

35

C

H A P T E R

3

Basic

e

 Concepts

In this chapter we discuss the basic constructs and conventions in

e

. These conventions and con-
structs are used throughout the later chapters. These conventions provide the necessary frame-
work for understanding

e

. This chapter may seem dry, but understanding these concepts is a
necessary foundation for the successive chapters.

Chapter Objectives

• Understand conventions for code segments, comments, white space, numbers, con-

stants, and macros.

• Describe how to import other

e

 files.

• Define the data types such as scalar type and subtypes, enumerated scalar type, list type,

and string type.

• Understand syntax hierarchy of statements, struct members, actions, and expressions.

• Explain the use of simulator variables in

e

.

3.1 Conventions

e

 contains a stream of tokens. Tokens can be comments, delimiters, numbers, constants, identifi-
ers, and keywords.

e

 is a case-sensitive language. All keywords are in lowercase.

3.1.1 Code Segments

A code segment is enclosed with a begin-code marker

<'

 and an end-code marker

'>

. Both the
begin-code and the end-code markers must be placed at the beginning of a line (leftmost), with

Ch03Basic.fm Page 35 Tuesday, August 26, 2003 8:51 AM

36 Chapter 3 • Basic

e

 Concepts

no other text on that same line (no code and no comments). The example below shows three
lines of code that form a code segment.

Several code segments can appear in one file. Each code segment consists of one or more state-
ments.

3.1.2 Comments and White Space

e

 files begin as a comment which ends when the first begin-code marker

<'

 is encountered.

Comments within code segments can be marked with double dashes (

--

) or double slashes (

//

).

The end-code

'>

 and the begin-code

<'

 markers can be used in the middle of code sections, to
write several consecutive lines of comment.

3.1.3 Numbers

There are two types of numbers, sized and unsized.

3.1.3.1 Unsized Numbers

Unsized numbers are always positive and zero-extended unless preceded by a hyphen. Decimal
constants are treated as signed integers and have a default size of 32 bits. Binary, hex, and octal
constants are treated as unsigned integers, unless preceded by a hyphen to indicate a negative
number, and have a default size of 32 bits.

<'
 import cpu_test_env;
'>

a = 5; -- This is an inline comment
b = 7; // This is also an inline comment

Import the basic test environment for the CPU...
This is a comment

<'
 import cpu_test_env;
'>

This particular test requires the code that bypasses bug#72 as well as
the constraints that focus on the immediate instructions. This is a
comment

<'
 import bypass_bug72;
 import cpu_test0012;
'>

Ch03Basic.fm Page 36 Tuesday, August 26, 2003 8:51 AM

Design Verification with e

37

The notations shown in Table 3-1 can be used to represent unsized numbers.

3.1.3.2 Sized Numbers

A sized number is a notation that defines a literal with a specific size in bits. The syntax is:

width-number

 ' (

b|o|d|h|x

)

 value-number

;

The width number is a decimal integer specifying the width of the literal in bits. The value
number is the value of the literal and it can be specified in one of four radixes, as shown in
Table 3-2.

NOTE

If the value number is more than the specified size in bits, its most signifi-
cant bits are ignored. If the value number is less that the specified size, it is padded
by zeros.

Table 3-1

Representing Unsized Numbers in Expressions

Notation Legal Characters Examples

Decimal integer Any combination of 0-9 possibly preceded
by a hyphen - for negative numbers. An
underscore (_) can be added anywhere in
the number for readability.

12, 55_32, -764

Binary integer Any combination of 0-1 preceded by

0b

.
An underscore (_) can be added anywhere
in the number for readability.

0b100111,
0b1100_0101

Hexadecimal integer Any combination of 0-9 and a-f preceded
by

0x

. An underscore (_) can be added
anywhere in the number for readability.

0xff,
0x99_aa_bb_cc

Octal integer Any combination of 0-7 preceded by 0o.
An underscore (_) can be added anywhere
in the number for readability.

0o66_123

K

(kilo: multiply by
1024)

A decimal integer followed by a K

or k.
For example, 32K = 32768.

32K, 32k, 128k

M

(mega: multiply by
1024*1024)

A decimal integer followed by an M

or m.
For example, 2m = 2097152.

