
Software Architecture:
Basic Training

T H R E E

This chapter on basic training for software architects presents the funda-
mental tools required of effective software architects. In the military,
basic training is used to challenge and motivate cadets and to demon-

strate both the demands and rewards of a military career. Similarly, software
architects must be motivated individuals who have the desire to confront the
challenges of technical leadership in a software development effort. However,
motivation is not enough. A software architect must be equipped with the intel-
lectual tools to realize an architectural vision.

This book takes a hands-on approach that not only presents the best archi-
tectural practices in the industry but also provides concrete real-world exam-
ples and exercises for applying the presented material to circumstances
common throughout the software industry. Basic training will cover the funda-
mental concepts of software technology, which provide a foundation for soft-
ware architecture. Software technology has evolved through many trends and
alternatives for software development. Currently, mainstream software practice
has evolved from procedural to object-oriented to component-oriented devel-
opment (Figure 3.1). With the increasing adoption of enterprise Java and Mi-
crosoft .Net, component orientation is the next major paradigm. In corporate
development, most new-start projects are adopting component orientation be-
cause it is supported by the majority of commercial development environ-
ments. As is discussed in this chapter, object orientation has a very weak notion
of software architecture, which leads to serious shortcomings. The emerging
trend of component orientation is replacing old approaches with strong ele-
ments of architectural design.

45

BootCH03 11/11/03 4:26 PM Page 45

Software architects must be able to articulate these development para-
digms clearly, along with appropriate uses of enabling technologies. In any
given project, an eclectic mixture of development paradigms (including rela-
tional database management) can be useful to achieve the best results. Each
paradigm has something useful to offer, including mature development tools.

Today, most organizations will find their technology skill base engaged in one
of the three major paradigms: procedural, object oriented, or component ori-
ented. Each paradigm is highly specific to the organization and its staff skills.
Procedural and object-oriented paradigms are closely tied to programming lan-
guage choice, but component orientation is different in that it is more closely
associated with the selection of an infrastructure.

Procedural programming languages include FORTRAN, COBOL, C,
Pascal, and BASIC. In procedural technology, the program comprises the
process for executing various algorithms. The process is separated from the
data in the system, and the process manipulates the data through direct access
operations. This is a direct outcome of the stored-procedure programming sys-
tems from which computer technology originates. When the program and data
are separated, there are many potential interdependencies between parts of the
program. If the data representation is modified, there can be substantial impacts
on the program in multiple places.

46 Chapter Three Software Architecture: Basic Training

Procedural technology Object-oriented technology

Subroutines

Program Direct
access

Messages

Data

Object

Data

Object

Data

Object

Data

Object

Data

Data

Data

Data

FIGURE 3.1 (a) Procedural Paradigm and (b) Object-Oriented Paradigm

BootCH03 11/11/03 4:26 PM Page 46

An example of data–process separation is the year 2000 problem, in
which simply adding some additional digits to the date representation had cata-
strophic consequences for procedural software. Unfortunately, because the ma-
jority of systems are built with procedural technology, the dependencies upon
these data representations can cause system-wide program errors and the ne-
cessity for line-by-line program review and modification.

3.1 Object-Oriented Technology

Object-oriented programming languages include Smalltalk, C++, the Java pro-
gramming language (“the Java language”), and C#, one of the languages avail-
able in the Microsoft .Net development environment. These languages support
the encapsulation of data with accessor code in terms of abstract data types
(commonly called classes). In object-oriented programming languages, the en-
capsulation capabilities are sufficient for reasonably sized programs. As long
as software modules are maintained by individual programmers, encapsulation
is sufficiently robust to provide some intrinsic benefits. However, language-
specific encapsulation is insufficient to support software reuse and distributed
systems.

In object-oriented technology, the basic paradigm is changed to enable a
separation of concerns. Figure 3.1 shows the object-oriented technology para-
digm in which the program is broken up into smaller pieces called objects.
Each object contains some of the data of the system, and the program encapsu-
lates that data. In other words, access to the data is available only by using the
program through which it is directly associated. In this way, the system is parti-
tioned into modules that isolate changes. Any changes in data representation
have an impact only on the immediate object that encapsulates that data.

Objects communicate with each other through messages. Messages can
have an impact upon state—in other words, changing the data—but only
through the encapsulated procedures that have an intimate relationship to the
local data. For small-scale programs, the object paradigm is effective in its
isolation of change. However, the paradigm is not perfect for all of its poten-
tial uses.

Object-oriented technology is in widespread use today. It has been said
that the procedural technologies originated from academia, but the object-
oriented technologies actually originated from commercial organizations. In
fact, object-oriented technologies have many interesting origins that go back
virtually to the beginning of computer science. Today, object technology is the

Object-Oriented Technology 47

BootCH03 11/11/03 4:26 PM Page 47

dominant paradigm for commercial software. Virtually every vendor in the
software business is providing object-technology solutions that, together with
component infrastructures, can enable interoperability between software ven-
dors in various software environments.

Object-Oriented Architecture

For the majority of practitioners, object orientation is devoid of a software ar-
chitecture approach. This is manifested in multiple ways in object-oriented
methods and culture. Starting with what is generally regarded as the original
source for OO thinking, Designing Object-Oriented Software [Wirfs-Brock
1990], there was a notion of software architecture, including the discovery of
subsystems through inspection of collaboration diagrams, which merited an en-
tire chapter. In the next decade, little was written about architecture in the OO
methodology community. Major OO methodology books had at most a few
paragraphs concerning architecture, which were a faint reflection of Wirfs-
Brock’s architectural notions.

Since virtually nothing was written about architecture in the literature,
most OO practitioners had only rudimentary architectural guidance. They had
no reason to consider architecture important. This attitude has led to great con-
fusion on OO projects, as team members struggle to manage complexity and
scalability with OO methods not designed to address them.

In general, OO methods involve successive refinement of object models,
where most analysis objects are eventually transformed into programming ob-
jects. In terminology used in this book, these approaches are called model-
based methods. The assumption that each analysis object will inevitably
become a programming object is a major obstacle for OO thinkers to overcome
in order to understand architecture. In architectural models, specification ob-
jects represent constraints, not programming objects. They may or may not be
transformed into programming objects; that is an independent decision on the
part of the developer.

OO also opposes architecture in other subtle ways, related to project cul-
ture. OO encourages project teams to be egalitarian (e.g., CRC cards), where
all decisions are democratic. On such a project, there is no role for the architect
because there is little separation of decision making between members of the
development team.

OO encouraged “bad-is-better” thinking in development, a philosophy
that is virtually the opposite of architectural thinking. Using bad-is-better

48 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 48

thinking, the external appearance of a working implementation greatly out-
weighs any requirement for maintainable internal structure. In other words,
rapid iterative prototyping, with ruthless disregard for architectural principles,
is a normal, healthy environment for OO development.

The topic of architecture has resurfaced only recently in OO literature,
with the new-found popularity of componentware. Now it is customary to in-
clude a token chapter on architecture in most methodology books, whereas in
the heyday of OO, architecture was virtually taboo. In one sense, component-
ware is a response to the shortcomings of OO. Componentware, with its em-
phasis on larger-grained software interfaces and modules, is a progressive step
toward an architectural mindset.

Databases and Objects

Database technologies are also evolving toward objects. The database tech-
nologies originated with several different models. In recent years, the relational
model of databases has been predominant. More recently, object-oriented data-
bases have become a significant technology market, and databases that com-
bine object orientation and relational concepts are commonplace. Most of the
major industry databases, such as Oracle 9i and IBM’s DB2 database, include
object-relational capabilities.

Database query languages, such as Structured Query Language (SQL),
are being extended in standards work to support object-oriented concepts. One
reason why this is occurring is that the kinds of applications people are creating
require substantially more sophisticated types of data representations and types
of query algorithms for searching and manipulating the information.

Object in the Mainstream

Object technology is used today in most application areas and vertical markets.
Government organizations and commercial industry are pursuing dozens of
projects in object technology. A principal advantage of technology is that it en-
ables the implementation of new business processes that provide competitive
advantage to organizations. Society is changing toward increasing dependence
upon information technology. The use of object technology enables rapid sys-
tem implementation and various forms of labor saving through software reuse
mechanisms. Even though the largest number of lines of software still exists in
procedural languages such as COBOL, it is becoming clear that this paradigm
is changing.

Object-Oriented Technology 49

BootCH03 11/11/03 4:26 PM Page 49

Scripting Languages

Proponents of scripting languages claim that there are more scripting language
programmers than any other kind [Ousterhout 1998]. Scripting languages such
as the JavaScript language, TCL shell programming languages, and Visual
Basic enable preexisting software (e.g., components) to be easily integrated
into application configurations.

3.2 Component-Oriented Technology

Moving to the next level of software sophistication requires fundamental
changes in systems thinking, software processes, and technology utilization.
The next major area of technology, componentware (or component orien-
tation), contains key elements of the solution to today’s critical software
problems.

The componentware approach introduces a set of closely interrelated
techniques and technologies. Componentware introduces a sophisticated mind-
set for generating business results. These componentware elements include

† Component infrastructures
† Software patterns
† Software architecture
† Component-based development

Componentware technologies provide sophisticated approaches to software de-
velopment that challenge outdated assumptions. Together these elements create
a major new technology trend. Componentware represents as fundamental a
change in technology as object orientation did in previous generations. These
componentware technologies are discussed after a brief introduction to compo-
nentware’s unique principles.

Components versus Objects

Componentware can be understood as a reincarnation of object orientation and
other software technologies. Distinguishing componentware from previous
generations of technology are four principles: encapsulation, polymorphism,
late binding, and safety. This list overlaps with object orientation, except that it
eliminates the emphasis on inheritance. In component thinking, inheritance is a
tightly coupled, white-box relationship that is unsuitable for most forms of
packaging and reuse. Instead, components reuse functionality by invoking

50 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 50

other objects and components instead of inheriting from them. In component
terminology, these invocations are called delegations.

“Fit the parts together, one into the other, and build your figure
like a carpenter builds a house. Everything must be constructed,
composed of parts that make a whole...”—Henri Matisse

By convention, all components have specifications corresponding to their
implementations. The specification defines the component encapsulation (i.e.,
its public interfaces to other components). Reuse of component specifications
is a form of polymorphism that is strongly encouraged. Ideally, component
specifications are local or global standards that are widely reused throughout a
system, an enterprise, or an industry.

Componentware utilizes composition for building systems. In composi-
tion, two or more components are integrated to create a larger entity, which
could be a new component, a component framework, or an entire system. Com-
position is the integration of components. The combined component acquires
joint specifications from the constituent component.

If the components have matching specifications for client calls and serv-
ices, then they can interoperate with no extra coding. This is often called plug-
and-play integration. When executed at runtime, this is a form of late binding.
For example, a client component can discover a component server through an
online directory, such as the CORBA Trader Service. With matching client
and service interface specifications, the components can establish a runtime
binding to each other and interact seamlessly through the component infra-
structure.

In a perfect world, all components would be fully conformant with their
specifications and free from all defects. Successful operation and interoperation
of components depend on many internal and external factors. Safety properties
can help because they can minimize entire classes of defects in a component
environment. As society becomes increasingly dependent upon software tech-
nology, safety has become a serious legal concern and one of the most impor-
tant areas of computer science research. For example, Java’s garbage collection
feature guarantees memory safety, or freedom from memory deallocation de-
fects (which are problematic in C++ programs). Other kinds of safety include
type safety (guaranteed data type compatibility) and module safety, which con-
trols the effects of software extension and component composition.

