
RDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDF

JJJJJJJJJJJJJJJJJJJa aJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJavaJa aSSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJa aSc pS ppppppppppppppppppppppp

Digital
Certificates

Mozilla
registry

Preferences Type
libraries

JSlib

XPIDL
definitions

Class
libraries

RDFlib

 

AppDevMozilla-04  Page 102  Thursday, December 4, 2003  6:28 PM



 

103

C H A P T E R

RDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDFRDF

SSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJavaScriptJa aSc pS pppppppppppppppppppppppiiiii ti ti ti ti ti ti ti ti ti ti ti ti ti triptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptriptpppppppppppppppppppppppp

Overlay
database

XBL
definitions

MouseKeyboard

Fonts

DTDsW3C
standards

Frames

Widgets

Desktop
themes

GUI 
toolkits

Default
CSS

Skins

Screen

 

4

 

First Widgets and Themes

 

AppDevMozilla-04  Page 103  Thursday, December 4, 2003  6:28 PM



 

104 First Widgets and Themes    Chap. 4

 

This chapter explains how to use XUL buttons and how to change their
appearance with the Mozilla theme system. The Mozilla theme system can be
used to change the appearance of all XUL tags.

Mozilla applications are interactive, which means that there are screen
controls that users can manipulate. The simplest control available is the hum-
ble “Press Me” button. Buttons are so useful that Mozilla has a wide variety,
although all are expressed in XUL markup. The simplest example of a button
is the 

 

<button>

 

 tag, expressed as easily as this:

 

<button label="Press Me"/>

 

This is a very quick way to create a useable button and therein lies the
value of XUL. A button also needs some kind of script, or else pressing it may
have no ultimate effect. Effect-less buttons are hardly useful for practical
applications. This chapter is more concerned with learning about buttons than
about implementing their actions.

Buttons are easy in concept. Just look around you; they cover the surface
of most technological devices: the phone, the CD player, the dashboard, and
even the rice cooker. It seems like a significant part of life’s purpose is to press
them. For the lighter side of buttons, try “The Really Big Button That Doesn’t
Do Anything” Web page; it’s also a cautionary tale for UI designers. In Mozilla,
buttons are the simplest way to decorate plain text and image content with
widgets.

A 

 

widget

 

, of course, is a small graphical building block for GUI-based
applications. The most common widgets are those that make up menus, forms,
and scrollbars. Some widgets can move, transform, change, or animate; others
can’t. Widgets are the concern of programmers, since they typically come in
3GL or OO libraries, like GTK, Qt, Swing, and Win32. When a user and a wid-
get interact, the widget changes appearance so that the user knows that they
have done something. Widgets are all about helping the user’s brain complete
interactive tasks. Buttons are perhaps the simplest widget.

From a technology perspective, some widgets (including buttons) are not
as simple as they might seem. There’s much going on in button-land. This
complexity is a great excuse to learn more about the Mozilla Platform.

The NPA diagram at the start of this chapter shows the bits of Mozilla
closely associated with buttons, and with the content of this chapter. From the
diagram, it’s clear that buttons rely heavily on a widget toolkit provided by the
operating system. That is the functional side of a button. What is less obvious
is that buttons also rely on the world of styles, themes, and skins. This is
because a button’s appearance is as fundamental as its function. If it doesn’t
look like a button, then it isn’t one. So far, this book has managed to sidestep
any discussion of themes by hand-waving a lot about styles. Before complicat-
ing Mozilla too much, the theme system needs to be explained. It is explained
in this chapter.

A subtle aspect of buttons is the way in which they interact with other
XUL tags. So far, the only interaction between tags has involved one tag being

 

AppDevMozilla-04  Page 104  Thursday, December 4, 2003  6:28 PM



 

4.1  What Makes a Button a Button? 105

 

the content of another. Buttons, however, interact with tags in a number of
novel ways. This chapter describes those interactions; it could even be sub-
titled: “Secret Relationships Between Tags.” A full-blown description of XUL’s
complex tag systems is left to later in the book. The goal here is just to expose
some of the simpler interactions as a taste of what’s ahead.

The broader issues of building forms and of handling user input via key-
strokes and clicks are covered in Chapter 6, Events. There’s more than enough
in simple buttons to fill this chapter.

 

4.1 W

 

HAT

 

 M

 

AKES

 

 

 

A

 

 B

 

UTTON

 

 

 

A

 

 B

 

UTTON

 

?

 

Markup languages like HTML and XUL provide many options for visual dis-
play. Sometimes it’s hard to tell what is “real” and what is just clever anima-
tion and a bit of scripting. The discussion on buttons and widgets starts by
looking at what a Mozilla widget really is. Thinking about XML-based widgets
can be a bit messy, as the following example shows.

Figure 4.1 is a simple XUL application containing one “real” button and
two fakes. Which is the real one? Although the third candidate is in the middle
of a mouse-click operation, any of the three could be clicked.

In this figure, button 1 is the “real” button. The other two buttons are
just 

 

<vbox>

 

 tags with a sole 

 

<description>

 

 tag as content. The 

 

<vbox>

 

tags are styled as shown in Listing 4.1.

 

Listing 4.1

 

Button-like styles for 

 

<box>

 

 tags.

 

vbox
{
    border : solid;
    border-width : 2px;
    margin : 2px 6px;
    -moz-box-align : center;
    border-left-color : ButtonHighlight;
    border-top-color : ButtonHighlight;
    border-right-color : ThreeDDarkShadow;
    border-bottom-color : ThreeDDarkShadow;
}

Fig. 4.1 Fake and real buttons in Mozilla.

 

AppDevMozilla-04  Page 105  Thursday, December 4, 2003  6:28 PM



 

106 First Widgets and Themes    Chap. 4

 

vbox:active
{
    border-left-color : ThreeDDarkShadow;
    border-top-color : ThreeDDarkShadow;
    border-right-color : ButtonHighlight;
    border-bottom-color : ButtonHighlight;

 

}

 

The two styles make a 

 

<vbox>

 

 act a bit like a familiar button when
clicked on. These border styles are not identical to the border of the real But-
ton 1, but they could be. Such a styled-up box is not a real Mozilla widget.

On the other hand, even though widget style information doesn’t make a
widget, style remains important from a user’s perspective. Figure 4.2 shows
the JavaScript console (under 

 

Tools | Web Development

 

), which includes some
slightly controversial buttons.

A user could argue that the words “All,” “Warnings,” and the like aren’t
much like buttons. If you hover the mouse over these items, then button-like
outlines appear, but there is no clue that you should do this. For a new user,
these items aren’t “normal” buttons, even though functionally they work just
fine. The only thing that helps the user out is the fact that such buttons are a
common feature of software, but even so, they should contain images rather
than text.

Clearly there is a tension between things that look like buttons but don’t
act like them, and things that act like buttons but don’t look like them. Saying
“this is a button” can be a hasty statement.

There is a famous GUI design pattern called Model-View-Controller
(MVC), which is the key to understanding Mozilla widgets. This piece of
design is widely used for GUI systems. It separates a widget into three parts:
M, V, and C. The widget’s visual appearance is the job of the View. Holding the
widget’s data is the job of the Model. The Controller is a piece of software that
ties the visual appearance of the widget to the data the widget works on.

Each aspect of the MVC pattern holds a different kind of content. The
Viewer holds the appearance of the widget. A button must look like a button.
The Model holds the application use of the widget, which might either be
browser information or form data. A button must also act on the application.

Fig. 4.2 Hidden buttons on the JavaScript console.

 

AppDevMozilla-04  Page 106  Thursday, December 4, 2003  6:28 PM



 

4.2  The Origins of XUL Widgets 107

 

The Controller holds the capabilities or the behavior of the widget—what
actions the widget can take.

Mozilla widgets are defined by their capabilities. In Mozilla, you can take
away a button’s appearance (the Viewer) by ignoring style and trivial content.
You can take away a button’s effect in an application by removing the data
(the Model) that it works on. What remains is what a button’s 

 

might

 

 do. Any-
thing it might do is a capability (and part of the Controller). Such capabilities
make the button what it essentially is. Capabilities are what this chapter tries
to focus on.

As an example, the XUL 

 

<button>

 

 tag has some simple and some com-
plex capabilities. The simpler capabilities are button state, event handlers,
and button-specific XML attributes. The more complex capabilities include
accessibility features for the disabled, navigation list membership, the abil-
ity to handle buttons from a GUI toolkit, and the ability to handle native
themes.

 

4.2 T

 

HE

 

 O

 

RIGINS

 

 

 

OF

 

 XUL W

 

IDGETS

 

The NPA diagram gives an overview of the technologies used inside Mozilla as
a whole. The boxes in that diagram can be rearranged to show the anatomy of
a single XUL widget. XUL contains a wide variety of tags, and not all of them
are constructed along the same lines. Figure 4.3 is a useful guide that applies
in most cases.