1m, 4m, 4M

Ch03Basic.fm Page 37 Tuesday, August 26, 2003 8:51 AM

38 Chapter 3 • Basic

e

 Concepts

3.1.4 Predefined Constants

A set of constants is predefined in

e

, as shown in Table 3-3.

Table 3-2

Radix Specification Characters

Radix Represented By Example

Binary A leading 'b or 'B 8'b11001010

Octal A leading 'o or 'O 6'o45

Decimal A leading 'd or 'D 16'd63453

Hexadecimal A leading 'h or 'H or 'x or 'X 32'h12ffab04

Table 3-3

Predefined Constants

Constant Description

TRUE For boolean variables and expressions

FALSE For boolean variables and expressions

NULL For structs, specifies a NULL pointer; for character strings, specifies
an empty string

UNDEF UNDEF indicates NONE where an index is expected

MAX_INT Represents the largest 32-bit

int

 (2

31

 -1)

MIN_INT Represents the largest negative 32-bit

int

 (-2

31

)

MAX_UINT Represents the largest 32-bit

uint

 (2

32

-1)

Ch03Basic.fm Page 38 Tuesday, August 26, 2003 8:51 AM

Design Verification with e

39

3.1.4.1 Literal String

A literal string is a sequence of zero or more ASCII characters enclosed by double quotes (“ “).
The special escape sequences shown in Table 3-4 are allowed.

This example shows escape sequences used in strings. Although other constructs are introduced
here only for the sake of completeness, please focus only on the string syntax.

Table 3-4

Escape Sequences in Strings

Escape Sequence Meaning

\n New-line

\t Tab

\f Form-feed

\” Quote

\\ Backslash

\r Carriage-return

<'
extend sys {

 m() is {
 var header: string = //Define a string variable
 "Name\tSize in Bytes\n----\t-------------\n";
 var p: packet = new;
 var pn: string = p.type().name;
 var ps: uint = p.type().size_in_bytes;
 outf("%s%s\t%d", header, pn, ps);
 };
};
'>

Ch03Basic.fm Page 39 Tuesday, August 26, 2003 8:51 AM

40 Chapter 3 • Basic

e

 Concepts

The result of running the example above is shown below.

3.1.5 Identifiers and Keywords

The following sections describe the legal syntax for identifiers and keywords.

3.1.5.1 Legal

e

 Identifiers

User-defined identifiers in

e

 code consist of a case-sensitive combination of any length of the
characters A-Z, a-z, 0-9, and underscore. They must begin with a letter. Identifiers beginning
with an underscore have a special meaning in

e

 and are not recommended for general use. Iden-
tifiers beginning with a number are not allowed.

The syntax of an

e

 module name (a file name) is the same as the syntax of UNIX file names,
with the following exceptions.

• ‘@’ and ‘~’ are not allowed as the first character of a file name.
• ‘[‘, ‘]’, ‘{‘, ‘}’ are not allowed in file names.
• Only one ‘.’ is allowed in a file name.

3.1.5.2

e

 Keywords

The keywords listed in Table 3-5 below are the reserved words of the

e

 language. Some of the
terms are keywords only when used together with other terms, such as “key” in “

list(key

:

key

)

”,
“before” in “

keep gen

x

before

y

”, or “computed” in “

define

def

as computed

”

.

Table 3-5

List of Keywords

Specman>

sys.m()

Name Size in Bytes
---- -------------
packet 20

all of all_values and as a as_a
assert assume async attribute before
bit bits bool break byte
bytes c export case change check that
compute computed consume continue cover
cross cvl call cvl callback cvl method cycle
default define delay detach do
down to dut_error each edges else
emit event exec expect extend
fail fall file first of for
force from gen global hdl pathname
if #ifdef #ifndef in index
int is is a is also is c routine
is empty is first is inline is instance is not a
is not empty is only is undefined item keep
keeping key like line list of
matching me nand new nor
not not in now on only
or others pass prev_ print

Ch03Basic.fm Page 40 Tuesday, August 26, 2003 8:51 AM

Design Verification with e

41

3.1.6 Macros

The simplest way to define

e

 macros is with the

define

 statement. An

e

 macro can be defined
with or without an initial ` character.

