

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

JavaJavaScript

Components

AppDevMozilla-09 Page 294 Thursday, December 4, 2003 6:32 PM

295

C H A P T E R

Overlay
database

XBL
definitions

Keyboard

Desktop
themes

GUI
toolkits

Fonts

DTDs

Mouse

RDF

Default
CSS

W3C
standards

Skins

DOM

Events

JavaScriptcript

9

Commands

AppDevMozilla-09 Page 295 Thursday, December 4, 2003 6:32 PM

296 Commands Chap. 9

This chapter explains the Mozilla command system. The command system is
used to separate the functionality of an application from its appearance. It is
separate from the DOM Events model, although events and commands can
interact a little.

It is critical that somehow, somewhere, the tasks that an application win-
dow performs are separated from their user interfaces. One reason for this
separation is that XUL user interfaces are highly changeable, both at design
time and at run time. Such interfaces are a demanding constraint on applica-
tion architecture. A second reason is that many existing software engineering
techniques can be applied to application tasks if they can be expressed by
themselves. Use cases and functional hierarchy diagrams are examples of
such techniques. Separately defining tasks also make reuse more likely. Over-
all, such a separation strategy is an attractive and flexible design environ-
ment.

A professionally built application will have all its commands formally
identified at design time. Identifying to-be-implemented commands is part of
the design breakdown process and can be used to detect convoluted, duplicate,
and messy actions. These design problems can then be addressed before imple-
mentation rather than afterward.

Traditional HTML-based applications often consist of a spaghetti pile of
JavaScript code. The command system is also an attempt to get away from this
unstructured approach.

The NPA diagram that precedes this chapter illustrates the pieces of
Mozilla that implement commands. From the diagram, the command system
builds on top of the DOM and the DOM Events subsystems, but it also
requires access to a number of XPCOM components. The most important com-
ponents also appear as AOM objects. The XUL language has tags that support
the command system, but those tags have no visible appearance; they are sim-
ilar to the

<key>

 tag in that respect. The command system goes further than
the

<key>

 tag because it has no user interface of any description. The com-
mand system is entirely internal to the platform.

9.1 C

OMMANDS

AND

 M

OZILLA

Mozilla’s command system is one of the less obvious aspects of the platform,
and yet it is powerful and flexible. It allows the application programmer to
think of application functionality as a set of messages. Each message is either
a command or about a command. Used correctly, the command system acts as
an integration and organizational point for application functions. Classic
Mozilla’s own use of its command system is fairly organized, but it is also bur-
ied in an abundance of other code.

The Mozilla command system is designed to support complex applica-
tions. Trivial applications do not need a command system; they can get by

AppDevMozilla-09 Page 296 Thursday, December 4, 2003 6:32 PM

9.1 Commands and Mozilla 297

with simple event handlers. For complex applications, Mozilla’s design goals
are to provide a system where

☞

User interface widgets can share a command, even across source files.

☞

Commands can have their own state, which can be changed and
reported on.

☞

Commands and widgets can be added or changed independently.

☞

All kinds of programmers, not just application programmers, are
catered to.

☞

Useful default behavior exists.

☞

Simple uses are supported with trivial syntax.

☞

The existing DOM Event system is reused where possible.

In Mozilla, a command is very easy to find. Simple operations such as
Save File, Add Bookmark, Select Content, Bold, Scroll One Page, and Undo
are all commands.

It is not so easy to pin a command down in terms of code. The most obvi-
ous programming signature a command has is a simple string whose name is
the command name. Such names can be predefined by the platform, or they
can be programmer-defined. Unfortunately, the rest of the command infra-
structure is rather spread out. Bits of the command system exist in XUL,
JavaScript, XPCOM, existing chrome files, and the platform’s internals.

9.1.1 Hello, World

A simple example of the command system at work is shown in Listing 9.1.

Listing 9.1

hello, world implemented as a Mozilla command.

<?xml version="1.0"?>
<!DOCTYPE window>
<window
 xmlns= "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
 <command id="hello" oncommand="alert('hello, world');"/>
 <button label="Say It" command="hello"/>

</window>

The

<command>

 tag implements a command, in this case a simple event
handler that calls

alert()

. The

<button>

 tag identifies that command by
name. When the button is pressed, a DOM 2 Event with the special type com-
mand is generated, and the identified command traps this event and runs. The
result is that an

alert()

 box is thrown up.
Commands are not always so simple, and they do not always involve

events. If a command is implemented in JavaScript, then the effect achieved
in Listing 9.2 is the same as that in Listing 9.1.

AppDevMozilla-09 Page 297 Thursday, December 4, 2003 6:32 PM

298 Commands Chap. 9

Listing 9.2

hello, world implemented as a Mozilla JavaScript command.

<?xml version="1.0"?>
<!DOCTYPE window>
<window
 xmlns= "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
 <script>
 var control = {
 supportsCommand : function (cmd) { return true; },
 doCommand : function (cmd) { alert(cmd + ", world"); },
 isCommandEnabled : function (cmd) { return true; },
 onEvent : function (event_name) {}
 };
 window.controllers.appendController(control);

 function execute(cmd) {
 var disp = document.commandDispatcher
 var cont = disp.getControllerForCommand(cmd);
 cont.doCommand(cmd);
 }
 </script>
 <button label="Say It" onclick="execute('hello')"/>

</window>

This code makes a custom object named

control

 that implements the
command; in fact, this object can implement several commands. The command
is implemented in the

doCommand()

 method. This object needs to be installed
into the platform’s command infrastructure as well. It is retrieved again when
the command to be run is required. Finally, using this approach, the command
can be run from any point in the XUL document that calls the

execute()

function. In this case, it is convenient to use an

onclick

 handler.
This second example requires and explanation, and that is where this

chapter begins. Obviously this second example is more complex than the first,
and there are good reasons why using a more complex approach is sometimes
better.

9.2 C

OMMAND

 C

ONCEPTS

The Mozilla command system is a command delivery system. Actual com-
mands are implemented by the application programmer. Creating and run-
ning commands is straightforward compared to understanding how they are
invoked, found, and executed.

This delivery system is very different from a traditional client-server
architecture. In such an architecture, servers implement commands that are
entirely separate and remote from client GUIs. They often run silently and
only report when finished. For example, HTTP GET and POST requests ignore

AppDevMozilla-09 Page 298 Thursday, December 4, 2003 6:32 PM

9.2 Command Concepts 299

browser GUIs entirely; they merely return a status code, and possibly a new
document.

Mozilla commands are not like client-server commands. Mozilla com-
mands are close to the GUI and are likely to operate on it extensively. An
example is the Bold operation in the Classic Composer (or similarly in any
word processor). Bold applies a style to the current selection, which is usually
on display. The Mozilla command delivery system must allow commands to be
executed close to the GUI, not buried in some server. Of course, those com-
mands can use server-like features if they so choose.

This last point means that commands are not “distant” from the applica-
tion programmer. They are part of the content that the application program-
mers create and are loaded into the XML document environment like other
content.

Mozilla uses a common piece of design called the Command pattern to
separate command names from command implementations. Most modern GUI
toolkits include technology based on the Command pattern. The next few top-
ics build up a picture of how this pattern works.