At the bottom of the stack are the resources provided by an operating
system like Windows, MacOS, or UNIX. At the top of the stack is a user control
in a finished application. In between, the low-level services of the operating
system are gradually abstracted and simplified into a single XUL tag.

The most primitive widget is that provided by a GUI toolkit library, such
as GTK or Win32. It is a native widget, meaning that it is not portable across
operating systems. Mozilla supports several different graphic libraries.
Sophisticated graphic libraries support desktop themes, so a theme definition
may be applied to a native widget.

Fig. 4.3 Widget construction stack.

 

AppDevMozilla-04  Page 107  Thursday, December 4, 2003  6:28 PM



 

108 First Widgets and Themes    Chap. 4

 

A Mozilla widget hides the details of the native widget and provides an
interface inside Mozilla that is the same for all platforms and all GUI. It is an
implementation detail that is not accessible to the application programmer.
Several native widgets might be required to make one Mozilla widget.

When a widget is displayed because a document is being loaded into a
window, a frame is created to position the widget on the screen. The frame and
all the items below it on the stack are written in C/C++. All the items above it
in the stack are interpreted, being either XML or CSS documents. As dis-
cussed in Chapter 2, XUL Layout, the frame manages any stylesheet informa-
tion relevant to the item it displays.

Mozilla supports a theme system separate from any desktop system.
Each Mozilla theme consists of a set of stylesheets. Each theme stylesheet is
known as a skin, and at least one skin provides a set of styles for widgets. This
information is applied to any frames holding widgets.

It is very common for a widget to have an XBL definition. An XBL defini-
tion is an XML document that defines the XUL tag name, tag attributes,
object properties, and object methods for the widget. It does this by attaching a
binding to the XUL tag. Finally, an example widget will appear as content in
an application document as a single XUL tag. That tag may have other tags
(possibly also widgets) as content.

Although Figure 4.3 seems fairly clean and orderly, that is not necessar-
ily the case inside Mozilla. The tag name, for example, can appear in any layer
down to “Mozilla Widget,” as well as elsewhere inside the platform. The layers
are linked together; they are not perfectly separated.

It is not clear from the preceding description why there should be multi-
ple places inside Mozilla where a widget is defined. It’s understandable that
Mozilla provides a platform-independent widget because that aids portability,
but why have an XBL definition as well? Can’t it all be done in the one place?
The next topic explains Mozilla’s strategy.

 

4.2.1 Split Widget Design

 

The implementation of most XUL widgets is split in half. The 

 

<button>

 

 tag is
a typical example.

The 

 

<button>

 

 tag has both simple, specific capabilities and complex,
general capabilities. Some capabilities, like the 

 

type

 

 attribute, are specific to
the button. The 

 

type

 

 attribute has a special meaning for the button tag alone.
Other capabilities, like navigation list membership, are closely linked to gen-
eral processing in the Mozilla Platform. Navigation list membership puts a
widget in a list that the user can cycle through with the Tab key. When the
user presses the Tab key, input focus moves from one widget to the next auto-
matically. These two types of capabilities are handled separately.

The specific parts of the 

 

<button>

 

 tag, including tag attributes, state
information, and methods, are all defined in an XBL file. This information is
easy to change as the XUL language grows and is fairly independent of other

 

AppDevMozilla-04  Page 108  Thursday, December 4, 2003  6:28 PM



 

4.3  XUL Buttons 109

 

changes to the Mozilla Platform. Chapter 15, XBL Bindings, describes how to
make such files. Application programmers that deeply customize Mozilla
might choose to modify or copy these files. Modifying an XBL file changes the
surface personality of a given widget.

The more integrated part of the 

 

<button>

 

 tag requires complex logic
that reaches across the Mozilla Platform. This is implemented in efficient C/
C++ code, using shared aspects of the platform. Such features can only be
added by developers of the Mozilla Platform, and so this lower-level set of fea-
tures appears fixed to application programmers. Making changes at this level
modifies the very essence of a given widget.

There is a very rough analogy between this split and the way relational
databases store data. In a relational database, each table is assigned a storage
type. That type might put data into a B-tree, a hash table, or a heap. Only a
few storage types are available, as they come from deep inside the database
server. A table using such a storage type is far more flexible than a table
whose structure is fixed. This is because the flexible version may be created to
have any columns or indexes that seem like a good idea. Like a table, a XUL
tag that is a widget is restricted to the features implemented in C/C++, but the
XBL definition for the tag can be flexibly created so that the final widget has
various characteristics.

 

4.3 XUL B

 

UTTONS

 

XUL provides a number of button-like tags. Two tags fit most common require-
ments: 

 

<button>

 

 and 

 

<toolbarbutton>

 

. It’s rare that you’ll need anything
more than these. Nevertheless, there are three other button tags worth exam-
ining: 

 

<autorepeatbutton>

 

, 

 

<thumb>

 

, and 

 

<scrollbarbutton>

 

. These
five tags are the most button-like of the XUL tags. Some of these tags are sev-
eral button types in one.

Separate from these five tags are a number of other button-like tags.
Grippy tags are button-like tags that are attached to other widgets. 

 

<label>

 

has some button-like features as well. 

 

<statusbarpanel>

 

 is discussed in
Chapter 8, Navigation, rather than here. Finally, a few tags are worth avoid-
ing because of their incompleteness or their age.

 

4.3.1 Five Fundamental Buttons

 

XUL button tags are defined like any other tag and can enclose any content:

 

<button><description label="Tools"/><button>

 

Although any content can be put between the open- and close-tags,
Mozilla does not correctly display all combinations of button and content. The
goal of XUL 1.0 has been to produce a functional XML language for GUIs.
That means that all the straightforward button-content combinations work

 

AppDevMozilla-04  Page 109  Thursday, December 4, 2003  6:28 PM



 

110 First Widgets and Themes    Chap. 4

 

but that support for more esoteric combinations is patchy. The easiest way to
find out if particular content works inside a button is to try it.

Figure 4.4 shows these five buttons in three states each: a normal state;
a state with the mouse hovering over; and a state when it has been clicked on
but the mouse has not yet been released. A blank entry means that there is no
change in appearance for that mouse action.

In Figure 4.4, the content of each button is just a description tag, as
shown earlier in the one-line example. Each of the buttons appears and
behaves differently from the others. Less obvious is the fact that the internal
processing of each button is different. Looking forward briefly to Chapter 6,
Events, each of these buttons also supports a subset of the DOM2 events, and
therefore a set of JavaScript event handlers.

It is nontrivial to display Figure 4.4 if your version of Mozilla is 1.21 or
greater. From that version onward, the Classic theme (only) has special widget
support. That support means that widgets such as buttons will look like oper-
ating system widgets rather than a Mozilla theme. You can see Mozilla-
themed widgets by using an earlier version of Mozilla, by changing the Mozilla
theme away from Classic, or by modifying the Classic theme. The section enti-
tled “Themes and Skins” in this chapter explains how all that works.

 

4.3.1.1

 

<button>

 

The 

 

<button>

 

 tag is the workhorse of Mozilla buttons
and is equivalent to the 

 

<button>

 

 tag in HTML. As the most sophisticated of
XUL’s buttons, it contains many features not found in other buttons:

 

☞

 

It can receive input focus. Input focus can be seen in Figure 4.4 as a dot-
ted border just inside the button border.

 

☞

 

It can be a member of the document navigation list, which means that it
has a numbered place in the navigation order in the page.

 

☞

 

It automatically wraps all its content up into an invisible 

 

<hbox>

 

. This
extra box can be affected by global styles.

 

☞

 

It supports Mozilla’s accessibility services, which ensures that it can be
reached using only the Tab key, or an equivalent to the Tab key.

 

☞

 

It provides “standard” button feedback to the user: It looks like a button
before, during, and after user interaction.

Fig. 4.4 Visual cues given by XUL buttons under the Classic theme.

 

AppDevMozilla-04  Page 110  Thursday, December 4, 2003  6:28 PM



 

4.3  XUL Buttons 111

 

The following XML attributes have a special meaning for the 

 

<button>

 

 tag:

 

disabled checked group command tabindex image label accesskey crop

 

<button>

 

’s 

 

disabled

 

 and 

 

checked

 

 attributes can be set to 

 

true

 

. 

 

dis-
abled

 

 removes the button from the navigation list and de-emphasizes its
appearance. The 

 

checked

 

 attribute allows a 

 

<button>

 

 to be pushed in per-
manently. 

 

checked has no effect if disabled is true. Figure 4.5 shows
<button> with these attributes set. Note that the checked appearance is dif-
ferent from the pressed appearance shown in Figure 4.5.

