

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

JavaJavaScript

AppDevMozilla-08 Page 264 Thursday, December 4, 2003 6:31 PM

265

C H A P T E R

Overlay
database

Keyboard

Desktop
themes

Fonts

Default
CSS

W3C
standards

DTDs

Skins

Mouse

RDF

XBL
definitions

Frames

Widgets

GUI
toolkits

Screen

JavaScriptcript

8

Navigation

AppDevMozilla-08 Page 265 Thursday, December 4, 2003 6:31 PM

266 Navigation Chap. 8

An application window should not be a random collection of text, boxes, and
widgets, no matter how beautifully it is presented. A window should impose
some order on the features that it provides. That order makes moving around
in the application easier. This chapter describes the XUL tags and related
design that can impose such order.

The end user, whether competent and impatient or lost and confused,
should have free will to move around within an application. That movement is
navigation. The number one rule of navigation is: Don’t frighten the user off.
Navigation strategies should always use familiar hints and feedback and
should never surprise or challenge. XUL provides navigation tags that are the
same as the widgets of most GUI-based applications. That means scrollbars,
toolbars, and menus. Like all XUL tags, naming conventions for these new
tags are straightforward:

<scrollbar orient="horizontal"/>

These navigation widgets are separate from any application logic, so a
window made of these widgets is no more than a mockup. Application logic can
be added later.

XUL applications are more structured than those in HTML. In a tradi-
tional Web environment, the user is free to cast his or her eye across any infor-
mation that is presented. Graphic design techniques can impress some order
on that browsing behavior, but the user is always in window-shopping mode. In
a XUL application, there is much less of this unstructured navigation. Users
tend to repeat the same tasks over and over (if the application is heavily used),
and sometimes the application constrains what the user can do quite tightly.
This busier and more structured style of interaction means that there is a high
expectation that application use will flow smoothly. Navigation in XUL there-
fore needs some design attention if the application is to have a polished feel.

The NPA diagram at the start of this chapter highlights the bits of
Mozilla involved. From the diagram, navigation builds on top of platform
pieces that by now are quite familiar. Navigation is mostly XUL tags, and that
means more screen display, more widgets based on the underlying GUI toolkit,
and more frames. As for the simple form tags, the XBL bindings that lie
behind these tags are vital for scripting purposes.

Recall from Chapter 6, Events, that Mozilla’s focus ring links form ele-
ments so that they can be accessed via the keyboard. The focus ring and other
complementary technologies are further explored in this chapter.

8.1 N

AVIGATION

 S

YSTEMS

The Mozilla Platform contains several pieces of design that tie together the
existing navigable XUL widgets. Each of these pieces provides a basis for com-
munication between the user and the platform. Each piece is a high-level con-
cept built on top of the event infrastructure discussed in Chapter 6, Events.

AppDevMozilla-08 Page 266 Thursday, December 4, 2003 6:31 PM

8.1 Navigation Systems 267

8.1.1 Visual Versus Recipe Navigation

We live in a world that is visually rich and full of memories. We are well
designed to process both kinds of information. It is no surprise that software
systems use both sight and memory to assist users with navigation, but some-
times one of these helps more than the other does.

Visual navigation is in the art of a graphic designer. A well-designed and
well-layed-out display makes it easy for users to find what they’re looking for.
A classic example of an application that is visually oriented is Adobe Photo-
shop. Although that tool has a menu system, menus are secondary to navigat-
ing the palettes and the canvas with the cursor. A Photoshop user knows that
by right-clicking on the current selection with the Flood Fill tool (which is over

here

), the current background color (shown over

there

) will be applied to that
selection’s content.

Visual navigation is particularly important when a user is interacting
with something for the first time.

Recipe navigation occurs when the user calls on habit and memory to
complete a task. It is something of a black art. A well-designed sequence of
key-driven commands makes it easy for a user to remember how to do things.
An obvious example of a recipe-oriented navigation tool is a command line. If
the user has a good memory for commands, then the command line is a very
expressive, efficient, and direct way to get things done. Window-based tools
also support recipe navigation. Under Microsoft Windows, most applications
will respond to the keystroke sequence Alt-F-S (

File | Save

) by saving the cur-
rent document. Reusing remembered keystroke sequences is a very fast navi-
gation technique, perhaps the fastest.

Recipe navigation is very important when the user performs a repetitive
action.

Traditional non-Web applications do not have much room for clever lay-
out when displayed inside a window or on a monitor. Menu bars, toolbars, and
scrollbars are examples of the little strips of layout that are now familiar fea-
tures of such applications. Keystroke support in such traditional applications
is usually much more extensive than layout.

The success of the Web has resulted in HTML being used as the founda-
tion for many applications. HTML is very weak on recipe navigation because
of slow response times and browser compatibility problems. That is why visual
cues and graphic design support have become very important for those appli-
cations.

With XUL, Mozilla moves back toward the recipe style of use that is effi-
cient for power users. XUL provides extensive support for keylike navigation.
Any nontrivial visual design required is left to the application developer.
Regarding traditional applications, XUL still provides visual navigation sup-
port in the form of menu bars and scrollbars.

What all this means is that Mozilla technology makes creating memory-
driven systems easy. Complex visual arrangements are left to the application

AppDevMozilla-08 Page 267 Thursday, December 4, 2003 6:31 PM

268 Navigation Chap. 8

programmer and have no support beyond the basics of CSS2 (which is still
extensive) and XUL.

8.1.2 The Focus Ring

The focus ring is Mozilla’s system for small navigation movements within a
document. In XUL and HTML, those movements must be between user-
modifiable elements, like form fields.

If a user is to enter something into a form, then interacting with one form
element at a time is a sensible approach. Like HTML, XUL brings such wid-
gets to the fore one at a time. The widget currently available for user input is
said to have the current focus.

Any such set of widgets have an order. In the W3C standards, this order
is called the navigation order. In Mozilla, the ordered collection of these wid-
gets is called the focus ring because stepping out beyond the last widget leads
back to the first widget.

All widgets in Mozilla’s focus ring can be visited. The simplest way to see
this visitation order is to step around the ring with the Tab key. Try that in
any Mozilla window displaying a XUL or HTML document. In addition to the
Tab key, a focusable widget can be given the focus with a mouse click. There is
one focus ring per Mozilla window.

Some formlike widgets are not members of the focus ring. Examples are

<toolbarbutton>

 and

<menu>

. This is because the focus ring’s main purpose
is to support the user’s data-entry activities. Widgets that are more about con-
trolling the application, like menus, do not participate.

Mozilla’s focus ring is quite sophisticated. It can step inside an XBL bind-
ing and focus specific pieces of content in the binding. This allows the user to
interact with small parts of a given binding. So a binding, which normally
builds a single whole widget out of pieces, can be invaded by the focus ring.
The focus ring also steps inside embedded content. A XUL document can con-
tain

<iframe>

 tags that display other documents inside the main one. The
focus ring reaches down into those other documents and includes all focusable
elements in the focus ring. It also adds those whole documents to the ring. To
see this, load an HTML document that contains a form into any Mozilla
Browser. As you tab around the focus ring, both the individual form elements
and the whole HTML document, as well as the XUL parts of the browser win-
dow, take a turn at being focused.

Because the focus ring includes whole embedded documents, there is also
a hierarchical aspect to the ring. To see this, imagine that the Google home
page (

www.google.com

) is displayed in a browser, and that the cursor is in the
search field of that home page. All these items are focused: the search field, the
HTML document that is Google’s home page, and the window holding the XUL
document that is the Web browser application. In XML terms, the focused
items are HTML’s

<INPUT TYPE="text">

 tag, the XUL

<iframe>

 and
HTML

<HTML>

 tags, and the outermost XUL

<window>

 tag.