9.2.1 The Functor Pattern

The Functor pattern is a well-known piece of design that is the lowest level of
a command system. A functor can be implemented as an object. That object
represents a single function. Listing 9.3 illustrates a functor and a normal
function. Both provide an implementation of a “halve” command that calcu-
lates half of a supplied number:

Listing 9.3

Function versus functor object for a single operation.

// Plain function
function halve_function(num) { return num / 2.0; }

// Functor
var num = null;

var halve_functor = {
 enabled : true,
 exec : function () { num /= 2.0; return true; }
}

// Examples of use
num = halve_function(23); // sets num = 11.5

num = 23;

halve_functor.exec(); // sets num = 11.5

The functor object not only seems unnecessarily complex compared with
the simple function, but it also has a loose global variable to deal with. The
functor, however, is far more flexible than a function because it has a stan-

AppDevMozilla-09 Page 299 Thursday, December 4, 2003 6:32 PM

300 Commands Chap. 9

dardized interface. All functor objects have a single

exec()

 method that exe-
cutes the implemented command and reports success or failure. All functor
objects therefore look the same to an application programmer.

The example functor object also contains some state information about
the command. In Listing 9.3, the very common example of an

enabled

 state is
illustrated. In fact, most command systems, including Mozilla’s, explicitly pro-
vide support for the

enabled

 state. Application code can check this state to
see whether the command is available and then react appropriately. A functor
can store any kind of state information about a command that seems conve-
nient, not just an enabled state. Other states that might be stored include the
command name; a unique id for the command; flags to indicate whether the
command is ready, blocked, or optimized; or the language the command is
implemented in or its version. Anything is possible.

In this example, the functor object modifies global data (the

num

 variable)
when the command executes. This keeps the

exec()

 method free of parameters
so that all functor objects are alike.

num

 could be a property of the functor, but
that is a bad design choice. It is a bad choice mostly because the functor should
be stateless with respect to the command’s execution. Although it contains state
information about the command (the enabled property), the command’s imple-
mentation does not use any of that state information when it executes. That
state information is used only by those that need the functor object.

The example functor also presents an opportunity. The

exec()

 method
could be changed to this:

exec: function () { return really_halve_it(); }

In this alternative, the

really_halve_it()

 function does all the actual
work for the command and is implemented somewhere else in the application,
perhaps in a library.

This last change means that the functor object contains none of the com-
mand implementation. Instead, it is the programmer’s point of access to the
command and its state. It is a proxy object, or a handle, or a façade. It is a rep-
resentative for the real functionality. This proxy object provides part of the
separation required for the Mozilla command system. Application program-
mers only need to know where the proxy object is, not where the final com-
mand implementation is. This is simple abstraction, similar to the design of
file descriptors, symbolic links, network mapped drives, and aliases.

In non-Mozilla literature on the Functor pattern,

exec()

 is often called

execute()

. In Mozilla, a proxy object (a functor) for a command is called a

command handler

. Application programmers do not use command handlers
much because the higher-level concept of a controller is more convenient.

9.2.2 The Command Pattern and Controllers

The command pattern is a well-known piece of design that builds on the func-
tor pattern. It is responsible for separating the GUI side of an application from

AppDevMozilla-09 Page 300 Thursday, December 4, 2003 6:32 PM

9.2 Command Concepts 301

a command’s implementation. A functor removes the need to know the exact
location of a command’s implementation. A command pattern removes the
need to know whether a command exists.

In reality, application code generally assumes that the commands that it
relies on do exist. This is just a matter of forward planning, and peeking
“behind the scenes.”

To implement the command pattern, create an object that holds a set of
functor objects. When the user supplies a command name to that object, exe-
cute the matching functor object. That is the command pattern. Listing 9.4 is
an example of such an object, called a

controller

 in Mozilla. This example
implements a simple traffic light.

Listing 9.4

Controller object implementing a stop sign.

// functors
var stop = { exec: function () { top.light = "Red"; };
var slow = { exec: function () { top.light = "Amber"; };
var go = { exec: function () { top.light = "Green"; };

// controller containing functors

var controller = {
 _cmds: { stop:stop, slow:slow, go:go },

 supportsCommand : function (cmd) {
 return (cmd in this._cmds);
 },
 doCommand : function (cmd) {
 return _cmds[cmd].exec();
 },
 isCommandEnabled : function (cmd) {
 return true;
 },
 onEvent : function (event_name) {
 return void;
 }
};

// set the light to green

controller.doCommand("go");

The controller object contains an object

_cmds

 that maps property names
to functors. In a language with full information hiding, like C++, this inner
object would be private. The three functions supplied are convenience func-
tions that take a single command name as a string and work on the stored
information.

supportsCommand()

 reports whether the controller knows
about a particular command;

doCommand()

 executes the functor for a given
command.

onEvent()

 is passed any event name that might be relevant to the
command.

AppDevMozilla-09 Page 301 Thursday, December 4, 2003 6:32 PM

302 Commands Chap. 9

The final

isCommandEnabled()

 method cheats a little. It should check
the enabled property of the matching functor, but this controller knows that
all three lights on the traffic light always work, so it never checks—it just
returns

true

. That is just as well because none of the functors implement the
enabled property shown in Listing 9.4. This choice means that the controller
and the functors are dependent on each other. They appear to implement three
complete functors, but in fact those three functors only implement what the
controller really needs.

This last point is important. Because the controller completely hides the
command implementations (functors) from the user, those implementations
can be done in any way. In Mozilla, it is common for simple controllers written
in JavaScript to avoid functors altogether and to implement the command
states and command implementations directly. This would not be possible if
the controller had a

getFunctor(cmd)

 method because then the functor
would be exposed to the application programmer, requiring it to be complete.
Happily, the controller has no such method, at least in its simplest form, and
so implementation shortcuts can be taken. Listing 9.5 shows how Listing 9.4
can be stripped down even further.

Listing 9.5

Controller object with no separate functors.

var controller = {
 supportsCommand : function (cmd) {
 return (cmd=="red" || cmd=="amber" || cmd=="green");
 },
 doCommand : function (cmd) {
 if (cmd == "red") top.light = "Red";
 if (cmd == "amber") top.light = "Amber";
 if (cmd == "green") top.light = "Green";
 },
 isCommandEnabled : function (cmd) {
 return true;
 },
 onEvent : function (event_name) {
 return void;
 }
};

// set the light to green

controller.doCommand("go");

In this example, the controller still acts as though three functors are
present, but none are actually implemented.

Complex controllers can also benefit from direct implementation. Some-
times commands have coordination problems that are best solved in the con-
troller. An example is implementing Undo in an editor like the Classic
Composer. The controller is responsible for executing the individual com-
mands, so it might as well be responsible for maintaining the Undo history

AppDevMozilla-09 Page 302 Thursday, December 4, 2003 6:32 PM

9.2 Command Concepts 303

too. If the command to execute is Redo or Undo, then the controller can read
the top item from the history and can call the correct command implementa-
tion to fill the Redo/Undo request. Any such state machine should first be
implemented without a controller and then hidden inside the controller so
that the controller’s main purpose (controlling) is still clear. Controllers are
also good places to hide macro languages, synchronization, and other artifacts
that are made out of commands.