Component-Oriented Technology 51

BootCH03 11/11/03 4:26 PM Page 51

Component Infrastructures

The componentware revolution has already arrived in the form of component
infrastructures. Major platform vendors have bet their futures on component-
ware product lines. In particular, Microsoft, Sun Microsystems, IBM, and the
CORBA consortia have established significant componentware infrastructures
through massive technology and marketing investments.

These component infrastructures (Microsoft .Net and Sun Java Enterprise
JavaBeans including CORBA) are dominant infrastructures for competing in-
dustry segments—component-oriented enterprise application development. In-
terestingly, these technologies are also mutually interoperable to a great extent
through the mutual support of XML, Web services, and other emerging stan-
dards for enterprise application development.

Microsoft has completely revamped its component infrastructure in its
current .Net product suite. The Microsoft .Net product suite is focused on the
development and deployment of enterprise-level applications and distributed
services. While it incorporates a lot of new code, it also includes many of the
products and technologies that were successful in Microsoft’s previous distrib-
uted development platforms, Microsoft Distributed Network Architecture
(DNA) and Distributed Common Object Model (DCOM) such as the Microsoft
Transactions Server (MTS), Microsoft SQL Server, and the long-lived Com-
mon Object Model (COM)/COM+ components. The existing .Net suite up-
grades these products in an integrated enterprise product suite along with new
support for XML data, Web services, and a much improved development envi-
ronment. Microsoft .Net is the concrete proof the software industry needed to
verify that Microsoft will remain a major player in the emerging world of com-
ponents for the foreseeable future.

Sun Microsystems’ invention of the Java language is a continuing evolu-
tion of programming language features, infrastructures, and related class li-
braries. The Java language technology has created tremendous industry
excitement and support from independent developers. The extensions for Java-
Beans and Enterprise JavaBeans establish an evolving component model that
rivals COM and ActiveX in the cross-platform application space. Enterprise
JavaBeans and the IBM San Francisco project are using Java Remote Method
Invocation (RMI) for distributed computing, one of several proprietary infra-
structures available to Java language programmers. More recently, the Java
language has included RMI over OMG’s Internet Inter ORB Protocol (IIOP),
which allows for Java to interoperate with distributed components in other pro-
gramming languages that have a CORBA IDL interface. While proprietary
Java language infrastructures do provide convenience for programmers, they

52 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 52

require additional complexity to interoperate with other programming lan-
guages, especially locally using the Java Native Interface (JNI) to invoke rou-
tines in programming languages other than Java. This may be a significant
hindrance for corporate projects because it slows legacy integration and cross-
language development, which is commonplace for server applications.

Java application servers have overtaken CORBA’s role in many Internet-
savvy organizations. What CORBA lacks is direct support for scalability, relia-
bility, and maintainability. These capabilities are standard features supported
by most Java application servers today.

Componentware infrastructures are having a significant impact on soft-
ware development. In many respects, these infrastructures are well on their
way to becoming mainstream development platforms. Because they are all be-
coming interoperable (through CORBA IIOP), there is a well-understood rela-
tionship between infrastructure models. Their similarities are much greater
than their proprietary differences might imply.

Infrastructure selection is one of the most discussed, but least important,
aspects of implementing componentware. For corporate developers, the most
critical issues are confronted well after infrastructure selection. These issues
include how to master designing with the technology, how to architect systems,
and how to coordinate one’s development efforts..

Component Software Design Patterns

Software design patterns comprise a common body of software knowledge that
can be applied across all component infrastructures. Software design patterns
are proven design approaches to a specific category of structural software prob-
lems that are documented for reuse by other developers. Other important cate-
gories of patterns include analysis patterns and AntiPatterns. Analysis patterns
define proven ways of modeling business information that can be directly ap-
plied to the modeling of new software systems and databases.

Software design patterns are a necessary element of componentware. The
development of new, reusable components requires an expert-level quality of
design, specification, and implementation. Proven design solutions are neces-
sary to establish successful component architectures and frameworks for fami-
lies of applications. Often, there are too many variables to take chances on
unproven design concepts.

The popularity of software design patterns can be explained as a response
to the practical shortcomings of object orientation. AntiPatterns explain the
common mistakes that people make when developing object-oriented software

Component-Oriented Technology 53

BootCH03 11/11/03 4:26 PM Page 53

systems (as well as other types of systems). Much more is needed than basic
object-oriented principles to build successful systems. Design patterns explain
the additional, sophisticated ideas that are required for effective software de-
signs. Analysis patterns present the sophisticated ideas necessary for the effec-
tive modeling of concepts and data.

It is still commonplace in software development to reinvent design ideas,
incurring the risks and delays of trial-and-error experimentation. In fact, most
software methods encourage reinvention as the normal mode of development.
Given the challenging forces of requirements change, technology innovation,
and distributed computing, reinvention is an unnecessary risk in many circum-
stances. This comment is especially applicable to the development of compo-
nents, where the costs of defects and redesigns can affect multiple systems.

Altogether, software design patterns can be described as knowledge
reuse. It is interesting to note that most patterns are considered as simple as
common sense by expert-level developers. However, for the majority of devel-
opers, patterns are a necessary part of the technical training that can help them
to achieve world-class results.

Component Software Architecture

Software architecture concerns the planning and maintenance of system struc-
ture from earliest system concept through development and operations. Good
architectures are stable system structures that can accommodate changes in re-
quirements and technologies. Good architectures ensure the continuous satis-
faction of human needs (i.e., quality) throughout system life cycles. Reusable
components are examples of good architecture. They support stable interface
specifications, which can accommodate changes that are the result of reuse in
many system contexts.

Software architecture plays an important role in component design, spec-
ification, and use. Software architecture provides the design context within
which components are designed and reused. Components have a role in prede-
termining aspects of software architecture. For example, a component frame-
work may predefine the architecture of a significant portion of a system.

One of the most exciting aspects of software architecture for component-
ware is supporting distributed project teams. Software architecture comprises a
system specification that enables parallel, independent development of the sys-
tem or its parts. Proper software architecture defines computational boundaries
(i.e., APIs) that divide the system into separate testable subsystems. These sub-
systems can be outsourced to one or more distributed project teams.

54 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 54

3.3 Technology Ownership

Because object technology is the dominant commercial paradigm, it is impor-
tant to understand the major kinds of commercial technologies available for the
architecture of software systems. The two major categories include proprietary
software and open systems software.

Proprietary Software

Proprietary software is a non-standards-compliant product of a single vendor.
That single vendor controls the form and function of the software through
many iterations of product releases. When today’s systems are built, they are
dependent upon commercial software to varying degrees. Commercial software
is the primary form of software reuse and in practice is a much more effective
form of reuse within individual enterprises.

An economy of scale is one reason why commercial software is a more
powerful form of reuse. Large numbers of copies of the software are distrib-
uted to customers, and the software can be debugged and quality controlled to
a degree that exceeds the in-house development capabilities of even the largest
end-user enterprises. When end-user enterprises depend upon proprietary soft-
ware, they are dependent upon the vendors’ continued support for existing ca-
pabilities, and architecturally many end-users depend upon future features that
the vendors claim will be added to the software. When proprietary software is
packaged in the form of a public specification or standard, the specification is
usually a direct representation of that single software implementation.

Often, when proprietary specifications are put forward in the public do-
main, it is unlikely that the proprietary implementation will be modified. This
leaves the impression that proprietary software can also be an open system
standard, when in fact there is no possibility of modifying the underlying tech-
nologies. This phenomenon is especially true when millions of software li-
censes have been distributed and are running on existing software systems.
When proprietary technology is put forward, vendors use unique interpreta-
tions of software concepts to describe their products. These interpretations can
include fundamental modifications to object-oriented principles.

“We shape our buildings; thereafter they shape us.” —Sir Winston
Spencer Churchill

The most significant aspect of proprietary technology is the provision of
application program interfaces (APIs). The APIs to proprietary software define

Technology Ownership 55

BootCH03 11/11/03 4:26 PM Page 55

the boundary between a proprietary implementation and any value-added ap-
plication software that either an independent software vendor or the end-user
provides to build application systems. As proprietary software technologies
evolve through multiple releases, the application program interfaces can
change.

New capabilities are continuously added to proprietary software, and this
exacerbates the complexity of application program interfaces. In many cases,
the complexity of the program interfaces available with proprietary software
greatly exceeds the functionality needs of end-user organizations. It then be-
comes appropriate for the end-user organizations to attempt to manage this
complexity in various ways. Complexity-management concepts are covered in
several chapters, most explicitly in Chapter 5.

In addition to adding new capabilities to proprietary program interfaces,
vendors also on occasion may make obsolete their interfaces in software.
Doing so can have a significant maintenance impact upon application software.
As proprietary software evolves through multiple releases, it is important for
users to continue to upgrade the software to remain in synchronization with the
mainstream support activities from the proprietary vendor. When the end-
users’ systems fall behind more than two cycles, it is often necessary to repur-
chase and reintegrate completely the commercial software in order to
synchronize with the currently released version. Many end-users have found
that application program interfaces are almost completely obsolete within a
few cycles of product release.

In summary, proprietary software releases and the evolution of the pro-
gram interfaces become a treadmill for application programmers and indepen-
dent software vendors to maintain synchronization with available and
supported software. There is a conflict of interests between the application
users and the proprietary software vendors because the majority of the vendors’
profits can be driven by the sale of software upgrades.

Open Systems Software

The other major category of commercial software is open systems technolo-
gies (Figure 3.2). An open system technology is fundamentally different from
a proprietary technology. In an open system technology, multiple vendors
agree to develop a specification that is independent of proprietary implementa-
tions. This is the case of most formal standards activities and many consortium
standards activities, which are becoming increasingly prevalent.
In an open systems technology, the specification governs the behavior of the
implementations.

56 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 56

One of the key benefits is a consistency of implementation interfaces
across multiple vendors. Additional benefits include uniformity of terminology
and software interfaces because the open systems technology requires multiple
vendors to reach consensus. Another benefit is an increased level of technology
specification and an extended life cycle. Because product developments are in
parallel across multiple vendor organizations, the corresponding marketing ac-
tivities that create the demand for the technology are also synchronized and
coordinated. A key benefit of open systems technology is the interoperability
that it provides between commercial software vendors. The distinction between
open systems and proprietary technologies is particularly appropriate for
object-oriented systems, which are becoming the mainstream of application
development, as object technology is already the mainstream of commercial
technology.

Commercial information technology is evolving. Additional capabilities
that increasingly satisfy application needs are being added and are becoming
available through commercial technology. However, there is also a significant
amount of reinvention in commercial technology of fundamental capabilities
such as operating systems and programming languages.

In some commercial technologies, such as office automation, word
processors, and spreadsheets, a continual reorganization of functionality is pre-
sented to the end-user without significant extension of capabilities. In the view
of many people, the rate of technology evolution on the commercial side is rel-
atively slow in comparison to the growth in needs for competitive application
developers. Commercial technology is put forth to satisfy the needs of large
numbers of users. The generality of this software exceeds the need of any indi-
vidual application user. In order to adapt commercial technologies to applica-
tion needs, there is a requirement for software development and installation
which customizes the commercial software to the needs of specific applications
(Figure 3.3).