AppDevMozilla-08 Page 268 Thursday, December 4, 2003 6:31 PM

8.1 Navigation Systems 269

This hierarchical aspect of the focus ring is meant for the user’s benefit,
but it is also used by Mozilla’s command system, described in Chapter 9, Com-
mands. There, the

commandDispatcher.getControllerForCommand()

method scans up through the focus ring hierarchy looking for a usable control-
ler.

Most focusable XUL tags have

focus()

 and/or

blur()

 methods for
scripts to use. Until very recently, the focus ring has had some subtle bugs.
These issues occasionally confuse the state of XUL windows. With version 1.4,
the focus ring is now quite reliable.

8.1.2.1 Hyperlinks

When Mozilla displays HTML pages, any hyperlinks on
the page are included in the focus ring. XUL has no hyperlinks. If XUL and
HTML share the same document (via use of

xmlns

 attributes), then XUL tags
and HTML hyperlinks can coexist in the one focus ring.

8.1.3 The Menu System

A navigation system separate from the focus ring is Mozilla’s menu system.
This system is initiated by pressing the Alt key (or Control or Meta on older
UNIX systems) or by hovering over or clicking an item on the menu bar.

The menu navigation system is not just a series of

<key>

 tags. It is a fun-
damental part of the platform’s support for XUL. For the menu system to be
enabled, the XUL document displayed must contain a

<menubar>

 tag. Only
menus in the menu bar can be navigated to using this system.

Individual items in the menu system may also be accessed directly, sepa-
rate from the menu system. To do this, just decorate the menu items with
keys. That process is described in Chapter 6, Events. Support for specific tags
is noted in this chapter.

8.1.4 Accessibility

Accessibility is a feature of software designed to make it usable for those with
disabilities. Mozilla has accessibility support on Microsoft Windows and Mac-
intosh, and its UNIX/Linux version will have it when support for the GTK2
libraries is complete.

All XUL widgets contributing to the focus ring and to the menu system
can be made accessible. HTML form elements and links can also be made
accessible. Form elements are of particular interest because governments
want to provide services that disabled citizens can access over the Internet.

Accessibility support can be implemented a number of ways. The sim-
plest way involves no programming at all. Various devices and software utili-
ties that can magnify a visual display until it is readable exist; other devices
are easier-to-handle substitutes for traditional keyboards and mice.

At the other extreme, a complex solution is to provide an API and let
other programmers hook their accessibility software and devices into it.

AppDevMozilla-08 Page 269 Thursday, December 4, 2003 6:31 PM

270 Navigation Chap. 8

Mozilla provides such an API in the form of many XPCOM interfaces, all pre-
fixed with

nsIAccessible

. Use of these interfaces is nearly, but not quite, an
embedded use of the Mozilla Platform. These interfaces are not recommended
for applications where the users are able.

Between these extremes is a solution that uses simple XML markup
techniques. This solution consists of CSS2

@media

 style declarations, the
XHTML and XUL

accesskey

 attribute, and the XUL

<label>

 tag.

@media

and

accesskey

 are well documented in the relevant standards—

accesskey

works the same for XUL as it does for HTML.
At a technical level, these features must be implemented so that they use

the accessibility features of the underlying GUI toolkit. If this is done, the
problem of expressing the content to the user is the GUI toolkit’s problem, not
the application’s problem. This is how Mozilla works. The

nsIAccessible

interfaces expose information from the XML document to the GUI toolkit.
In all discussion to date, the XUL

<label>

 tag has appeared identical to
the

<description>

 tag, except that it can be reduced to a

label

 attribute.
The

<label>

 tag first differs from the description tag in the area of accessibil-
ity. The

<label>

 tag provides the alternate content that is needed for an
accessibility system.

If a form element has a

label

 attribute, Mozilla will present its content
both to the screen and to the GUI toolkit as guide information that should be
expressed to the user. Expressed to the user might mean that the guide infor-
mation is spoken by the computer.

If a form element doesn’t have such an attribute, then Mozilla will look
for a child tag that is a

<label>

 tag and use that. If no suitable child tag
exists, it will look for a

<label>

 tag whose

id

 matches the

id

 stated in the
form tag’s

control

 attribute. If that isn’t found, then there is no accessibility
information to supply.

Mozilla has accessibility support for all the simple XUL form elements.
The

<menuitem>

,

<menulist>

, and

<tab>

 tags also have accessibility sup-
port. Accessibility support is connected to XUL tags in the XBL bindings for
each such tag.

8.2 N

AVIGATION

 W

IDGETS

Figure 8.1 illustrates all XUL’s navigation tags in one screenshot.
Figure 8.1 diagram is special in several ways. First, diagnostic styles are

turned on so that you can see some of the internal structure of the tags. Sec-
ond, this screenshot is taken with Mozilla version 1.02. That version includes
support for toolbar grippys, support that is not present in version 1.21. Third,
some

<description>

 tags have been added where no tags are meant to be.
These tags, the text of which appears inside braces and is surrounded by a
light background, show the position of the nondisplayed container tags.

AppDevMozilla-08 Page 270 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 271

All the tags illustrated in this diagram have XBL definitions. Figure 8.2
shows the same content as Figure 8.1 without the diagnostic extras.

8.2.1 Scrolling Widgets

XML content that exceeds the current window or the screen in size can be cre-
ated. Such content is usually clipped to the border of the current window. HTML
and XUL provide scrollbars that allow the user to move the content inside the
clip region. This is a command to pan the current view based on a mouse gesture
or keypresses. Such panning actions are implemented directly by both HTML
and XUL. XUL has the following tags available for panning actions:

<arrowscrollbox> <scrollbar> <nativescrollbar> <scrollbox>

Fig. 8.1 XUL Navigation tags with diagnostics.

Fig. 8.2 XUL Navigation tags.

AppDevMozilla-08 Page 271 Thursday, December 4, 2003 6:31 PM

272 Navigation Chap. 8

Mozilla’s implementation of HTML supports the

<MARQUEE>

 tag, whose
XBL definition can be found in the chrome. This tag allows for animated scroll-
ing of the tag’s contents.

XUL also supports the

overflow:scroll

 and

overflow:auto

 CSS2
style properties. These are the quickest ways to provide simple content scroll-
ing. Some CSS2 extensions, however, complement these features (see “Style
Options” later in this chapter).

8.2.1.1

<scrollbox>

The

<scrollbox>

 tag might sound like all the solu-
tion you need for scrolling, but that is not true. The

<scrollbox>

 tag pro-
vides no user-interface elements. It acts like the

<box>

 tag, except that it also
implements the nsIScrollBoxObject interface. Like the <box> tag, it sup-
ports these layout attributes:

orient align pack dir maxwidth maxheight minwidth minheight

This tag is similar to <box> because it has a narrow purpose. It is the
first tag discussed in this book that is a specialization of the generic <box>
object.

Recall from Chapter 2, XUL Layout, that boxes are implemented on top
of a lower-level concept called a frame. A frame is just an area of the screen
that is managed independently. <scrollbox> is designed to display its con-
tent so that it is offset from the frame by a given x- and y-amount. That is all.

<scrollbox> has no special features available from XUL, but it does
supply some scriptable object methods. The nsIScrollBoxObject interface
adds these methods. Each method call moves the displayed contents to a new
position inside the frame. Raw pixel amounts or other units can be specified.
For example, methods with “line” in their names move the content vertically
by the specified number of whole lineboxes. Methods with “index” in their
names move content vertically by the height of a set number of content tags. If
these methods are used repeatedly, the content will appear to scroll in a given
direction (up and down, back and forth, or any other animated movement).