9.2.3 Controller Sites

Mozilla does not stop at a single static controller. It is possible to create as
many controllers as you want. This is done, for example, in Mozilla’s Com-
poser, where there are three controllers, each of which looks after a different
subset of the implemented commands.

Any and all controllers created must be placed where the platform can
find them. Controllers can be lodged in several places.

☞

Controllers can be lodged on the window object of a chrome (XUL) win-
dow.

☞

A few XUL tags are suitable sites. Allowed tags are

<button>

,

<check-
box>

,

<radio>

,

<toolbarbutton>, <menu>, <menuitem>, and <key>.
☞ The XUL <command> tag is like a functor when it directly implements a

command using an event handler. If such a tag is created, the platform
effectively adds that functor to a permanent controller that it maintains
internally.

Use of these sites is discussed later when command syntax is explored.
If more than one controller is lodged at a particular site, then the set of

such controllers at that site is called a controller chain. Such a set of control-
lers is ordered, and when it is consulted, it is searched in order. This means
that the first controller in a chain that can fill a request for a command imple-
mentation will be the controller that runs that command.

9.2.4 Dispatchers and Dispatching

Controllers hold a set of commands each; controller sites hold zero or more
controllers each; and a command dispatcher works with a set of controller
sites. Fortunately, it stops there. A command dispatcher has the job of finding
and executing a particular command.

Mozilla has one dispatcher designed for HTML documents and one dis-
patcher designed for XUL documents. The HTML dispatcher is not visible or
available to scripts under any circumstances. The XUL dispatcher can be
scripted. Each XUL application window has one dispatcher object at its docu-
ment root, and that object is always present and available.

AppDevMozilla-09 Page 303 Thursday, December 4, 2003 6:32 PM

304 Commands Chap. 9

The dispatcher has a getControllerForCommand() method. This
method accepts a command name as a string and returns a controller that can
execute that command. The dispatcher and the returned controller must be
explicitly coded by an application script—they do not do any anything auto-
matically. In the chrome files of Classic Mozilla, calls to the dispatcher are hid-
den inside a custom-made JavaScript function called goDoCommand(). That
function is included in every Classic Mozilla window and is used in most.

The dispatcher uses state information about the current focus to work
out what controllers it should provide for a given command. This state infor-
mation consists of the window focus, any XUL <iframe> focus, plus any DOM
element in the focus ring that is the currently focused member of the ring. In
other words, the dispatcher uses all the focus hierarchy information. The dis-
patcher starts at the most specific item currently in focus (usually a form or
menu item) and works its way up the DOM tree to the outermost window. At
each focused DOM element it finds, it examines the element’s controller chain
for controller objects. The dispatcher then checks support for the given com-
mand by testing each controller in the chain using that controller’s sup-
portsCommand() method. The first controller object the dispatcher
encounters that implements the dispatched command is returned. If none
match, the dispatcher moves further up the focus hierarchy. If the dispatcher
reaches the top of the focus hierarchy without finding a suitable controller, it
returns null.

A XUL window and its contents are not fully initialized with the focus
when that window first appears. Even though the window is the current desk-
top window, it can still be missing the focus. This means that installed control-
lers are not necessarily available, even if they are installed at the top of the
current window. The application programmer must explicitly give the window
focus if these window-level controllers are to be made available. The simplest
way to do this is with a single line of script:

window.focus();

It is very important that focus is explicitly set both before and after a
command is dispatched. If this is not done, the focus ring can become con-
fused, and problems can occur from that point onward. This constraint has
been fixed to a degree with the 1.4 release, but explicit focusing is still recom-
mended practice.

The dispatcher does not search everywhere for a command implementa-
tion. If a focused widget has a command attribute, the dispatcher will not con-
sider that attribute. The dispatcher only examines controllers.

9.2.5 Change Notifications

One important enhancement to the command system is a change notification
system for the commands themselves. This change notification system is also
called command updates.

AppDevMozilla-09 Page 304 Thursday, December 4, 2003 6:32 PM

9.3 How Commands Are Started 305

Commands can be created and managed, commands can be found and
executed, but what if commands change? Suppose a command’s enabled state
changes from true to false. How can the pieces of an application that use
the command find out that it is no longer available? Change notification is the
solution to this problem.

Chapter 6, Events, introduced the observer-broadcaster pattern. Mozilla
uses that pattern for command state changes. Instead of one or more XUL tags
observing an attribute on another XUL tag, one or more XUL tags observe the
proxy functors of particular commands. If a command’s state changes, the dis-
patcher broadcasts change notifications about its functors, and the observing
XUL tags catch those notifications. Even when the functor objects are merged
in with the ordinary controller code for simplicity, change notifications are still
generated. Therefore, imagining that command functors are always there is
convenient because it explains neatly the change notifications that are
observed.

The dispatcher keeps a list of observer XUL tags in the form of DOM ele-
ment objects. These are normal DOM objects but are called command updaters
when used for this purpose. Methods are provided on the dispatcher for adding
and removing such updaters.

A DOM Event is created and inserted into the event system using the
dispatchEvent() method. A command change notification is inserted into
the broadcaster-observer system using the UpdateCommands() method of the
dispatcher or of the window. This causes all the observers watching the single
specified event to receive a commandupdate event. This event acts like any
event that a XUL tag might receive.

commandupdate events work in XUL, but not in HTML. The syntax and
use of these events is covered shortly.

9.3 HOW COMMANDS ARE STARTED

Mozilla commands can be started a number of ways. Here are all the possibili-
ties:

☞ If a functor or controller object is available, its methods can be called
directly from JavaScript. This approach ignores the command system
and treats the object like any other object.

☞ The dispatcher’s getControllerForCommand() method can be called
directly from JavaScript. This method is a first step toward resolving a
command name into actionable code. In this case, the dispatcher
searches for a suitable command implementation.

☞ The doCommand() method of a focusable XUL tag can be called directly
from JavaScript. If this is done, then any <command> specified as a value
of the command attribute will be executed. This method does not use the
dispatcher or any controllers.

AppDevMozilla-09 Page 305 Thursday, December 4, 2003 6:32 PM

306 Commands Chap. 9

☞ If a key with a suitable <key> tag is pressed, or if a focusable XUL tag is
clicked or stimulated with a key press, then any <command> specified as
a value of the command attribute will be executed. This is the same as the
doCommand() example, except that the tag or key first generates a com-
mand event. Special processing in the platform is responsible for check-
ing both the event type and any command attribute to see if a command
needs to be run.

☞ If a DOM Event that is a command event is created, then the dis-
patchEvent() method can be called on any XUL tag. If that tag is a
focusable tag, then that method call is the same as the user input gener-
ating a command event. It is therefore the same as the previous case.

In any of the previous three cases, the <command> executed might elect
to call the dispatcher. This links the <command> tag to a controller.

☞ Finally, if the UpdateCommands() method of the dispatcher is called,
any outstanding change notifications will be sent to all XUL tags observ-
ing such changes. This means that a commandupdate event will be sent
to all command updaters.

The Classic Mozilla applications include a function called goDoCom-
mand(). This function manipulates the dispatcher. It is the starting point for
commands in those applications. It is located in globalOverlay.js in tool-
kit.jar in the chrome.

