

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

JJJJJJJJJJJJJJJJJJJJa aJavaJa aJa aSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc pppppppppppppppppppppppp

RDF
Components

AppDevMozilla-12 Page 410 Thursday, December 4, 2003 6:34 PM

411

C H A P T E R

XBL
definitions

Keyboard

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

W3C
standards

Mouse

SJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc ppppppppppppppppppppppppiiiii ti ti ti ti ti ti ti ti ti ti ti ti ti ti tcri tcriptc ptc pppppppppppppppppppppppp

Overlays

Overlay
database

DOM

DTDs

Skins

RDF

12

Overlays and Chrome

AppDevMozilla-12 Page 411 Thursday, December 4, 2003 6:34 PM

412 Overlays and Chrome Chap. 12

This chapter describes the overlay and chrome infrastructure of the Mozilla
Platform. That infrastructure provides mechanisms for modular development
of XUL applications. Both overlays and chrome depend heavily on data files
expressed in RDF.

The overlay system allows a single, final XUL document to be con-
structed from one or more other XUL documents. It is a merging process that
can be set up in several different ways. The overlay system is a component
technology designed for larger Mozilla applications. It allows large source files
to be split up into pieces.

An example of a document that uses the overlay system is shown in List-
ing 12.1.

Listing 12.1

Simple XUL document with two overlays.

<?xml version="1.0"?>
<?xul-overlay href="chrome://test/content/overlayA.xul"?>
<?xul-overlay href="chrome://test/content/overlayB.xul"?>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">
 <description id="start">Anything</description>

</window>

This single document collects content from the two files

overlayA.xul

and

overlayB.xul

. With minor differences, those files also hold XUL con-
tent. That collected content is added to the content of the present file. The
result is displayed for the user. None of the source files is changed.

The chrome registry is also a component technology. It tracks and records
components called packages, skins, and locales. These components are just
groups of files stored in the chrome part of the platform install area. There
they benefit from full access to the platform and from special processing of
URLs. The chrome registry may be used to manage information about those
files. It is somewhat related to the installation systems described in Chapter
17, Deployment.

The NoteTaker running example in this book has exploited that chrome
directory structure since Chapter 1, Fundamental Concepts, but much of that
system have been glossed over in the process. In this chapter, the RDF model
that underlies the chrome is examined more carefully.

The NPA diagram at the start of this chapter shows the small parts of
the platform affected by chrome and overlays. Overlay processing occurs early
in the document load cycle. That processing sits between URL requests and
the assembly of content into a final DOM hierarchy. The chrome registry is all
but invisible, except for the automatic selection of theme-driven skins and
locale-driven DTDs. An XPCOM component that implements the chrome reg-
istry is always at work, so most overlay and chrome processing is automatic.

Overlays and the chrome registry also represent a chance to practice
RDF. This chapter examines both the

overlayinfo

 overlay database and the

chrome.rdf

 chrome database. We also take a brief look at persistence.

AppDevMozilla-12 Page 412 Thursday, December 4, 2003 6:34 PM

12.1 Overlays 413

12.1 O

VERLAYS

The overlay system is quite simple. One XUL document is the master

docu-
ment. This document provides a starting point for the final content. Any other
XUL documents are overlays. Overlay content is merged into, or added to, the
master document’s content. This happens in memory when those documents
are loaded and has no effect on the original files.

An overlay is a XUL document based on the

<overlay>

 tag instead of
the

<window>

 tag. Such a file has a

.xul

 extension and is well-formed XML,
but it isn’t meant to be displayed alone. Mozilla can display an overlay file by
itself, but that is only useful for testing purposes.

Mozilla also supports

stylesheet overlays

. These are plain Mozilla CSS2
files with a

.css

 file extension. They must be stored in a skin directory in the
chrome. They do not use the

<overlay>

 tag.
The chrome of Classic Mozilla also contains so-called

JavaScript over-
lays

. These files are not overlays in the strict sense; they are ordinary Java-
Script scripts with

.js

 file extensions. They are associated with overlay files
by placing a

<script>

 tag anywhere in the overlay content. This is no differ-
ent from normal XUL.

Both XUL master and XUL overlay documents can contain syntax spe-
cific to the overlay system.

The overlay system has two file discovery methods, which are used to
decide what files should be merged. These methods are called the

top down

and

bottom up

methods because one is driven by the master document (top
down) and the other is driven by a separate database of overlays (bottom up).

The overlay system uses a single algorithm for merging content. That
algorithm is based on the XUL id attribute and has a few minor variations.

Here is an example of overlays at work. Irrelevant syntax has been
removed for clarity. Suppose that a master document appears as in Listing
12.2.

Listing 12.2

Example content that acts as an overlay master.

<window>
 <box id="one"/>
 <box id="two">
 <label value="Amber"/>
 </box>

</window>

Further, suppose that two overlay documents exist as in Listing 12.3.

Listing 12.3

Example content that acts as two overlays.

<overlay>
 <box id="one">
 <label="Red"/>
 </box>

AppDevMozilla-12 Page 413 Thursday, December 4, 2003 6:34 PM

414 Overlays and Chrome Chap. 12

 <box id="three">
 <label="Purple"/>
 </box>
</overlay>

<overlay>
 <box id="two">
 <label value="Green"/>
 </box>

</overlay>

If these two overlays are merged into the master document, then the in-
memory final document will be as shown in Listing 12.4.

Listing 12.4

Merged document resulting from a master and two overlays.