The image, label, accesskey, and crop attributes relate to <button>
content. <button> always adds an <hbox>, but if <button/> is specified
without any content, it will add default content. This default content, exclud-
ing styles, is equivalent to Listing 4.2:

Listing 4.2 Default contents for <button>.
<hbox align="center" pack="center" flex="1">
  <image/>
  <label/>
</hbox>

The <image> and <label> tag display nothing because they are missing
src and value attributes. The <button> attributes image and label supply
this information. accesskey and crop also affect the label part of the <but-
ton>’s default content. An example is

<button image="green.png" label="Go" dir="rtl"/>

A <button> created with this tag might appear as shown in Figure 4.6.
The two content items appear reversed in order because the dir

attribute has also been specified.
<button> will also show its default content if content tags do exist but

consist of only a few special tags. Those special tags are <observes>, <tem-

Fig. 4.5 <button> alternate appearances under the Classic theme.

Fig. 4.6 Example of <button> with parameter attributes for default content.

AppDevMozilla-04  Page 111  Thursday, December 4, 2003  6:28 PM



112 First Widgets and Themes    Chap. 4

plate>, <menupopup>, and <tooltip>. Such exceptions may sound a bit
arbitrary, but these four tags are just commonly used content tags for a but-
ton. Chapter 15, XBL Bindings, explains how to read an XBL file, which is
where such exceptions are specified.

Standard layout attributes, like align, if applied to the <button> tag,
will propagate to the inside <hbox> tag. The other <button>-specific
attributes noted previously apply to several XUL tags, not just button, and are
discussed in Chapter 7, Forms and Menus.

As we will see later, the <button> tag supports most events in the
DOM2 Events standard, such as onfocus, onclick, and onmouseover, as
well as CSS2 pseudo-selectors such as :active, :hover, and :focus.

What makes <button> different from a user-defined XUL tag like <foo>
is its internal processing. When you click on a button, that click event stops at
the <button> tag. This is not the standard processing model for events in an
XML document. The standard processing model requires that events pass
from the <button> tag down into the content that the button tag holds, like a
<description> or <image> tag. In the standard model, such an event will
ultimately reach the most specific content tag under the mouse pointer, where
it might be processed, and then returns back up to the <button>. This does
not happen for a XUL <button>. Inside Mozilla, in the C/C++ code for a but-
ton, this event processing is changed as though the stopPropagation()
DOM2 Event method were called on the <button> tag for all events. The con-
tent of a <button> acts as though it were sealed in amber—it receives no
events at all. This behavior is the essence of the <button> tag.

To see this fundamental feature of <button> at work, try this piece of
code, which appears to be two nested buttons:

<button><button onclick="alert('Hi')" label="B2"/></button>

The inner <button> does not provide visual feedback to the user, nor does it
ever receive user input. It is frozen in place by the surrounding outer <but-
ton>.

4.3.1.2 <toolbarbutton> <toobarbutton> is the alternative to <but-
ton>. The following attributes have special meaning to <toolbarbutton>:

disabled checked group command tabindex image label accesskey crop 
toolbarmode buttonstyle

These attributes are almost the same as those for <button>, so why does
<toolbarbutton> exist? The origin of this tag is a story about GUI systems.
The most common way to attach commands to a graphical window is to add a
menu system. Menus tend to be large and slow, so the concept of a toolbar arose.
A toolbar presents frequently used commands in an easy-to-apply way. An easy
way to provide a command on a toolbar is to use a button. Stacking buttons next
to each other is confusing to the user’s eye, so buttons on toolbars have no bor-
der unless the mouse is over them. This reduces the visual clutter. XUL has a

AppDevMozilla-04  Page 112  Thursday, December 4, 2003  6:28 PM



4.3  XUL Buttons 113

<toolbar> tag, and in it you can put a <toolbarbutton> for each such com-
mand. Just look at the window of the Classic Browser for many examples.

The <toolbarbutton> tag can be used outside a <toolbar>. There is
no cast-iron link between a <toolbarbutton> tag and a <toolbar>. The two
are entirely separate.

The <toolbarbutton> tag is a modification of the <button> tag. It has
the same default content as <button>, but that default content always fol-
lows any content supplied by the user of the tag. Unlike <button>, the
default content always appears.

Figure 4.7 shows the checked and disabled attributes at work on
<toolbarbutton>.

The toolbarmode and buttonstyle XML attributes are special sup-
port for the Classic Browser application only. They are used inside Classic
Browser skins (stylesheets) only and are not globally available. toolbarmode
set to “small” will make the Classic Browser’s navigation buttons small. but-
tonstyle set to “pictures” will hide the <label> part of the default con-
tent. Set to “text,” it will hide the <image> part of the default content.

In the Classic Browser, <toolbarbutton> is used for the items in all
the various toolbars. This includes the bookmarks on the Personal Toolbar.
Such bookmarks are a first example of the complexity introduced by heavy
stylesheet use—a single bookmark put on this toolbar looks nothing like a but-
ton. It looks like an HTML hyperlink instead. A further example of stylesheet
creativity is the Modern theme. This theme removes the button-like borders
from <toolbarbutton> entirely. If <toolbarbutton> is to have any iden-
tity at all, then appearance clearly has nothing to do with it.

The essence of a <toolbarbutton> is this: It is the same as a <but-
ton>, except that it visually suits a toolbar, it doesn’t wrap its contents in an
<hbox>, and it has special support for context menus. Context menus gener-
ally appear when you right-click a GUI element. <toolbarbuttons> can con-
tain menus of their own. For the Back and Forward browser buttons only,
special code inside Mozilla makes sure that both left- and right-clicking such a
button always yields the contained menu. This feature is designed to reduce
confusion for the user.

4.3.1.3 <autorepeatbutton> The <autorepeatbutton> is a button
whose action occurs more than once. <autorepeatbutton> has very little
use by itself, but it is an essential tool for constructing other, more complex
user-interface elements. It is based on the <button> tag, but it has no default
content and no special XML attributes.

Fig. 4.7 <toolbarbutton> alternate appearances under the Classic theme.

AppDevMozilla-04  Page 113  Thursday, December 4, 2003  6:28 PM



114 First Widgets and Themes    Chap. 4

If the user hovers the mouse over such a button, an oncommand event
fires 20 times per second. These events can be captured by an oncommand
event handler. All other events occur as for a user-defined tag.

<autorepeatbutton>  i s  used  in  the  construct ion  o f  the
<arrowscrollbox> tag, where it is used to implement continuous scrolling.
It also appears in drop-down menus when the menu has so many items that
they can’t all be displayed at once. When a button at the end of the
<arrowscrollbox> is held down, the box scrolls. <arrowscrollbox> is dis-
cussed in Chapter 8, Navigation.

If <autorepeatbutton> appears as a component of this larger tag, then
its content is a single image that is supplied by stylesheet information. The
image matches the direction of scroll. Each time an <autorepeatbutton>
event fires, it searches for a parent tag that can be scrolled, and operates on it
to perform the scroll action.

<autorepeatbutton> is interesting because it is not yet an indepen-
dent button. If it appears outside the context of <arrowscrollbox>, it will
not work properly. If the parent tag is not of the right kind, then <autore-
peatbutton> will do what you want, but it will also spew error messages to
the JavaScript console, which is ugly. The only way to stop these messages and
make <autorepeatbutton> more generally useful is to modify its XBL defi-
nition in the chrome. Such a modification can be supplied with any Mozilla
application.

4.3.1.4 <thumb> The <thumb> tag is a <button> tag that has a single
<gripper> tag as content. The <gripper> tag is a user-defined tag. The
<thumb> tag is used to implement the sliding box that appears in the center
part of a scrollbar.

<thumb> is interesting because it exposes a native widget for display.
The combination of <thumb>, <gripper>, and Mozilla-style extensions (see
the “Style Options” section in this chapter) makes <thumb> transparently dis-
play the desktop version of a scrollbar thumb, not Mozilla’s idea of scrollbar
thumb.

<thumb> can work partially outside of a scrollbar, but it was not
intended to be a general-purpose desktop-specific button. It does not display
text or other content, just the outline and texture of a native button. It shows
in a simple way how to create natively themed buttons. The <thumb> styles
that do this can be seen in the chrome file xul.css in toolkit.jar.

4.3.1.5 <scrollbarbutton> <scrollbarbutton> is the tag that provides
the button at each end of a scrollbar. In XUL, scrollbars are implemented with
the <scrollbar> tag. If <nativescrollbar> is used instead, then no
<scrollbarbutton> tags are involved. The arrow on a <scrollbarbut-
ton> is supplied by style information.

<scrollbarbutton> is a modified <button> tag, and the XML
attributes of <button> apply to it. This tag also supports the type attribute.

AppDevMozilla-04  Page 114  Thursday, December 4, 2003  6:28 PM



4.3  XUL Buttons 115

This attribute can be set to “increment” or “decrement” and has two pur-
poses. It is used to determine stylesheet icons for the button, and it is used by
the scrollbar to identify which way the scrolling action should occur. Increment
means scroll in the forward direction; decrement means scroll backward.