The requirement to customize commercial technology is often called pro-
filing; this concept is covered in more detail in Chapter 5. In addition to the
profiling software, substantial application-specific software is required to cre-

Technology Ownership 57

V1

(a) (b)

V2 V3 V4 V5 V6 V7

1989 2010 1989

Mainstream

2010

FIGURE 3.2 (a) Proprietary Technology and (b) Open Systems Technology

BootCH03 11/11/03 4:26 PM Page 57

ate application systems. Because of the relatively primitive capabilities avail-
able commercially for many application needs, this requirement drives an in-
creasing demand to build more and more application-specific software to
complete the architecture for application systems. As systems evolve from
single-user and departmental-level applications to the enterprise with greater
interoperability capabilities, the functional gap between available commercial
software and individual user software will continue to increase.

The architecture of applications software systems is increasingly impor-
tant in how systems support user needs. The majority of systems that have been
created outside of the telecommunications industry are integrated using proce-
dural and other paradigms that often lead to ineffective solutions. In fact, for
systems created by corporate development organizations, a majority of the
software projects are considered unsuccessful at completion. From an architec-
tural perspective, many of these systems resemble the configuration in Figure
3.4 (a) for stovepipe systems. In a stovepipe system, there are a number of inte-
grated software modules. Each software module has a unique software inter-
face. This unique software interface corresponds to a single program
implementation.

58 Chapter Three Software Architecture: Basic Training

New
requirements

Mission application
software

Component
customization

Commercial & component
software

Time

FIGURE 3.3 Commercial Software Customization

BootCH03 11/11/03 4:26 PM Page 58

When the system is integrated, there are many one-to-one dependencies
between various parts of the system. These dependencies are unique integra-
tion solutions. As the scale of the system increases with the number of mod-
ules, the number of dependencies increases by the square of the number of
modules. This increase in complexity has many negative consequences. In par-
ticular, as a system evolves, it becomes increasingly less amiable to modifica-
tion and extension. System extension happens to be one of the major cost
drivers in application development; it can account for as much as half of all
software cost [Horowitz 1993].

An alternative way of building systems includes a planned definition of
software interfaces that provide a greater level of uniformity across the inte-
grated solution. Component architectures are application systems that are de-
fined using consistent application program interfaces across multiple instances
of software subsystems (Figure 3.4). Component architectures reduce the de-
pendency between software modules. The reduced dependency enables the sys-
tem to be extended and support larger scales of integration. The complexity of
the software integration of a properly built component system is tied to the
number of software modules needed to build the system.

3.4 Client-Server Technology

Client-server technologies are the result of the evolution of software technol-
ogy supporting application systems. In particular, the evolution of client-server
technologies has been an important factor in the expansion of information tech-
nology across an increasing range of application business processes. Originally

Client-Server Technology 59

Custom interfaces Component architectures

Order (NXN) — interfaces Order (N) — interfaces

(a) (b)

FIGURE 3.4 (a) Stovepipe Systems and (b) Component Architectures

BootCH03 11/11/03 4:26 PM Page 59

59 technologies focused on file sharing. File sharing is still the dominant para-
digm of the Internet today with protocols such as HTTP supporting access to
the global file systems available. File server technologies evolve into a second
generation of capabilities dominated by a database server technology. It is im-
portant to note that the file server technologies have been closely linked with
the evolution of distributed computing technologies.

Increasingly, client-server technologies are being replaced by N-Tier
component-oriented solutions. Based upon Java application servers, the N-Tier
solutions include support for thin-client user interfaces with increased scalabil-
ity and reliability.

One of the most successful networking technologies came from Sun Mi-
crosystems and was called network file server. Sun Microsystems was success-
ful in encouraging the de facto standardization of that technology by providing
free reference technology access in terms of source code for implementation on
arbitrary platforms. Network file server technology is based upon open net-
work computing, another Sun Microsystems technology that was one of the
first successful generations of distributed computer technology. The network
file server was a procedurally based technology closely tied to the C program-
ming language, as was the other important remote-procedure-call technology
called the distributed computing environment. Both technologies resulted in
file-sharing capabilities that were widely implemented. The database server
technologies utilized these underlying distributed computing capabilities to
provide remote access to database systems from a variety of client platforms.

Another important technology that arose during the database generation
was that of transaction-processing monitors. Transaction-processing monitors
enable the consistent and reliable maintenance of data integrity across distrib-
uted systems. Transaction-processing technology continues to be an important
add-on capability to distributed computing technologies to ensure robustness
and integrity of implementations.

Groupware technologies also arose in the late 1980s and early 1990s
starting with email and evolving to higher forms of interactivity, some of
which can be seen on the Internet today (e.g., chat rooms and videoconferenc-
ing). Recently, the technologies of object orientation, distributed computing,
and the Internet have merged to support adaptable computing environments
that can scale to global proportions. This generation of technologies is sup-
ported by application servers primarily based on Sun’s Java or Microsoft’s .Net
platform.

The client-server technologies initially arose as an evolution of main-
frame-based technologies. Mainframe-based technologies were a natural out-

60 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 60

growth of single-processor systems that date back to the origins of computing.
In a mainframe technology, the processing and management of data in the sys-
tem is completely centralized. The mainframe is surrounded by a number of
peripheral client terminals that simply support presentation of information. In
the client-server generation of technologies, the client computer has become a
significant processing resource in its own right. Client systems that arose dur-
ing the personal computer revolution are now capable of processing speeds that
rival and greatly exceed that of former minicomputer and mainframe computer
generations. Initially, in order to support access to data in departments and en-
terprises, client-server technology supported the connection through local area
networking to the back-end mainframe minicomputer and workstation server
systems. The technology at the software level supporting this communication
is called middleware.

“Genius might be that ability to say a profound thing in a simple
way.”— Charles Bukowski

History

Initially, middleware was installed as a custom capability to support client-
server networking between PCs and server platforms. As technology evolves,
middleware is becoming embedded in the operating system so that it is a nat-
ural capability of client platforms as well as server platforms. Client systems
with embedded middleware can now support on-board services to applications
running locally and across the network. This evolution of client-server technol-
ogy to an embedded capability has added many new challenges to the imple-
mentation of application systems. In fact, there are various antitheses to the
client-server evolution, including a resurgence of the mainframe platform as a
significant business of IBM and the capability called the network computer
which begins to resemble the dumb terminal of mainframe days (Figure 3.5).

Object technologies are organized around client-server capabilities. Ob-
ject technologies come in two primary categories. Some are organized to serve
the process of software development. Examples of these technologies include
object-oriented analysis and object-oriented design. Object-oriented analysis
comprises the definition of information technology capabilities that are models
of current and future business processes. Object-oriented modeling provides
rich capabilities for representing business entities and business processes. This
is in contrast to procedural and relational database technologies, which require
the application designer to compromise the representation of the business envi-
ronment to the constraints of the technology in terms of control flow and data

Client-Server Technology 61

BootCH03 11/11/03 4:26 PM Page 61

representation. Object-oriented analysis, because of the natural correspondence
of state information in process, provides a mechanism for modeling reality that
is relatively easy to communicate with end-users. Because end-user communi-
cation is facilitated, the design and validation of object-oriented systems is
greatly enabled.

Object-oriented design is another major software phase that has been suc-
cessful commercially in the software process market. Object-oriented design
comprises the planning of software structure and capabilities that support the
reduction in software defects and rapid prototyping of software capabilities.

The other major category of object technology focuses on implementa-
tion. At the center is object-oriented middleware technology. Object-oriented
middleware supports distributed computing and the integration of various het-
erogeneous software technologies including operating systems, programming
languages, and databases. Object-oriented programming languages are the di-
rect expression of the object paradigm. Object-oriented programming lan-
guages support the encapsulation of data with process in the form of abstract
data types in component objects. There are as many object-oriented program-
ming languages as there are procedural languages. The predominant languages
for object-oriented programming include C++, the Java language, and increas-
ingly C#, but a significant number of communities support Eiffel and other lan-
guages. Object-oriented middleware allows these languages to interoperate to
form applications. Object-oriented programming languages are one possible
choice for implementation of application software. It is also possible to utilize

62 Chapter Three Software Architecture: Basic Training

1982

File servers

TP monitors

Groupware

Database
servers

Distributed
objects

N-tier
componentware

1986 1995 1998 2000 2002+ 1990

FIGURE 3.5 Origins of Client Server Technologies

BootCH03 11/11/03 4:26 PM Page 62

object-oriented analysis and design to support programming in procedural lan-
guages. This occurs frequently, as many corporate development environments
use procedural languages for their mainstream languages, such as the C pro-
gramming language and COBOL.

One of the important qualities of object orientation is that the developer
should not have to be concerned about the underlying implementation. If the
underlying implementation is procedural or is object-oriented, it should not
and does not matter if the applications are properly encapsulated. Distributed
object middleware supports the opaque encapsulation property, which makes
this possible. The integration of commercial software with legacy and object-
oriented applications is also enabled as a result of these encapsulation proper-
ties (Figure 3.6).

Object-oriented middleware technologies can be viewed as an outgrowth
of their procedural producers. Beginning with operating systems, procedural
technologies supporting interprocess communication were added to enable file
sharing and the evolution of client-server capabilities (Figure 3.7). Some of
these technologies include the Remote Procedure Call (RPC) technologies such
as Open Network Computing (ONC) and Distributed Computing Environment
(DCE). The RPC technologies were preceded by socket-level technologies,

Client-Server Technology 63

Middleware

Clients Servers

FIGURE 3.6 Role of Middleware

BootCH03 11/11/03 4:26 PM Page 63

which are a more primitive form of messaging. Today, all these technologies
are still used actively in application systems and on the Internet. The object-
oriented middleware technologies provided a next generation of capabilities,
which bundled more of the application functionality into the infrastructure.

Distributed Components

It is interesting to note that previous generations of interprocess communica-
tion technology were marketed with the promise of universal application inter-
operability. Component-oriented technology is marketed the same way today.
Distributed object-oriented middleware has the advantage of retrospection on
the shortcomings of these previous technology generations. It was found that
even though remote-procedure-call technologies enabled the integration of dis-
tributed software, the primitive level of these technologies required substantial
application programming in order to realize systems. Once the systems were
implemented, the systems tended to be fairly brittle and difficult to maintain.

Microsoft, in 1996, released DCOM as a multimedia middleware tech-
nology for the Internet. DCOM still exposed many of the lower level primitive
details, which were the downfall of remote procedure calls. DCOM added
some object-oriented capabilities and a natural integration support for C++ pro-
gramming. Simply adding the capability to support C++ didn’t necessarily

64 Chapter Three Software Architecture: Basic Training

Developed
applications

Object-oriented
programming

languages

Object-oriented middleware

Commercial
applications

Object-
oriented
analysis

Object-
oriented
design

Process Implementation

Object
DBMS

FIGURE 3.7 Middleware Reference Model

BootCH03 11/11/03 4:26 PM Page 64

overcome the procedural route that exposed excessive complexity to distrib-
uted system developers in the DCOM predecessor called the distributed com-
puting environment. However, with the release of the current generation of
product, Microsoft .Net, Microsoft has created an enterprise development envi-
ronment that can compete favorably with the capabilities of the more mature
J2EE application servers.

The Common Object Request Broker Architecture was the first technol-
ogy to be designed from the ground up to support distributed object-oriented
computing. Figure 3.8 shows that there is a partitioning of a technology market
between the Microsoft technology base and virtually all other information tech-
nology vendors. The other vendors support various open system technologies
that are the result of consensus standards processes. CORBA is universally ac-
cepted as the vendor-independent standard for distributed object middleware.
CORBA simplifies distributed computing in several ways. The most significant
advance is the language independence that CORBA provides, allowing multi-
ple programming languages in heterogeneous environments to interoperate
using object messaging.