<window>
 <box id="one">
 <label="Red"/>
 <box id="two">
 <label value="Amber"/>
 <label value="Green"/>
 </box>

</window>

If an

id

 attribute in the master document matches an

id

 attribute in an
overlay document, then the child tags of that

id

 are copied from the overlay to
the master. They are merged in with the content of the master under that id, if
any. If no id match is found (the Purple case), then nothing is added to the
master. Except for some finer points, that is all the overlay system does.

12.1.1 Overlay Tags

The overlay system adds

<?xul-overlay?>

 and

<overlay>

 to the set of tags
that Mozilla understands. The merging process also discusses four new
attributes.

12.1.1.1

<?xul-overlay?>

<?xul-overlay?>

 is an extension to XML
that is allowed by the XML standards. It is a processing instruction that is
specific to Mozilla. This process instruction states: Please merge the contents
of a specified document into this document. This tag has one special attribute:

href

href

 can be set to any valid URL, which is the overlay to merge in.
This tag is used in master documents by the top-down file discovery sys-

tem. It can also be put in overlay documents, in which case they also act as
master documents. A series of documents can therefore be formed into a hier-
archy using this processing directive.

Mozilla does not support

<?xul-overlay?>

 for HTML files.

AppDevMozilla-12 Page 414 Thursday, December 4, 2003 6:34 PM

12.1 Overlays 415

12.1.1.2

<overlay>

The

<overlay>

 tag is used in place of

<window>

 in an
overlay document. Like

<dialog>

 or

<page>

,

<overlay>

 represents a spe-
cial use of XUL content. Unlike those other tags,

<overlay>

 implies a docu-
ment that is incomplete. An example is shown in Listing 12.5.

Listing 12.5

Skeleton of an overlay document.

<?xml version="1.0"?>
<overlay
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
 id="style-id"
>
 <description>Sample content</description>

</overlay>

The

xmlns

 attribute is always required. The

<overlay>

 tag has three
attributes with special meaning:

id class style

All three have the same meaning and use as in XUL and HTML.
CSS2 styles based on these attributes can behave unusually. When an

overlay document is merged into a master document, the

<overlay>

 tag can
be consumed completely and then disappear. If this happens, any CSS2 rules
based on the

<overlay>

 tag will not be applied.
It is a convention to add an

id

 to

<overlay>

 anyway. Such an attribute
is useful only if one of these points is true:

☞

The overlay includes other overlays in turn (nesting of overlays).

☞

The merging process succeeds in matching that

id

.

☞

The overlay should not be appended by default if the

id

 fails to match.

These three conditions are all consequences of the merging process,
which is discussed shortly.

The

<overlay>

 tag does not necessarily act like a boxlike tag. Adding
layout attributes like

orient

 only have an effect if the

<overlay>

 tag is
merged with a suitable tag in the master document.

12.1.1.3

<overlaytarget>

The <overlaytarget> tag is sometimes used
to hold an id that matches an id in an overlay document. It is a user-defined
tag with no special meaning.

12.1.2 Overlay Discovery

Before the overlay system can merge anything, it must work out what files
might have content to merge.

AppDevMozilla-12 Page 415 Thursday, December 4, 2003 6:34 PM

416 Overlays and Chrome Chap. 12

The first file discovery method is called the top-down method. The top-
down method requires that the programmer state inside the master document
all other files that are to act as overlays. This method is equivalent to textual
inclusion techniques provided by many computer languages. C/C++ has
#include, Perl has use and require, and XUL has the <?xul-overlay?>
processing instruction.

The top-down method gives an application programmer the ability to
break a XUL document into a hierarchy of separate files.

The second file discovery method is called the bottom-up method. The
bottom-up method requires that the programmer state in a database any over-
lay files and the master files those overlays should be merged into. That data-
base, called overlayinfo, is consulted when the platform first starts up. This
method is equivalent to a linking system like make(1) and ld(1) on UNIX. It
is similar to the project concept in IDE programming tools like Visual Basic.

The bottom-up method gives an application programmer the ability to
add to the content of existing XUL documents without modifying those docu-
ments.

One master document can benefit from both the top-down and bottom-up
methods. Listing 12.1 uses the top-down method. It is not possible to tell by
looking at any XUL document whether the bottom-up method is used. You
need to look at the overlayinfo database instead.

The Classic Mozilla application suite includes many overlays, and more
can be added. If you do so, you are enhancing that application suite. The
NoteTaker tool relies on this system, as do most of the browser experiments at
www.mozdev.org. Similarly, Classic Mozilla overlays can be added to a sepa-
rate Mozilla application. Either way, this is an example of reuse of XUL con-
tent.

12.1.2.1 Top Down Overlays can be specified directly in a master XUL docu-
ment. This can be done in any XUL file. It does not require access to the
chrome.

To state use of an overlay the top-down way, include one line in the mas-
ter document:

<?xul-overlay href="chrome://mytest/content/Overlay.xul"?>

This line is normally put at the top of the master document, after the <?xml?>
header. If more than one such tag is added, then the specified files are merged
in the same order. If the same file is specified twice, it is merged twice. The
overlay file specified does not need to be located in the chrome.

A simple example of top-down overlays can be found in the code for the
JavaScript Console. See the file console.xul in toolkit.jar in the chrome.
A more complex example is navigator.xul in comm.jar in the chrome. That
is the master document for the whole Classic Browser. Not all overlays finally
included in these examples are specified top-down, but a fair number are.