You can also import a file with Verilog

‘define

 macros using the keywords

verilog import

.

range ranges release repeat return
reverse rise routine select session
soft start state machine step struct
string sync sys that then
time to transition true try
type uint unit until using
var verilog code verilog function verilog import verilog simulator
verilog task verilog time verilog timescale verilog trace verilog variable
vhdl code vhdl driver vhdl function vhdl procedure vhdl driver
vhdl simulator vhdl time when while with
within

<'
define WORD_WIDTH 16; //Definition of the WORD_WIDTH macro
struct t {
 f: uint (bits: WORD_WIDTH); //Usage of WORD_WIDTH macro
};
'>

macros.v (Verilog defines file)

`define BASIC_DELAY 2
`define TRANS_DELAY `BASIC_DELAY+3
`define WORD_WIDTH 8

dut_driver.e (

e

 file)

<'
verilog import macros.v; //Imports all definitions from
 //macros.v file
//Macros imported from Verilog must be used
//with a preceding ‘.
struct dut_driver {
 ld: list of int(bits: `WORD_WIDTH); //use verilog macro
 keep ld.size() in [1..‘TRANS_DELAY];//use verilog macro
};
'>

Ch03Basic.fm Page 41 Tuesday, August 26, 2003 8:51 AM

42 Chapter 3 • Basic

e

 Concepts

3.1.7 Importing

e

 Files

e

 files are called modules. An

e

 file can import another

e

 file using the

import

 keyword. The

import

 statement loads additional

e

 modules before continuing to load the current file. If no
extension is given for the imported file name, a “.e” extension is assumed. The modules are
loaded in the order they are imported. The

import

 statements must be before any other
statements in the file.

If a specified module has already been loaded or compiled, the statement is ignored. For mod-
ules not already loaded or compiled, the search sequence is:

1. The current directory

2. Directories specified by the SPECMAN_PATH1 environment variable

3. The directory in which the importing module resides

3.2 Data Types
This section discusses the basic data types in e.

//File Name: pci_transaction_definition.e
<'
type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
 MEM_READ=0x6, MEM_WRITE=0x7];
struct pci_transaction {
 address: uint;
 command: PCICommandType;
 bus_id: uint;
};
'>
//End File: pci_transaction_definition.e
--
//File Name: pci_transaction_extension.e
<'
//Import the file defined above. Note that the .e
//extension is assumed in an import statement
import pci_transaction_definition; //.e extension is the default

extend pci_transaction {
 data: list of uint;
};
'>
//End File: pci_transaction_extension.e

1. This is an environment variable used by Specman Elite for setting up search paths.

Ch03Basic.fm Page 42 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 43

3.2.1 Scalar Types

Scalar types in e are one of the following:

• Numeric

• Boolean

• Enumerated

3.2.1.1 Numeric and Boolean Scalar Types

Table 3-6 shows predefined numeric and boolean types in e.

Table 3-6 Scalar Types

Type Name Function Usage Example

int Represents numeric data, both negative and
non-negative integers. Default Size = 32 bits

length: int;

addr: int (bits:24); // 24-bit vector

uint Represents unsigned numeric data, non-nega-
tive integers only. Default Size = 32 bits

delay: uint;

addr: uint (bits:16); // 8-bit vector

bit An unsigned integer in the range 0–1.

Size = 1 bit

valid: bit; // 1-bit field

byte An unsigned integer in the range 0–255.

Size = 8 bits

data: byte; // 8-bit field

data: uint (bits:8); // Equivalent

 //definition

time An integer in the range 0–263-1. Default Size
= 64 bits

delay: time; //64-bit time variable

bool Represents truth (logical) values, TRUE (1)
and FALSE (0). Default Size = 1 bit

frame_valid: bool; //TRUE or

 //FALSE

Ch03Basic.fm Page 43 Tuesday, August 26, 2003 8:51 AM

44 Chapter 3 • Basic e Concepts

3.2.1.2 Enumerated Scalar Types

Enumerated types define the valid values for a variable or field as a list of symbolic constants.
For example, the following declaration defines the variable instr_kind as having two legal val-
ues.

These symbolic constants have associated unsigned integer values. By default, the first name in
the list is assigned the value zero. Subsequent names are assigned values based upon the maxi-
mum value of the previously defined enumerated items + 1.

It is also possible to assign explicit unsigned integer values to the symbolic constants. This
method is used when the enumerated types may not be defined in a particular order.

It is sometimes convenient to introduce a named enumerated type as an empty type.

Once the protocols that are meaningful in the program are identified the definition of the type
can be extended.