Above the middleware layer are other technologies that support further
integration of application functionality. In the Microsoft technology base, these
technologies have been grouped into a brand name called .Net. The .Net tech-
nologies include a substantial reinvention of middleware capabilities that elim-

Client-Server Technology 65

All other vendors Microsoft

Controls JavaBeans

Application frameworks

Controls

OLE

ActiveX

CORBA

Object-oriented middleware

COM

DCOM

TCIP/IP
socket MOM HTTP ONC

DCE
OSF
DCE

Misc.
sockets

Interprocess communication

All operating systems Windows 95 & NT

FIGURE 3.8 Distributed Technologies in Context

BootCH03 11/11/03 4:26 PM Page 65

inate interface definition languages. The CORBA capabilities are widely avail-
able today and support multiple programming-language integration from multi-
ple vendor platforms.

CORBA technologies are the product of an open systems consortium
process called the object management group, or OMG. The OMG has over 700
member organizations including all major vendors in information technology,
such as Sun Microsystems, Hewlett Packard, IBM, Netscape, and Microsoft.
The OMG has addressed the problem of application software interoperability
by focusing on the standardization of programming interfaces. With previous
generations of remote-procedure-call technologies, the only widely adopted
standard interface was the network file server, which is really the most primi-
tive form of software interoperability beyond exchange of removable media. It
is important for end-users to provide their requirements and interact with open
systems processes because they shape the form of technologies that will be
used for end-user system development. In particular, sophisticated users of
technologies can encourage open systems consortia and software vendors to
provide more complete capabilities to enable the development of complex sys-
tems. This reduces technology risk and creates more leverage for application
developers.

The CORBA technologies are centered around the object request broker
that the component standardizes (Figure 3.9). In the object management archi-
tecture, which is the route node of OMG diagrams, there are several categories
of objects. The object request broker is distinguished because it is the object
through which all the other categories of object communicate. The object man-
agement architecture is conceptually a layered architecture that includes in-
creasing levels of specificity for domain application implementation. The most
common capabilities embodied by object technologies are standardized through
the object request broker. The next level of capabilities is called the CORBA
services, which provide enabling functions for systems implementation. The
CORBA services are comparable in functionality to current operating-system
services that are commonly bundled with platforms. The CORBA services pro-
vide the first step toward a distributed operating system capability that supports
the integration of application software and commercial software across all types
of platforms and environments.

CORBA technology is widely available today and is a mainstream tech-
nology available on virtually every operating-system platform. Some of the
more innovative platforms, including the Netscape Communicator, which
could be considered an operating-system platform in its own right, are
bundling CORBA with all of their deliverable licenses. Microsoft also supports
the CORBA technology market by delivering specifications that enable inter-

66 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 66

working with the Microsoft infrastructure workings. The OMG has standard-
ized interworking specifications for both COM and COM+ generations of Mi-
crosoft technologies. These standards are available on products on major
CORBA implementation systems today.

In addition, third-party vendors are providing direct support for CORBA.
These include vendors like Black and White software, which provide graphical
user interface development tool kits, database vendors, system management
vendors, and specialty market vendors such as real-time and computer-aided
software engineering tools. CORBA provides the interface definition language,
which is the key capability fundamental to object orientation. The interface de-
finition language is a notation for defining software boundaries. IDL is a speci-
fication language that enables the description of computational software
architectures for application systems as well as international standards for in-
teroperability.

The interface definition language from CORBA has also been adopted by
the international standards organization and the formal standards counterparts
for telecommunication systems. IDL is the international standard DIS14750.
As such, IDL is a universal notation for defining application program inter-
faces in software architectures. Because IDL is programming-language inde-
pendent, a single specification will suffice for defining software interfaces on
any language or platform environment. IDL interfaces support object-oriented
designs as well as the integration of legacy software. Since the object manage-
ment group is the only major standards consortium developing object-oriented
standards specifications for software interfaces, IDL is synonymous with ob-
ject technology open system.

Client-Server Technology 67

CORBA object request broker

CORBA domainsApplications

CORBA facilitiesCORBA services

FIGURE 3.9 Object Management Architecture

BootCH03 11/11/03 4:26 PM Page 67

IDL supports the integration of a diverse array of programming lan-
guages and computing platforms (Figure 3.10). With IDL, one can specify soft-
ware interfaces that are compiled and readily integrated to available
programming languages. These capabilities are available commercially and
support distributed communication in a general manner.

This section discussed how mainframe technology has evolved into
client-server technologies with middleware providing the distributed comput-
ing software capabilities. Because client-server technologies have merged with
object technologies, it is now possible to provide object-oriented capabilities
that augment legacy systems across most or all programming environments. In
addition, interoperability between CORBA and the Microsoft counterpart
called COM+ enables the coverage of popular platforms on many organiza-
tional desktops. The vendors supporting open systems also support CORBA.
The dominant Internet vendors are delivering CORBA and associated protocol
stacks to numerous licensees. CORBA is the standard for object-oriented
middleware. The products are available now as are the horizontal services
specifications that enable application development. The OMG is proceeding
to develop the vertical specifications that will provide direct support for
application-level interoperability.

68 Chapter Three Software Architecture: Basic Training

IDL

Smalltalk

IDL

COBOL

IDL

C

IDL

C++

IDL

Ada

IDL

Java

Mainframe: MVS, …

Client platform;
Win95, Netscape, JVM

IDL

C

IDL

C++

IDL

Ada

IDL

Java

Server Platform;
UNIX, NT, Novell…

OBJECT REQUEST BROKER

FIGURE 3.10 Technology Independence of the Interface Definition Language

BootCH03 11/11/03 4:26 PM Page 68

The ISO has supported the designation of CORBA IDL as a standard for
the definition of software interfaces across all computing environments.

Object orientation is a natural paradigm for modeling real-world informa-
tion and business processes. Object technology supports the integration of het-
erogeneous and distributed information technologies that include legacy
systems (Figure 3.11). Combining object orientation and component technol-
ogy enables the creation of ambitious system concepts, which are increasingly
becoming the competitive advantage of application companies and end-users.

Client-Server Technology 69

COTS/custom client applications

COTS/custom services

Mobile clients

Legacy Migration
systems

COTS
servers

Fielded applications High-end workstations

OBJECT REQUEST BROKERS

FIGURE 3.11 Interoperability Vision for Object Technology

BootCH03 11/11/03 4:26 PM Page 69

3.5 Internet Technology

eXtensible Markup Language (XML)

Few technologies have generated as much confusion in the mainstream press as
eXtensible Markup Language (XML). While XML is a fundamental, enabling
technology, there is a tendency to combine it with other technological solutions
and blur XML’s capabilities with other, often proprietary solutions. Here the
heart of what XML is and why it is likely to have an exceptionally long tech-
nology life cycle will be discussed.

XML was created to put an end to application-specific data interchange
problems. Rather than allow two or more applications to decide among them-
selves what format to use for data interchange and code the logic for reading
and writing to the agreed-upon format in each and every application, XML pro-
vided the means to describe data in an application-independent manner. The
XML file uses tags to include not just the application data but information
(tags) to describe the data as well. XML is a World Wide Web Consortium
standard and is used by a huge number of other standards.

One of the benefits of XML is that it addresses the fact that prior to its
development, coding import and export routines for every application that in-
teracted with a data set was expensive and brittle. Every time the data changed,
every application that interacted with the data had to be modified to understand
the new data format even if the change had little impact on the data elements
used by the various applications. Applications could not extend existing data
formats without ensuring that all applications were also upgraded to handle the
changes. Essentially, data were modeled in lockstep with the applications re-
sponsible for reading and writing the data. This added substantially to the
maintenance costs of all applications that shared data, which tended to include
most applications in many environments. XML was revolutionary in that it
provided a simple means to model data independently of the application(s) that
used the data.

XML is ultimately a data format. The original XML 1.0 specification was
quite concise and mostly defined a way to use tags to describe data elements.
The tags are user-defined and intended to have the following characteristics:

Structured. XML uses tags to describe the data making the data file self-
describing. Programs that read and process XML documents can easily deter-
mine if a document contains particular data elements. Also, it is easy for a
program to determine whether an XML document is cut off or poorly formed.

70 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 70

Flexible. For any collection of data, XML provides several ways to repre-
sent the data. As always, flexibility is both good, in that it allows developers to
make appropriate choices for how to represent data within an XML file, and
bad, in that it also allows developers to make inappropriate and unwise choices
regarding data representation.

Validated. A Document Type Description (DTD) or XML Schema lets
developers define rules that guide the representation of data. XML parsers are
widely available to validate document correctness against the schema.

Adaptable. The applications that produce the XML files, the operating
systems, programming languages, and data management systems can all
change, and the XML files will still be readable.

Standard. The use of XML requires no license, and no corporation can
change it to make it incompatible with other applications.

Readable. An XML file can be edited, modified, and stored as plain text.

As an example, creating an XML document to describe flavors of ice
cream is as easy as deciding what is to be described and then documenting the
specific instances.

Why is this technology so powerful? Unlike other data formats, even this
simple XML document will be understandable twenty, fifty, and maybe hun-
dreds or thousands of years from now. Few data formats in use even ten years
ago are understandable by today’s applications. And if data are understood,
then they can be used/processed. Additionally, with XML parsers and other
complementary technologies, much of the conversion process between differ-
ent XML formats (and other formats) can be automated.

However, there is a tradeoff for this flexibility. XML is a very verbose
way of describing data. Few data formats have the space requirements of an
XML document when storing or transferring the identical information content.
As a result, other data formats are desirable when performance or storage space
is a constraint. Of course, with the current pace of advances in hardware pro-
cessing and transmission speeds, the size of XML files is frequently only a
very minor consideration. A larger problem arises in managing large number of
XML documents. Searching large number of XML documents is often prob-
lematic. However, XML document indexing systems and even XML-specific
hardware have helped mitigate issues with searching large numbers of XML
documents. Some database vendors are also implementing XML types in their
databases to handle storage and searching issues; for example, such enhance-
ments are available for Oracle 9i in their XML database products. A number of
other companies have developed XML-specific databases with a number of

Internet Technology 71

BootCH03 11/11/03 4:26 PM Page 71

customizations designed to increase performance in searching and efficiently
storing XML content. Finally, be aware that while many of the claimed bene-
fits with XML are indeed possible, they are very seldom automatic. The use of
XML itself does not alone accomplish a great deal; rather, considerable
thought, planning, and design are required to use XML effectively in conjunc-
tion with other technologies.