AppDevMozilla-12 Page 416 Thursday, December 4, 2003 6:34 PM

12.1 Overlays 417

If <?xul-overlay?> is used to load a nonoverlay document, then
Mozilla can become confused and freeze or crash.

12.1.2.2 Bottom Up The bottom-up approach to overlays does not use the
<?xul-overlay?> processing instruction. Instead, Mozilla decides what doc-
uments to merge by consulting a database in the chrome. The bottom-up sys-
tem requires that both master and overlay documents be installed in the
chrome.

This alternative exists to make Mozilla applications extensible. Mozilla
application packages that are added to the chrome can contribute content to
other packages that already exist.

The most common example of bottom-up design is the Classic Browser,
which includes a package named navigator installed in the chrome (in
comm.jar). Many programmers are aware of this package. When they develop
browser add-ons, they include overlays that the bottom-up system will merge
with the Classic Browser window. These overlays contain GUI elements that
appear prominently in that window. Those add-ons are then exposed to the
user as part of a familiar interface.

A simple example is the DOM Inspector. It is available by default in Clas-
sic Mozilla, but not in Netscape 7.0. In Netscape 7.0, there is no DOM Inspec-
tor menu item anywhere in the Netscape Navigator browser. The DOM
Inspector can, however, be installed later. After it is installed, a menu item
appears on the Tools | Web Development menu in the Navigator window. This
menu item is the content of a new overlay, one delivered with the DOM Inspec-
tor application.

It is not mandatory to integrate overlays with the Classic Mozilla appli-
cation suite. Any known XUL window can act as a master document and be
the integration point.

To use the bottom-up approach, work with RDF facts, as follows.

12.1.2.3 Reading the Overlay Database The overlay database is a set of
directories and RDF files. The database lives in the chrome/overlayinfo
directory under the platform install area. This directory is generated from
other files and may be deleted if the platform is shut down. Mozilla reads this
directory every time it starts up, re-creating it if it doesn’t exist.

This generated database is a set of subdirectories. Each one is the name
of a chrome package that has overlays defined the bottom-up way. For exam-
ple, editor is the name of the package that contains the Classic Composer,
and so the overlayinfo/editor directory contains information on all over-
lays specified for that tool. This information does not include any top-down
overlays.

Inside each overlayinfo package is a content subdirectory, and inside
there is an overlays.rdf file. This file is equivalent to a make(1) makefile
for a single package. It acts like a set of <?xul-overlay?> processing
instructions for that package. It is a set of facts about each chrome URL that

AppDevMozilla-12 Page 417 Thursday, December 4, 2003 6:34 PM

418 Overlays and Chrome Chap. 12

has bottom-up overlays. For example, the overlayinfo/editor/content/
overlays.rdf file might have the set of facts in Listing 12.6.

Listing 12.6 RDF overlay facts for the Mozilla Composer.
<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <Seq about="chrome://editor/content/editor.xul">

 chrome://messenger/content/mailEditorOverlay.xul

 chrome://cascades/content/cascadesOverlay.xul

 </Seq>
</RDF>

This file says that when the URL chrome://editor/content/edi-
tor.xul is loaded, it will have two overlays automatically merged into it.
They are named mailEditorOverlay.xul and cascadesOverlay.xul.

In many cases, the master document quoted in this file is itself an over-
lay, one that is included in the real master document the top-down way. This is
a grouping technique designed to keep the many ids used for the overlay con-
tent out of the main document’s XUL. Instead, those ids merge into an inter-
mediate overlay that is built specifically for the purpose. That intermediary is
the document sometimes specified in overlays.rdf. The whole intermediate
overlay can then be included in the master XUL using a single id. When
merged, it drags in all the other overlay content with it.

Separate from the overlayinfo database, but still in the chrome, is the
chrome/chrome.rdf file. That file is maintained by the chrome registry,
which is responsible for the overlay system. It can contain a couple of overlay-
specific configuration items in the form of facts. The three overlay-specific
predicates are

hasOverlays hasStylesheets disabled

hasOverlays and hasStylesheets are used to indicate that overlay
XUL and overlay CSS files exist for that package. disabled is used to indi-
cate that this package should not accept overlays from outside the package. In
other words, overlays cannot be imported into any of the package’s documents
from another package.

Facts using these predicates must have as subject a package name URI,
like urn:mozilla:package:editor, and as object the literal value “true”.
None of these properties can have subjects of “false”. To make them false, the
matching fact must be removed entirely. An example fact is

<- urn:mozilla:package:editor, hasOverlays, "true" ->

So a typical line in the chrome.rdf file might read:

AppDevMozilla-12 Page 418 Thursday, December 4, 2003 6:34 PM

12.1 Overlays 419

<Description about="urn:mozilla:package:editor" hasOverlays="true"/>

12.1.2.4 Changing the Overlay Database Mozilla’s overlay database is
designed to support automated detection of new overlays. It works very closely
with the XPInstall installation system described in Chapter 17, Deployment.
Even so, it is easy to use this system by hand.

A forward look at XPInstall reveals the following:

☞ Application packages add lines to the chrome file named installed-
chrome.txt when they are installed.

☞ Mozilla must be restarted after packages are installed.
☞ When Mozilla restarts, it reads the file installed-chrome.txt, but

only if its last-modified date is more recent than that on the chrome
overlayinfo directory, or that on chrome.rdf.

☞ If installed-chrome.txt is read, Mozilla collects up all the files called
contents.rdf from all the installed packages. The overlayinfo direc-
tory is then refilled from the facts in those contents.rdf files.