These extra methods are not present on the <scrollbox>’s DOM object.
Every boxlike XUL tag has a boxObject property. This boxObject property
is an object containing all the states that apply to a box tag (e.g., position and
size). It also contains the QueryInterface() method, which is used for
retrieving XPCOM interfaces. If the tag is a <scrollbox>, then this method
can be used to retrieve the nsIScrollBoxObject interface methods. It is the
only way to get this interface.

All this means that the <scrollbox> tag must be controlled by some
programmer’s bits of script if it is to do anything. It is only really useful to pro-
grammers creating their own widgets.

A simple example can be seen in the chrome file scrollbox.xml inside
toolkit.jar. The XBL binding named autorepeatbutton extracts the
nsIScrollBoxObject interface from nearby <scrollbox> content and

AppDevMozilla-08 Page 272 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 273

manipulates that content via the interface so that it scrolls up or down. A frag-
ment of that code is shown in Listing 8.1.

Listing 8.1 Example of an XUL tab box.
<handler event="command"><![CDATA[
 ... some code removed ...
 var dir = this.getAttribute("scrolldir");
 var bx =

this.mScrollBox.boxObject.QueryInterface(Components.interfaces.n
sIScrollBoxObject);

 bx.scrollByIndex(dir == "up" ? -1 : 1);
]]>
</handler>

This code says that a command event on an <autorepeatbutton>
results in an (assumedly nearby) <scrollbox> tag being scrolled one line.
Because that kind of button continuously fires events when it is pressed, the
scrollbox is scrolled repeatedly. The <autorepeatbutton> is a visual tag and
manages the <scrollbox> tag’s special nsIScrollBoxObject.

You can study this binding if you want to make your own widget based on
<scrollbox>. Beware, though, that <scrollbox> is unusual in one respect.
The tag expects to have a single <box> as its content, with all other content
inside that box. That is more complex than the simple case, in which the box-
Object property belongs to the topmost tag’s DOM object.

To summarize, <scrollbox> is a fundamental tag that needs to be sur-
rounded with other tags and some scripting before it provides a final solution.
Fortunately, there are other, better ways of quickly providing a scrolling box.

8.2.1.2 <arrowscrollbox> The <arrowscrollbox> tag is a building
block used to create the <menupopup> tag and is, in turn, built on other tags.
Listing 8.2 shows the hierarchy of tags that make up an <arrowscrollbox>.
Note that this is not a piece of literal XML, just a breakdown of tag contents.

Listing 8.2 Breakdown of the <arrowscrollbox> tag.
<arrowscrollbox>
 <autorepeatbutton>
 <image>
 <scrollbox>
 <box>
 <anything>
 <anything>
 ...
 <autorepeatbutton>
 <image>

If the <box> contents exceed the size of the <arrowscrollbox>, then
the two <autorepeatbutton> tags are visible. If the content all fits within

AppDevMozilla-08 Page 273 Thursday, December 4, 2003 6:31 PM

274 Navigation Chap. 8

the outermost tag, then the two button-like tags are hidden. This is the nor-
mal case for menus, and so there is no indication that an <arrowscrollbox>
exists in every menu, even though that is the case. This tag can also be used
by itself, separate from any menus. It has a particularly simple XBL definition
that is easy to experiment with.

8.2.1.3 <scrollbar> The <scrollbar> tag provides a single vertical or
horizontal scrollbar that is completely independent of surrounding content. If
the scrollbar is to scroll anything, it must be coordinated with that other con-
tent by JavaScript. Listing 8.3 shows a breakdown of the structure of the
<scrollbar> tag.

Listing 8.3 Breakdown of the <scrollbar> tag.
<scrollbar>
 <scrollbarbutton>
 <image>
 <scrollbarbutton>
 <image>
 <slider>
 <thumb>
 <gripper>
 <scrollbarbutton>
 <image>
 <scrollbarbutton>
 <image>

The <scrollbar> tag contains four buttons in total. Because two are for
vertical scrollbars and two are for horizontal scrollbars, two are always hidden
by CSS2 styles. This is done by the XBL definition for <scrollbar>. The
DOM Inspector can be used to reveal this structure.

<scrollbar> supports the orient attribute, which can be set to verti-
cal or horizontal. Other XUL attributes specific to <scrollbar> match the
attributes of the <slider> tag. The <slider> tag should never be used out-
side the <scrollbar> tag. These shared attributes are

curpos maxpos pageincrement increment

These four attributes model the current position of the slider as a single
number. This number represents the position of the center of the thumb, and it
is a relative position. Stretching the window won’t alter the value of the slider,
unless the amount of visible content changes as well. The range of values is
from 0 to maxpos, with a current value of curpos.

Sometimes curpos is exposed as a scriptable DOM property, but this is
buggy and should not be relied on—always use setAttribute() and getAt-
tribute(). increment is the largest change caused by clicking a <scroll-
barbutton>; pageincrement is the largest change caused by clicking the
tray that the <slider> draws around the thumb. These two actions might
cause a smaller increment if the thumb is near one end of the scrollbar.

AppDevMozilla-08 Page 274 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 275

Other aspects of the <scrollbar> tag are all managed by styles. To
make the thumb of the slider larger or smaller, apply CSS2 styles to it. You
must do your own calculations if you want the size of the thumb to reflect the
portion of the content that is visible. To get this effect for free, either keep max-
pos small relative to the scollbar’s size, which provides some thumb-styling, or
use a CSS-based scrollbar instead of a <scrollbar> tag. See “Style Options”
for the later option. The size of the thumb is not particularly meaningful for a
<scrollbar> used the default way.

8.2.1.4 <nativescrollbar> XUL divides a scrollbar widget up into a num-
ber of parts, but that is only one way to implement such a widget. Many GUI
toolkits can supply a scrollbar widget as a single whole object, rather than
supply pieces that the application must put together. The <nativescroll-
bar> tag is intended to display a whole native scrollbar as a single widget. Its
use is restricted to the Macintosh at the moment, and applies only when
native themes are at work.

Ignore the <nativescrollbar> tag unless you are doing extensive
work with native themes or embedding Mozilla in some other GUI application.

8.2.2 Toolbars

A bar is a rectangular section of a window covered in user controls. Toolbars
and menu bars typically appear along the edges of an application window, pri-
marily along the top edge. They provide a convenient place from which users
can launch commands. To see toolbars in Mozilla, just open a Classic Browser
window and look at the top part. The Classic Browser has extra functionality
that collapses and redisplays toolbars. Try playing with the options on the View
| Show/Hide submenu.

Mozilla’s XUL toolbar system, which includes menu bars, is simple but
can be made complex when used expertly. This complexity is the result of how
overlays and templates are used to build up a single toolbar from several dif-
ferent documents. This chapter considers only the basic toolbar tags; overlays
and templates are treated in later chapters.

Mozilla’s toolbars are not sophisticated. By default, they are not drag-
gable or dockable as Netscape 4.x’s toolbars were, or as toolbars in Microsoft
applications are. They cannot be pinned or torn off either. In fact, Mozilla tool-
bars cannot be layed out vertically. Mozilla’s toolbars do not provide the “more
items” icon that appears on Internet Explorer toolbars. Nearly all these fea-
tures can be added to the basic toolbars provided, if you have the will and the
time.