Sun Microsystems J2EE and Microsoft’s .Net

First, the basics about the two major enterprise development platforms in the
industry: Sun Microsystems Java 2 Enterprise Edition (J2EE) and Microsoft
.Net. J2EE are Java-centric operating environments that strive to be platform
neutral. This means that J2EE developers all work with the Java programming
language; however, the language itself is portable across all the major hard-
ware environments and software operating systems. In contrast, Microsoft’s
.Net environment supports multiple programming languages but is currently
focused on a development environment that executes on the Microsoft Win-
dows line of operating systems. In addition, J2EE is primarily a set of specifi-
cations that are implemented by a number of different vendors. Microsoft .Net
is sold as a suite of products based on proprietary Microsoft intellectual prop-
erty. This basic difference in strategy has resulted in an interesting polarization
in most of the software industry. Sun, along with a few major players such as
IBM and Oracle, has made a tremendous investment and gathered a majority of
vendors in support of the J2EE standards. Most of them have integrated J2EE
in their flagship product lines, and many vendors have their own implementa-
tion of J2EE. In the other camp, Microsoft with its .Net has leveraged Mi-
crosoft’s existing vendor relationships to create a rapidly growing sphere of
vendors supporting the .Net line of solutions for enterprise software develop-
ment. They willingly conceded the fundamental .Net set of core services to Mi-
crosoft and modeled businesses toward profiting from value-added software
based on the core infrastructure.

The J2EE environment requires all components to be written in the Java
programming language. The Java Virtual Machine (JVM) compiles programs
written in Java into Java-specific byte code, and the JVM executes the com-
piled byte code at runtime. This contrasts sharply with the .Net approach,
which uses its Common Language Runtime (CLR) engine to compile a number
of programming languages into a truly language neutral intermediate code. The
CLR enables developers to use any of the programming languages supported
by the .Net development tools and has defined mechanisms to enable
.Net components written in one language to be called from any other supported
programming language easily. This allows multiprogramming language devel-

72 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 72

opment in a manner that had not gained mainstream acceptance before its in-
troduction in .Net. The jury remains out on precisely how desirable this capa-
bility will be within the industry, but certainly the appeal of reusing a
tremendous body of existing code regardless of its implementation language
has an interesting surface appeal.

In terms of maturity, the J2EE environment has a much longer history
and greater industry involvement in its development and evolution. J2EE has
been successfully deployed in numerous mission-critical applications in some
most challenging vertical industries including financial services and telecom-
munications. Plus, since J2EE solutions are available from many different ven-
dors, there is a greater variety in the available implementations, toolsets, and
value-added products. Unfortunately, as a result of dealing with a number of
vendor solutions, care must be taken to deal with product interoperability is-
sues, which are less of a problem than with single vendor solutions like .Net.

Overall, J2EE offers an experienced development team many advantages
because J2EE provides greater programmer flexibility than .Net and can enable
the development of well-performing, highly customized applications. How-
ever, this greater flexibility also allows the easier introduction of serious errors
in areas such as memory and resource management. It is far easier to get a
multi-tier application up and running in .Net initially, but J2EE enables the ex-
perienced developer greater freedom to develop more powerful applications.
The .Net architecture is more focused on ease of use and thus doesn’t provide
as much access to lower level state management and caching techniques fre-
quently utilized in J2EE application development.

Web Services

XML is a data format that enables the data exchange between heterogeneous
computing environments. Web Services are important because they use the In-
ternet as the data transmission layer to enable the sharing of distributed
processes. By using the Internet, these processes are widely available to poten-
tially millions of users and can serve as the building blocks for larger distrib-
uted applications. A Web service can be implemented in any language on any
computing platform. The service interface is then described in XML using the
standard Web Services Description Language (WSDL), a specialized XML
schema for Web services. A client to a Web service can invoke WSDL using
the standard Simple Object Access Protocol (SOAP) that provides an XML
format for representing the interface of a Web service and invoking it over
HTTP. Since HTTP is the standard protocol for the Internet, Web services can
be deployed and used over the existing Internet infrastructure. The Web service

Internet Technology 73

BootCH03 11/11/03 4:26 PM Page 73

provider can also register their Web services in a Universal Description, Dis-
covery, and Integration (UDDI) registry to enable clients to search, discover,
and access their Web service dynamically.

The basic technologies to enable the creation and use of Web services are
widely agreed upon industry standards supported by both the Microsoft .Net
and Sun J2EE platforms. However, the value-added services relating to secu-
rity and electronic commerce are still in progress, and the potential of Web
services will not be realized until these key technologies are agreed upon by
and widely adopted throughout the industry.

3.6 Architectural Layers and
When to Use Them

A two-tier system (Figure 3.12) is one where user interface and application
code is allowed to access the APIs directly for database and network access.
The application uses the data model stored in the database but does not create a
logical model on top of it. A two-tier application is ideal where the system
under development is a prototype or is known to have a short system life cycle
where APIs will not change. Typically, this approach is used for small applica-
tions where development cost and time are both small.

In addition, a two-tier system makes sense in a component-oriented de-
velopment environment where this approach is used in the implementation of a
particular component. The component interface provides a layer of insulation
against many of the negative consequences of this approach. Many applica-
tions that are created using scripting languages fall in this category as the de-
velopment of multiple architectural layers could be cumbersome to the point of
being impractical.

Finally, a two-tier approach will provide better performance and less
need to add mechanisms that control resource locking. While it will have less
of an upside in its ability to scale to many concurrent users for limited use ap-
plications, the simplicity of a two-tier model may far outweigh the benefits of
the other alternatives. In addition, frequently database-stored procedures may
be used to eliminate some of the simpler shared data issues by adding common
data processing routines into the database application.

Three-tier applications have been common since the growth of the data-
base. A three-tier system (Figure 3.13) satisfies the need for implementation
isolation. Most frequently, this is desirable in any system where the

74 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:26 PM Page 74

storage/database layer of an application may need to be changed. However, this
technological isolation is not restricted to just databases. It can, and should, be
used whenever it is valuable to share code without requiring the application de-
veloper, or more importantly, the application maintainer, to have a detailed un-
derstanding of the implementation details of the lowest layer.

Quite frequently reuse is a major design consideration where the applica-
tion model is created to allow part of it to be reused by multiple user interface
view components. As a guideline, whenever an application needs multiple
views of the same data, a developer should consider utilizing a three-tier ap-
proach instead of a two-tier approach.

Major issues to consider in moving from a two-tier model to a three-tier
model include the availability of appropriate network resources and a locking
solution to manage concurrent access to data.

A more recent trend has emerged as a result of an increased emphasis on
network computing, and that is the four-tier system (Figure 3.14). A four-tier sys-
tem is an alternative to consider when the application layer needs to support ad-
vanced behavior. A four-tier model is like a three-tier model where the
application layer is split into a presentation layer and a session a layer. The pre-
sentation layer assumes the view portion of the application model along with the
application logic that is constrained to the operations of a particular view. The
session layer handles resources that are shared between presentation components,
including communication with the potentially distributed business object model.

Architectural Layers and when to Use Them 75

FIGURE 3.12 Two-Tier Layered Architecture

BootCH03 11/11/03 4:26 PM Page 75

A four-tier development approach is needed when there is a significant
amount of coordination required between presentation components as well as a
requirement that many resources be shared between them. For example, it
works well when caching is required for performance reasons. A session layer
allows many different presentation components to take advantage of the per-
formance gains caching provides. Also, if a client is forced to make multiple,
potentially complex distribution decisions, it makes sense to encapsulate that
logic in a session layer of the application.

Factors that may indicate the need to consider a four-tier development
approach are many. Obviously, any four-tier system should be large with a
long expected life cycle. Reuse of existing components and subsystems is fre-
quently a sufficient reason to incur the overhead associated with a four-tier sys-
tem. Along the same lines, environments where individual components are
expected to change frequently the design goal is to insulate the majority of the
system from changes in component implementations. A four-tier approach pro-
vides support for incremental migration of components and subsystems across
technologies, both legacy and new. Also, a four-tier system can be more scal-
able than a three-tier system.

Other factors to consider include systems where the reliability of compo-
nents is either unknown or variable. A four-tier system can easily incorporate
runtime discovery mechanisms to roll over to different component implemen-
tations in the event of intermittent component failures. Many complex systems
with four or more tiers provide at least some capability to discover new capa-

76 Chapter Three Software Architecture: Basic Training

FIGURE 3.13 Three-Tier Layered Architecture

BootCH03 11/11/03 4:26 PM Page 76

bilities (e.g., they implement a UDDI registry for advertising new Web Service
implementations). If the environment utilizes multiple, potentially conflicting
technologies, a four-tier system provides mechanisms to manage differences in
either the session management layer or in the business domain object layer.
Also, a four-tier model may be desirable if the client has several diverse appli-
cation models that all need to share common data resources. Frequently, some
application components will be content to allow the business domain compo-
nents to handle resource management issues and can afford to wait for most re-
sources where others may not want to block and wait for resources and have to
manage client access in the session layer.

A peer-to-peer (P2P) architectural approach is ideal for systems that need
to be highly scalable. Also, they are useful when distributed components need
to cooperate to accomplish a task and the reliability of communications and
other components are variable. It is important when developing P2P systems
that the operating environment be well understood because sloppy practices
could result in major disasters. Also, when utilizing P2P technologies, it is im-
portant that the interfaces be standardized and highly unlikely to change. Hav-
ing to cope with multiple incompatible versions of a P2P network is a
nightmare.

N-Tier and/or a combination of these approaches (Figure 3.15) should be
used only for significantly complex systems made up of subsystems and com-
ponents that have differing software life cycles. This is true of most large-scale
heterogeneous enterprise systems where, at any given time, components are
being upgraded, replaced, or added to the system. With such a system, consid-
eration must be given to the administration of the system components.

Architectural Layers and when to Use Them 77

FIGURE 3.14 Four-Tier Layered Architecture

BootCH03 11/11/03 4:27 PM Page 77

What are the features that may merit the complexity of an N-Tier system?
In general, it includes systems that manage a variety of data to enhance the user
experience. The requirements would include Web sites and applications that
remember the profile information of users, allow users to set preferences that
control Web pages and applications, manage complex security requirements
such as access control lists for controlling resources, and allow users to make
changes that require storage management and rule execution within the back-
end applications.

With an N-Tier application, the application functionality is partitioned
into a number of logical layers that can be maintained and deployed separately.
The functionality of each layer is less standard than that of three-tier applica-
tions, and frequently many layers can be grouped together to provide presenta-
tion, application, and/or business logic and storage management functionality.
The primary benefit of supporting many layers is that it is easier to make
changes in one layer without having to alter many or, preferably in most cases,
any of the other layers. Additionally, the application can be scaled to handle
great loads of users and/or data by altering the distribution or load management
of one or more layers. Frequently, this scaling can be transparent to other lay-
ers and even automated in many cases. In fact, often multitier is assumed to
mean spreading processes across various processors and machines rather than
defining software boundaries within an application.

78 Chapter Three Software Architecture: Basic Training

FIGURE 3.15 Combination of N-Tier and Peer-to-Peer Architecture

BootCH03 11/11/03 4:27 PM Page 78

3.7 Software Application Experience

In the commercial end-user environment, object technology has been applied
to many important applications that enable business advantages. Examples in-
clude Fidelity Investments, one of the world’s largest mutual fund companies,
which as many as five years ago integrated its fund management workstations
to support the integration of multisource information including decision-
support capabilities that are crucial to the fund management business. The in-
frastructure they chose was an object request broker implementation conform-
ing to the CORBA standard. Using CORBA, Fidelity Investments is able to
customize the information gathering and analysis environment to the needs of
individual fund managers. Many readers of this book probably have funds in-
vested in one or more of the securities supported by CORBA. Wells Fargo, a
large banking institution, has also applied object technologies to multiple ap-
plications to derive competitive advantages. One example is a financial trans-
action system that was developed, prototyped, and deployed in less than five
months based upon an object technology and CORBA implementation. In that
system, they integrated mainframe environments running IBM operating sys-
tems with minicomputer environments serving the online transaction terminals.
In another Wells Fargo application, they integrated heterogeneous systems to
support system management across a large enterprise. System management is
one of the challenging and necessary applications that the client server has cre-
ated because the operation and management of information technology is no
longer centralized but still needs to be coordinated across many autonomous
departmental systems as well as user desktops. Wells Fargo took advantage of
object technology to implement such a distributed system management capa-
bility, and greatly reduced their expense and response capabilities for system
support challenges.