This process means that any hand-made changes to the overlay database
will disappear if a package is installed. Hand-made changes are good for test-
ing purposes only.

To add a new overlay to the database by hand, shut down the platform
and edit the overlays.rdf file for the package that owns the master docu-
ment. The master document should be the subject of a fact that has a <Seq>
tag as its object. The examples in Listing 12.6 are all that are required.

A more permanent way to proceed is to create a contents.rdf file in
the package under development. This file will then add to the overlayinfo
database the next time it is rebuilt. Note that the RDF containers used in the
contents.rdf files are different from the containers used in the over-
lays.rdf files. When the platform creates the overlayinfo database, it also
re-sorts all the facts it finds according to package names.

To add a new overlay permanently, the contents.rdf file for a suitable
package should contain two extra facts. The first fact states that the required
master document now has a bottom-up overlay. In other words, that master
document requires special treatment from now on. The second fact states what
new overlays exist for that master document. In both cases, these facts must
be added to the right container if everything is to work:

<!-- State the document that receives the overlay -->
<Seq about="urn:mozilla:overlays">
 <li resource="chrome://package1/content/master.xul"/>
</Seq>

<!-- state the overlay that applies to the target -->
<Seq about="chrome://package1/content/master.xul">
 chrome://package2/content/overlay.xul
</Seq>

AppDevMozilla-12 Page 419 Thursday, December 4, 2003 6:34 PM

420 Overlays and Chrome Chap. 12

The <Seq about="urn:mozilla:overlays"/> container is the offi-
cial list of chrome documents with bottom-up overlays. Note that the second
fact states the overlay file as a literal, not as a URI. That is very important
(see “Debug Corner” for an explanation of why this is true).

To change the chrome.rdf overlay configuration information, either
edit it by hand (temporary) or use the nsIXULChromeRegistry interface dis-
cussed under “XPCOM Objects” in Chapter 17. This file can also be modified
using the XPInstall system, or by adding extra facts to one of the con-
tents.rdf files.

12.1.3 The Merging Process

Overlays are merged based on the XUL id attribute. If ids are absent, then a
simpler system is used. Other special cases depend on attributes that modify
the way ids are processed.

In this discussion, source id is an id in an overlay document. Target id is
an id in a master document.

12.1.3.1 Simple Merging In the simplest case, an overlay document is
merely appended to the master document. If several overlays are merged into
the master document, then they are appended in the order that they are
stated in. This case requires that no ids appear in the overlay.

If the master document’s <window> or <dialog> tag has dir="rtl"
set, then overlay content will appear at the start rather than the end, but in
reverse order. If the master document has orient="horizontal", then over-
lay content will appear to the right, and so on.

12.1.3.2 Id-Based Merging The power of the overlay system comes from
XUL tag ids. Ids can be used to merge an overlay document into a master doc-
ument piece by piece. This is done as follows.

Suppose a master document has content that includes a tag with a target
id. That tag is a container for any other tags inside it, or for no content at all, if
it happens to be empty. Further, suppose that an overlay document has a tag
with the same id (a source id). The tag with the source id has some content
tags of its own.

When the two documents are merged, this processing occurs:

1. The source id tag and target id tags are matched up.
2. The source id tag’s content is appended to the target id tag’s content.
3. Any XML attributes from the source id tag are copied to the target id tag,

overriding any attributes on the target id tag with the same names.
4. The source id tag is thrown away.

The first and second points add content to the master document. The
third point affects layout, styles, and any other attribute-driven behavior. The
last point is just convenience.

AppDevMozilla-12 Page 420 Thursday, December 4, 2003 6:34 PM

12.1 Overlays 421

The beauty of this system is that it can be used repeatedly. An overlay
can have several document fragments, each labeled with an id. These frag-
ments will be inserted at different points in the master document, wherever
the matching ids are. Therefore, overlays are a more powerful system than C/
C++’s #include or Perl’s use. Those systems only insert content (code) at a
single point.

Here is an example. Listing 12.7 is a master document with two target
ids. Listings 12.8 and 12.9 show two overlays that exploit those sites.
Stylesheets have been left out for brevity:

Listing 12.7 Master document that includes two overlays.
<?xml version="1.0"?>
<?xul-overlay href="part1.xul"?>
<?xul-overlay href="part2.xul"?>

<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul">

 <vbox id="osite1">
 <description>Main Box A</description>
 </vbox>
 <vbox id="osite2">
 <description>Main Box B</description>
 </vbox>
</window>

The master document has two boxes, each of which contains a single tag.

Listing 12.8 First overlay containing two fragments for inclusion.
<?xml version="1.0"?>
<overlay xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">
 <box id="osite1">
 <description>Box C</description>
 </box>
 <box id="osite2">
 <description>Box D</description>
 </box>
</overlay>

This overlay has two ids matching the master document (osite1,
osite2). Listing 12.9 is exactly the same except that the content reads “Box
E, Box F,” instead of “Box C, Box D,” and the box with id="osite2" has an
extra attribute: orient="horizontal".

Listing 12.9 Second overlay containing two fragments for inclusion.
<?xml version="1.0"?>
<overlay xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">

AppDevMozilla-12 Page 421 Thursday, December 4, 2003 6:34 PM

422 Overlays and Chrome Chap. 12

 <box id="osite1">
 <description>Box E</description>
 </box>
 <box id="osite2" orient="horizontal">
 <description>Box F</description>
 </box>
</overlay>

Figure 12.1 shows the master document both with and without these two
overlays included.