<scrollbarbutton> is similar to <autorepeatbutton> in that it only
works properly within the context of a larger tag. Unlike that other button, it
is implemented without XBL code, so there is nothing an application program-
mer can modify that will make the tag easier to use. At least, this tag produces
no error messages.

The pieces that make up a XUL <scrollbar> tag are, in general, tightly
coordinated in Mozilla. <thumb>, <scrollbarbutton>, and <slider> all
perform poorly on their own. Leave them inside <scrollbar>.

4.3.2 Button Variations

The <button> and <toolbarbutton> tags can display buttons with three
different content arrangements. Which arrangement is shown depends on the
type attribute. This attribute can be left off (the default case) or set to any of
the following values:

menu menu-button radio checkbox

These alternatives are displayed in Figure 4.8.
The first two options, menu and menubutton, change the appearance of

the button so that it supports content that is a menu. Such content consists of
a single <menupopup> tag and its children. Menus are covered in Chapter 7,
Forms and Menus. The small triangles in the figure are <dropmarker> tags.
They are no more than an <image> tag with specific styles. Recall that the
<button> tag surrounds its content with an <hbox>. If type is set to menu,
then the <dropmarker> is inside that <hbox>, and the <dropmarker> is
part of the clickable button. If type is set to menu-button, the <dropmarker>
is outside the <hbox>. In that case, the button’s face and the <dropmarker>
are separately clickable. In either case, clicking the <dropmarker> reveals
the contained <menupopup>. A separate style ensures that the button and
dropmarker remain horizontally aligned, even when the <dropmarker> is

Fig. 4.8 <button> with type attribute set to various values.

AppDevMozilla-04  Page 115  Thursday, December 4, 2003  6:28 PM



116 First Widgets and Themes    Chap. 4

outside the button’s <hbox>. If used outside the context of a drop-down menu,
<dropmarker> displays nothing.

The other two type options, radio and checkbox, change the response
of the <button> tag when it is clicked. They cause it to mimic the <radio>
and <checkbox> tags, also described in Chapter 7, Forms and Menus.

In the radio case, clicking the button will change its style so that it
appears indented. Further clicks will have no effect. If the button has a group
attribute, then clicking the button affects other buttons with the same
group attribute. When the button is clicked, all other buttons with a match-
ing group will no longer appear indented. If another button in the group is
clicked, the original button changes to normal again.

In the checkbox case, clicking the button toggles its appearance between
indented and normal. Such changes do not affect other checkboxes.

The <button> tag and its variations can be examined from JavaScript,
like any XML tag. All these variations have type, group, open, and checked
object properties that can be examined from JavaScript. These properties mir-
ror the <button> attributes of the same name. The open property states
whether the <menupopup> menu is currently showing.

4.3.3 Grippys

Grippys are small, secondary widgets that appear on or next to other, larger, pri-
mary widgets. Their purpose is to give the user some control over the appear-
ance of the larger widget, a bit like changing a watch face by turning the small
knob on top. The best-known examples of grippys are the corners and edges of a
window, although the grippys themselves are not always obvious. When the
mouse moves over the corner and edge grippys, the cursor icon changes, and the
grippy can be dragged with the mouse, altering the window size.

Although grippys are often button-like in appearance, their ability to
move or transform other graphical items makes them different from normal
buttons. A scrollbar thumb is somewhat like a grippy, except that it operates
on itself instead of on the scrollbar. A XUL <dropmarker> is also somewhat
like a grippy, although it doesn’t affect the tag it is attached to either.

In Mozilla and XUL, there are several grippys. A complete list is
<grippy>, <toolbargrippy>, <resizer>, and <gripper>.

4.3.3.1 <grippy> To see a grippy in action, turn on the Mozilla sidebar
using View | Show/Hide.. | Sidebar on the Navigator window. The <grippy> is the
small vertical mark on the narrow border at the right edge of the sidebar.

The <grippy> tag is used inside the <splitter> tag. The <splitter>
tag is a thin divider that looks like a visible spacer between two pieces of flex-
ing content. By dragging the <splitter>, the content on one side shrinks
while the content on the other side expands. <splitter> gives the user con-
trol over how much of a window is occupied by what content. It is discussed in
Chapter 8, Navigation.

AppDevMozilla-04  Page 116  Thursday, December 4, 2003  6:28 PM



4.3  XUL Buttons 117

The <grippy> tag is very simple. It has no special-purpose attributes or
content. Its appearance is entirely the result of styles. It is put at the center of
the <splitter> to remind the user that there is something to drag. Any part
of the <splitter> can be used as an initial drag point, not just the
<grippy>. Use of the <grippy> tag is really trivial:

<splitter><grippy/><splitter>

The sole special use of the <grippy> is that it can hold event handlers
by itself. This allows click-actions to be collected for the <splitter>, which
normally only recognizes drag-actions. These click-actions might hide the
splitter, move it to some predesignated position such as the extreme left or the
middle, or clone it so that an additional splitter appears.

The <grippy> tag has almost no special logic. The sole unusual feature
is that the <splitter> tag expects to have a <grippy> tag as content and
sometimes modifies the grippy’s layout attributes if the <splitter> itself
changes. <grippy> is not a user-defined tag because its name is known and
used inside the implementation of the platform.

4.3.3.2 <toolbargrippy> The <toolbargrippy> tag is used to collapse a
toolbar down to a small icon so that it takes up less space. To do this, the tool-
bar must be a XUL <toolbar> tag inside a <toolbox> tag. Such a toolbar
has a small button at the left-hand side that is the <toolbargrippy>. Figure
4.9 shows these grippys at work.

The <toolbargrippy> tag is subject to much argument. Even though it
exists in Mozilla 1.02, it was withdrawn for version 1.21. In 1.3 it returned,
and current policy is that it is here to stay. The argument in favor of <tool-
bargrippy> goes something like this: It is familiar to existing Netscape
users; it is innovative design; and Internet Explorer can’t emulate it easily.
The argument against <toolbargrippy> goes like this: It is unusual and
confuses users; it prevents toolbars from being locked; it derives from a spe-
cific desktop environment (Sun’s OpenLook) and should only appear there.

The following remarks apply to Mozilla versions that support <tool-
bargrippy>.

Fig. 4.9 <toolbargrippy> tags for uncollapsed and collapsed toolbars.

AppDevMozilla-04  Page 117  Thursday, December 4, 2003  6:28 PM



118 First Widgets and Themes    Chap. 4

Like <grippy>, there is little point in using <toolbargrippy> by
itself. It is little more than an <image> tag. A <toolbargrippy> tag is cre-
ated automatically by a <toolbar> tag and is never specified by hand. The
marks on the grippy’s face do not come from any widget in the native desk-
top; they are just images that happen to look like widgets from the Open-
Look desktop.

<toolbargrippy> has no special attributes or content of its own. The
<toolbar> it resides in has one special attribute. The grippytooltip-
text provides a tooltip (also called flyover help) for the grippy when the
toolbar is collapsed. This tooltip identifies which toolbar the sideways
grippy belongs to.

<toolbargrippy> behavior is implemented completely using JavaS-
cript and the XBL definition of <toolbar>. When the grippy is clicked, it and
the toolbar are hidden. A new, sideways-oriented grippy with different styles
and content is then created from nothing and added to the XUL document.
This is done using scripts that can create new content using the DOM1 inter-
faces described in the next chapter. The sideways grippy, when it appears, is
therefore new content. If this sideways grippy is clicked, the process is
reversed. The sideways grippy is stored in a special <hbox> of the <tool-
box> tag. This <hbox> is empty and invisible unless sideways grippys are
added to it.

4.3.3.3 <resizer> The <resizer> tag is used to resize the current window.
The user can click on the content of a <resizer> and drag the window
smaller or larger. The whole window is resized, regardless of where in the con-
tent the <resizer> tag is placed. The placement of <resizer> in the content
has no special effect on layout.

There are two ways to resize an application window, and only one of
those two uses the <resizer> tag.

One way to resize is to send a window hints from the desktop’s window
manager. This is done by grabbing the decorations on the outside of the win-
dow with the mouse. This is an instruction to the window manager, not to the
application. The desktop window manager might change the window’s border
on its own initiative, without telling the application. A famous example of this
is the twm window manager under X11, which has a “wire frame” option.
When the user chooses to resize a window using the twm window decorations,
the application content freezes, and a wire frame (a set of box-like lines)
appears on the screen. The user moves and stretches this wire frame to suit
and then releases the mouse button. The application is then informed that it
must resize to fit that frame; the now-unfrozen content is layed out over the
frame. In this way, the application only needs to do layout once. Fancier win-
dow managers, like GNOME’s Sawfish, might tell the application to resize
multiple times during the user’s drag operation. Either way, this first method
is the “outside in” method where the application receives instructions from
outside.