9.3.1 A Virtuous Circle

A summary of the Mozilla command system reveals a convenient twist for the
application programmer. A command implementation can begin and end in a
single XUL document, as the earlier “hello, world” examples illustrate.

☞ Commands can enter the command delivery system from an ordinary
piece of JavaScript. That script might itself be an event handler, perhaps
for a more traditional DOM event like the click or select event. In that
case, the script must be associated with a XUL tag.

☞ Commands can leave the command delivery system from an ordinary
piece of JavaScript that implements the command. A command functor,
or better still a controller, can be written to contain that implementation.
That controller can also be attached to a particular XUL tag.

☞ Finally, a XUL tag can get feedback if a command’s state changes, via the
command update system.

Altogether, this means that a command can begin and end in XUL (or in
XUL and JavaScript). For example, a <toolbarbutton> that initiates a com-
mand can also observe the command to see if it should stay enabled. That
<toolbarbutton> can also supply the command’s implementation with a

AppDevMozilla-09 Page 306 Thursday, December 4, 2003 6:32 PM

9.4 Using Commands Via XUL 307

controller. The dispatcher and standard event processing are the only pieces of
the puzzle supplied by the platform.

9.4 USING COMMANDS VIA XUL

XUL provides the <command> tag for Mozilla commands. The tags <command-
set> and <commands> are also used, but they are user-defined tags with no
special meaning of their own. A <commandset> tag is used to contain a set of
<command> tags and acts like the other XUL container tags, like <keyset>.

XUL also contains a number of XML attributes that can be applied to
any tag. They are

command events targets commandupdater

and two event handlers:

oncommand oncommandupdate

Outside of XUL, the Mozilla Platform also has many predefined com-
mand names, but we’ll discuss those in more detail later.

9.4.1 <command> and command=

The <command> tag is used to define a Mozilla command, just as the <key>
tag is used to define a Mozilla keypress. It represents the command and can
embody the concrete aspects of the command. In terms of a virtuous circle, the
<command> tag represents both an identifier to use when invoking a com-
mand and an implementation to use when the command executes. The <com-
mand> tag has the following special attributes:

disabled oncommand

The disabled attribute can be set to true, in which case the command
does nothing. oncommand is set to JavaScript code that will be used in place of
any controllers that might exist. Other attributes, such as disabled, label,
accesskey, and checked are sometimes added to <command>. The command
update system, discussed next, uses them, but they have no special meaning
to the <command> tag.

An example of <command> use is

<command id="test-command" oncommand="alert('executed');"/>

The id attribute names the command. The oncommand event handler
provides an implementation for the command—it is a command handler. If
this tag generates a DOM Event named command, then this handler will run.
Because the <command> tag has no interactive features (no widget), it is rare
that this tag ever generates a command event.

AppDevMozilla-09 Page 307 Thursday, December 4, 2003 6:32 PM

308 Commands Chap. 9

The command attribute allows other tags to be extended by the <com-
mand> tag in the same way that the key attribute allows other tags to be
extended by a <key> tag. For example,

<mytag id="myAppTag" command="test-command"/>

If the <mytag> tag generates a command event of the right type, then
the alert() specified earlier by the oncommand handler of the <command>
tag will execute. Only the following tags can be used in place of “mytag”:

<button> <checkbox> <radio> <toolbarbutton> <menu> <menuitem> <key>

When one of these tags has the focus, user interaction generates a com-
mand event automatically. The oncommand handler can be usefully added to
these tags, but doing so is poor practice. It is better to record all known com-
mands centrally in <command> tags than to fragment the commands across all
the application’s widgets.

The oncommand handler can also be fired directly from JavaScript:

var target = document.getElementById("mytag-id");
target.doCommand();

If the oncommand attribute is specified, then the command system’s dis-
patcher is not used, and no controllers are consulted. Only the code in the han-
dler is executed. If the handler code wishes, it can call the dispatcher, which
then operates as it always does.

There is one further use of the command attribute. The XBL tag exten-
sion system has a <handler> tag, which allows an ordinary DOM Event like
click to be translated into a specified command. The command attribute is used
to do this in the XBL <handler> tag.

In the XBL case, there is no matching <command> tag for the <handler>
tag. The value of the command attribute is sent straight to the dispatcher as
the sole argument of getControllerForCommand(). Therefore, command in
XBL is different from command in XUL.

9.4.2 commandupdater=“true” and oncommandupdate=

If a XUL tag contains this attribute, then it is a command updater and will
receive change notifications about commands. These change notifications are
received through a broadcaster-observer arrangement. When the platform’s
XUL parser discovers the commandupdater attribute, it automatically regis-
ters the tag holding that attribute as an observer of a broadcaster inside the
dispatcher. This broadcaster causes commandupdate events to be placed on all
its observers when the UpdateCommands() method of the dispatcher is run.
In summary, if a commandupdate event occurs, this tag’s oncommandupdate
event handler will fire. An example of this code is simply

<mytag commandupdater="true" oncommandupdate="update_all()"/>

AppDevMozilla-09 Page 308 Thursday, December 4, 2003 6:32 PM

9.4 Using Commands Via XUL 309

The update_all() function is any custom script that is knowledgeable
about the current application. It does whatever work is required to identify
the commands that have changed. It also performs any consequential actions.
For example, there is such a function in Classic Mozilla. The file glo-
balOverlay.js in toolkit.jar in the chrome contains goUpdateCom-
mand() (and other go… functions). That function performs some standard
processing associated with command updates. It sets the disabled attribute
of a <command> tag by checking the isCommandEnabled() method of the
controller for a command that is passed to it as an argument.

A further example of command update is discussed in “How to Make a
Widget Reflect Command State.”

A filter can also be applied to a command updater tag:

<mytag commandupdater="true" events="focus blur" targets="*"
oncommandupdate="update_all()"/>

The events attribute restricts the events that will cause a commandup-
date event. It can be a space- or comma-separated list of events and can
include command names. The targets attribute has the same syntax, except
the list of names consists of tag ids. It is rarely used and is not recommended.
It restricts the events reported on to those whose event target (tag) is in the
supplied list of ids. The default for both events and targets is “*”, meaning all.

Even if the targets attribute is specified, the commandupdate event
only goes to the commandupdater’s tag, not to the target tags. We’re still wait-
ing to see what this functionality finally evolves into.

A commandupdate event can be synthesized from JavaScript, just as a
command event can be. To do this, call the UpdateCommands() method of the
dispatcher. In the case of XUL-defined commands, this is not a very flexible or
useful arrangement because the simple event handlers used in oncommand
have no state. Only when JavaScript is used to construct commands (using
controller objects) do commandupdate events start to make sense.

9.4.3 <commandset> and <commands>

The <commandset> tag is an user-defined tag with no special meaning. It is
sometimes used to group commands.

Sometimes a XUL application is built from a number of separate defini-
tion files. In that case, the <commandset> tag often has an id that allows
those separate definitions to be merged, as described in Chapter 12, Overlays
and Chrome.

The second use of <commandset> is to be a command updater. Such a tag
is well placed to handle command updates because all its direct children are
typically <command> tags. When a commandupdate event occurs, the oncom-
mandupdate handler of a <commandset> tag can iterate through its children
and get each one to check its status. This strategy is used throughout the Clas-
sic Mozilla’s chrome.