The content from each overlay has been appended to the content in the
master document. Each overlay has been appended in turn to each target id.
The second target id has had its layout changed to horizontal by an overlay-
supplied attribute. It doesn’t matter that the master document has <vbox>es
or that the overlays have <box>es. The tag names in the overlays are not
important. Use of matching names does reduce confusion.

This example can be made slightly more complex. The master document
can have some of its content changed from this:

 <vbox id="osite1">
 <description>Main Box A</description>
 </vbox>

to this:

 <vbox id="osite1">
 <description>Main Box A</description>
 <box id="innersite"/>
 </vbox>

Either of the overlays can then contain this content as a child of the <over-
lay> tag:

 <box id="innersite">
 <description>Inner Content</description>
 </box>

It doesn’t matter where in the overlay this content appears—it can even
be nested inside other tags. The result of these two additions is shown in Fig-
ure 12.2.

The new content is appended at the new site. It appears before the other
appended content in the first box, because it is inside existing content from the
master. It is appended to the content of the master’s <box> tag, not to the con-
tent of the master’s <vbox> tag.

Fig. 12.1 Master document with and without overlay content.

AppDevMozilla-12 Page 422 Thursday, December 4, 2003 6:34 PM

12.1 Overlays 423

This example, which adds extra content to boxes, is quite trivial. In appli-
cation terms, there are many XUL tags that are container tags to which it is
sensible to add extra content. <commandset> might acquire extra commands.
<deck> might acquire extra cards. <menupopup> might acquire extra <menu-
item>s. <toolbar> might acquire extra <toolbarbutton>s.

12.1.3.3 Merging Options The id-based system for merging content can be
modified slightly. Overlay content does not always have to be appended to the
master content. XML attributes can modify where it is put. The following
attributes provide those further options:

position insertbefore insertafter removeelement

position is used in addition to the id attribute. It accepts a number
index as its value and is placed on one or more of the content tags inside the
tag with the source id. That content tag will then be inserted at that position
in the target id tag’s content. So position="3" puts that content tag after
the first two content items in the target id tag. There cannot be clashes in posi-
tion between overlays because overlays are added one at a time.

insertbefore and insertafter are used instead of id on an overlay
tag. They each take an id as their value. Instead of the source id tag’s content
being added into the master document, the source id tag itself (and its con-
tent) is added. That is one extra tag inserted. insertbefore puts that con-
tent before the supplied id in the master document. insertafter puts that
content after the supplied id in the master document. In both cases, the con-
tent is a sibling DOM node of the supplied id.

removeelement can be set to true and is used with the id attribute. If
the overlay tag has this attribute set, the matching tag in the master docu-
ment is removed. It makes no sense to specify overlay content when this
attribute is used.

Listing 12.10 illustrates all this syntax.

Listing 12.10 Overlay showing merge options syntax.
<?xml version="1.0"?>
<overlay xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
 >

Fig. 12.2 Master document with extra overlay content.

AppDevMozilla-12 Page 423 Thursday, December 4, 2003 6:34 PM

424 Overlays and Chrome Chap. 12

 <box insertbefore="Box1">
 <description>insertbefore="Box1"</description>
 </box>
 <box insertafter="Box2">
 <description>insertafter="Box2"</description>
 </box>
 <box id="Box3">
 <description position="3">position="3" in content item</description>
 </box>
 <box id="Box4" removeelement="true"/>
</overlay>

Figure 12.3 shows each of these options at work on a simple master docu-
ment. The top screenshot is the master document without overlays. The bot-
tom screenshot is the resulting document after all merging has occurred.

Note that Box 4 is missing because of the use of the removeelement
attribute.

12.2 THE CHROME REGISTRY

Mozilla’s chrome registry is a set of RDF facts that describes the packages
that exist in the chrome. The chrome is used to support chrome: URLs and to
apply some simple restrictions to packages. It is automatically used when
XUL documents are loaded, and when new packages are installed.

Use of the term registry is unfortunate because Mozilla has several regis-
tries, all in different formats. The chrome registry is more accurately a data-
base of information and a processing system. The chrome registry is used at
the XUL application level inside the platform. The Mozilla registry, which is
separate, is used lower down at the platform functionality level.

Without the chrome, the platform would have to perform searches of the
file system hierarchy under the chrome directory. These searches would be
required to find packages, skins, and locales for each XUL document dis-
played. With the chrome in place, an in-memory database of RDF information
(a fact store) can be consulted, and the exact files identified before the disk is

Fig. 12.3 Master document showing the effect of overlay merge options.

AppDevMozilla-12 Page 424 Thursday, December 4, 2003 6:34 PM

12.2 The Chrome Registry 425

touched. This in-memory fact store can also be used to switch the current
theme and the current locale and to add new packages. In theory those
changes can be made without restarting the platform, but in practice the cur-
rent implementation still requires a restart.

The main use of the chrome registry is simply to map a chrome: URL for
a specific package to another URL. In normal circumstances, a chrome: prefix
is mapped to a resource:/chrome/ prefix. This in-memory mapping has two
little-used features that illustrate the role of the registry. First, a package can be
installed under a Mozilla user profile instead of under the platform install area.
Second, a package can be installed anywhere on the file system. In both cases,
the chrome registry ensures that the URL for that package still starts with

chrome://package-name/content/

Like the overlay system, the chrome registry translates a set of applica-
tion-programmer-supplied source-generated files into generated files. Both
sets of files use RDF syntax. The source files consist of all the con-
tents.rdf manifest files that accompany packages, skins, and locales. The
chrome registry ignores information in those files about overlays. There is
only one generated file; it is called chrome.rdf and has the URL resource:/
chrome/chrome.rdf.