<'
//Implicit enumerated type. immediate=0, register=1
type instr_kind: [immediate, register];
'>

<'
//Explicit enumerated type. immediate=4, register=8
type instr_kind: [immediate=4, register=8];
'>

<'
type packet_protocol: []; //Define empty type
'>

<'
//Extend this type in a separate file.
//No need to touch the original file.
extend packet_protocol : [Ethernet, IEEE, foreign];

//Define a struct that uses a field of the above type.
struct packet {
kind: packet_protocol; //Define a field of type
 //packet_protocol. Three possible values.
};
'>

Ch03Basic.fm Page 44 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 45

3.2.1.3 Scalar Subtypes

A subtype can be created from one of the following:

• A predefined numeric or boolean type (int, uint, bool, bit, byte, time)

• A previously defined enumerated type

• A previously defined scalar subtype

Creation of subtypes is shown in the example below.

3.2.2 List Types

List types hold ordered collections of data elements. Items in a list can be indexed with the sub-
script operator [], by placement of a non-negative integer expression in the brackets. List
indexes start at zero. You can select an item from a list by specifying its index. For example,
my_list[0] refers to the first item in the list named my_list. Lists can be of any type. However, a
list of lists is not allowed. All items in a list must be of the same type. Lists are dynamically
resizable and they come with many predefined methods.

Lists are defined by using the list of keyword in a variable or a field definition.

<'
//Define an enumerated type opcode
type opcode: [ADD, SUB, OR, AND];

//Define a subtype using the previously defined type
//This subtype includes opcodes for logical operations
//OR, AND
type logical_opcode: opcode [OR, AND];

//Define a subtype of a predefined scalar type, 4 bit
//unsigned vector
type small: uint(bits:4);

//Define a struct that uses the above types
struct instruction {
op1: opcode; //Field of type opcode
op2: logical_opcode; //Field of type logical_opcode
length: small; //4 bit unsigned vector
};

'>

<'
struct packet {
addr: uint(bits:8); // 8-bit vector
data1: list of byte; //List of 8-bit values
};

Ch03Basic.fm Page 45 Tuesday, August 26, 2003 8:51 AM

46 Chapter 3 • Basic e Concepts

e does not support multidimensional lists (lists of lists). To create a list with sublists in it, you
can create a struct to contain the sublists, and then create a list of such structs as the main list. In
the example above, the packet struct contains a list of bytes. In sys struct, there is a list of 10
packets. Thus, sys contains a list of lists.

3.2.2.1 Keyed Lists

A keyed list data type is similar to hash tables or association lists found in other programming
languages. Keyed lists are defined with the keyword key. The declaration below specifies that
packets is a list of packets, and that the protocol field in the packet type is used as the hash key.
Keyed lists are very useful for searching through a list with a key.

3.2.3 The String Type
A string data type contains a series of ASCII characters enclosed by quotes (“ ”). An example of
string declaration and initialization is shown below.

(continued...)
struct sys {
packets[10]: list of packet; //List of 10 packet structures
values: list of uint(bits:128); //List of 128-bit vectors
};
'>

<'
type packet_protocol : [Ethernet, IEEE, foreign];
struct packet {
 protocol: packet_protocol;
};
struct dtypes {
 m() is { //Method definition explained later in book
 // Define local variable, keyed list
 var packets : list (key: protocol) of packet;
 };
};
'>

<'
struct dtypes {
 m() is { //Define a method (procedure)
 var message: string; //Define a variable of type string
 message = "Beginning initialization sequence…";
 //String value
 print message; //Print string
 };
};
'>

Ch03Basic.fm Page 46 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 47

3.3 Simulator Variables
In Chapter 2, we discussed two hierarchies in an e-based environment.

1. The design hierarchy represented in Verilog or VHDL.

2. The verification hierarchy represented in e

An example of the two hierarchies is shown in Figure 3-1 below

Figure 3-1 Verification and Design Hierarchies

Any e structure should be able to access the simulator variables for reading or writing during
simulation. The subsections below explain how to read and write simulator variables.

e Hierarchy (Verification) Verilog Hierarchy (Design)

sys

checker1 receiver1driver1

error1collect1protocol1data1

top

IBU FPUIU

processorstub

shiftaddsynchpci

Ch03Basic.fm Page 47 Tuesday, August 26, 2003 8:51 AM

48 Chapter 3 • Basic e Concepts

3.3.1 Driving and Sampling DUT Signals
In e, one can access simulator variables by simply providing the hierarchical path to the variable
within single quotes (‘’). The example below shows how to access the design hierarchy shown in
Figure 3-1.