Another dramatic example of object technology was implemented by a
large insurance provider. USAA had an auto claims system that customer serv-
ice agents used to receive reports of damage claims over the telephone. USAA,
in addition to auto insurance, has a number of other related product lines in-
cluding life insurance and loan capabilities. By integrating their information
technology using objects, USAA was able to provide the customer service
agents with information about the full range of USAA product lines. When a
customer called with an auto damage claim and the car was totaled and needed
to be replaced, the customer services agents were able to process the insurance
claim and offer a new car loan for the replacement of the vehicle. In addition,
the customer service agent had information about customers such as the ages
and number of children and was able to offer additional insurance coverage at

Software Application Experience 79

BootCH03 11/11/03 4:27 PM Page 79

the appropriate time frames during this same auto claim call. With these en-
hanced capabilities, essentially reengineering its customer service process,
USAA was able to realize 30% increased revenue on its existing customer base
by providing additional services to the customers who were calling USAA for
auto claims purposes.

In the public sector, object technology has also been applied and has de-
livered significant benefits. Several examples were implemented through the
work of the authors on the Data Interchange and Synergistic Collateral Usage
Study (DISCUS) project. This project and its lessons learned are described in
The Essential CORBA [Mowbray 1995]. One of the first lessons learned on dis-
cus was the power of using object technology to reuse design information.
Once software interfaces were established and specified using IDL, it was rela-
tively inexpensive to have contractors and commercial vendors support inter-
operability interfaces. The discus capabilities were defined before the Internet
revolution, and when it became appropriate to integrate Internet capabilities,
the same encapsulations were equally applicable to integrating new ways of
viewing the data through Internet browsers. The existing legacy integrations
implemented by discus were then used to extract information for viewing on
Internet browsers.

Another case study implemented by the authors involved a set of infor-
mation access services, which is a case study documented in Inside CORBA
[Mowbray 1997c]. In this application, the fact that the government had imple-
mented a variety of systems with similar capabilities and the end-users needed
these systems to interoperate and support expanded access to information re-
sources is examined. The application described in this book does not differ in
substance from the environment required by the Fidelity Investment Man-
agers—in other words, gathering information from diverse resources in order
to support important decisions. To resolve the users’ needs, the authors con-
ducted a study of existing systems that focused on the software interfaces sup-
ported through multiple technologies. By learning the details of the legacy
system interfaces, new object-oriented designs could be formulated wherein
the existing functionality was captured in a manner common across the legacy
system environment. By committing the new interface design to an IDL speci-
fication, other contractors could be used to help implement prototypes and for-
ward the specifications through government standardization processes. Within
two years, the interoperability concept evolved from ground zero to working
software including a formal test sweep that assured conformance between mul-
tiple implementations of the specification.

Many enterprises have the opportunity to realize these kinds of results.
Because information technology in large enterprises is evolving from desktop

80 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:27 PM Page 80

and departmental information systems to interoperable enterprise systems, a
layer of enterprise architecture that does not exist in most organizations can be
implemented using distributed-object technologies in a manner that provides
interoperability in a general way.

In summary, commercial organizations have realized from object tech-
nology many benefits that are directly relevant to their corporate competitive
advantages. The authors’ experiences in research and development show that
design reuse is one of the most important concepts to apply in realizing these
kinds of results. Given a proper software interface specification, software de-
velopers can relatively easily understand the specification through training
processes and then proceed to implement the specification. A much more dif-
ficult problem would be to ask developers to integrate systems without this
kind of guidance. In other words, reinventing a new custom interoperability
link is significantly more difficult than if the developers are given a design
for how the systems interoperate and simply need to implement the code to
implement that capability. In the course of research and development, the au-
thors discovered these kinds of benefits even at the smallest scales where
only two or three subsystems were being integrated; as the scale of integra-
tion increased up to seven or ten or more systems, the benefits also increased.

Systems interoperability is achievable today through object technology,
and these benefits are being realized in existing commercial systems and in
system procurements in the public sector.

3.8 Technology and Application
Architecture

Software architecture involves the management of both application functional-
ity and commercial technology change. The kinds of benefits that were just
mentioned are not the direct result of adoption of a particular technology but
involve exploiting the technology in ways that are most effective to realize the
business purpose of the system. The simple decision to adopt CORBA or
COM+ is not sufficient to guarantee positive business outcomes. One of the
key challenges is managing the change in commercial technologies in a manner
that supports long-term system life cycles and extends the system without sub-
stantial maintenance as the commercial technology evolves.

Figure 3.16 is an example of the class of technology challenges that must
be managed by object-oriented architects. Figure 3.16 concerns the evolution
of middleware technologies, starting with the socket technologies and evolving

Technology and Application Architecture 81

BootCH03 11/11/03 4:27 PM Page 81

into remote procedure calls and distributed computing environment to the cur-
rent J2EE and ActiveX technologies. No one can reliably predict the future, but
given what is known about proprietary technology evolution as well as open
systems evolution, it is likely that many of the technologies that are becoming
popular will eventually have their own life cycle, which has a distinct ending
point based on when the software vendors discontinue their product support
and move their attention to new product lines. This particular technology evo-
lution in middleware has some dramatic effects on application software be-
cause the middleware is closely integrated with many of the emerging
application capabilities. When a technology like ActiveX becomes obsolete, it
then becomes necessary to upgrade application systems to the new technolo-
gies in order to maintain vendor support and integration of new capabilities.
The demise of ActiveX can already be seen on the horizon as COM+, a suc-
ceeding technology, makes inroads into replacing core elements of its technol-
ogy. The software interfaces are likely to be quite different, especially because
COM and COM+ are based upon an interface definition language, not the same
one as CORBA, and COM+ doesn’t have an interface definition language, at
least in terms of current marketing information. It is important for the software
architect to anticipate these kinds of inevitable changes and to plan the migra-
tion of application systems to the new technologies in a manner that doesn’t
mitigate the business purpose of current system development.

The architect is faced with many challenges in the application space.
Some of the most strenuous challenges involve the changing business processes
that current businesses are undergoing. There is increasing competition from all
sectors, and a merger of capabilities through technologies like the Internet, such
that newspapers, computer companies, cable television vendors, and telecom-
munications operators are starting to work in the same competitive spaces and
are experiencing significant competitive pressure that is the direct result of in-
formation technology innovations and innovative concepts implemented in ap-
plication systems. Even with previous generations of technologies, it is fairly
well known that requirements change a great deal. In fact, the majority of appli-
cations costs for software development can be traced directly to requirements
changes [Horowitz 1993]. For the first time in history, information technology
budgets are exceeding payrolls in many organizations in industries such as fi-
nancial services. Information technology is becoming synonymous with com-
petitive advantage in many of these domains. However, the basic capabilities of
system development are still falling far short of what is needed to realize com-
petitive capabilities fully. For example, in corporate development, one out of
three systems that are started end up in a project cancellation [Johnson 1995].
These types of statistics represent inordinate risk for small and medium-size
businesses, given the increasing cost and dependence upon information systems.

82 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:27 PM Page 82

One of the fundamental rules of thumb of computing is that no technology
ever truly goes away. One can imagine some early IBM minicomputers that are
still faithfully performing their jobs in various businesses around the world. As
information technology evolves, the need to integrate an increasing array of het-
erogeneous systems and software starts to become a significant challenge. As it
becomes necessary to integrate across enterprises and between enterprises using
intranets and extranets, the architectural challenges become substantial. One
problem is the current inadequacy of information technology infrastructure, in-
cluding technologies like COM+ and CORBA, which differ from the real appli-
cation needs in some significant ways. As the challenges of information
technology continue to escalate, another problem with the software skill base
arises. In many industries, there are substantial shortages of software engineers.
It is estimated that at one time there was at least a 10% negative unemployment
level in the United States in the software engineering profession. Some indus-
tries are much harder hit than others, including public sector systems integration
contractors. To build systems with that challenge in mind, the object-oriented
architect needs to plan the system development and control the key software
boundaries in a more effective manner than has ever been done before.

Many critical challenges lie ahead for application systems developers and
software architects. There is an escalating complexity of application system de-
velopment. This complexity is driven by the increasing heterogeneity of infor-

Technology and Application Architecture 83

ISO IDL Today's
choice

DCE

Sockets

J2EE
+ IIOP

Time (years)

S
us

ta
in

ab
le

 te
ch

no
lo

gy

ActiveX
The next

technology

FIGURE 3.16 Managing Technology Change

BootCH03 11/11/03 4:27 PM Page 83

mation systems and the need to integrate increasing scopes of systems both
within and outside the company. In addition, the user requirements not only are
increasing the user expectations as a result of exposure to Internet technologies
and other marvels of modern life but also are driving software developers to
take increasing risks with more complicated and ambitious systems concepts.
The key role of the object-oriented architect is the management of change.
Managing commercial technology innovation with its many asynchronous
product life cycles is one area. Another area is managing the changing business
processes that the information technology supports and implements. One area
of potential solutions lies in the users influencing the evolution of open sys-
tems technologies, influencing software vendors to provide whole technology
capabilities, and influencing legislators to put in place the appropriate guaran-
tees of merchantability and fitness for the purposes that underlie the assump-
tions in system architecture and development.

3.9 Applying Standards to Application
Systems

In the adoption of object-oriented architectures and technologies, many com-
mon questions are raised. They must be resolved to understand the implications
fully. The questions of defining object orientation and the component technolo-
gies that comprise object technologies have already been reviewed, as has a
discussion on how object technologies compare with others, such as procedural
technology.

Many other questions and requirements are crucial to certain categories
of applications. Questions about performance, reliability, and security on the
Internet and how these technologies integrate with vendors that have signifi-
cant market share are all important considerations in the adoption of these tech-
nologies. The next few chapters explain some of the fundamental concepts that
describe the commercial and application sides of object-oriented architecture.
Furthermore, the case is made for the application of open systems technologies
in object-oriented software development practice. Additionally, application de-
velopment issues on applying object technology, integrating legacy systems,
and monitoring the impact of these technologies on procurement and develop-
ment processes are addressed.

It is important to understand that commercial technologies based upon
open systems evolve according to certain underlying principles. These princi-
ples are clearly defined through a model developed by Carl Cargill that

84 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:27 PM Page 84

describes the five stages of standardization (Figure 3.17). To initiate an open
systems standards process, it is necessary to define a reference model. A refer-
ence model defines the common principles, concepts, and terminology that
are applied across families of standards. These reference models also apply to
object-oriented architectures and the integration of application systems. Refer-
ence models are an element that is often missing in software engineering
processes that address complex issues. Developing a formal reference model
through a formal open systems process takes a considerable amount of effort
from numerous people.

A typical reference model from the international standards organization
may take up to ten years to formulate. Based upon a reference model, a number
of industry standards can be initiated and adopted on a somewhat shorter time
scale for formal standardization; this ranges up to seven years. Both reference
models and industry standards are usually the intellectual product of groups of
technology vendors. The standards represent the most general common denom-
inator of technologies across the largest consumer base. In order to apply these
technologies, it is necessary to define a number of profiles that serve the role of
reducing the complexity of applying the standard within a particular domain or
set of application systems (refer to Figure 2.13b).