AppDevMozilla-09 Page 309 Thursday, December 4, 2003 6:32 PM

310 Commands Chap. 9

Finally, the <commands> tag is also a user-defined tag with no special
meaning. It is used just to group <commandset> tags. It is also exploited by
Mozilla’s use of the overlay system. Matters can be arranged using overlays so
that all <commandsets> distributed across an application’s files end up as
children of the <commands> tag.

9.5 USING COMMANDS VIA THE AOM

Direct use of XUL is a convenient way to implement simple commands, but it
doesn’t allow for imaginative designs. Such designs require scripting, and such
scripts can work with several objects.

Every XUL tag in the document hierarchy can be an event target, and so
every tag supports the dispatchEvent() method. Which implementation of
a command is executed ultimately depends on what DOM element the dis-
patchEvent() method is called on.

The document object in a XUL document contains a commandDis-
patcher property. This property is the sole command dispatcher. It contains
the UpdateCommands() method and is also used to add command updaters.
The command dispatcher also provides an interface that allows the applica-
tion programmer to move the focus of the document through the widgets in the
focus ring.

Every XUL tag in the document hierarchy also has a controllers prop-
erty. This property is an object that is a collection of controllers. This set of
controllers is the set that the dispatcher will look through for a controller that
can execute the command dispatched. Because only some tags fully support
the command system, and because all commands instigated by the user start
with a command event, it is important to choose the correct DOM object for a
command. If you choose the wrong object, the dispatcher will look through the
wrong set of controllers.

☞ In XUL, this controllers array is empty for all tags except <text-
box>. <textbox> has one controller item because it is constructed from
HTML’s <input type="textbox">.

☞ The window.document property is not a tag and does not have a con-
trollers property.

☞ The window object itself is not a XUL tag, but it has a controllers
property, whose array contains a single controller. This single controller
is called the focus controller and is responsible for managing window
focus and focus ring events.

Individual, application-specific controllers are the objects that applica-
tion programmers are most interested in. No such controllers exist by default.
Even after creation they are not accessible outside the chrome. It is up to the

AppDevMozilla-09 Page 310 Thursday, December 4, 2003 6:32 PM

9.5 Using Commands Via the AOM 311

application programmers to create these objects, which may be built with or
without functors.

Command functors managed by controllers can be created directly in
JavaScript. Such functors must support the nsIControllerCommand inter-
face, which looks like this when implemented in JavaScript:

var functor = {
 isCommandEnabled : function (cmd) { … },
 getCommandStateParams : function (cmd) { },
 doCommandParams : function (cmd) { },
 doCommand : function (cmd) { … }
}

Normally a functor implements only one command, but in Mozilla a func-
tor may implement many commands at once. This is just an extra feature in
case it is efficient to implement several commands with one functor. The single
argument of each method of the functor states which command implemented
by the functor should be acted on.

In the ordinary case, the Param-style methods are never used, and so do
nothing. Such a functor is then registered with a command controller object.

If a controller exists, functor registration can easily be done using the
interfaces available, for example:

controllers.getControllerAt(2).registerCommand(cmd,functor);

In practice, only one reusable controller exists, and it is not immediately
available in the AOM (it must be created via XPCOM). Therefore, controllers
are also made from scratch using JavaScript. Such a controller object must
implement the nsIController interface. In JavaScript:

var controller = {
 supportsCommand : function (cmd) { … },
 isCommandEnabled : function (cmd) { … },
 doCommand : function (cmd) { … },
 onEvent : function (event) { … }
}

The functors can then be used, declared, or even implemented inside the
body of the controller object, as illustrated earlier. If a more structured
approach is desired, the controller can also implement the nsIController-
Context interface. In that case, the functor objects can be added and
removed from the controller at run time, after the controller is initialized
with an nsIControllerCommandTable object. Such an object can also be
created in JavaScript.

After the controller is complete, the next task is to add it to the appropri-
ate tag’s DOM element object. This DOM element can only be one of a few
tags.

aNode.controllers.appendController(controller);

AppDevMozilla-09 Page 311 Thursday, December 4, 2003 6:32 PM

312 Commands Chap. 9

The onEvent() method only fires if application code calls it explicitly. It
does not fire automatically.

The window object’s controllers collection is the best place to put gen-
eral-purpose commands.

In the case of a pure XUL window, the final implementation step is to ini-
tialize the focus so that the dispatcher has at least a focused window to exam-
ine when a command is invoked. The simplest way to do this is to focus the
whole window, using the window AOM object:

window.focus()

If this is not done, then you must rely on some other piece of script (or the
user) setting the focus before any commands are run.

The Addressbook of the Mozilla Messenger client is a good example of the
command system at work. Two controllers are created there, one for each
<tree> tag in the Addressbook dialog box. The file abCommon.js in the
chrome file messenger.jar is a good starting point for study.

9.5.1 How to Make a Widget Reflect Command State

One of the main goals of the command system is to allow user-visible widgets
to change dynamically. For example, a menu offering Cut, Copy, and Paste
operations should have the Paste operation grayed out (disabled) if nothing
has been cut or copied yet. Any state information responsible for such changes
should rest with the command that implements Paste, not with the GUI wid-
get. This is because the Paste action might be offered to the user by several
different widgets, such as a menu item and a toolbar button.

The command and command update systems support this design. Listing
9.6 shows a XUL fragment that is half of such a system.

Listing 9.6 Controller object with no separate functors.
<updater commandupdater="true" oncommandupdate="update()">
 <command id="paste" oncommand="doPaste()"/>
</updater>
<button label="Paste1" command="paste" observes="paste"/>
<description value="Paste Enabled" observes="paste"/>

The <updater> tag is a user-defined tag, which could alternately be
called <commandset>—that tag name is not so important. The <button> and
<description> tags represent two places that reflect the state of the Paste
command. Since <description> does not have special support for the com-
mand attribute, it does not act as a user-input widget, it acts as a read-only
status indicator.

The doPaste() function is the implementation of the Paste operation.
This function might or might not require the dispatcher, depending on how it
is implemented. The update() function is responsible for reflecting the state

AppDevMozilla-09 Page 312 Thursday, December 4, 2003 6:32 PM

9.5 Using Commands Via the AOM 313

of the command into the GUI. It also could be implemented with or without
the dispatcher, but if good design is used, it will look for a controller or functor
representing the command and extract required state from there.

The second half of this system is JavaScript. Listing 9.7 shows the
update() function.

Listing 9.7 Controller-based command updater.
function update()
{
 var cont, node;
 cont = document.commandDispatcher.getControllerForCommand('paste');
 node = document.getElementById('paste');

 if (!cont || !node) return;

 if (cont.isEnabled(cmd))
 {
 node.removeAttribute("disabled");
 node.removeAttribute("value");
 }
 else
 {
 node.setAttribute("disabled", true");
 node.setAttribute("value", "Paste Disabled");
 }

 if (cont.clipboardEmpty())
 {
 node.setAttribute("value", "Nothing to Paste");
 }
}

This function is tied to certain commands: It knows only about the Paste
command. It seeks out the implementation for that command and then exam-
ines it with isEnabled() and clipboardEmpty(). isEnabled() is a stan-
dard method of a controller, but this controller must have extra features
because clipboardEmpty() is new. This particular command has two states:
whether it is enabled, and whether there is anything in the clipboard. If there
is nothing in the clipboard, then there is nothing to paste.

