.7.1 Unpopping Menus

The <menupopup> tag only appears when you click on its associated button.
This can be a nuisance if you just want to see that the constructed contents

AppDevMozilla-07 Page 261 Thursday, December 4, 2003 6:30 PM

262 Forms and Menus Chap. 7

are correct. You can embed the popup in the normal flow of the XUL document
by changing its display style as follows:

menupopup { display: -moz-box ! important }

If you do this, the popup won’t work interactively any more, but at least
you can see its contents easily. Figure 7.6 shows the same document as in Fig-
ure 7.3, but with this style added.

Doing this is not recommended as an implementation strategy, or even as
a stable testing technique; it just happens to work and is convenient.

7.7.2 Picking Apart Complex Widgets

Complex widgets like <menulist> take some work to understand, particu-
larly if you don’t like the default content, appearance, or behavior. It always
helps if you can see the unseen.

The simplest strategy is to analyze a given tag with the DOM Inspector.
This tool reveals tag content, tag ids, and tag style classes at the touch of a
button. It’s so easy you’d be crazy not to experiment with it.

Another strategy used in this chapter and elsewhere in this book is to use
a diagnostic stylesheet. Some of the examples in this book are enhanced with
simple styles that provide a few extra visual hints. Listing 7.7 shows these
informal styles.

Listing 7.7 Example of an asynchronous XMLHttpRequest.
label { border: dashed thin; padding: 2px; margin: 2px;}
image { border: solid thin; padding: 2px; margin: 2px; }

.radio-check { width:20px; height:20px;}

.checkbox-check { width:20px; height:20px;}

vbox, hbox, box, deck
{ border: solid; padding: 2px; margin: 2px; border-color: grey;}

* { font-family:Arial; font-weight: bold;}

Fig. 7.6 Examples of embedded <menupopup> contents.

AppDevMozilla-07 Page 262 Thursday, December 4, 2003 6:30 PM

7.8 Summary 263

This is pretty simple stuff, except possibly for the checkbox styles, which
had to be dug out of the DOM Inspector. Without these two styles, the check
icons are reduced to tiny sizes by the padding added in the other rules.

7.7.3 Finding Object Properties for Forms and Menus

This chapter has covered the XUL interface to Mozilla’s forms and menus but
not the JavaScript interfaces to those tags’ DOM objects. To find AOM and
DOM properties and methods, there are several approaches.

☞ Guess. Many of the XUL interface properties exactly mimic those of
HTML forms. SelectedIndex, focus(), and blur() all work as you
might expect. They’re also documented in the DOM 1 Core standard,
under HTML.

☞ Use the DOM Inspector. Select a tag in the left panel, and choose Java-
Script Object from the toolbar menu at the top left in the right panel. All
property and method names are revealed. To find values for object prop-
erties, consult this book or the CSS2 and CSS3 standards.

☞ Examine XBL definitions. The XBL bindings for each form or menu
widget are located in the chrome in toolkit.jar. It’s easy to treat those
definitions as a form of help after a quick read of Chapter 15, XBL Bind-
ings. XBL definitions list the parameter names for each method, which
the DOM Inspector does not yet do.

7.8 SUMMARY

Form and menu widgets are a vital first access point for users needing to
interact with Mozilla-based applications. XUL supports all the simple form
controls (or elements) with which users of Web browsers are familiar. XUL’s
support, however, is flexible and only begins with simple form and menu con-
trols. That support goes much further, and it is not bound rigidly to user
actions as HTML forms are.

Unlike HTML, XUL applications can only submit forms across the Web
via a script. Such a submission, however, can be tailored more flexibly than
any HTML form submission can.

Forms and menus are all interesting enough, but fiddling with such
things won’t allow the user to go anywhere or explore other parts of a possibly
complex application. Support for such navigational activities is the subject of
the next chapter.

AppDevMozilla-07 Page 263 Thursday, December 4, 2003 6:30 PM