Mozilla’s toolbars have a few advantages. The collapsible toolbar grippys
of Netscape 4.x are available, but not in version 1.2. When they are present,
the toolbars can be locked in place by hiding the grippys using style informa-
tion. When toolbar grippys aren’t supported, the toolbars are always locked in
place. Locked toolbars are a concept from Internet Explorer 6. Mozilla’s tool-

AppDevMozilla-08 Page 275 Thursday, December 4, 2003 6:31 PM

276 Navigation Chap. 8

bars can also appear anywhere in the content of an application window, and
being XUL they are very simple to create.

Figure 8.3 is a screenshot of the Mozilla Composer, with the Modern
theme applied. Note the horizontal line that separates text from icons in the
main toolbar. This line appears throughout the Modern theme, but it has noth-
ing to do with toolbar functionality. It is merely a background image. Don’t be
confused by it.

In addition to toolbars and menu bars, Mozilla also supports status bars.

8.2.2.1 <toolbox> The <toolbox> tag is a container for a set of toolbars.
Its XBL binding is in toolbar.xml in the chrome. When there are no toolbar
grippys (Mozilla 1.21), it acts like a <vbox>. In both earlier and newer ver-
sions, where grippys are supported, the tag’s internal content is as shown in
Listing 8.4.

Listing 8.4 Breakdown of the <toolbox> tag.
<toolbox>
 <vbox>
 <toolbar or menubar>
 <toolbar>
 ... more toolbars ...
 <hbox>
 <hbox>
 <spacer>

Although more than one <menubar> can appear in a given <toolbox>,
that is not a recommended practice because of the confusion it creates when
key-navigation is attempted.

The application programmer specifies only the <toolbox> tag and its
<toolbar> and <menubar> contents; all the rest is automatically generated.

Fig. 8.3 Toolbar tricks applied by the Modern theme.

AppDevMozilla-08 Page 276 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 277

The <vbox> contains the toolbars; the <hbox> contains an empty <hbox> and
a <spacer> that provides flex. This empty <hbox> holds images that repre-
sent grippy-collapsed toolbars. The image tags are not precreated and hidden
with CSS2 styles because there might be any number of toolbars present.
They are instead created dynamically by the JavaScript onclick handlers in
the XBL definition.

Where there are no grippys, <toolbox> is little more than a target for
style information. Any tag can be contained inside a <toolbox>, but <tool-
bar> and <menubar> tags should be its immediate children.

8.2.2.2 <toolbar> The <toolbar> tag is the first of two options for <tool-
box> content. It provides a single horizontal toolbar that acts like a <hbox>
and is unremarkable. It can contain any type of content. The only XML
attributes of particular interest are

collapsed grippyhidden grippytooltiptext

collapsed set to true will collapse the toolbar as for any tag, grippy-
hidden set to true will lock the toolbar in place by hiding any <toolbar-
grippy> that appears by default. grippytooltiptext sets the tooltip text
for the grippy. This text appears when the toolbar is collapsed and the mouse
hovers over the remaining grippy.

Setting the collapse attribute is not the same as clicking a grippy. To
emulate that user action, call the collapseToolbar() method of the parent
<toolbox> tag, with the <toolbar>’s DOM object as the sole argument.

Early versions of Mozilla included a lead-in image or icon for the whole
toolbar, but that has been removed in more recent versions. A lead-in icon or
image can still be added using the CSS2 list-style-image property.

A restriction on the <toolbar> tag is that it does not always lay out reli-
ably. Problems can occur if it occupies less than the full width of a XUL win-
dow. If tags appear to the right of the enclosing <toolbox>, and the window is
narrow, then <toolbar> contents can be incorrectly truncated. Sometimes
this works; sometimes it doesn’t. For best results, just give <toolbar> the full
width of the application window.

There is some discussion on the toolbar grippy, implemented with
<toolbargrippy>, in Chapter 4, First Widgets and Themes. The grippy is
based on a simple image, reminiscent of Sun Microsystem’s OpenLook desktop
environment.

Because toolbars can be dynamically created, it is best to give their con-
tent a simple structure. Make all items on the toolbar immediate children of
the <toolbar> tag.

8.2.2.3 <toolbaritem>, <toolbarbutton>, and <toolbarseparator>
The <toolbaritem>, <toolbarbutton>, and <toolbarseparator> tags
are used as <toolbar> content. <toolbaritem> is an anonymous tag.
<toolbarseparator> is an anonymous tag styled to provide extra space and

AppDevMozilla-08 Page 277 Thursday, December 4, 2003 6:31 PM

278 Navigation Chap. 8

a further destination for style information. <toolbarbutton> is a button.
The last two are described in Chapter 4, First Widgets and Themes.

Although two of these tags have no special capbilities, they do have a
purpose. When templates are used to construct toolbars, the template system
decides how to generate content based on tag names. Even though <tool-
baritem> has no particular meaning of its own, a template system can recog-
nize the name and ignore it. This allows the tag to be used as a container for
generic content that shouldn’t be manipulated.

Tooltips for toolbuttons, and floating help in general, are described in
Chapter 10, Windows and Panes.

8.2.3 Menu Bars

Mozilla’s XUL supports menu bars, which are a specialized form of toolbar. By
common convention, a menu bar should be the first toolbar in a <toolbox> so
that it appears at the top of the toolbar area.

8.2.3.1 <menubar> This tag acts like a plain <hbox> and can appear inside
or outside a <toolbox> tag. More than one <menubar> can appear inside a
<toolbox>. That is the general case.

The Macintosh Platform, both MacOS 9 and X, is a special case. That
platform has a single menu bar that is dynamically shared between all run-
ning applications. That special menu bar exists outside the basic windowing
system. A <menubar> tag has its contents applied to that Macintosh menu
bar, and that content appears only on that special menu bar. Only one
<menubar> tag is examined, and only the <menu> tags inside that
<menubar> are applied to the special bar. The menu items appear on that bar
when the Mozilla window gains focus. They do not appear inside the Mozilla
window as well.

On other platforms, <menubar> can be filled with any content.
<menubar> supports Mozilla’s accessibility features. <menubar>’s spe-

cial attributes are the same as for <toolbar>:

collapsed grippyhidden grippytooltiptext

These attributes do nothing on the Macintosh. Mozilla’s XBL definition for
<menubar> appears in toolbar.xml in the chrome.

8.2.3.2 <menu> The <menu> tag is the sole tag that should appear inside a
<menubar>. It implements a button-like label that displays a dropdown menu
when pressed. It is a wrapper for the <menupopup> tag, similar to the other
menu wrapper tags described in Chapter 6, Events. The <menu> tag can also
be used outside of <menubar> as a form element (although <menulist> is a
better approach) or as a submenu inside another menu. If the <menu> tag
inside a <menubar> has no content, it acts much like a <toolbarbutton>;
use <toolbarbutton> instead.

AppDevMozilla-08 Page 278 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 279

The <menu> tag supports Mozilla’s accessibility features and has the fol-
lowing special attributes:

disabled _moz-menuactive open label accesskey crop acceltext image

disabled set to true grays out the menu. _moz-menuactive set to
true applies a style that highlights the menu title as though it were a button.
open set to true might apply a further style to the menu title and also indi-
cate that the drop-down menu is displayed. The other attributes apply to the
<label> content tags that hold the menu title, except for image, which
applies to an optional content icon that is sometimes available. Any automati-
cally generated content tags are described in “Menu Variations.”

The _moz-menuactive attribute is passed through the <menu> tag from
the parent <menubar> tag all the way to the <menuitem> tags that are the
contents of the menu. Many styles are based on this attribute. These styles
provide visual feedback to the user when navigating through the menu struc-
ture. _moz-menuactive would be called -moz-menuactive, except that
XML attributes may not start with a “-”. The name of this attribute is not yet
final, so check the XBL in your version to see if this name has changed.