Based on the analysis of these states, the update() function loads the
<command> tag with extra XUL attributes. None of these attributes is mean-
ingful for <command>. They are put there only so that the widgets observing
the <command> tag can pick them up. Both the <button> and the <descrip-
tion> tags pick up attributes disabled and value, but disabled only has
special meaning for <button>, and value only has meaning for <descrip-
tion>.

The net result is that the widget tags are updated, and their appearance
changes. All this is in response to one call to the UpdateCommands() method

AppDevMozilla-09 Page 313 Thursday, December 4, 2003 6:32 PM

314 Commands Chap. 9

of the dispatcher, which starts the change notification/command update pro-
cess.

Note that there are two broadcaster-observer systems at work in this
example. The first is the automatic registration of the <updater> tag as a
command updater with the dispatcher. The second is the application-specific
observes attribute put onto the two widget tags. This second system is just a
design choice; it is equally possible to update the widget tags directly from the
update() method, perhaps using ids or, in fact, any other approach.

9.6 COMMANDS AND XPCOM COMPONENTS

Although functors and controllers can be created entirely in JavaScript,
XPCOM equivalents also exist. The simple combination of functor, controller,
and dispatcher can also be enhanced in a number of ways. These enhance-
ments allow command implementations to be added or removed from control-
lers dynamically. They also allow extra information to be associated with a
given command. None of these enhancements is required for ordinary use of
the command system.

If these enhancements are considered, then Mozilla has enough command-
related XPCOM objects and interfaces to make your head swim. A naming pol-
icy that concatenates and reuses descriptive keywords does not help; instead, it
tends to make the different interfaces blend into each other until they all look
very similar.

The only way to proceed is to try to characterize each interface until it
stands out a little. That is the strategy adopted here. Table 9.1 is based on
Mozilla 1.4. Beware that a few of these interfaces are not “frozen” for that ver-
sion; they may have minor changes in later versions.

Table 9.1 XPCOM components that contribute to Mozilla command infrastructure

Interface name
Useful in
scripts?

Existing XPCOM
implementations Purpose

nsICommand Although it seems a logical name, no such interface
exists

nsICommandHandler @mozilla.org/embedding/
browser/nsCommand-
Handler;1

Lowest-level command
implementation—not
intended for JavaScript
use.

nsICommandHan-
dlerInit

@mozilla.org/embedding/
browser/nsCommand-
Handler;1

Used to initialize
nsICommandHandler
objects.

nsIController ✓ @mozilla.org/embedcomp/
base-command-controller;1

A basic controller, with
command table support.

AppDevMozilla-09 Page 314 Thursday, December 4, 2003 6:32 PM

9.6 Commands and XPCOM Components 315

nsIControllerContext ✓ @mozilla.org/embedcomp/
base-command-controller;1

Used to initialize a con-
troller.

nsIController-
CommandTable

✓ @mozilla.org/embedcomp/
controller-command-table;1

A mutable collection of
commands.

nsICommandController @mozilla.org/embedcomp/
base-command-controller;1

Poorly named interface
that adds parameterized
command calls (com-
mands with arguments)
to a basic controller.

nsIController-
CommandGroup

@mozilla.org/embedcomp/
controller-command-group;1

A mutable collection of
commands used to give a
set of commands group
identity.

nsIControllerCommand ✓ None A basic functor.

nsICommandManager @mozilla.org/embedcomp/
command-manager;1

Exposes intermediate
features of a functor
object.

nsICommandParams @mozilla.org/embedcomp/
command-manager;1

A data structure used as
a parameter list for
parameterized com-
mand execution.

nsIControllers ✓ None The controllers collection
that is a property of
DOM elements.

nsIDOMXULCommand
Dispatcher

✓ The dispatcher is not an
XPCOM component.

The XUL command dis-
patcher.

nsPICommandUpdater Internal interface of no use to applications

nsISelectionController Nothing to do with command delivery at all

nsIEditorController @mozilla.org/editor/com-
posercontroller;1
@mozilla.org/editor/editor-
controller;1

Two controllers used in
the Mozilla Composer
tool.

nsITransaction
nsITransactionList
nsITransaction-
Manager

✓ @mozilla.org/transaction-
manager;1

Three interfaces useful
when controllers become
complicated. Use these
data structures to imple-
ment undo/redo, macros,
history, auditing, and
other advanced control-
ler functionality.

Table 9.1 XPCOM components that contribute to Mozilla command infrastructure (Continued)

Interface name
Useful in
scripts?

Existing XPCOM
implementations Purpose

AppDevMozilla-09 Page 315 Thursday, December 4, 2003 6:32 PM

316 Commands Chap. 9

Several interfaces that are used to implement the command-line syntax
also exist; they can be used to start platform windows. Those interfaces have
nothing to do with the command delivery system.

9.7 EXISTING COMMANDS

So far this discussion has covered XUL, AOM, and XPCOM aspects of com-
mand delivery in the Mozilla Platform. Mozilla, however, is a finished applica-
tion (Classic Mozilla) as well as a platform. Some application commands are
provided with the platform. Application programmers sometimes reuse or
exploit these platform features. There are several opportunities to do so.

The focus controller is a very simple example of reusing existing technol-
ogy. This controller is always available in a XUL window. The command dis-
patcher contains advanceFocus() and rewindFocus() methods that
automate Tab-style navigation that the user normally does. These methods
effectively send commands to the focus controller. The controller can also be
exploited for command updates. A command updater tag can receive change
notifications as a result of focus events from the focus controller. Why the con-
troller sends two commandupdate events for each navigation step through the
focus ring is not clear at this point.

Another kind of reuse is theft. The file globalOverlay.js in the
chrome file toolkit.jar contains handy function for managing commands
and controllers. The command architecture used in the Messenger Address-
book and in the three-controller system used in the Composer are good enough
to use as guides. Some of the keyboard-command bindings are modular
enough that you can reuse the overlay files that hold them.

Beyond that, reuse of existing Mozilla commands is a little harder to
achieve. There is one special case where a great deal of reuse is possible.

Classic Mozilla’s Composer, Messenger, and Navigator tools implement
about a hundred commands. A moment’s thought reveals that even trivial
user actions must ultimately be some kind of command because even trivial
actions make changes to the user interface. This means that everything from
the minor (e.g., “Select Current Word”) and the ordinary (e.g., “Delete Mes-
sage”) to the substantial (e.g., “Load URL”) must have an implementation
inside the Web application suite. Many of these commands are implemented
efficiently in C++, and many are available directly in JavaScript in the
chrome.

If your application is similar to Classic Mozilla’s in purpose (perhaps
another browser variation), then these commands may be reused. If your goal
is to customize the existing Mozilla application deeply, then familiarity with
these commands is essential. If your application is an add-on to a browser, it is
also important to avoid clashing with the names of existing commands. Unfor-
tunately, these names are not centralized. This is partly because different pro-
grammer teams worked on different parts of the Classic suite. Classic Mozilla

AppDevMozilla-09 Page 316 Thursday, December 4, 2003 6:32 PM

9.9 Hands On: Command Design 317

does attempt to use the same names for the commands that have the same
purpose in several applications.