The “Hands On” sessions in Chapters 2, 3, and 4 provide examples of this
RDF chrome information for packages, locales, and skins, respectively. Here
we consider the overall data model into which those examples fit.

The chrome.rdf file contains a fully populated copy of the chrome regis-
try data model. Look in that file for the features noted in the remainder of this
section. A contents.rdf file contains only a slice of the data model. That
slice is just the pieces of information specific to a particular package, locale, or
skin.

Chrome RDF information is based on a data model consisting of a set of
URNs. These URNs start with three RDF <Seq> containers:

urn:mozilla:package:root
urn:mozilla:locale:root
urn:mozilla:skin:root

Each container states what packages, locales, or skins are available to the
platform. Although some variation is possible, the URN names for the individ-
ual packages, locales, or skins, which are the contents of the container, should
have the form

urn:mozilla:package:{package-name}
urn:mozilla:locale:{locale-name}
urn:mozilla:skin:{skin-name}/{skin-version}

Some example URNs are, therefore,

urn:mozilla:package:navigator
urn:mozilla:locale:en-US
urn:mozilla:skin:classic/1.0

AppDevMozilla-12 Page 425 Thursday, December 4, 2003 6:34 PM

426 Overlays and Chrome Chap. 12

These URNs can be decorated with RDF property/value pairs. In other words,
they can be the subjects of facts. The predicates for those facts must come from
this namespace:

http://www.mozilla.org/rdf/chrome#

The available predicates are listed in Table 12.1.

Table 12.1 Chrome registry top-level predicates

Predicate
name

Applies
to Value Purpose

accessKey skin A charac-
ter

A menu shortcut key used in the Classic
Browser for changing themes

author package,
locale,
skin

Any text Originator of the package

baseURL package URL Location of the package; do not use the
chrome: scheme

disabled package “true” Prevents external overlays; do not set to
“false”

displayName package,
skin

Any text Readable text name for the item

hasOverlays package “true” XUL overlays exist; do not set to “false”

hasStylesheets package “true” CSS2 overlays exist; do not set to “false”

name package Package
name

Name of the package should match a
directory name

name skin Any text Name of the skin; may be any text

image skin URL An image that illustrates what the skin
looks like; do not use the chrome:
scheme

localeVersion package Version
number

Minimum locale version the package
requires

locType package,
skin

Install,
profile

Where the package or skin is installed

packages locale,
skin

URN The <Seq> holding package-specific
implementations

previewURL locale URL A document that illustrates what the
locale looks like; do not use the chrome:
scheme

selectedLocale package URN The current locale; applies only to the
global package

AppDevMozilla-12 Page 426 Thursday, December 4, 2003 6:34 PM

12.2 The Chrome Registry 427

In addition to these main containers are two sets of secondary contain-
ers. They are accessible from each locale and skin URN via its packages predi-
cate. These additional containers state the existence of package-specific
implementations of skins and locales. They are also <Seq> containers and
have the following names:

urn:mozilla:locale:{locale-name}:packages
urn:mozilla:skin:{skin-name}:packages

Each of these containers holds a list of package-specific implementations
of locales or skins. The URNs for a given implementation should be one of

urn:mozilla:locale:{locale-name}:{package-name}
urn:mozilla:skin:{skin-name}/{skin-version}:{package-name}

So if the navigator package (the Classic Browser) has an implementation
of the French locale (FR), then this URN is required to state that the locale is
implemented and available:

urn:mozilla:locale:FR:navigator

Each specific skin or locale resource so stated can also be decorated with
RDF property/value pairs. The available predicates are listed in Table 12.2.

The newer Mozilla Browser slightly enhances Tables 12.1 and 12.2 with
additional predicates.

selectedSkin package URN The current skin; applies only to the glo-
bal package

skinVersion package Version
number

Minimum skin version the packages
requires

Table 12.2 Chrome registry implementation predicates

Predicate
name

Applies
to Value Purpose

allowScripts skin “true” Skin may run scripts; do not set to
“false”

baseURL locale,
skin

URL Location of the implementation; do not
use the chrome: scheme

localeVersion locale Version
number

The version of this implementation

package locale,
skin

URN The owning package of this implementa-
tion

skinVersion skin Version
number

The version of this implementation

Table 12.1 Chrome registry top-level predicates (Continued)

Predicate
name

Applies
to Value Purpose

AppDevMozilla-12 Page 427 Thursday, December 4, 2003 6:34 PM

428 Overlays and Chrome Chap. 12

12.3 PERSISTING WINDOW STATE

Similar to the overlay system and chrome registry, but far simpler, is Mozilla’s
GUI persistence system. This system allows the desktop position and location
of Mozilla windows to be remembered after the application is shut down. It
can also be used to store any kind of noncritical information, for any applica-
tion. All such information is stored on the local computer.

The persisting system consists of one RDF file, one XUL attribute, and
some automatic processing by the Mozilla Platform. It records the state (the
value) of one or more attributes for specific XUL tags. Sometimes this is done
automatically, and sometimes it requires a hint from the application program-
mer. Because an attribute can contain an arbitrary string, information can be
stuffed into an attribute for later. For XUL programmers, this is an alternative
to using cookies, although no network information is automatically available.