<menupopup> and <template> are the only tags that can be put inside
the <menu> tag as content. With respect to toolbars, menu bars can have the
content generated by XUL’s template or overlay systems. Menu bars can also
have the content of individual menus generated in this way.

<menu> can also be used inside a <toolbar> tag, but this is not particu-
larly recommended.

8.2.3.3 Menu Variations Various formlike XUL tags, such as <button> and
<textbox>, have variants that are determined by a type attribute. The
<menu> tag also has variants, but they are determined by the class
attribute. The value of this attribute maps to standard style rules that deter-
mine which XBL binding will apply to the <menu> tag. Several bindings are
available, and each one provides different default content.

There are five minor menu variations in total. These variations only
affect the initial presentation of the <menu> tag, not the subsequent dropped-
down <menupopup> tag. The class attribute can be unset; set to "menu"; or
set to "menu-iconic" (three options). The <menu> tag can be inside or out-
side a <menubar> (two options). 2 × 3 = 6 variations, but two of these varia-
tions are the same. Figure 8.4 illustrates these variations with some
diagnostic styles.

Fig. 8.4 Variations on the <menu> tag.

AppDevMozilla-08 Page 279 Thursday, December 4, 2003 6:31 PM

280 Navigation Chap. 8

The top row of this screenshot is a <menubar>. The bottom row is an
<hbox>. The accesskey and acceltext attributes are varied trivially to
illustrate some combinations. The important thing to note is the presence and
absence of <label> and <image> content, marked out with dotted black and
solid, thin black borders, respectively.

In this example, all <menu> tags have maxwidth="150px" applied to
show the alignment. Tags inside a menu bar are left-aligned, but those outside
are right-aligned. The words “no class,” “menu,” and “menu-iconic” are the
titles of each of the six displayed menus and match the value of the class
attribute on that <menu> tag. Any second <label> to the right holds the text
of the acceltext attribute.

It is a small challenge to add icons to <menubar> menus. Set
class="menu-iconic" to start with. The image attribute can be used if the
<menu> is outside a menu bar, but it has no effect if the menu is inside. To get
an icon to appear for a menu that is inside, set the class attribute on the
<menu> tag and add a custom style like this to the document:

.menubar-left#X {list-style-image: url("icon.png");}

X is the id of the <menu> tag needing an icon. Add one style rule per
<menu> needing an icon. This is not perfect, but it is a workaround for now.

8.2.4 Statusbars

Mozilla’s XUL supports statusbars. Such a bar usually appears at the base of a
XUL window where it reports state information and progress messages. It
might also provide clickable icons. Whether statusbars are really any different
from toolbars is a matter of debate. In Mozilla, statusbars are a separate sys-
tem.

XBL definitions for the tags supporting statusbars are stored in the
chrome file general.xml in toolkit.jar.

8.2.4.1 <statusbar> The <statusbar> tag is a horizontal region like a
<toolbar>, except that a <statusbar> does not act like an <hbox>. There-
fore, further content can appear to the right of such a bar. In the normal case, a
<statusbar> should extend the full width of the Mozilla window. <status-
bar> can contain any content. The <statusbar> tag exists as a convenience
for the Mozilla Browser. It is almost an application-level tag rather than a fun-
damental building block. It provides styles and a little special-purpose content.
It has no special-purpose attributes.

Looking back at Figure 8.3, a <statusbar> appears as a recessed tray to
which content can be added. The appearance of the tray is entirely the result
of styles. If you expect your XUL window to be resizable on the Macintosh,
then including a <statusbar> tag at the bottom of the document is the sim-
plest way to ensure that it is because the right-hand end of the statusbar con-
tains a <resizer> tag.

AppDevMozilla-08 Page 280 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 281

It is tempting to put <statusbar> tags next to each other, but this will
look odd on the Macintosh. More than one <resizer> icon would appear in
that case. Don’t do it.

8.2.4.2 <statusbarpanel> Any content can appear in a <statusbar>, but
an orderly approach is to cluster it into a set of <statusbarpanel> tags. This
tag mimics the styles of the <button> tag, but it is not a button and is not
ordinarily clickable. This tag just divides the statusbar into visual sections at
the bottom of any Mozilla Browser window. It is all done with styles; <sta-
tusbarpanel> has no special widget-like behavior and acts like an <hbox>.

A <statusbarpanel> can contain any XUL content. It can alternately
have its appearance determined by attributes. Attributes specific to <status-
barpanel> are

src label crop

There are two variants on this tag. If class="statusbarpanel-
iconic", then the content is a single image, specified by the src attribute.
Otherwise, the content is a single label to which the label and crop
attributes are passed. If <statusbarpanel> contains user-defined content,
that content overrides these attributes.

Use <statusbarpanel> to highlight a control area in a XUL docu-
ment’s display. This tag can appear outside a <statusbar>, but such uses are
obscure.

8.2.5 Title Bars

Mozilla’s XUL provides a tiny bit of support for title bars. In most cases, the
title bar is part of the window decorations added by the desktop window man-
ager. XUL has little control over such bars. The title bar is not a frame.

The simplest way to specify the content of a title bar is with the win-
dow.title property. Whatever it is set to will appear in the main part of the
bar. Other elements of the bar are not configurable, although a window based
on a <dialog> tag can remove some controls. A window can be opened with
no title bar at all, using options to window.open() (see Chapter 10, Windows
and Panes, for details).

The Mozilla chrome contains an XBL definition of a <titlebar> tag. It
is occasionally used in other XBL definitions, but it has no real status as a
XUL tag. It is no more than an <hbox> containing a <label> and an
<image>. It is intended to simulate the title bar added to a window by the
desktop window manager. It is a building block of the <floatingview> tag
described next. Explore its use if you wish.

The <dialogheader> tag has nothing to do with title bars, it is plain
content.

window.open(), <dialog>, <dialogheader>, and <page> are
described in Chapter 10, Windows and Panes.

AppDevMozilla-08 Page 281 Thursday, December 4, 2003 6:31 PM

282 Navigation Chap. 8

8.2.6 Displaying Multiple Panels

What do you do if all your XUL content won’t fit on the screen at once? XUL
provides several techniques for addressing such a problem, based on the idea
of squeezing more into a single window. Each subpart of the window is called a
panel, although that term is not a particularly technical one. Some aspects of
panels are covered in Chapter 10, Windows and Panes. All such techniques are
easily overused, so first let’s look at a brief analysis.

The easiest way to display extra content is to use scrollbars, but scroll-
bars are a simplistic fix. A better solution is to examine the design of your
application window. Most windows should have a simple purpose or purposes,
and users should not need to do extensive navigation. No one should ever need
to scroll down an application window to reveal “extra” form elements. That
may be common in Web pages, but in the end it is bad design. Forms should
always fit into the initially visible window.

Some applications are desktop-like. Those applications typically have
power-users who don’t want dumbed-down design. If simplifying the design
fails, then XUL provides splitters and tab boxes to break up the content into
bits. Both splitters and tab boxes divide the window content into sections, leav-
ing the user responsible for navigating around those sections by hand. The ben-
efit of such a division is a more sophisticated arrangement of content; the cost
is the appearance of extra navigational controls that are peripheral to the core
purpose of the application.

Some applications are not desktop-like. For repetitiously used applica-
tions, like data-entry screens, splitter and tab box divisions can get in the
way of performance. Only use these techniques if you expect that the users
will exercise some discretion over what they do with the window or how they
arrange it. Don’t use these techniques for hardened applications or point-
solution applications. Don’t use them as a substitute for proper design. It is
better to make the application support the true task rather than make a
Swiss-army knife flexible enough for any need. That advice doesn’t apply to a
competitive sales environment, however. In a sales environment, it’s more
important to amaze the audience with nifty features than produce something
that is usable and issue-free. That’s life.