A readable example of Classic Mozilla commands can be seen in Com-
poserCommands.js in the comm.jar chrome file.

It is easy to get excited about the availability of all these commands, but
reuse of them is somewhat limited. In the end, the success of a new applica-
tion depends on its unique value, not on how well it mimics something that
has gone before. If your application works the same as an existing application,
why did you bother building it? Most new applications should contain at least
some new commands. If you manage a little reuse along the way, more power
to you.

This last kind of reuse is required in a minor way with the <textbox>
XUL tag. It is possible to do simple editing operations inside this widget. Such
operations are implemented by Mozilla commands that contribute toward
Mozilla’s finished HTML browser. If all of Mozilla’s commands are stripped
away from your application, then at least this much must be re-implemented
if form elements are to be supported properly.

9.8 STYLE OPTIONS

There are no styles that apply to Mozilla’s command system.

9.9 HANDS ON: COMMAND DESIGN

To date, the NoteTaker example has relied on a simple action() function to
implement all the tasks that need scripting. NoteTaker is a small project and
doesn’t require heavy engineering, but for the sake of experience we use this
session to wrap those actions up in commands. In order to do this, we need to

1. Design the commands.
2. Implement the commands.
3. Install the command implementations.
4. Invoke commands from wherever they are needed.

The first step is design. The NoteTaker tool has fixed functionality, so
there is a fixed and known list of commands. Furthermore, none of the
NoteTaker commands can be disabled. Together, these two statements mean
that the controllers that handle the commands won’t ever change or change
state, and so there will be no commandupdate events. We therefore have the
simple case where the required command system is entirely static after it is
set up.

The command names we choose to implement are an issue. By using the
command system, we’re sharing the command name namespace with everyone

AppDevMozilla-09 Page 317 Thursday, December 4, 2003 6:32 PM

318 Commands Chap. 9

else’s code. In the Edit dialog box, this is a lesser issue because there is no
other application code present. In the main browser window, however, the
NoteTaker toolbar and Tools menu item must share the command system with
the rest of the browser application. The command names we choose shouldn’t
clash with that application.

To prevent clashes, there are two solutions. One solution is to choose
carefully command names that have the same spelling and meaning as exist-
ing commands. When a “save” command is issued, all interested parties,
including NoteTaker, might receive this command. This solution is a very com-
plex integration task. A second solution, chosen here, is to go it alone and
make sure that the command names implemented don’t clash with any other
names. To that end, we’ll prefix all our commands with “notetaker-”. That is
a little verbose, but recall that NoteTaker is a unique package name.

In the last chapter, we had four possible arguments to the action()
function:

edit keywords cancel save

These tasks could be designed better. save, for example, both saves the
note and closes the dialog box; those two steps could be separate commands.
edit and keywords are really navigation instructions and don’t match the
intended purpose of the Edit button on the toolbar, which is to open the Edit
dialog box. A better list of commands is

1. Open the dialog box. Used by the Tools menu item and the Edit button on
the toolbar.

2. Close the dialog box. Used by the Cancel button and the Save button on
the dialog box.

3. Load the current note. Used by the onload handler in the Edit dialog box.
4. Save the current note. Used by the Save button on the toolbar and on the

Edit dialog box.
5. Delete the current note. Used by the Delete button on the toolbar.
6. Navigate to the Edit tab. Used by a keyboard shortcut in the Edit

dialog box.
7. Navigate to the Keywords tab. Used by a keyboard shortcut in the Edit

dialog box.

No doubt we’ll find more commands as more chapters pass. So far, our
new commands are

notetaker-open-dialog notetaker-close-dialog notetaker-load
notetaker-save notetaker-delete notetaker-nav-edit notetaker-
nav-keywords

Any syntax convention could be used; here we’re just following a conven-
tion of dash-separators sometimes used by the platform itself. So we’re now
finished designing the commands.

AppDevMozilla-09 Page 318 Thursday, December 4, 2003 6:32 PM

9.9 Hands On: Command Design 319

To implement the commands, we need to use the <command> tag and com-
mand= attribute, or we can create a command controller on some DOM object, or
we can do both. We choose to use a command controller to start with because it
clarifies the discussion earlier, and because it can be used as a debugging aid.

Although we could control everything from one sophisticated controller
instance, it’s neater and cleaner to use more than one. We’ll create one control-
ler that handles all the NoteTaker commands and then use it several times.
Just for fun we’ll add a second controller implementation; it will pick up any
stray commands we haven’t planned for.

Our action() function has served us well, and there’s no need to
remove it. We’ll create controller objects that call the action() method when
commands arrive. In design pattern language, the command functors will be
aggregated into the controller objects, which will delegate the execution of the
actual command to the action() function. In short, Listing 9.8 shows the
controller we need.

Listing 9.8 NoteTaker command controller.
var notetaker = {
 _cmds : { "notetaker-open-dialog":true,
 "notetaker-close-dialog":true,
 "notetaker-load":true,
 "notetaker-save":true,
 "notetaker-delete":true,
 "notetaker-nav-edit":true,
 "notetaker-nav-keywords":true
 },
 supportsCommand : function (cmd) { return (cmd in this._cmds); },
 isCommandEnabled : function (cmd) { return true; },
 doCommand : function (cmd) { return action(cmd);},
 onEvent : function (cmd) {}
};

Clearly this object is just a big wrapper around the action() function,
one that makes it fit the command infrastructure of the platform. It is particu-
larly simple because (1) no commands can be disabled, and (2) commands can-
not be added dynamically. The second just-for-fun controller we’ll create looks
like Listing 9.9.

Listing 9.9 NoteTaker command detective.
var detective = {
 supportsCommand : function (cmd) { return true; },
 isCommandEnabled : function (cmd) { return true; },
 doCommand : function (cmd) {
 throw("NoteTaker detective called on command: " + cmd);
 return true;
 }.
 onEvent : function (cmd) {}
};

AppDevMozilla-09 Page 319 Thursday, December 4, 2003 6:32 PM

320 Commands Chap. 9

This controller is a fake; it accepts and pretends to run all commands,
and reports what it sees to the JavaScript console. It can be used to detect all
command requests. So both controllers are now implemented, except for the
little matter of the action() function.

Finally, these controllers must be installed on some DOM object. We
choose to install these commands on the DOM object for the <window> tag
(the window AOM object). We can install on one of two windows: the main
browser window (for the toolbar and Tools menu item) and the Edit dialog box.
We’ll install both the notetaker and the detective controllers in both cases, for
a total of four controllers installed. Both windows will have support for all
seven commands, but each window will use only a selection of that support.
Here is a simple function that installs controllers for one window.

function install_controllers()
{
 window.controllers.appendController(notetaker);
 window.controllers.appendController(detective);
}

Since the detective controller is added second, it will only pick up what
the notetaker contro l ler misses. These two contro l lers, the
install_controllers() function, and a call to that function can all be put
into one JavaScript file. If we include it with a <script src="control-
lers.js"> tag in all relevant windows, then each window will get separate
but identical controller objects.