The persisted RDF file is called localstore.rdf and is stored in the
user’s profile. It is written to every time a window is closed. For each attribute
persisted, there are two facts. One fact states that the XUL document (subject
URL) is persisting (the predicate) something in the specific tag (the object).
This fact occurs only once for all attributes persisted in a given tag. In the sec-
ond fact, the tag (subject URL) has a predicate/property equal to the attribute
name, and a subject literal equal to the attribute value. Listing 12.11 shows
these facts for a tag in the editor.xul document that has id="editorWin-
dow" and a width attribute.

Listing 12.11 Example of persisted facts in localstore.rdf.
<RDF:Description about="chrome://editor/content/editor.xul">
 <NC:persist resource="chrome://editor/content/editor.xul#editorWindow"/>
</RDF:Description>

<RDF:Description about="chrome://editor/content/editor.xul#editorWindow"
width="884"/>

No attributes are persisted by default. Some attributes are persisted by
the chrome files that make up Classic Mozilla. Each such attribute may or
may not be persisted for a given window or dialog box. A selection of commonly
persisted attributes is

checked collapsed height hidden moz-collapsed open offsetX offsetY
ordinal screenX screenY sizemode state width

In the end, whether an attribute is persisted is a matter of application
design, not platform capability.

The value persisted for each attribute is the value currently held by that
attribute. In the cases where an attribute isn’t set in the XUL, like window
dimensions, the current value is written out.

A hint added to XUL content by the application programmer ensures
that an attribute is remembered. Such a hint is given with this XUL attribute:

AppDevMozilla-12 Page 428 Thursday, December 4, 2003 6:34 PM

12.5 Hands On: The NoteTaker Toolbar 429

persist

persist can contain a comma- or space-separated list of attributes for that
tag. This example preserves the layout direction for a window, in addition to
the automatically saved positional attributes.

<window dir="ltr" orient="vertical" persist="dir orient"/>

If the persist attribute is to be used, then the tag it is added to must have an id.

12.4 RELATED AOM AND XPCOM OBJECTS

The overlay and chrome registry systems are implemented using these
XPCOM features:

@mozilla.org/chrome/chrome-registry;1 nsIXULChromeRegistry

A few methods on this interface allow simple operations on the overlay sys-
tem, but they don’t allow the programmer to drive the overlay merging system
by hand. There is little reason to use this interface, unless you are building a
tool like the DOM Inspector or a custom install system.

To persist an attribute from JavaScript, use this method call:

document.persist(tagid, attname);

This will persist the value of the attname attribute for the tag with id equal to
tagid.

12.5 HANDS ON: THE NOTETAKER TOOLBAR

In this short “Hands-On” session, we’ll convert the NoteTaker toolbar from a
XUL fragment to an overlay that merges correctly into the Mozilla Browser
window. The steps to do this are straightforward.

☞ Find an id that can be used to merge the NoteTaker toolbar into the Clas-
sic Browser window.

☞ Find an id that can be used to merge the Tools NoteTaker menu item into
the Classic Browser window.

☞ Review the toolbar content for any other content that might need a merge id.
☞ Update the toolbar content to include the Tools menu NoteTaker item,

suitable ids, and an <overlay> tag.
☞ Update the chrome registry to record the existence of the overlay.
☞ Delete the existing overlay database and restart the platform to see the

result.

To find ids, we need to know the master XUL document for the Classic
Browser application (that is, the document that contains the <window> tag for
the browser).

AppDevMozilla-12 Page 429 Thursday, December 4, 2003 6:34 PM

430 Overlays and Chrome Chap. 12

Looking through the chrome directory, the only file that could possibly
contain the browser application is comm.jar. 'comm' is an abbreviation of
Communicator (the Netscape Communicator suite). This .jar file contains a
large number of XUL files spread over many subdirectories, but if we look
through these files, it’s soon clear that many of them are <dialog>, <page>,
or <overlay> documents. In the content/navigator subpart of the .jar is
the file navigator.xul with this useful-looking beginning:

<window id="main-window" … >

We can test if this navigator.xul file is the starting point for the Clas-
sic Browser, by loading it directly:

mozilla -chrome "chrome://navigator/content/navigator.xul"

If we do that, we discover that this file is the correct starting point for the
browser application. The id needed is either in this file or in one of the over-
lays merged into this document. We can either use the DOM Inspector on the
final merged document to find a suitable id, or we can examine the source code
directly, which requires a full list of overlays used. To get a full list of those
overlays, add together:

☞ Overlays declared directly in navigator.xul with the <?xul-over-
lay?> tag.

☞ Overlays declared for chrome://navigator/content/naviga-
tor.xul in the file chrome/overlayinfo/navigator/contents/
overlays.rdf under the platform install directory.

☞ Repeat both previous points for all overlay files discovered on the first
and subsequent passes.

In our case, however, such a list is unnecessary because the naviga-
tor.xul file itself contains suitable ids.

For the NoteTaker toolbar, we find

<toolbox id="navigator-toolbox" class="toolbox-top"
deferattached="true">

For the NoteTaker Tools menu item, we find

<menu id="tasksMenu">
 <menupopup id="taskPopup">

The <menupopup> tag is a suitable site for a single, extra menu item. It may
not be the ideal site for the new item, but here we’re just trying to get some-
thing working.

After glancing at our toolbar code, we also see that our <commandset>
content will need to be merged in. For that we find in navigator.xul

<commandset id="commands">

<script> content is interpreted immediately and doesn’t need to be merged.