If there is a risk that users will have a small screen resolution, then split-
ters and tab boxes may help. Such a risk should be seen as a high-level design
constraint. It should not be addressed by pouring extra splitters and tab boxes
into the window.

Chapter 10, Windows and Panes, contains further discussion on managing
content too big for a single window. Another XUL technique for multi-panel dis-
play is the <wizard> tag, which is described in Chapter 17, Deployment.

8.2.6.1 <splitter> The <splitter> tag acts like a blend of the <button>,
<resizer>, and <spacer> tags. The example shown in Figure 8.3 is a little
atypical because <splitters> are usually quite narrow so that they take up

AppDevMozilla-08 Page 282 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 283

minimal screen space. One XUL document can contain many <splitter>
tags. Splitters are used extensively in Mozilla’s JavaScript Debugger and sepa-
rate the sidebar from the Web page content in the Navigator window. The pur-
pose of a splitter is to separate content into two panels, one on either side.

The <splitter> tag usually contains a single <grippy> tag. As noted
in Chapter 4, First Widgets and Themes, the <splitter> tag can be dragged
or clicked via its <grippy> tag. The <grippy> tag provides a place to store
event handlers and styles; that’s all it does. Its use is very simple:

<splitter><grippy/></splitter>

The <grippy> tag can be left out if required.
The <splitter> tag works as follows: It and its sibling tags are con-

tained in some <vbox>, <hbox>, or boxlike tag. When users click and drag on
the splitter, the splitter recalculates its position, based on each tiny drag off-
set. It then orders its sibling tags to squeeze up or stretch out. The splitter
itself stays the same size, and in the normal case, the parent <vbox> or
<hbox> stays the same size. How the siblings are stretched or squeezed
depends on the attributes used for the <splitter> tag. If more than one
<splitter> exists inside the parent tag, then each one acts as though the
others were just simple content.

The attributes with special meaning to the <splitter> tag are

orient disabled collapse state resizebefore resizeafter fixed

The orient attribute determines if the splitter is vertical or hori-
zontal. disabled set to true stops the splitter from responding to user
input. collapse indicates which side of the splitter, before or after, should
disappear if the splitter is collapsed. state may be set to open, dragging, or
collapsed. open means that content on both sides of the splitter is visible.
dragging means that the user is in the middle of a mouse gesture started on
the splitter, and collapsed means that content on one side of the splitter is
entirely hidden, giving all of the space to the splitter’s other panel.

For splitter collapse to work, the <splitter> must have one sibling tag
on the side to be collapsed. The easiest way to do this is to use a <box> on that
side. The collapse action occurs only when the state attribute is set, which is
done using JavaScript that is part of the <grippy> implementation. Note that
state="collapsed" and collapse="…" are different from the standard
collapsed="true" attribute usable on all XUL tags. collapsed="true"
used on the <splitter> tag will make the splitter itself disappear.

The remaining attributes set the resizing policy for sibling content. If
resizebefore or resizeafter is set to farthest, then a shrinking panel
will rob space from the sibling most remote from the <splitter> first. If set
to closest, then a shrinking panel will rob space from the sibling closest to
the <splitter> first. If the panel that is shrinking contains a single <box>,
then the content of that box will shrink evenly and ignore the resizebefore
or resizeafter hint. resizeafter can also be set to grow. In this last case,

AppDevMozilla-08 Page 283 Thursday, December 4, 2003 6:31 PM

284 Navigation Chap. 8

the content after the splitter will not shrink when the splitter is dragged
toward it. Instead, it will be moved across so that it overflows and is clipped by
the containing box or the window boundaries. Setting fixed to true overrides
the other settings and prevents the grippy from being dragged. It may still be
collapsed.

This set of arrangements means that the state and resizebefore/
resizeafter attributes cannot all work at once because they require a differ-
ent layout for the sibling content. Mixing resize policies with the flex
attribute, and window resizing can yield a wide range of slightly different
stretching effects.

<splitter> has one variant: It is also responsible for the resizing of col-
umns in a <tree> tag. In that case, it has class="tree-splitter" and has
no visible appearance. See Chapter 13, Listboxes and Trees.

8.2.6.2 <tabbox> XUL’s tab box system is Mozilla’s way of providing a mul-
tidocument interface (MDI), and the <tabbox> is the topmost tag. Such an
interface allows several documents to be visible from a single window. In
Mozilla’s case, those documents can be as small as a single XUL tag or, by add-
ing tags like <iframe>, as large as a whole document. <iframe> is discussed
in Chapter 10, Windows and Panes; here the basic tab box arrangement is
described.

A typical use of a XUL tab box appears in Listing 8.5. The application
programmer must supply most of the content for a tab box as in
<arrowscrollbox> and <scrollbar>. As discussed earlier in the chapter,
this is not the case for tags.

Listing 8.5 Example of a XUL tab box.
<tabbox>
 <tabs>
 <tab id="t1" label="First" selected="true"/>
 <tab id="t2" label="Second"/>
 </tabs>
 <tabpanels>
 <tabpanel>
 <description>Panel 1 content</description>
 </tabpanel>
 <tabpanel>
 <description>Panel 2 content</description>
 </tabpanel>
 </tabpanels>
</tabbox>

The number of <tabpanel> tags should match the number of <tab> tags
if everything is to be coordinated properly. Any XUL tag can substitute for
<tabpanel>, although that tag is the clearest way to design the tab box. Figure
8.5 shows how the standard dir and orient layout attributes can be used on
<tabbox> and <tabs> tags to vary the standard appearance of the box.

AppDevMozilla-08 Page 284 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 285

Clearly, Mozilla’s tab boxes aren’t as flexible as you might hope; only the
most common, normal orientation looks correct. Extensive additional style
rules can be used to clean up the appearance of the other orientations, but the
effort required is only justified for special cases. Special cases can be found in
the Classic Composer and in the Classic Chat client.

The <tabbox> tag is a plain box tag. It has accessibility support and
many keystroke handlers for the keys used to navigate around the box. Its
XBL definition as well as those for all the tab box–related tags can be found in
tabbox.xml in toolkit.jar in the chrome. It has no attributes with special
meanings, but the following JavaScript properties are available:

selectedIndex selectedTab selectedPanel accesskey

selectedIndex is the tab number currently selected, with 0 (zero) for
the first tab. selectedTab and selectedPanel point at the DOM objects for
the <tab> and <tabpanel> matching the currently selected index. access-
key provides accessibility support for the whole tab box.

The DOM object for <tabbox> also has a range of useful methods. Look
at the <method> tags for the "tabbox" binding in the XBL file for <tabbox>
to see their names, parameters, and uses.

<tabpanels> is a form of the <deck> tag; otherwise, none of the tags
associated with the tab box feature of Mozilla have any special meaning as
widgets. They are all constructed out of plain boxes, styles, and XBL defini-
tions.

8.2.6.3 <tabs> and <tab> The <tabs> tag is a plain box tag. It contains a
set of <tab> tags, plus some hidden <spacer> tags that are used at each end
for styling. In the standard Mozilla themes, the tabs cannot overlap (as, for
example, the spreadsheet tabs in Microsoft Excel do), but complex and proba-
bly pointless style rules can be created to make this happen if necessary.

The <tab> tag is a plain box tag as well. Its rounded corners are the
result of Mozilla-style extensions for borders as described in Chapter 2, XUL

Fig. 8.5 Variations on tab-box orientation.