Invoking the commands is also easy. A simple function holds the required
logic:

function execute(cmd)
{
 window.focus();
 try {
 var disp = window.document.commandDispatcher;
 var ctrl = disp.getControllerForCommand(cmd);
 ctrl.doCommand(cmd);
 }
catch (e) {
 throw (" Command Unknown: " + cmd + ". Error: " + e);
 }
 window.focus();
}

This execute() function sets a command on its way; it will throw an
error if the dispatcher can’t find a suitable controller. The window.focus()
calls that precede and follow the command dispatch are critical; they ensure
that the dispatcher has something to work with, and that the window returns
to a sensible state when the dispatcher is finished.

In the browser window, we could instead use an existing function:
goDoCommand(). That function is provided in globalOverlay.js in tool-
kit.jar in the chrome. It is almost the same as execute() but allows an

AppDevMozilla-09 Page 320 Thursday, December 4, 2003 6:32 PM

9.9 Hands On: Command Design 321

unknown command to be submitted. In our case, we want an error rather than
silence if an unknown command appears. The globalOverlay.js file con-
tains many short functions used by Mozilla Classic.

This execute() function is put everywhere that a command might
occur. We replace all calls to the action() function with calls to execute()
in the dialog box. That means the <key> tags change like so:

<key key="e" oncommand="action('edit')"/>
<key key="e" oncommand="execute('notetaker-nav-edit')"/>

Previously we didn’t implement anything for the buttons at the base of
the dialog box. Now we can at least call the right command. We can call exe-
cute() from an onclick handler on each button, or we can send the button
events to a <command> tag. Let’s do the latter. The Cancel button goes from

<button label="Cancel" accesskey="C"/>

to

<button label="Cancel" accesskey="C" command="dialog.cmd.cancel"/>

The command= attribute requires a matching <command> tag, which is

<command id="dialog.cmd.cancel"
 oncommand="execute('notetaker-close-dialog')"/>

Let’s review the way this works: The user generates events that include a
“command” DOM 2 Event by clicking the button. The <command> tag is the
listener for that event, which is a result of the command attribute on the
<button> tag. When that event occurs, the <command> tag takes over, and its
oncommand handler then fires. That is the end of the event’s influence. When
the oncommand handler fires, it runs execute(), which sends a named com-
mand to the controller that the dispatcher finds for it. The controller runs the
command using the action() function and then finishes. After that, the com-
mand event (and other events like click) begins its bubbling phase. Since there
are no bubbling phase handlers installed, no further event processing occurs.

Using <command> tags for both the Save and Cancel buttons yields this
XUL:

<commandset>
 <command id="dialog.cmd.save"
 oncommand="execute('notetaker-save');execute('notetaker-close-

dialog');"/>
 <command id="dialog.cmd.cancel"
 oncommand="execute('notetaker-close-dialog');"/>
</commandset>

The Save button causes two commands to be run. We could collapse these
two commands into one, but it’s worth making the point that any number of
commands can be run at a given opportunity. By using <command> and <key>
tags, we’ve managed to confine all the event handlers for the dialog to the top

AppDevMozilla-09 Page 321 Thursday, December 4, 2003 6:32 PM

322 Commands Chap. 9

of the XUL document. We can do exactly the same thing for the toolbar but-
tons, except three <command> tags are required instead of two.

Everything is in place now except for an updated action() function. We
can write two versions of this function—one for each window that gains a
notetaker controller. That saves the function from having to work out what
window it is being run in. We’ll just include a different .js file in the toolbar
XUL and in the Edit dialog box XUL.

For the Edit dialog box, all we need to do is update the action() logic to
use the new command names. For the toolbar, we’re not sure what to do yet, so
the action() function just reads:

function action(cmd) {};

That ends our experimentation with commands for now.

9.10 DEBUG CORNER: CATCHING UNEXPECTED COMMANDS

When the command system and the focus system of the Mozilla Platform
interact, some very subtle problems can occur. It is very important that the
focus is correctly set up when a XUL window first appears. This means a call
to window.focus(), or window.content.focus(). Such a call is less nec-
essary in recent versions, but it remains good defensive programming.

If this is not done, and an application that has or acquires focus problems
is run, then it is possible for both the Mozilla Platform and the desktop envi-
ronment to become confused. Just shutting down the platform is not always
enough. On Microsoft Windows at least, sometimes it is also necessary to
reboot in order to clean out problems that result from poorly organized focus.

In the end, commands are just strings, and a string can contain anything.
When working with commands, it is important to remember that those strings
form a simple namespace that should be managed properly. Do not be tempted
to send randomly named commands from random places in the code, just
because they’re easy to dispatch.

There are numerous examples of code in the Mozilla Platform and
Mozilla applications where lazy checking of data values is done. A very com-
mon example is XML attributes that can be set to boolean values. The plat-
form typically checks for "true", and assumes that anything else must be
false. This is a quick way to do development, but it makes debugging harder
because many invalid values are accepted or ignored by the systems that read
them. This is especially true for commands, which include a layer of complex-
ity (the dispatcher) between the command invocation and the command imple-
mentation.

When developing an application, command strings should always be
strictly evaluated, and there should be no default or unmatched case. Such a
case is a bottomless pit for accidental typos and other small mistakes, which
would otherwise yield a useful error. When commands are scheduled from

AppDevMozilla-09 Page 322 Thursday, December 4, 2003 6:32 PM

9.11 Summary 323

timed scripts and other asynchronous tasks, it is even more important that
they are properly recognized. You should always know all the commands that
are being dispatched to your code.

This strict evaluation is not implemented in the Mozilla Classic because
of that application’s desire to be open to enhancements. For applications that
are point solutions, there is no reason to leave this strict evaluation out. Only
in rare cases (like extensible text adventures such as MUDs [Multi-User Dun-
geons—text games], IRC, and online games) should the command set be left
open.

The “detective” controller, illustrated in “Hands On” in this chapter, is
one way of ensuring that nothing slips past you. This controller should never
receive a command; if it does, something is wrong, and it needs to be fixed.

Note that unexpected commands and unexpected events are different
issues. It is not necessary to block or catch unexpected events. Such events can
be produced by the global observer service discussed in Chapter 6, Events.

9.11 SUMMARY

Mozilla provides a command specification and delivery system. This system
encourages functional analysis of applications. Such functional analysis
allows the application programmer to separate application tasks from the
visual appearance of the application. That separation encourages a clean
design. It protects implemented commands from most changes in the fragile
and fashion-conscious GUI of the application. The command system can auto-
matically sort out where a command is implemented, perform that command,
and pass on advice about command changes.

The command system is an example of Mozilla-specific functionality that
is entirely nonvisual. It is also separate to the W3C standards–based DOM
Event system. The mechanics of the command system support the visual
appearance of an application, but it contributes nothing to that appearance
directly.

The command system is also flexible. For custom applications it provides
a small framework on which application-specific commands can be hung. For
minor enhancements to existing Mozilla applications, the command system
provides a large collection of ready-to-use commands.

Like the focus ring of the last chapter, each instance of the command sys-
tem is limited to a single platform window. The next chapter explores in gen-
eral terms the use of more than one window at a time.

AppDevMozilla-09 Page 323 Thursday, December 4, 2003 6:32 PM