3.3.2 Computed Signal Names
While accessing simulator variables, one can compute all or part of the signal name at run time
by using the current value of an e variable inside parentheses. For example, in Figure 3-1, if
there are three processors, processor_0, processor_1, and processor_2 instantiated inside top, it
should be possible to pick out one of the three processor instances based on an e variable.

<'
struct driver{ //Struct in the e environment
r_value: uint(bits:4); //Define a 4 bit field to read

read_value() is { //Define a method to read simulator
 //variable
 //Right hand side is the simulator variable
 //operand is a variable in module add in Verilog/VHDL
 //The “/” represents the traversal of hierarchy
 //Left hand side is an e field in struct driver
 r_value = ‘~/top/processor/FPU/add/operand’;
};

write_value() is { //Define a method to write simulator
 //variable
 //Left hand side is the simulator variable
 //Right hand side can be a constant, an e variable,
 //or a simulator variable.
 ‘~/top/processor/FPU/add/operand’ = 7; //Write 7 to variable
};
'>

Ch03Basic.fm Page 48 Tuesday, August 26, 2003 8:51 AM

Design Verification with e

49

e

 allows the usage of many parentheses in the computation of a signal name. Thus, it is possible
to dynamically choose the signal name at run time based on

e

 variable values.

3.4 Syntax Hierarchy

Unlike Verilog or C,

e

 enforces a very strict syntax hierarchy. This is very useful when one is
writing or loading

e

 code. Based on the error messages during loading, it is easy to determine the
nature of the syntactical mistake. The strict hierarchy also makes it very difficult to make
mistakes.

Every

e

 construct belongs to a construct category that determines how the construct can be used.
The four categories of

e

 constructs are shown in Table 3-7 below.

Figure 3-2 shows an example of the strict syntax hierarchy.

<'
struct driver{ //Struct in the e environment
id: uint(bits:2); //2 bit ID field determines processor 0,1,2
r_value: uint(bits:4); //Define a 4 bit field to read

read_value() is { //Define a method to read simulator
 //variable
 r_value = ‘~/top/processor_(id)/FPU/add/operand’;

 //If the id field == 1, then the above assignment
 //will be dynamically set to
 //r_value = ‘~/top/processor_1/FPU/add/operand’;
};

'>

Table 3-7

Constructs in the Syntax Hierarchy

Statements

Statements are top-level constructs and are valid within the begin-code

<'

 and end-code

'>

 markers.

Struct members

Struct members are second-level constructs and are valid only within a
struct definition.

Actions

Actions are third-level constructs and are valid only when associated
with a struct member, such as a method or an event.

Expressions

Expressions are lower-level constructs that can be used only within
another

e

 construct.

Ch03Basic.fm Page 49 Thursday, September 4, 2003 10:59 AM

50 Chapter 3 • Basic e Concepts

Figure 3-2 Syntax Hierarchy

The following sections describe each element of the syntax hierarchy in greater detail. Hence-
forth, any syntactical element in the book will be described as a statement, struct member,
action, or expression.

3.4.1 Statements
Statements are the top-level syntactic constructs of the e language and perform the functions
related to extending the e language and interfacing with the simulator.

Statements are valid within the begin-code <' and end-code '> markers. They can extend over
several lines and are separated by semicolons. For example, the following code segment has two
statements.

Table 3-8 shows the complete list of e statements.

<'
 import bypass_bug72; //Statement to import bypass_bug72.e
 type opcode: [ADD, SUB]; //Statement to define
 //enumerated type
'>

Statements

Actions

Expressions

Name Literals

struct transaction {

address : uint(bits: 16);

data : byte;

print_addr_zero() is {

if (address == 0) then {

print address;

address = address + 1;

};

};

};

Struct Members

Ch03Basic.fm Page 50 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 51

Table 3-8 e Statements

struct Defines a new data structure.

unit Defines a new data structure with special properties.

type Defines an enumerated data type or scalar subtype.

extend Modifies a previously defined struct or type.

define Extends the e language by defining new commands,
actions, expressions, or any other syntactic element.