AppDevMozilla-08 Page 285 Thursday, December 4, 2003 6:31 PM

286 Navigation Chap. 8

Layout. The content of such a tab can be any content. If no content is supplied,
then the following special attributes can be used to specify an icon and a label:

image label accesskey crop disabled

These attributes work the same as for the <button> tag. The <tab>
DOM object has a Boolean selected property, which is true if the tab is the
currently selected tab.

The <tabs> and <tab> tags can be specified outside of a <tabbox>, but
there is little reason to do so, and they won’t function properly without extra
programming effort.

8.2.6.4 <tabpanels> and <tabpanel> The <tabpanels> tag is a <deck>.
Each <tabpanel> is one card in the deck and is exposed when the matching
<tab> tag is clicked. These tags have accessibility support and some XBL han-
dlers for keyboard navigation; otherwise, they are unremarkable.

XUL is not HTML, and it is possible to hide form elements completely by
putting them in a tab that is not the top tab. In HTML, form elements always
have the highest possible CSS2 z-index and are impossible to cover over.

8.2.6.5 Custom Panel Systems The combination of XUL, JavaScript, and
XBL provides plenty of scope for creating display systems that hide and dis-
play panel-like content. In addition to the XUL tags discussed so far, the Clas-
sic Browser includes some purpose-built panel-display systems.

The <multipanelset> and <multipanel> are tags specific to the
DOM Inspector. They are programmer-defined XBL-based tags. The matching
XBL definitions are stored in the DOM Inspector chrome, not in the general-
purpose chrome. Figure 8.6 shows these tags at work.

Fig. 8.6 DOM Inspector’s <multipanelset> content.

AppDevMozilla-08 Page 286 Thursday, December 4, 2003 6:31 PM

8.2 Navigation Widgets 287

This screenshot shows the DOM Inspector displaying the “XBL bindings”
version of its right-hand panel. Look carefully at that panel in this screenshot.
All the content beneath the <textbox> displaying the chrome://global/…
URL is the <multipanelset> content, which takes up the remainder of the
right panel. Inside that content area are spread six plain, thin horizontal bars.
Each of these bars looks a bit like a <splitter>; they have been slightly
darkened in the screenshot to make them stand out. Look at the content of
that right panel: There is one bar at the top, one near the bottom, and two
groups of two bars partway down. Each of these bars is a <multipanel>, and
each bar may have its own user-defined content. That content appears below
the bar in a panel of its own. By clicking on one of the bars, the associated con-
tent is hidden or revealed. In the screenshot, three <multipanel> tags are
showing their content, and three aren’t. These bars cannot be dragged.

The <floatingview> tag is a programmer-defined tag even more
sophisticated than <multipanelset>. It is used in the JavaScript Debugger.
It also has an XBL definition specific to the content of that application. This
can also be copied and reused if required. Figure 8.7 illustrates this tag.

This screenshot shows the debugger displaying four <floatingview>
tags. Three are stacked vertically on the left (with two <splitter> tags), and
one fills the whole right-hand panel. This tag also consists of a header bar
(e.g., “Loaded Scripts”) plus user-defined content in a panel below. The icon on
the right end of the header is used to hide the whole <floatingview> panel.
The icon on the left end of the header hides the panel but creates a new, small
window in which the same <floatingview> tag is displayed. The header bar
of the <floatingview> can also be dragged over another <floatingview>
tag, which allows the position of the tag to be changed.

Both <multipanelset> and <floatingview> are better suited to
power users or desktop-like applications.

Fig. 8.7 JavaScript Debugger’s <floatingview> content.

AppDevMozilla-08 Page 287 Thursday, December 4, 2003 6:31 PM

288 Navigation Chap. 8

8.2.7 Special-Purpose Widgets

XUL has a few tags that defy categorization. Because they have some small
relationship to navigation, they are discussed here.

8.2.7.1 <progressmeter> The <progressmeter> tag is a read-only tag
with accessibility support. It provides a bar graph of one bar that gives an
indication of progress. It is a <progressmeter> tag that you watch when
waiting for a Web page to download, or when waiting for a large file to down-
load. Special attributes for <progressmeter> are

mode value label

mode specifies the type of <progressmeter>. If set to undetermined,
then the progress meter represents a task that is either underway or finished.
It is similar in purpose to a “Waiting …” message. Using Mozilla themes, this
is indicated with an animated image that looks like a barber’s pole. If mode is
set to determined, then the meter is split crossways into two parts. One part
is styled in width to match the “progress complete” fraction of the task; the
other is styled in width to match the “yet to go” fraction of the task. Together
they make 100% of the task. The value attribute (and property) specify how
much of the task is completed so far, as a percent. The label attribute is used
for accessibility and provides no visual content.

The <progressmeter> tag is no more than two styled <spacer> tags
set next to each other. The UNIX version of <progressmeter> gets a little
confused if both mode="undetermined" and value are specified as
attributes, as the example in Figure 8.3 shows. The meter can also be layed
out vertically with the orient attribute, but it looks ugly, needs extra styles
to repair its appearance, and confuses the layout of the page. Avoid doing this.

To make a <progressmeter> physically larger, use minheight and
minwidth attributes.

8.2.7.2 <colorpicker> The <colorpicker> tag is a feature of Mozilla
invented for the Composer tool and the Appearance tab of the Preferences dia-
log box. It allows the user to select a CSS2 color from a color swatch. Both of
these uses wrap other logic around the basic tag to make it more complete.
<colorpicker> does not have a neatly modular implementation.

If you want to experiment with this tag, then a starting point is to note
that the color property of the tag’s DOM object is set to a value whenever one
of the color patches displayed in the picker is clicked. Features beyond that are
mixed up with the application uses of the tag. Examine the color-
picker.xml XBL definition if you wish.

<colorpicker> contains no special functionality or widgets except for
generating a DOMMenuItemActive event to support accessibility require-
ments.

AppDevMozilla-08 Page 288 Thursday, December 4, 2003 6:31 PM

8.4 Hands On: NoteTaker Toolbars and Tabs 289

8.2.7.3 Nontags Although Mozilla’s source code suggests that there might be
a <fontpicker> XUL tag, there is no such thing as of version 1.21.

The Mozilla chrome contains an XBL definition of a <titlebar> tag. It
is occasionally used in other XBL definitions but has no real status as a XUL
tag. It is no more than an <hbox> containing a <label> and an <image>. It is
intended to simulate the title bar added to a window by the desktop window
manager. Explore its use if you wish.

The FilePicker dialog box is a XUL application that can be created by
an object, not a tag of its own.

That brings to an end XUL’s most obvious tags for user navigation.

8.3 STYLE OPTIONS

Navigation widgets benefit from a few of Mozilla’s style extensions.
The -moz-appearance style extension supports native themes for sty-

lable widgets. Some values are applicable to the XUL tags described in this
chapter:

toolbox toolbar statusbar statusbarpanel progressbar progressbar-
vertical progresschunk progresschunk-vertical tab tab-left-edge
tab-right-edge tabpanels tabpanel scrollbartrack-horizontal
scrollbartrack-vertical

Mozilla supplies the CSS2 overflow style property with some very handy
alternatives as shown in Table 8.1.

Mozilla also supports scrollbar : auto.

8.4 HANDS ON: NOTETAKER TOOLBARS AND TABS

In this “Hands On” session, we add navigation to the NoteTaker tool. If
NoteTaker were a full application window, like the Classic Browser, then a
central menu bar and a set of toolbar icons would be an obvious starting point.
NoteTaker, however, is an add-on tool, and its navigation is mixed up with the

Table 8.1 CSS2 overflow: scroll style extensions

Value for overflow property Content layout Scrollbar appearance

scroll clipped inside a scrollable box Scrollbars always appear.