AppDevMozilla-04  Page 118  Thursday, December 4, 2003  6:28 PM



4.3  XUL Buttons 119

The second method applies to the <resizer> tag. In this method, the
application receives raw mouse events from the desktop, but no specific
instructions to resize the window. The application itself (Mozilla) works out
that the mouse actions imply resizing the window. The application directly or
indirectly tells the window manager that the window is resizing. The applica-
tion still has the choice of laying out the content repeatedly as the window
grows or shrinks, or only laying out once when the resizing action is complete.
In this second method, resizing is driven by the application, not the window
manager. If there is no window manager, as might be the case in a small
embedded system like a set-top box or a hand-held computer, then this is the
only way to resize.

The <resizer> tag causes layout to happen continuously, not just once.
Layout of displayed content updates as fast as possible when the window
stretches and shrinks.

How <resizer> affects the window borders depends on the value of its
special dir attribute. Use of dir for <resizer> is different than use of dir
as a generic box layout attribute. For <resizer>, dir means the direction in
which the window will expand or contract. It can take on any of the following
values:

top left right bottom topleft topright bottomleft bottomright

The default value for dir is topleft. The first four values allow the
window to change size in one direction only, with the opposite side of the win-
dow fixed in position. The other four values allow a corner of the window to
move diagonally toward or away from the fixed opposite corner. A quick review
of Mozilla’s source code reveals the direction and resizerdirection
attributes. These do not work like dir, nor do they do anything fundamental;
they are simply used to hold data.

The <resizer> tag has no default content and no default appearance. It
must be styled and provided with content if it is to be visible at all. In Mozilla,
up to version 1.21, the default styles and content for <resizer> are missing,
so it cannot be used without some trivial preparation. On more recent ver-
sions, it appears as expected in the bottom-right corner of a given window.

4.3.3.4 <gripper> The <gripper> tag is the single piece of content that
goes inside a <thumb>, which in turn goes inside a <scrollbar>. It is a user-
defined tag with no content, attributes, or special meaning, and it never needs
to be used by itself. Ignore it. The name “gripper” is just an alternate piece of
jargon for “grippy.”

4.3.4 Labels and <label>

The <label> tag provides plain textual content, as described in Chapter 3,
Static Content, but it does more than that. <label> also supplies content to
other tags, assists with user input, and provides information needed for dis-

AppDevMozilla-04  Page 119  Thursday, December 4, 2003  6:28 PM



120 First Widgets and Themes    Chap. 4

abled access. The navigational and accessibility aspects are covered in Chap-
ter 7, Forms and Menus. Here is a look at <label> helping out an ordinary
button.

<label> has two button-friendly features. It can supply content to a but-
ton, and it can act as a button itself. Suppling content is the same as for any
content tag. A trivial example is

<button><label>Press Me</label></button>

There is, however, an alternate syntax. Many XUL tags support the label
attribute. In the case of <button>, this attribute sets the content of the visi-
ble button. The same example using this attribute is

<button label="Press Me"/>

The difference between label and value attributes is not obvious. At
this point, it is sufficient to say that the two are the same visually, but that
label has special uses. One such use is its capability to act as a button.

If a label is applied to the <checkbox> or <radio> tags (discussed in
Chapter 6, Events), then the label text appears next to the tag’s widget and
can be clicked as if it were a button. A visual hint is supplied on some desktops
if the mouse hovers over the text, or if the button has the focus, but the text is
otherwise unadorned. This just makes it easy for users to strike the widget;
they can strike the text as well as the rest of the widget.

The label attribute is difficult to master because it has multiple uses
and doesn’t apply to all tags. It can be used to supply ordinary content to most
tags, but <checkbox> and <radio> are the only practical examples of
<label> text acting like a button.

4.3.5 Bits and Pieces

The XUL part of Mozilla is fairly new and has taken time to reach version 1.0.
It still has gaps and uncertainties in it. There are a number of other button
tags lingering around in the discussion of XUL. These tags can cause endless
confusion if you don’t know what they are, not to mention the endless paper-
chase required to work out what their current status is. A few of the most obvi-
ous errant tags are noted here.

☞ <menubutton>, not the same as <button type="menu-button">, is
an abandoned experiment in combining buttons and menus. Ignore it,
and use the type attribute instead.

☞ <titledbutton> was an early attempt at combining images and text in
a button, before plain <button> reached its current form. Ignore it, and
use <button>.

☞ <spinner> is an attempt to create a widget that is sometimes called a
spinbox. Such a widget consists of a box containing text with two small
buttons to one side. These buttons are on top of each other, one being the

AppDevMozilla-04  Page 120  Thursday, December 4, 2003  6:28 PM



4.4  Themes and Skins 121

“up” button, one being the “down” button. These buttons allow the user
to “spin” through a series of values that are displayed one at a time in
the textbox. The user can either type in the wanted value or use the but-
tons to step to the wanted value. <spinner> is not finished and is not
useable yet.

☞ <spinbuttons> is a further attempt at spinbox support but consists of
the button pair only, without the textbox. It has a complete XBL defini-
tion, except that style information, including images, is missing. This is
the same issue that <resizer> has. It is at best a starting point for a
fully functional spinbox tag.

☞ <slider> is the final tag that contributes to a <scrollbar>. It is the
clickable tray in which the <thumb> tag moves inside a scrollbar.
<slider> is deeply connected to the <scrollbar> tag and can crash
the Classic Browser if used alone. Avoid at all costs.

This list brings to an end the possibilities for independent buttons in
Mozilla’s XUL.

Many of XUL’s more complex tags also contain button-like elements. In
such cases, it is meaningless to try to separate the buttons. Tags like <tab-
box>, <listbox>, and <tree> are discussed as complete topics in their own
right.

Buttons also serve as thinking points for desktop integration issues. Will
your Mozilla application blend in with the other applications that the user
runs on their computer? If your buttons match theirs, that is a first step. The
mechanics of making that happen are discussed next.

4.4 THEMES AND SKINS

Themes and skins change the appearance of a piece of software. Whether
called a theme, skin, profile, or mask, a theme usually consists of configuration
information rather than whole programs. Apply a theme to a button, and the
button’s appearance changes.

Early theme systems were little more than a few user-driven color prefer-
ences. Examples of early theme systems are the Appearance options provided
by Windows 9x/Me under the Display item in the Control Panel, and X11
resource files.

Beyond early theme systems are theme engines. A theme engine is a spe-
cialist part of a GUI library. When the library needs to draw a button, it con-
sults the theme engine, which supplies graphical information matching the
current theme. The engine understands the current theme from configuration
information. These themes are typically crafted by an enthusiast and made
available to the public for downloading. Windows XP, MacOS 10, and GNOME
2.0 are all examples of desktop systems that support a theme engine, and each
supplies two or more themes to choose between in the default installation.

AppDevMozilla-04  Page 121  Thursday, December 4, 2003  6:28 PM



122 First Widgets and Themes    Chap. 4

Themes based on theme engines make little difference to the features
that the software provides because appearance and functionality are generally
separate. From a programmer’s perspective, such themes are about ornamen-
tation rather than use. This is just one view. A graphic design perspective says
that the icon-rich world we live in is full of practical instructions and direc-
tions. Stop signs are an example. From that perspective, a good theme is criti-
cal to making an application easy to use.

Very modern theme systems provide more options than just ornamenta-
tion. Such systems, like the Sawfish window manager’s lisp engine or the
SkinScript skin system used in Banshee Screamer (this author’s favorite
alarm clock software), can reorganize the user interface of an application
entirely, as well as change the colors and textures of its visual elements.

Many software products use themes, with WinAmp and Mozilla further
examples. Even mobile phones support themes in the form of ringtones. The
themes.freshmeat.net Web site lists themes for a wide range of theme-
enabled software, including Mozilla.

Parallel to the issue of themes is the issue of localization, in which con-
tent is adapted to a given language or platform. In Mozilla, localization
works in a way that is very similar to themes. It is discussed in Chapter 3,
Static Content.

4.4.1 Mozilla Themes

Mozilla themes and skins are two completely different things. A Mozilla theme
is a design concept, with a little bit of software support. Themes can be used to
brand the Mozilla platform, to project a certain image, or just to minimize per-
formance issues. The obvious examples in Mozilla are the Classic and the
Modern themes.

The theme system inside Mozilla is roughly equivalent to a theme
engine. It is intended to modify content appearance only, not content itself. In
extreme cases, it can be bent to modify content as well. Mozilla’s theme system
relies heavily on the CSS2 stylesheet support inside Mozilla. The theme sys-
tem operates on some simple principles:

☞ Mozilla themes apply only to XUL. Except for scrollbars, they do not
apply to HTML. Native themes, however, apply to both. They are dis-
cussed separately.

☞ There is a current theme, with a unique name. Mozilla remembers this
name at all times, even when shut down.

☞ The current theme’s name in lowercase is also a directory name in the
chrome. Mozilla themes are stored in the chrome.

☞ For a theme to work fully, it must be implemented for each participating
package in the chrome, and for a special package named global. messen-
ger is an example of a package name. That name is used for the Classic
Mail & News client.