#ifdef, #ifndef Is used with define statements to place conditions on the
e parser.

routine ... is C routine Declares a user-defined C routine that you want to call
from e.

C export Exports an e declared type or method to C.

import Reads in an e file.

verilog import Reads in Verilog macro definitions from a file.

verilog code Writes Verilog code to the stubs file, which is used to
interface e programs with a Verilog simulator.

verilog time Specifies Verilog simulator time resolution.

verilog variable reg | wire Specifies a Verilog register or wire that you want to drive
from e.

verilog variable memory Specifies a Verilog memory that you want to access from
e.

verilog function Specifies a Verilog function that you want to call from e.

verilog task Specifies a Verilog task that you want to call from e.

Ch03Basic.fm Page 51 Tuesday, August 26, 2003 8:51 AM

52 Chapter 3 • Basic e Concepts

3.4.2 Struct Members
Struct member declarations are second-level syntactic constructs of the e language that associate
the entities of various kinds with the enclosing struct or unit.

Struct members can only appear inside a struct definition statement. They can extend over sev-
eral lines and are separated by semicolons. For example, the following struct “packet” has three
struct members, len, data, and a method m().

A struct can contain multiple struct members of any type in any order. Table 3-9 shows a brief
description of e struct members. This list is not comprehensive. See Appendix A for a
description of all struct members.

vhdl code Writes VHDL code to the stubs file, which is used to
interface e programs with a VHDL simulator.

vhdl driver Is used to drive a VHDL signal continuously via the res-
olution function.

vhdl function Declares a VHDL function defined in a VHDL package.

vhdl procedure Declares a VHDL procedure defined in a VHDL pack-
age.

vhdl time Specifies VHDL simulator time resolution.

<'
struct packet{
 len: int; //Field of a struct
 data[len]: list of byte; //Field of a struct
 m() is { //Method(procedure) is struct member
 --
 --
 };
};
'>

Table 3-8 e Statements (Continued)

Ch03Basic.fm Page 52 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 53

3.4.3 Actions
e actions are lower-level procedural constructs that can be used in combination to manipulate the
fields of a struct or exchange data with the DUT. Actions are associated with a struct member,
specifically a method, an event, or an “on” struct member. Actions can also be issued interac-
tively as commands at the command line.

Actions can extend over several lines and are separated by semicolons. An action block is a list
of actions separated by semicolons and enclosed in curly braces, { }.

Table 3-9 e Struct Members

Field declaration Defines a data entity that is a member of the enclosing struct and
has an explicit data type.

Method declaration Defines an operational procedure that can manipulate the fields
of the enclosing struct and access run time values in the DUT.

Subtype declaration Defines an instance of the parent struct in which specific struct
members have particular values or behavior.

Constraint declaration Influences the distribution of values generated for data entities
and the order in which values are generated.

Coverage declaration Defines functional test goals and collects data on how well the
testing is meeting those goals.

Temporal declaration Defines e events and their associated actions.

Ch03Basic.fm Page 53 Tuesday, August 26, 2003 8:51 AM

54 Chapter 3 • Basic e Concepts

Shown below is an example of an action (an invocation of a method, “transmit()”) associated
with an event, xmit_ready. Another action, out() is called in the transmit() method.

The following sections describe the various categories of e actions. These actions can be used
only inside method declarations or the on struct member. Details on the usage of these actions
are not provided in these sections but will be treated in later chapters.

3.4.3.1 Actions for Creating or Modifying Variables

The actions described in Table 3-10 are used to create or modify e variables.

<'
struct packet{
 //Declare an event (struct member)
 event xmit_ready is rise('~/top/ready');
 //Declare fields (struct members)
 length: byte;
 delay: uint;
 //Declare an on construct (a struct member)
 //The transmit method is called in the on construct
 //See “On Struct Member” on page 184 for details.
 on xmit_ready {
 transmit(); //Call transmit method (Action)
 };
 //Declare a method (a struct member)
 transmit() is {
 length = 5; //Action that sets value of length
 delay = 10; //Action that sets value of delay
 out("transmitting packet..."); //Action to print
 //message
 };
};
'>

Table 3-10 Actions for Creating or Modifying Variables

var Defines a local variable.