There are two different kinds of profiles. Functional profiles define the
application in general terms of a standard for a specific domain. Typical
domains might include mortgage lending or automobile manufacturing. The

Applying Standares to Application Systems 85

Five stages of standardization

5 to 10 years

Reference
model

IT
standards

Industry
profiles

Enterprise
profiles

Application
systems

3 to 7 years 1 to 4 years 1 to 2 years

Vendors of IT
products

Consumers of IT
products

6 to 18 years

FIGURE 3.17 The Five Stages of Standardization

BootCH03 11/11/03 4:27 PM Page 85

functional profiles define the common usage conventions across multiple com-
panies within the same industry. Functional profiles can be the product of in-
formation technology vendors but usually are a joint product between the users
of technology and the vendors.

The next level of profiles is called system profiles. System profiles define
how a particular family of systems will use a particular standard or set of stan-
dards. The family of systems is usually associated with a certain enterprise or
virtual enterprise. For example, a set of electronic data interchange standards
for the Ford Motor Company defines how the company and its suppliers for the
manufacturing process can provide just-in-time inventory control so that Ford’s
assembly lines can proceed in an organized fashion without interruptions.

Above system profiles are application systems, which are specific imple-
mentations. Even though the concept of profiles is new to many software engi-
neers, profiles are implemented, perhaps implicitly, in all systems. Whenever a
general-purpose standard or a commercial technology is applied, decisions are
made regarding the conventions of how that technology is used, and those deci-
sions comprise a profile. Unfortunately, many of the important profiles are
buried in the implementation details of information systems. Notice that, in
Figure 2.13b, the time scales for developing each of the types of specifications
is decreasing. The intention is that the reference models provide a stable archi-
tectural framework for all the standards, profiles, and systems that are devel-
oped over a longer term. The industry standards provide the next level of
stability and continuity, the profiles provide stability and consensus across do-
mains and application families, and all these mechanisms support the rapid cre-
ation of application systems on the order of half a year to a year and a half.

Figure 3.18 shows the breakout of reference models and profiles from the
perspective of a particular vendor of information technology. In general, a ven-
dor is working from a single reference model that spans a number of industry
standards. The vendor implements technologies conformant with these stan-
dards and then works with various application developers and vertical markets
to define the usage of the technology for valuable business systems. There is a
multiplying factor for vendors in this approach in that for a small group of ven-
dors potentially numerous customers are enabled by the technologies that
they supply.

Figure 3.19 portrays the concept from the perspective of the end-user ap-
plication developer. This diagram is somewhat amusing in a dark sense, but it
is very representative of the kind of challenges that object-oriented architects in
all kinds of information technology are facing today. For a given application
system, numerous standards and reference models are potentially applicable to
the development of that system. A smaller number of functional profiles and

86 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:27 PM Page 86

system profiles can be obtained off the shelf to guide application system devel-
opment. In general there is a gap between the application implementations and
the industry standards in the area of profiling. Because profiling is primarily
the responsibility of users, it’s appropriate to say that the users are to blame for
this gap in guidance.

When profiles are not agreed to between application system projects, the
likelihood is that the systems will not be interoperable, even though they are
using identical industry standards and even products from the same vendors.
This can be a confusing and frustrating situation for application architects. It is
necessary to understand these principles in order to resolve these kinds of is-
sues for future system developments.

Applying Standares to Application Systems 87

Application
implementation

Application
implementation

Application
implementation

Application
implementation

Application
implementation

Application
implementation

Application
implementation

Application
implementation

Application
implementation

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

Enterprise
profile

IT
standard

IT
standard

IT
standard

Reference
model

Users of IT
products and

services

Vendors of IT
products and

services

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

FIGURE 3.18 Standards from the Vendor’s Perspective

BootCH03 11/11/03 4:27 PM Page 87

3.10 Distributed Infrastructures

Earlier, the concept of middleware was introduced. Middleware provides the
software infrastructure over networking hardware for integrating server plat-
forms with computing clients, which may comprise complete platforms in their
own right.

Distributed infrastructure is a broad description for the full array of
object-oriented and other information technologies from which the software
architect can select. Figure 3.20 shows the smorgasbord of technologies avail-
able on both client server and middleware operating system platforms [Orfali
1996]. On the client platform, technologies include Internet Web browsers,

88 Chapter Three Software Architecture: Basic Training

Reference
model

Reference
model

Reference
model

Reference
model

Reference
model

Reference
model

Reference
model

Reference
model

Reference
model

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

IT
standard

Enterprise
profile

Enterprise
profile

Enterprise
profile

Application
implementation

Vendors of IT
products and

services

Users of IT
products and

services

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

Industry
profile

FIGURE 3.19 Standards from the User and Application Developer’s Perspective

BootCH03 11/11/03 4:27 PM Page 88

graphical user interface development capabilities, system management capabil-
ities, and operating systems. On the server platform, there is a similar array of
technologies including object services, groupware capabilities, transaction ca-
pabilities, and databases. As mentioned before, the server capabilities are mi-
grating to the client platforms as client-server technologies evolve. In the
middleware arena, there is also a fairly wide array of client-server capabilities.
These include a large selection of different transport stacks, network operating
systems, system management environments, and specific services. These tech-
nologies are described in significant detail in a book by Bob Orfali, Dan
Harkey, and Jeri Edwards, The Client Server Survival Guide [Orfali 1996].

Some of the key points to know about client-server technologies include
the fact that the important client-server technologies to adopt are the ones that
are based upon standards. The great thing about standards is that there are so
many to choose from. A typical application portability profile contains over
300 technology standards. This standards profile would be applicable to a typi-
cal large-enterprise information policy. Many such profiles have been devel-
oped for the U.S. government and for commercial industry. The information
technology market is quite large and growing. The object-oriented segment of
this market is still relatively small but is beginning to comprise enough of the
market so that it is a factor in most application systems environments.

As standards evolve, so do commercial technologies. Standards can take
up to seven years for formal adoption but are completed within as short a time
as a year and a half within consortia like the OMG. Commercial technologies
are evolving at an even greater rate, trending down from a three-year cycle that

Distributed Infrastructures 89

Web browser

Graphical user interface

System management

Operating system

Client

Service specific

System management

Network operating system

Transport stack

Middleware

Components

World Wide Web

Groupware

On-line transactions

Database

System management

Operating system

Server

FIGURE 3.20 Infrastructure Reference Model

BootCH03 11/11/03 4:27 PM Page 89

characterized technologies in the late 1980s and early 1990s down to 18-month
and one-year cycles that characterize technologies today. For example, many
vendors are starting to combine the year number with their product names, so
that the obsolescence of the technology is obvious every time the program is
invoked, and users are becoming increasingly compelled to upgrade their soft-
ware on a regular yearly basis. Will vendors reduce innovation time to less than
one year and perhaps start to bundle the month and year designation with their
product names?

The management of compatibilities between product versions is an in-
creasingly difficult challenge, given that end-user enterprises can depend upon
hundreds or even thousands of individual product releases within their corpo-
rate information technology environments. A typical medium-sized indepen-
dent software vendor has approximately 200 software vendors that it depends
upon in order to deliver products and services, trending up from only about a
dozen six years ago. Figure 3.21 shows in more detail how commercial tech-
nologies are evolving in the middleware market toward increasing application
functionality. Starting with the origins of networking, protocol stacks such as
the transmission control protocol (TCP) provide basic capabilities for moving
raw data across networks.

90 Chapter Three Software Architecture: Basic Training
Le

ve
l o

f a
bs

tr
ac

tio
n

Time (approximate)

Platform independent
messaging

Network
transport

TCP/UDP
special

Sockets

+RMP

Java
Sockets

IIOP

Remote
Method

Invocation

Java 2
Enterprise

Edition

Call-level
invisibility

Transport invisibility TLI/XTI TLI/XTI

ONC
RPC
(Sun)

DCE
RPC

(OSF)

Object oriented

Application frameworks

HP/DEC
OO DEC

CORBA
ORB

Active
X’s

DCOM

Active
X

automation
& scripting

Interface Definition
Language (IDL)

Standardized services
(security, threads, naming)

ONC+
RPC
(Sun)

FIGURE 3.21 Evolution of Distributed Computing Technologies

BootCH03 11/11/03 4:27 PM Page 90

The next level of technologies includes the socket services, which are
available on most platforms and underlie many Internet technologies. These
socket services resolve differences between platform dependencies. At the next
layer, there are service interfaces such as transport-layer independence (TLI),
which enables a substitution of multiple socket-level messaging services below
application software. As each of these technologies improves upon its prede-
cessors, additional functionality, which would normally be programmed into
application software, is embodied in the underlying infrastructure. One conse-
quence of this increasing level of abstraction is a loss of control of the underly-
ing network details in qualities of services that were fully exposed at the more
primitive levels. Beyond transport invisibility, the remote-procedure-call tech-
nologies then provide a natural high-level-language mechanism for network-
based communications. The distributed computing environment represents the
culmination of procedural technologies supporting distributed computing. Ob-
ject-oriented extensions to DCE, including object-oriented DCE and Microsoft
COM+, now provide mechanisms for using object-oriented programming lan-
guages with these infrastructures.

Finally, the CORBA object request broker abstracts above the remote
procedure’s mechanisms by unifying the way that object classes are referenced
with the way that the individual services are referenced. In other words, the
CORBA technology removes yet another level of networking detail, simplify-
ing the references to objects and services within a distributed computing envi-
ronment. The progress of technology evolution is not necessarily always in a
forward direction. Some significant technologies that had architectural benefits
did not become successful in the technology market. An example is the Open-
Doc technology, which in the opinion of many authorities had architectural
benefits that exceeded current technologies like ActiveX and JavaBeans.

Standards groups have highly overlapping memberships, with big compa-
nies dominating most forums. Groups come and go with the fashions of tech-
nological innovation. Recently Internet forums (W3C, IETF) have dominated,
as have JavaSoft and Microsoft open forums.

Many networking and open systems technologies as well as other object-
oriented standards are the products of now defunct consortia. The consortium
picture is dynamic. Some of the former consortia such as the Open Software
Foundation and X Open are now merged to form The Open Group. Other con-
sortia, such as the Object Management Group and the Common Open Software
Group, are highly overlapping in membership. A recent addition to the consor-
tium community has been the Active Group. The Active Group is responsible
for publishing technology specifications for already released technologies de-
veloped by Microsoft (Figure 3.22). The Open Software Foundation originated

Distributed Infrastructures 91

BootCH03 11/11/03 4:27 PM Page 91

the distributed computing environment that supports remote procedure calls as
well as other distributed services. The distributed computing environment is
the direct predecessor of the Microsoft COM+ technologies. The distributed
computing environment represents the consensus of a consortium of vendors
outside Microsoft for procedural distributed computing.

Along with CORBA, the distributed computing environment is a main-
stream technology utilized by many large-scale enterprises (Figure 3.23). One
important shortcoming of the distributed computing environment is the provi-
sion of a single-protocol-stack implementation. As distributed computing tech-
nologies evolve, it becomes increasingly necessary to provide multiple network
implementations to satisfy various quality-of-service requirements. These re-
quirements may include timeliness of message delivery; performance; and
throughput, reliability, security, and other nonfunctional requirements. With a
single-protocol-stack implementation, the developers of applications do not
have the capability to provide the appropriate levels of service. The technology
gap described here is properly described as access transparency, a term defined
by an international standards organization reference model that is covered in
Chapter 9. Proper object-oriented distributed computing infrastructures do pro-
vide access transparency and give developers the freedom to select the appro-
priate protocol stacks to meet the application quality-of-service requirements.