AppDevMozilla-04  Page 122  Thursday, December 4, 2003  6:28 PM



4.4  Themes and Skins 123

☞ The theme information in the global package is used for all packages.
This is a convention, not a requirement.

☞ All theme information must be specifically included in application docu-
ments. No theme information is included automatically.

☞ Mozilla automatically modifies theme-related URLs to include the cur-
rent theme name. This allows documents to include the current theme
without knowing its name.

This last point is discussed in the next section. It is the only thing in
Mozilla that provides special support for themes. Everything else about
Mozilla themes is just routine use of other technologies and a few naming con-
ventions.

The current theme can be changed. In the Classic Browser, View | Apply
Theme can be used to download new themes and to change the current theme.
The browser must be restarted for the new theme to apply. Themes can also be
installed from a normal Web link using the XPInstall system explained in Chap-
ter 17, Deployment. Because themes are stored in the chrome as ordinary files,
and because XPInstall is a general and flexible process, there is little stopping
you from breaking many of the theme rules. For fastest results and pain-free
maintenance afterward, it makes sense to create themes in the standard way.

Themes built for the Classic Browser will not necessarily work for the
Netscape 7.x browser or the Mozilla Browser. Simple themes will work every-
where, but well-polished themes are likely to have flaws when moved to one of
the other browsers. Many theme creators are now putting support for the
Mozilla Browser before the Classic Browser. Therefore, themes are not always
portable.

You can design a theme on paper or in a graphic design tool, but to put it
into action, you must also implement it. Implementing a theme means creat-
ing skins.

4.4.2 Mozilla Skins

A Mozilla skin is a set of files that implement a theme for one application
package installed on the platform, or for the global package that is used for all
parts of the platform.

A skin can contain any type of file, but the types that make the most
sense are stylesheets and images. Each skin is centered around a stylesheet
that changes the appearance of a XUL document. If you use various CSS2 syn-
tax tricks like @import and url(), those stylesheets might drag in other
stylesheets or images. Together these items build up the whole styled appear-
ance of the application. This is the primary reason why XUL documents
should not contain inline styles. Good XUL design uses and reuses skins for
appearance rather than re-inventing the wheel every time.

Chapter 1, Fundamental Concepts, briefly outlined the structure of the
Mozilla chrome directory. It is the skin top-level subdirectory that contains all

AppDevMozilla-04  Page 123  Thursday, December 4, 2003  6:28 PM



124 First Widgets and Themes    Chap. 4

the theme information in Mozilla, for all packages. To create a skin, install
constructed files underneath this directory. To use a skin, specify a URL that
points to this directory. This use of a URL is where Mozilla’s special processing
comes in. An example illustrates.

Suppose a Mozilla chrome package called tool has a skin file called
dialogs/warnings.css. This skin file is all the styles for the matching con-
tent file dialogs/warnings.xul. A programmer would include this skin in
the dialogs/warnings.xul content file as follows:

<?xml-stylesheet href="chrome://tool/skin/dialogs/warnings.css" 
type="text/css"?>

Here, tool is a package name. There is nothing magical about skins—
this is just a hard-coded inclusion. From this line, the URL for the skin file
must be

chrome://tool/skin/dialogs/warnings.css

Suppose that the current platform theme is the Modern theme, with
matching directory name modern. Mozilla will internally translate the preced-
ing URL into the following directory path, relative to the install directory:

chrome/tool/skin/modern/dialogs/warnings.css

This translation has added the theme name (modern), and moved the package
name (tool) further down the path. This directory also has a URL:

resource:/chrome/tool/skin/modern/dialogs/warnings.css

The resource: scheme just points to the top of the platform install area.
If the current theme were Classic instead, the translated directory path

would be

chrome/tool/skin/classic/dialogs/warnings.css

This means that the application programmer must supply a skin file for every
theme that might be installed in the platform. That is a lot of work, and some-
times it is impossible to forecast what themes the user might have. The easiest
way to get around this requirement is to use the global skin for the current
theme. This global skin can be included with a second <?xml-stylesheet?>
tag using this URL:

chrome://global/skin/

This URL lacks a trailing .css file name. In this case, Mozilla will
retrieve the file with the default name of global.css. This is the same as
when index.html is retrieved by default for a Web site. The translated direc-
tory name in this example will then be one of

chrome/global/skin/modern/global.css
chrome/global/skin/classic/global.css

AppDevMozilla-04  Page 124  Thursday, December 4, 2003  6:28 PM



4.4  Themes and Skins 125

Since all responsible theme designers include a global.css in their
themes, the problem of supporting unknown themes disappears by using this
skin. The application programmer need only add specialist skins for unusual
features of their application.

Creating a set of skins for a theme is a nontrivial task. The human fac-
tors problems are difficult enough, but the process of creating functional styles
and images is also challenging. There are two reasons for this. First, your glo-
bal skin must be sufficiently flexible to be reliable for “all” applications that
might want to use your skin. That is a portability challenge. Second, for your
new theme to be useful, you must also create skins for the well-known applica-
tions inside Mozilla: Navigator, Composer, Messenger, Address Book, Prefer-
ences, and so on. That is a challenge because there are many applications, and
because it requires intimate knowledge of the classes, ids, and structure of the
content in those applications. To get that intimate knowledge, you must either
intensively study the application with the DOM Inspector or study the Mod-
ern or Classic theme skins. Creating skins for a new theme is a labor of love,
or possibly some marketing person’s clever idea.

Good coding practices when using or creating skins follow:

1. The global skin should be included before other, more specific skins.
2. The global skin is enough for most purposes.
3. If you create a special skin, have it @import the global skin so that only

one skin needs to be referred to in the XUL file.
4. Don’t modify the global skin unless you are responsible for the whole

theme.

The skin directories can contain any type of file. JavaScript, XUL,
HTML, or DTD files can all be put into a skin. There are always unique cir-
cumstances when this might make sense, and it is occasionally done in the
Classic Browser, but in general you should avoid it. After you start doing this,
you are effectively moving theme-independent content into theme-dependent
skins, which multiplies the implementation and maintenance workload by the
number of themes you intend to support. This practice is not recommended.

Skins will not work if they are merely copied into the chrome directory.
The “Hands On” section in this chapter describes how to get a skin (or any
other chrome file) in place the quick-and-dirty way.

4.4.3 The Stylesheet Hierarchy

Skins must be added by hand to a XUL application, but that is not the whole
Mozilla story. Mozilla automatically includes a number of CSS2 stylesheets. A
discussion of Mozilla themes and skins is not complete without considering
these special sheets.

The CSS2 standard provides three structural features that can be used
to organize a stylesheet hierarchy. Mozilla uses all three methods. These
structural features are separate from the structure of the styled document.

AppDevMozilla-04  Page 125  Thursday, December 4, 2003  6:28 PM



126 First Widgets and Themes    Chap. 4

The most obvious structural feature in CSS2 is support for cascaded and
inherited styles. See section 6 of the CSS2 standard for details. Briefly, styles
can be applied both generally and specifically as Listing 4.3 shows.

Listing 4.3 Selector hierarchy for progressively darker color.
* { color: lightgreen; }
text { color: green; }
text.keyword { color: darkgreen; }
#byline { color: black; }

In this example, all tags are light green; those tags that are <text> tags
are green, tags that are <text class="keyword"> are dark green, and one
tag with id="byline" is black. If the earlier styles are put into highly gen-
eral .css files, and the latter styles are put into more specific .css files, then
regardless of the order of inclusion, all styles will apply. As examples, Mozilla
provides highly general stylesheets called xul.css and html.css. xul.css
includes the style rule:

* { -moz-user-focus: ignore; display: -moz-box; }

This style rule makes all XUL tags, whether user-defined or otherwise, act like
boxes.

The second way that CSS provides structure is through ordering. If two
styles exist for the same selector and property, then only the latter one applies.
In that case, the order of stylesheet application is important. Although this
can be relied upon in Mozilla, it is bad practice because style definitions are
supposed to be rules. The point of a rule system is that all rules apply simulta-
neously, which is not the case if one rule overwrites an earlier one.

Finally, the !important CSS2 modifier can be use to break ties between
identical style rules. Mozilla supports the CSS2 concept of weight, which is
implemented with a two-byte value (0-65535). If a rule is !important, the
weight is increased by 32768. In Mozilla’s DOM Inspector, when the left-hand
Document panel has a styled node selected, and the right-hand Object panel is
set to CSS Style Rules, the Weight column shows the weights of the different
style rules that apply to the selected node.

Table 4.1 shows all the sources of style rules that can be applied to XUL
and HMTL documents. The most general sources are at the top. The special
files xul.css and html.css have the lowest weight, which is 0.

4.4.4 Native Themes

Mozilla’s own theme system doesn’t apply to other non-Mozilla applications.
If all applications on a given desktop are to have the same look and feel,
then some common theme system must be used. The theme system of the
desktop itself, called the native theme system in Mozilla-speak, is that com-
mon solution.