= Assigns or samples values of fields, local variables, or HDL objects.

op Performs a complex assignment (such as add and assign, or shift and assign)
of a field, local variable, or HDL object.

Ch03Basic.fm Page 54 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 55

3.4.3.2 Executing Actions Conditionally

The actions described in Table 3-11 allow conditional behavior to be specified in e.

3.4.3.3 Executing Actions Iteratively

The actions described in Table 3-12 implement looping in e.

force Forces a Verilog net or wire to a specified value, overriding the value driven
from the DUT (rarely used).

release Releases the Verilog net or wire that was previously forced.

Table 3-11 Executing Actions Conditionally

if then else Executes an action block if a condition is met and a different action block
if it is not.

case labeled-case-item Executes one action block out of multiple action blocks depending on the
value of a single expression.

case bool-case-item Evaluates a list of boolean expressions and executes the action block asso-
ciated with the first expression that is true.

Table 3-12 Executing Actions Iteratively

while Executes an action block repeatedly until a boolean expression becomes
FALSE.

repeat until Executes an action block repeatedly until a boolean expression becomes
TRUE.

for each in For each item in a list that is a specified type, executes an action block.

for from to Executes an action block for a specified number of times.

for Executes an action block for a specified number of times.

Table 3-10 Actions for Creating or Modifying Variables (Continued)

Ch03Basic.fm Page 55 Tuesday, August 26, 2003 8:51 AM

56 Chapter 3 • Basic e Concepts

3.4.3.4 Actions for Controlling Loop Execution

The actions described in Table 3-13 control the execution of loops.

Table 3-13 Actions for Controlling Loop Execution

3.4.3.5 Actions for Invoking Methods and Routines

The actions described in Table 3-14 illustrate the ways for invoking methods (e procedures) and
routines (C procedures).

for each line in file Executes an action block for each line in a file.

for each file matching Executes an action block for each file in the search path.

break Breaks the execution of the enclosing loop.

continue Stops execution of the enclosing loop and continues with the next iteration of
the same loop.

Table 3-14 Actions for Invoking Methods and Routines

method() Calls a regular method.

tcm() Calls a TCM.

start tcm() Launches a TCM as a new thread (a parallel process).

routine() Calls an e predefined routine.

Calling C routines from e Describes how to call user-defined C routines.

compute_method() Calls a value-returning method without using the value
returned.

return Returns immediately from the current method to the method
that called it.

Table 3-12 Executing Actions Iteratively (Continued)

Ch03Basic.fm Page 56 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 57

3.4.3.6 Time Consuming Actions

The actions described in Table 3-15 may cause simulation time to elapse before a callback is
issued by the Simulator to Specman Elite.

3.4.3.7 Generating Data Items

The action described in Table 3-16 is useful for generating the fields in data items based on spec-

ified constraints.

3.4.3.8 Detecting and Handling Errors

The actions described in Table 3-17 are used for detecting and handling errors.

3.4.3.9 General Actions

The actions described in Table 3-18 are used for printing and setting configuration options for
various categories.

Table 3-15 Time Consuming Actions

emit Causes a named event to occur.

sync Suspends execution of the current TCM until the temporal expression suc-
ceeds.

wait Suspends execution of the current TCM until a given temporal expression suc-
ceeds.

all of Executes multiple action blocks concurrently, as separate branches of a fork.
The action following the all of action is reached only when all branches of the
all of have been fully executed.

first of Executes multiple action blocks concurrently, as separate branches of a fork.
The action following the first of action is reached when any of the branches in
the first of has been fully executed.

state machine Defines a state machine.

Table 3-16 Generating Data Items

gen Generates a value for an item, while considering all relevant constraints.

Ch03Basic.fm Page 57 Tuesday, August 26, 2003 8:51 AM

58 Chapter 3 • Basic e Concepts

3.4.4 Expressions

Expressions are constructs that combine operands and operators to represent a value. The result-
ing value is a function of the values of the operands and the semantic meaning of the operators.
A few examples of operands are shown below.

Expressions are combined to form actions. Each expression must contain at least one operand,
which can be:

• A literal value (an identifier)

• A constant

• An e entity, such as a method, field, list, or struct

• An HDL entity, such as a signal

Table 3-17 Detecting and Handling Errors

check that Checks the DUT for correct data values.

expect Expects a certain temporal expression to succeed.

dut_error() Defines a DUT error message string.

assert Issues an error message if a specified boolean expression is not true.

warning() Issues a warning message.

error() Issues an error message when a user error is detected.

fatal() Issues an error message, halts all activities, and exits immediately.

try() Catches errors and exceptions.