-moz-scrollbars-none clipped inside a scrollable box Scrollbars never appear.

-moz-scrollbars-horizontal clipped inside a scrollable box Horizontal scrollbar
appears.

-moz-scrollbars-vertical clipped inside a scrollable box Vertical scrollbar
appears.

AppDevMozilla-08 Page 289 Thursday, December 4, 2003 6:31 PM

290 Navigation Chap. 8

navigation of the host application. We have no choice but to design it as a set of
pieces.

A problem with this design task is that we don’t yet have enough technol-
ogy to see how the NoteTaker pieces will connect to the host application. For
now, we’ll just create those pieces separately and wait until a later chapter to
integrate them.

The pieces that make up NoteTaker’s navigation system follow:

1. The dialog box we’ve worked on so far.
2. A note management toolbar in the main application window.
3. A menu item on the Tools menu of the main application.
4. The small, inset window that displays a note on the content of a given

Web page.

One day there might also be a Note Manager item to add to the Tools
menu, but not in this book. The small inset window requires special treat-
ment. It is handled in Chapter 10, Windows and Panes. We’ll address the other
three points here.

The dialog box needs only limited improvement. We’ll replace the clumsy
<toolbarbutton>s, <deck>, and some action() logic with a simple <tab-
box>. Listing 8.6 shows this new code, which is straightforward.

Listing 8.6 <tabbox> control for the NoteTaker Edit dialog box.
<tabbox id="dialog.tabs">
 <tabs>
 <tab id="dialog.tab.edit" label="Edit" accesskey="E" selected="true"/>
 <tab id="dialog.tab.keywords" label="Keywords" accesskey="K"/>
 </tabs>
 <tabpanels>
 <tabpanel>
 ... Edit pane content goes here ...
 </tabpanel>
 <tabpanel>
 <description>Content to be added later.</description>
 </tabpanel>
 </tabpanels>
</tabbox>

The result of this change is shown in Figure 8.8.
We must also update the action() function because the individual tabs

can still be selected using keypresses. We need to control the <tabbox> from
JavaScript. Looking in xul.css in toolkit.jar in the chrome, we see that
there are bindings for all of <tabbox>, <tabs>, <tab>, and <tabpanel>.
Examining the tabbox.xml file (again in the chrome) that contains these
XBL bindings, we note that <tabbox> has a selectedIndex property, and
that <tab> has a selected property. Again, those names match the XML
attributes and standard DOM 2 HTML properties in their use. We’ll use the

AppDevMozilla-08 Page 290 Thursday, December 4, 2003 6:31 PM

8.4 Hands On: NoteTaker Toolbars and Tabs 291

<tabbox> selectedIndex property. The changes required for the action()
function are shown in Listing 8.7.

Listing 8.7 New NoteTaker panel changes using <tab>.
// old code

var card = document.getElementById("dialog." + task);
var deck = card.parentNode;

if (task == "edit") deck.selectedIndex = 0;
if (task == "keywords") deck.selectedIndex = 1;

// new code

var tabs = document.getElementById("dialog.tabs");

if (task == "edit") tabs.selectedIndex = 0;
if (task == "keywords") tabs.selectedIndex = 1;

Clearly <tabbox> and <deck> operate in a similar manner, but <tab-
box> has a slightly better user interface. That concludes the changes to the
dialog box.

The NoteTaker toolbar is a XUL <toolbar> tag that will appear in the
main Classic Browser window. It provides an Edit button that allows users to
navigate to the main NoteTaker Edit dialog box. It also provides form items
that can be used to create or delete a NoteTaker note quickly. The toolbar cre-
ates exactly the same note as the Edit dialog box, except it provides default val-
ues for nearly everything. It is a shorthand alternative like the “Google bar”
toolbar sometimes used to add a search engine to the Classic Browser toolbox.
When displayed by itself, the NoteTaker toolbar appears as in Figure 8.9.

Eventually this toolbar will reside in a XUL file with other GUI ele-
ments, but for the purposes of this chapter, we’ll just create it by itself. Listing
8.8 shows the code required.

Fig. 8.8 NoteTaker dialog implemented with a <tabbox>.

AppDevMozilla-08 Page 291 Thursday, December 4, 2003 6:31 PM

292 Navigation Chap. 8

Listing 8.8 NoteTaker toolbar mock-up.
<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">
 <toolbox>
 <toolbar id="notetaker-toolbar">
 <description value="Note:"/>
 <textbox/>
 <description value="Keyword:"/>
 <menulist editable="true">
 <menupopup>
 <menuitem label="draft"/>
 <menuitem label="reviewed"/>
 <menuitem label="final"/>
 <menuitem label="published"/>
 <menuitem label="cool"/>
 </menupopup>
 </menulist>
 <toolbarbutton label="Edit"/>
 <toolbarbutton label="Delete"/>
 <toolbarbutton label="Save"/>
 </toolbar>
 </toolbox>
</window>

In the final NoteTaker version, the keywords listed in the dropdown
menu will be dynamically created. For now, we display a fixed set. There are
many questions to overcome if this toolbar is to be completed, and those ques-
tions are addressed in future chapters.

The final change for this chapter is to add an item to the Tools menu of
the Classic Browser window, so that users can still open the Edit dialog box if
the toolbar isn’t installed. That requires only a <menuitem> tag, which will
accompany the toolbar changes at a later date.

Adding navigation widgets is obviously easy and painless.

8.5 DEBUG CORNER: NAVIGATION PROBLEMS

XUL’s navigation tags are so straightforward that few thorny problems exist.
For difficulties with individual tags, see the text for those tags.

Fig. 8.9 NoteTaker note creation and navigation toolbar.

AppDevMozilla-08 Page 292 Thursday, December 4, 2003 6:31 PM

8.6 Summary 293

In more general terms, layout is the main source of problems with these
navigational tags. If you push the use of these tags too far, they will not lay out
properly. Use them as they are intended to be used. An alternative is to study
the XUL layout mechanics behind these tags very closely and then to patch
their behavior with extra style information.

The sole other problem you might encounter is difficulties with widget
focus and selection. Although this system recently improved in 1.4, it is some-
times possible to confuse the window, the running platform instance, and even
the Microsoft Windows desktop if the XUL code is poorly expressed. A symp-
tom of this problem is a window that has two or more of the input cursor (used
for <textbox> tags), the current focus and the current selection in disagree-
ment. To test if this is caused by buggy behavior, reboot the computer and
determine whether the display and the behavior of the exact same page have
improved.

8.6 SUMMARY

A professional application contains much functionality, and that is a challenge
for the user to master. Application developers must exert a considerable
amount of control at the design stage if the application is to be both compre-
hensible and efficient.

Mozilla provides a number of navigational aids at the user interface
level. XUL tags like <tabbox>, <toolbar>, and <splitter> bring structure
to the user interface, but at the expense of a more demanding interactive envi-
ronment. The <scrollbox> tag is an early example of a powerful tag with its
own custom box object.

The focus ring allows the user to move around inside a document, and
the menu system lets the user break out of the document. If the user is dis-
abled, most navigation elements are accessibility enabled to compensate.

Provided that the navigational aspects of a given window are thought
through, these tools can smooth the flow of work and can compress much func-
tionality into a given window. Using poorly conceived navigation widgets can
be intrusive, cluttered, and confusing.

Navigation gives the user power to move around an application. Such
freedom is complemented by the Mozilla command system, which allows users
to do something after they’ve moved. That system is discussed in the next
chapter.

AppDevMozilla-08 Page 293 Thursday, December 4, 2003 6:31 PM