AppDevMozilla-04  Page 126  Thursday, December 4, 2003  6:28 PM



4.4  Themes and Skins 127

Some parts of the content that Mozilla displays can be made to match the
native theme. The restrictions follow:

☞ The Mozilla version must be 1.21 or higher.
☞ The desktop system must be Windows XP or MacOS 10.2 or have GTK

1.2 support.
☞ The native theme information applies to HTML form elements.
☞ The native theme information applies to XUL tags that are like widgets.
☞ Native themes work for XUL only if the current theme is Classic.
☞ The native theme can work with other Mozilla themes, but only if they

are built using the technique that the Classic theme uses.

Native themes are implemented in a very simple way. The Mozilla CSS2
extension -moz-appearance turns native theme support on and off for a sin-
gle tag. If it is set to none, then native theme support is off. If it is set to a key

Table 4.1 Sources of style rules for XUL and HTML

Purpose of style 
rules

Supplied 
per theme? XUL source HTML source

Implement style 
properties

No Built into Mozilla C/C++ 
code

Built into Mozilla C/C++ code

Fundamental 
styles that are 
always applied

No xul.css with URL
chrome://global/content/
xul.css

html.css, forms.css, and 
quirks.css with URLs like 
resource:///res/html.css

Theme support for 
standard XUL wid-
gets

Yes Skins under the global 
package for XBL widgets 
(e.g., chrome://global/
skin/button.css)

None

Global theme sup-
port used by all 
chrome packages

Yes global.css with URL 
chrome://global/skin/

None

Specialist theme 
support for one or 
more chrome pack-
ages

Yes Skins scattered through-
out the chrome that are 
not under the global 
package

None

Inline styles No Should be avoided; oth-
erwise, inside .xul con-
tent

Inside .html files

User options No None Per-user preferences under 
Edit | Preferences, Appear-
ance

Per-user custom 
styles

No chrome/UserChrome.css 
for each user profile

chrome/UserContent.css for 
each user profile

AppDevMozilla-04  Page 127  Thursday, December 4, 2003  6:28 PM



128 First Widgets and Themes    Chap. 4

value, then that key value determines what native widget the native theme
system will use. The native theme system will then try and render (display)
that widget in place of the usual Mozilla content.

There are more than 60 different key values for this extension. Most of
the common ones have the same name as the XUL tag they support, so for
<button>, use

-moz-appearance: button

It’s entirely possible, but not recommended or even sensible, to render a
menu as a button using -moz-appearance. The best way to proceed is to use
the Classic theme’s skins as a guide. For a complete list of the keywords, see
the array kAppearanceKTable in the Mozilla source file content/shared/
src/nsCSSProps.cpp.

The Classic theme includes styles that match Netscape Navigator 4 wid-
gets, but they are ignored because -moz-appearance is set. If -moz-
appearance is set back to none, then the old, familiar styles will again be
used. To turn off native theme support without damaging the existing themes,
add this line to a suitable global .css file like xul.css or userChrome.css:

* { -moz-appearance : none ! important; }

The next topic shows native themes at work.

4.4.5 Theme Sampler

Figure 4.10 shows a simple Mozilla window under a variety of theme combina-
tions. Three different XML pages are displayed. The first two are XUL; the
last is HTML. The two XUL documents differ only in their stylesheet support.

Fig. 4.10 Sampler of Mozilla and Desktop theme combinations.

AppDevMozilla-04  Page 128  Thursday, December 4, 2003  6:28 PM



4.5  Style Options 129

The “No Skin” version includes no stylesheets at all, and so doesn’t benefit
from the current Mozilla theme. The “Global Skin” version includes the global
skin for the current theme, which is sufficient for full theme support. The
“HTML page” shows that its use of theme information differs from XUL’s use.

In all the displayed screenshots, Classic Mozilla’s Modern theme is the
most resistant to change because it includes few uses of the -moz-appearance
style. Similarly, HTML pages are presupplied with standardized style settings
when -moz-appearance is used heavily, as it is in the Classic theme, or when
no theme is present to mask out default behavior.

4.4.6 GTK and X-Windows Resources

The UNIX versions of Mozilla rest on the GTK graphics library, which in turn
rests on the X-Windows system. It is common for X-Windows applications to
be styled using so-called Xresources, whose master copies are typically found
in /usr/lib/X11/app-defaults on UNIX. This invites the question: Can
Mozilla be styled as other X11 clients are? The answer is no, because the GTK
library does not support use of X11 resources.

GTK has its own styling system that revolves around the gtkrc file. The
documentation for GTK explains how to modify this file so that per-widget cus-
tom styles are created. These styles will show through on Mozilla if widgets
are drawn with the native theme.

A window manager under UNIX may or may not use the GTK toolkit. If
it does not, then Xresources may be available to style that window manager.
Examples of managers that do have Xresources are twm and fvwm2. But win-
dow managers don’t affect application content.

4.5 STYLE OPTIONS

All the CSS2 styling information is available for use on buttons and in skins.
The proposed CSS3 style font-family: button, which sets the font to

match the font used for <button>, can be applied with this Mozilla extension:

font-family: -moz-button;

The -moz-appearance property, which turns on native theme support,
accepts the following values for the button tags described in this chapter:

button
resizer
scrollbarbutton_down
scrollbarbutton_left
scrollbarbutton_right
scrollbarbutton_up
scrollbargripper_horizontal
scrollbargripper_vertical
scrollbarthumb_horizontal

AppDevMozilla-04  Page 129  Thursday, December 4, 2003  6:28 PM



130 First Widgets and Themes    Chap. 4

scrollbarthumb_vertical
toolbarbutton
toolbargripper

Finally, both here and in all subsequent chapters, style selectors and
class attributes defined for the standard Mozilla applications (Navigator, Mes-
senger, etc.) may be reused for other applications if it makes sense to do so.
These selectors and attributes make up a layer of complexity on top of the
style system. They represent a set of application targets against which styles
can be applied. You are free to reuse these targets in the design of your own
application. It makes sense to do that if your application overlaps with stan-
dard parts of the Classic Browser, or if it shares design features with any of
those parts.

4.6 HANDS ON: NOTETAKER BUTTONS AND THEMES

In the last two chapters, we added layout structure and basic textual content
to the NoteTaker application. In this chapter we’ll add buttons. The job is to

☞ Turn the Save and Cancel operations into buttons.
☞ Temporarily turn the Edit and Keywords operations into buttons. In a

later chapter we’ll get a proper tab control, supplying tab-like buttons,
for this control.

☞ Put theme support in.

The XUL file that contains the application window we’re developing is
the only file that needs substantial changing. The required changes for the
buttons are very simple, as Listing 4.4 shows.

Listing 4.4 NoteTaker changes required to turn text into buttons.
<!-- change this: -->
<text value="Cancel"/>
<spacer flex="1"/>
<text value="Save"/>

<!-- to this: -->
<button label="Cancel"/>
<spacer flex="1"/>
<button label="Save"/>

<!-- and change this: -->
<text value="Edit"/>
<text value="Keywords"/>

<!-- to this: -->
<toolbarbutton label="Edit"/>
<toolbarbutton label="Keywords">

AppDevMozilla-04  Page 130  Thursday, December 4, 2003  6:28 PM



4.6  Hands On: NoteTaker Buttons and Themes 131

When these changes are done, the dialog box looks a bit like Figure 4.11.
The Keywords button is highlighted because the mouse was over it when the
screenshot was taken.

Note that the appearance of the buttons isn’t very striking yet. Also,
they’re a little confused by the diagnostic boxes we included in Chapter 2, XUL
Layout. To add theme support, we need to get rid of the styles we threw in
temporarily in past chapters and to include the global skin for the current
style.

Looking at Figure 4.11, we want to get rid of all custom styles for text,
and maybe some of the box borders. We’ll leave a few box borders in just to
remind us that there’s more work to do. The main outstanding job is to find
and add appropriate widgets, but we only have buttons so far. So that we can
delay replacing all the boxes with widgets, we’ll just make sure that the boxes
with borders have class="temporary" and change the border-drawing style
rule appropriately. The stylesheet inclusions in the .xul file will change from

<?xml-stylesheet href="boxes.css" type="text/css"?>

to

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<?xml-stylesheet href="boxes.css" type="text/css"?>

Figure 4.12 shows the results of this work when displayed first in the Classic
theme and then in the Modern theme.

From Figure 4.12, it’s clear that the <button>, <toolbarbutton>, and
<groupbox> tags have adopted standard appearances based on the given
themes. Fonts for the text have also changed.

If this XUL file is installed in the chrome, then the boxes.css
stylesheet must be located in the same directory. That is good enough for test-
ing, but is not ideal if themes are to be supported.

Fig. 4.11 NoteTaker with buttons included.