Table 3-18 General Actions

print Prints a list of expressions.

set_config() Sets options for various categories, including printing.

address + 1
a + b
address == 0
‘~/top/port_id’ + 1

Ch03Basic.fm Page 58 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 59

A compound expression applies one or more operators to one or more operands. Strict type
checking is enforced in e.

3.4.5 Name Literals (Identifiers)
Identifiers are names assigned to variables, fields, structs, units, etc. Thus identifiers are used at
all levels of the syntax hierarchy, i.e., they are used in statements, struct members, actions, and
expressions. Identifiers must follow the rules set in “Legal e Identifiers” on page 40. In the
example below, identifiers are highlighted with comments.

3.5 Summary
We discussed the basic concepts of e in this chapter. These concepts lay the foundation for the
material discussed in the further chapters.

• Conventions for code segments, comments, white space, numbers, constants, and mac-

ros were discussed.

• It is possible to import other e files in an e file. The import statements must always be

the first statements in the file.

• e contains data types such as scalar type and subtypes, enumerated scalar type, list type,

and string type.

• Simulator variables can be directly read or written from e code. One can access simula-

tor variables by enclosing the hierarchical path to the simulator variable in single

quotes.

• There is a strict syntax hierarchy of statements, struct members, actions, and expres-

sions. A strict hierarchy enforces coding discipline and minimizes errors.

<'
struct packet{ //"packet" is an identifier
 %address: uint(bits:2); // "address" is an identifier
 %len: uint(bits:6); //"len" is an identifier
 %data[len]: list of byte; //"data" is an identifier
 my_method() is { //"my_method" is an identifier
 result = address + len; //Identifiers are used in
 //an expression
 --
 };
};
'>

Ch03Basic.fm Page 59 Tuesday, August 26, 2003 8:51 AM

60 Chapter 3 • Basic e Concepts

3.6 Exercises

1. Write a code segment that contains just one statement to import file basic_types.e.

2. Determine which comments in the following piece of e code are written correctly. Cir-
cle the comments that are written incorrectly.

3. Practice writing the following numbers. Use _ for readability.

a. Decimal number 123 as a sized 8-bit number in binary
b. A 16-bit hexadecimal with decimal value 135
c. An unsized hex number 1234
d. 64K in decimal
e. 64K in e

4. Name the predefined constants in e.

5. Write the correct string to produce each of the following outputs.

a. “This is a string displaying the % sign”
b. “out = in1 + in2 \\”
c. “Please ring a bell \t”
d. “This is a backslash \ character\n”

<'
Import the basic test environment for the CPU...
 import cpu_test_env;
'>

This particular test requires the code that bypasses bug#72 as well as
the constraints that focus on the immediate instructions.

<'
 /*Import the bypass bug file*/
 import bypass_bug72;
 //Import the cpu test file_0012
 import cpu_test0012;
 --Import the cpu test file_0013
 import cpu_test0013;

'>

Ch03Basic.fm Page 60 Tuesday, August 26, 2003 8:51 AM

Design Verification with e 61

6. Determine whether the following identifiers are legal:

a. system1
b. 1reg
c. ~latch
d. @latch
e. exec[
f. exec@

7. Define a macro LENGTH equal to 16.

8. Declare the following fields in e.

a. An 8-bit unsigned vector called a_in
b. A 24-bit unsigned vector called b_in
c. A 24-bit signed vector called c_in
d. An integer called count
e. A time field called snap_shot
f. A string called l_str
g. A 1-bit field called b

9. Declare an enumerated type called frame_type. It can have values SMALL and
LARGE. Declare a field called frame of this enumerated type.

10. Write the following actions with simulator variables.

a. Assign the value of simulator variable top.x1.value to len field in e.
b. Write the value 7 to the simulator variable top.x1.value.

11. Describe the four levels of e syntax hierarchy. Identify three keywords used at each
level of the hierarchy.

Ch03Basic.fm Page 61 Tuesday, August 26, 2003 8:51 AM

Ch03Basic.fm Page 62 Tuesday, August 26, 2003 8:51 AM