AppDevMozilla-12 Page 430 Thursday, December 4, 2003 6:34 PM

12.5 Hands On: The NoteTaker Toolbar 431

We rename toolbar.xul to browserOverlay.xul for consistency with
existing file naming conventions, and change its content. That file’s final struc-
ture will be as shown in Listing 12.12.

Listing 12.12 Overlay structure of NoteTaker toolbar.
<?xml version="1.0"?>
<!DOCTYPE overlay>
<overlay xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">

<script src="controllers.js"/>
 <script src="toolbar_action.js"/>

<commandset id="commands">
 … existing commands go here …
 </commandset>

<menupopup id="taskPopup">
 <menuitem label="Edit Note" command="notetaker.toolbar.command.edit"/>
 </menupopup>

 <toolbox id="navigator-toolbox">
 <toolbar id="notetaker-toolbar">
 … existing toolbar content goes here …
 </toolbar>
 </toolbox>
</overlay>

If we use the bottom-up approach to overlays, then we don’t need to mod-
ify the Classic Browser at all. We’ll do it that way, which means no more XUL
changes. All that remains is to register the RDF document with the chrome
registry, using the chrome://navigator/content/contents.rdf file. In
Chapter 2, XUL Layout, the contents.rdf was created with the content in
Listing 12.13.

Listing 12.13 Chrome registration file for a package without overlays.
<?xml version="1.0"?>
<RDF
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:chrome="http://www.mozilla.org/rdf/chrome#">

<Seq about="urn:mozilla:package:root">
 <li resource="urn:mozilla:package:notetaker"/>
 </Seq>

<Description about="urn:mozilla:package:notetaker"
 chrome:displayName="NoteTaker"
 chrome:author="Nigel McFarlane"
 chrome:name="notetaker">
 </Description>

</RDF>

AppDevMozilla-12 Page 431 Thursday, December 4, 2003 6:34 PM

432 Overlays and Chrome Chap. 12

This existing file states that the NoteTaker package exists. Now we must
tell it that the overlay URL and the target URL exist. The target URL is the
document to which the overlay will be added. The extra facts required are
shown in Listing 12.14.

Listing 12.14 Registration content required for a single overlay.
<!-- State the document that receives the overlay -->
<Seq about="urn:mozilla:overlays">
 <li resource="chrome://navigator/content/navigator.xul"/>
</Seq>

<!-- state the overlay that applies to the target -->
<Seq about="chrome://navigator/content/navigator.xul">
 chrome://notetaker/content/browserOverlay.xul
</Seq>

In the distant past, overlay names were plain strings, not URLs. This
history is responsible for the restriction that the last tag cannot use the
resource= attribute. This is true up to at least version 1.4.

After all these changes are made, the Classic Browser is decorated as
shown in Figure 12.4. To see this change, we must shut down the platform,
delete the existing chrome.rdf file and the existing overlayinfo directory,
and restart the platform. Note that part of the NoteTaker toolbar is covered by
the exposed menu.

That concludes the “Hands On” session for this chapter.

12.6 DEBUG CORNER: OVERLAY TIPS

Overlays are very simple and need little debugging, but there are one or two
serious potholes to avoid.

Fig. 12.4 Master document with extra overlay content.

AppDevMozilla-12 Page 432 Thursday, December 4, 2003 6:34 PM

12.7 Summary 433

The most subtle problem with overlays is caused by the contents.rdf
file that sits inside the contents directory of a package. When the URL of an
overlay is specified, it must be specified as plain XML text, not as a URI. This
is wrong:

<li resource="chrome://package/content/overlay.xul"/>

This is right:

chrome://package/content/overlay.xul

If the package also acts as a master document (because it includes its
own overlays), then it should be written as a resource when it is registered as
a master. It should still be written as XML text when it is registered as an
overlay. This stumbling block is a defect in the chrome system.

If an overlay document has illegal XML syntax and is registered in the
overlayinfo database, then any application that includes that overlay may not
load. In versions from 1.3 onward, the faulty overlay will result in a yellow
syntax error message at the bottom of the incomplete final document. To fix
this, shut down the platform and delete the RDF overlay information for that
file, or fix the original syntax. To delete the overlay information, delete the
whole overlayinfo database and delete any facts in contents.rdf files
that refer to the problem document.

A useful feature of overlays delivered the bottom-up way involves popup
windows generated by Web sites. When those sites attempt to pop up windows
without toolbars, any custom toolbar or other overlay content will still appear.
That is quite convenient if you are a Web developer who likes to examine the
source of other people’s pages. The source of popup windows is normally not
accessible if the window has lost all its decorations.

12.7 SUMMARY

Mozilla’s overlay system provides a programming-in-the-large, or at least in-
the-medium, component technology for programmers. It is a component tech-
nology for XML-based GUI systems, but in Mozilla only works with XUL.
Overlays can be added directly into XUL content. Alternatively, platform fea-
tures can be exploited to drive the inclusion process automatically.

Overlays, the chrome registry, and persisted data make very passive use
of RDF. RDF files are read and written automatically, without the program-
mer even trying. That is hardly an opportunity to see the application power of
RDF. In the next chapter, we return to XUL to see the two power tags: <list-
box> and <tree>. In addition to being indispensable in their own right, these
tags will bring us one step closer to full programming of RDF.

AppDevMozilla-12 Page 433 Thursday, December 4, 2003 6:34 PM