AppDevMozilla-04  Page 131  Thursday, December 4, 2003  6:28 PM



132 First Widgets and Themes    Chap. 4

To support themes, we need to change this line in the XUL content:

<?xml-stylesheet href="boxes.css" type="text/css"?>

to read

<?xml-stylesheet href="chrome://notetaker/skin/boxes.css" type="text/
css"?>

Afterwards, we move the boxes.css file to this location in the chrome:

chrome/notetaker/skin/modern/boxes.css

Finally, we have to register the skin in the chrome registry, just as we
had to register the package name in Chapter 1, Fundamental Concepts, and
(optionally) the locale in Chapter 2, XUL Layout. Again this means creating a
very standard contents.rdf file, this time in the skin directory. Listing 4.5
shows the required RDF.

Listing 4.5 contents.rdf required to register a chrome skin.
<?xml version="1.0"?>
<RDF
  xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:chrome="http://www.mozilla.org/rdf/chrome#">

  <Seq about="urn:mozilla:skin:root">
    <li resource="urn:mozilla:skin:modern/1.0" />
  </Seq>

  <Description about="urn:mozilla:skin:modern/1.0">
    <chrome:packages>
      <Seq about="urn:mozilla:skin:modern/1.0:packages">
        <li resource="urn:mozilla:skin:modern/1.0:notetaker"/>
      </Seq>
    </chrome:packages>
  </Description>
</RDF>

Again, you need to look at Chapters 11–17 to decipher what all this RDF
means. If we’re confident that the skin already exists (which we are for Mod-

Fig. 4.12 NoteTaker with theme support showing Classic and Modern appearance.

AppDevMozilla-04  Page 132  Thursday, December 4, 2003  6:28 PM



4.7  Debug Corner: Diagnosing Buttons and Skins 133

ern and Classic), then attributes of the <Description> tag that are prefixed
with chrome: can be dropped. So those attributes are dropped here. The first
part of the file states that the modern theme exists; the second, larger part
says that the NoteTaker package has theme-specific skin information for that
theme.

For the purposes of getting going, we need to make an exact copy of this
file and to replace skin names (“modern/1.0” here) and package names
(“notetaker” here) with whatever we’re working on. The package name
“modern/1.0” includes a version number, which is stated in the style of appli-
cation registry names, discussed in Chapter 17, Deployment. Here, it’s just a
string that we must spell correctly. To see the correct spelling for existing
themes, just look at other contents.rdf files in other packages that use that
theme.

Finally, we need to update the installed-chrome.txt file so that the
platform knows that there’s a new skin implementation. So we add this line,
save, and restart the platform:

skin,install,url,resource:/chrome/notetaker/skin/modern/

If we don’t put a copy of boxes.css and contents.rdf in the equiva-
lent place in the Classic skin, then our application won’t have the styles we’ve
carefully left behind under that skin.

For testing purposes, unless you are specifically building a skin, it’s easi-
est to keep all your css files in the contents directory and to worry about put-
ting stylesheets into skins when the application has been shown to work.

The NoteTaker window is now starting to look like a piece of software
rather than just a sketch of some kind. We can’t yet add widgets for two rea-
sons: First, we have only a limited knowledge of the XUL widgets available,
and second, we haven’t considered the data that those widgets must handle.

If this were a book on database design, we’d next have a long discussion
about schemas and types. The schema information would be discussed with
the users, debated, and finalized, and the correct types would be chosen for
each of the placeholders in our application. This is not a book on database
design, so we’ll avoid that step and just use some common sense as we go.
Because plain buttons carry no data (they are generally functional rather than
stateful), we don’t need to do any data analysis here anyway. If we had a
checkbox-style button, that would be a different matter.

4.7 DEBUG CORNER: DIAGNOSING BUTTONS AND SKINS

If you are creating a theme, you may need to understand more deeply the way
buttons (or any widget) are styled. Table 4.1 helps to understand the structure
of the style system, but that is not a specific example. It is possible to trace the
most important style information for an XUL widget directly. Here is how to
do it for the <button> tag. This process can be applied to many tags.

AppDevMozilla-04  Page 133  Thursday, December 4, 2003  6:28 PM



134 First Widgets and Themes    Chap. 4

The first step is to look at the file xul.css. Its URL is chrome://glo-
bal/content.css, but the best way to find it is to look in the toolkit.jar
file stored in the chrome and extract it. Inside this extracted file are one or
more style rules for each XUL tag. It is the -moz-binding style property that
is of interest. For the <button> tag, this reads:

-moz-binding: url("chrome://global/content/bindings/button.xml#button");}

This URL refers to an XBL file that’s also inside toolkit.jar. You don’t
need to know XBL to understand the style information. The trailing #button
text in this URL is the name of an XBL binding. It is coincidental that this
name matches the <button> tag’s name, but it is obviously a handy conven-
tion.

If you extract the named button.xml file, you can then search for a
<binding> tag with id="button". In this tag will be a <resources> tag,
and in that resource tag will be a <stylesheet> tag. That <stylesheet>
tag names the stylesheet for the <button> widget, and it is a skin. You can
examine it by opening any JAR file with a theme name, like classic.jar or
modern.jar, since all good themes provides these standard skins.

A second difficult question is this: Is the button (or widget) being dis-
played a native button (or widget)? The short answer is that it doesn’t matter
too much except for scrollbars. For scrollbars, there is a separate <native-
scrollbar> tag that is used when the whole scrollbar is to be a native wid-
get. If you really want to know if a given tag has a native appearance, you can
check the -moz-appearance property’s value from a stylesheet, or from Java-
Script. For example, this style rule makes all native buttons appear red:

button[-moz-appearance="button"] { background-color:red; }

For publicly available applications this is not recommended, since the
user controls the themes at work in a browser, and relying on subtle details of
layout is a guaranteed way to create a fragile application. If you really must
have complete control over the appearance of your widgets, then avoid sup-
porting themes entirely and supply a full set of application stylesheets. As the
theme sampler in Figure 4.11 shows, this can carry risks of its own.

To diagnose problems with skins, you must find a content problem.
First, try the application with explicit stylesheets rather than a skin.

That tests if the stylesheet content and XUL content agree. If the two work
together, then the application content is probably fine. Check the original
order in which skins are included in the XUL files; the global skin should be
first; any application-specific skins go next; and the specific nonskin
stylesheets are last. If the two don’t work together, go back to the DOM
Inspector and make sure that you know what you are doing with styles, ids,
and classes.

If all that seems in order, then the problem is probably in the content of a
contents.rdf file. It is very easy to make syntax mistakes in there. The sim-

AppDevMozilla-04  Page 134  Thursday, December 4, 2003  6:28 PM



4.8  Summary 135

ple way to be sure that your contents.rdf file is being read is to check the
contents of the file named chrome.rdf at the top of the chrome hierarchy.

The platform generates this chrome.rdf file each time it reexamines
the chrome. If your skin-package combination (or locale-package combination)
doesn’t appear in the lists embedded in this file, then your contents.rdf
files are either not being read, not syntactically correct, or structured incor-
rectly. Reexamine them.

The other part of this content problem is the installed-chrome.txt
file, which is fussy about syntax. All directories must have a trailing slash, all
entries about a locale must include a locale name, all entries about a skin
must include a skin name, and paths in the chrome must begin with
resource: or jar:.

4.8 SUMMARY

Mozilla’s XUL language is full of widgets, and the <button> tag is the sim-
plest of them. Because buttons are such a common concept, there are a num-
ber of variations to consider. <button> and <toolbarbutton> cover most
requirements. Although the capabilities of a button make it unique, users are
very sensitive to appearances as well. A button must look and act like a but-
ton.

The business of appearances is linked directly to themes. Mozilla uses
CSS2 stylesheet technology as the basis for its themes, plus some simple URL
modification trickery. Themes apply to every window of a XUL application,
and each window adopts one or more skins from a given theme. A skin is just a
document-set of styles that follow the guidelines of a theme’s design, plus any
associated files.

Just as applications might support themes via stylesheet inclusion, so too
do themes support applications, by implementing skins for standard widgets,
packages, and style targets. These standard skins are the source of work for
theme designers.

One aspect of the stylesheet system that brings the discussion full-circle
back to buttons and widgets is the -moz-appearance extension. This exten-
sion allows a XUL tag to be displayed according to the rules of the native
theme, that is, the current theme of the desktop. Using this -moz-appearance
attribute, the Mozilla styling system becomes transparent in places to the
native theme. This system works only for XUL tags that match native desktop
widgets. This support is implemented in the Classic theme, but it can be put
into any theme.

Buttons are just the first of many widget-like tags in Mozilla’s XUL.
Before exploring the others, you need to understand how to get the <button>
tag to do something. The way to do this is to use a script. Scripting and the
JavaScript language are described in the next chapter.

AppDevMozilla-04  Page 135  Thursday, December 4, 2003  6:28 PM