92 Chapter Three Software Architecture: Basic Training

X/consortium
terminating

Transferring
common
development
environment

Spec
1170
(Unix)

Component
infrastructure

Endorses for
graphics

Domain
specifications

COSE spawned
by Unix vendors

from OSF

W3C

Endorses CORBA for object

CMG

IETF

COSE
terminating OMG

The
Active
Group

The Open Group
[Reverting to X(Open)]

FIGURE 3.22 Commercial Software Technology Consortia

BootCH03 11/11/03 4:27 PM Page 92

Distributed Infrastructures 93

DCE distributed file service

D
C

E
 s

ec
ur

ity
 s

er
vi

ce

M
an

ag
em

en
t (

D
M

E
)

Applications

Operating system transport service

DCE remote procedure call

DCE directory
service

DCE
distributed

time service

Other basic
services
(future)

DCE diskless
support service

Other distributed
services (future)

FIGURE 3.23 Distributed Computing Environment

Figure 3.24 shows the infrastructure technologies from the Microsoft
COM+ and ActiveX product lines. The basis of these technologies for distrib-
uted computing came from the original OSF environment, but that technology
was extended in various ways with proprietary interfaces that also support the
use of C++ programs in addition to the C program supported by DCE. The Ac-
tiveX technologies have a partition between capabilities that support distrib-
uted computing and capabilities that are limited to a single desktop. The
desktop-specific capabilities include the compound document facilities. Com-
pound document facilities support the integration of data from multiple appli-
cations in a single office document. When moving a document from desktop to
desktop, there can be complications because of the lack of complete integration
with the distributed environment.

Figure 3.25 shows some of the underlying details of how the component
object model and COM+ model interface with application software. Applica-
tion software is exposed to Microsoft-generated function tables that are directly
related to the runtime system from Microsoft Visual C++. The consequence of
this close coupling between Visual C++ in applications software is that the
mapping to other programming languages is not standardized and in some
cases is quite awkward (e.g., when ordinary C programs are applied with the
COM+ infrastructure). The CORBA technologies provide a resolution of some
of these shortcomings.

Figure 3.26 shows the basic concept behind an Object Request Broker
(ORB). The purpose for an ORB is to provide communications between differ-
ent elements of application software. The application software providing a serv-
ice is represented by an object. This object may encapsulate software that is not
object oriented. An application client can request services from an object by

BootCH03 11/11/03 4:27 PM Page 93

94 Chapter Three Software Architecture: Basic Training

In-place activation
“visual editing”

Compound documents

Linking

Embedding

Uniform data transfer Monikers

Drag and drop

Compound files

Component object model

Scripting

Controls

Automation A
ct

iv
eX

A
ct

iv
eX

Distributed
common

object
model

FIGURE 3.24 ActiveX Technology Elements

Implementation
of

interface A
functions

Internal
data

Component object

FUNCTION TABLE B
Interface:IDataObject
QueryInterface
AddRef
Release
GetData
SetData
GetDataHere
QueryGetData
GetCanonicalFormatEtc
DAdvise
DUnadvise
EnumDAdvise

Implementation
of

interface B
functions

Object user

Point to interface A

FUNCTION TABLE A
Interface:IOleObject
QueryInterface
AddRef
Release
SetHostNames
Close
DoVerb
SetClientSide
GetClientSide
Update
IsUpToDate
GetExtent
Advise
Unadvise
EnumAdvise
GetUserClassID
EnumVerbs
GetUserType
GetMiscStatus
GetExtent

GetClipboardData
SetColorScheme
SetMoniker

FIGURE 3.25 Component Object Model

BootCH03 11/11/03 4:27 PM Page 94

sending the request through the ORB. The CORBA mechanism is defined
to help simplify the role of a client within a distributed system. The benefit of
this approach is that it reduces the amount of software that needs to be written
to create an application client and have it successfully interoperate in a distrib-
uted environment.

Figure 3.27 shows some of the finer grained details from the CORBA
model. Figure 3.27 relates to Figure 3.26 in that the client and object software
interoperate through an ORB infrastructure. The part of the infrastructure stan-
dardized by CORBA is limited to the shaded interfaces between the application
software and the ORB infrastructure. CORBA does not standardize the under-
lying mechanisms or protocol stacks. There are both benefits and consequences
to this freedom of implementation. Because different implementers have the
ability to supply different mechanisms and protocol stacks underneath CORBA
interfaces, a number of different products support this standard and provide
various qualities of service. Some implementations, in fact, provide dynamic
qualities of service that can vary between local and remote types of invoca-
tions. The consequence of this freedom of implementation is that the mecha-
nisms selected may not be compatible across different vendors. An additional
standard called the Internet Inter ORB Protocol defines how different ORB
mechanisms can interoperate transparently. The implementation of IIOP is re-
quired for all CORBA products.

The CORBA infrastructure provides two different kinds of mechanisms
on both the client and implementation sides of the communication services. On
the client side, the client developer has the option of using precompiled stub
programs that resemble ordinary calls to the application software. The use
of static stubs minimizes the special programming that is required because the

Distributed Infrastructures 95

Object implementation

Application software

Object request broker (ORB)

Client

Request

FIGURE 3.26 Object Request Broker Concept

BootCH03 11/11/03 4:27 PM Page 95

application is potentially distributed. The stub programs appear like local ob-
jects in the application environment, but the stubs represent a proxy for the re-
mote object.

The client developer has the option of using dynamic invocation (Figure
3.27). Dynamic invocation is an interface that enables the client to call an arbi-
trary message invocation upon objects that it discovers dynamically. The dy-
namic invocation gives the CORBA mechanism extensibility, which is only
required in certain kinds of specialty applications. These applications might in-
clude program debuggers, mobile agent programs, and operating systems. The
implementer of object services in the CORBA environment also has the capa-
bility to choose static invocation or dynamic invocation. The two options are
generated as either static skeletons or dynamic skeletons.

The skeletons provide the software that interfaces between the ORB’s
communication infrastructure and the application program, and they do so in a
way that is natural to the software developer. By using dynamic skeletons
with dynamic invocation in the same program, interesting capabilities are pos-
sible. For example, software firewalls, which provide filtering between differ-
ent groups of applications, can easily be implemented by these two dynamic
capabilities.

Figure 3.28 shows the CORBA technologies in the object management
architecture and how these technologies relate to the Cargill model discussed

96 Chapter Three Software Architecture: Basic Training

Object implementation

Application software

Object request broker core

Client

Stub

ISO IDL interface for all ORBs

ISO IDL interface for all ORBs (one interface for each object type)

ISO IDL interface for all ORBs (several adapters)

Dynamic
invocation

ORB
interface

Dynamic
skeleton

Static
skeleton

Object
adapter

FIGURE 3.27 Key Interfaces in CORBA Architecture

BootCH03 11/11/03 4:27 PM Page 96

earlier. The object management architecture shown in Figure 3.9 provides a
reference model for all the CORBA technologies. CORBA and the related
standards, such as CORBA services and CORBA facilities, are examples of in-
dustry standards that apply broadly across multiple domains.

The CORBA domains comprise functional profiles in the Cargill model.
In other words, the CORBA domain interface specifications represent domain-
specific interoperability conventions for how to use the CORBA technologies
to provide interoperability. Finally, the application objects in the object man-
agement architecture correspond directly with the application implementations
in the Cargill model.

Other initiatives (besides CORBA) have attempted to specify compre-
hensive standards hierarchies. First Taligent, then IBM’s San Francisco project
attempted to define object standards frameworks, but neither garnered the ex-
pected popularity. Java J2EE has come closest to achieving the vision and rep-
resents outstanding progress toward completing the standards picture.

Distributed Infrastructures 97

Reference
model

IT
standards

Industry
profiles

Enterprise
profiles

Application
implementation

CORBA
facilitiesCORBA services

Object
management
architecture

Core object
model

CORBA
domain

OMG
application

objects

CORBA
Object model
OMG IDL
Object request
broker
Language
mappings

•
•
•

•

Cargill model

FIGURE 3.28 Extensions of the Object Management Architecture

BootCH03 11/11/03 4:27 PM Page 97

3.11 Conclusions

This chapter introduced the fundamental concepts of object orientation, open
systems, and object-oriented architectures. It also discussed object orientation
in terms of isolating changes in software systems by combining the data and
processing into modules called objects. Object technology is a capability that is
already present and entering the mainstream of software development. Object
technology is broadly supported by commercial industry through software
vending and by many mainstream end-user organizations in their application
development.

As discussed, the only sustainable commercial advances are through
open systems forms of commercial technology. With proprietary techno-
logies, the obsolescence of capabilities conflicts with the need to build
stable application environments that support the extension of application
functionality.

Additionally, stovepipe systems are the pervasive form of application ar-
chitecture but can be reformed into more effective component object architec-
tures. In the next chapter, object technologies and various reference models
that make these technologies understandable will be described.

This chapter considered one of the key concepts in object-oriented archi-
tecture—the application of standards in software development. A proper under-
standing of how standards are utilized is very important to the successful
exploitation of commercial technologies and the interoperability of application
functions.

In this chapter, object-oriented client-server technologies were de-
scribed. These technologies focus on the underlying distributed computing ca-
pabilities and how they compare with related technologies from the
procedural generation. The companies that supply these technologies have
highly overlapping interests that are expressed through commercial standards
consortia and formal standards bodies. In fact, the distributed computing envi-
ronments vary from the CORBA mechanism to the Microsoft technologies
that are more closely related to remote procedure call. Finally, some of the de-
tails of CORBA infrastructure and how they relate to the Cargill model were
described.

Also, the different architectural layers, including two-tier, three-tier, N-
Tier, and peer-to-peer approaches, were examined. The advantages of using
different layering techniques were covered and provide essential guidance in
deciding when a particular project merits one of the more complex architec-
tural alternatives.

98 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:27 PM Page 98

In conclusion, a wide range of open systems client-server technologies
support object orientation. These technologies enable the construction of a
wide array of distributed systems based upon objects and components.

3.12 Exercises

EXERCISE 3.1 Assess the state of your current organization (or customer) with
respect to the adoption of software paradigms. Prepare a short status assess-
ment document containing recommendations for resolving any gaps in the cur-
rent skill base.

BACKGROUND FOR SOLUTION: First look at the programming languages
being used. Most procedural and OO organizations adopt single-language solu-
tions. Then examine the training requirements. How much training is each de-
veloper required to have? We know of major IT organizations that require 9
weeks to as much as 26 weeks of training before they turn developers loose on
the shop floor. At a bare minimum, we would suggest 3 weeks. Suppose we’re
pursuing the OO paradigm. The recommended training is 1 week for “thinking
objects,” 1 week for OO programming, and 1 week for distributed systems de-
velopment process and practice (e.g., experiencing systems building in a train-
ing environment). These are the recommended absolute minimums. Some of
the smartest companies require much more.

EXERCISE 3.2 Assess the state of architectural control within your organization.
Are you heavily dependent upon the architecture of a single vendor or set
of vendors? What elements of the architecture do you control in a vendor-
independent manner? Create a list of recommendations for resolving any dis-
crepancies or shortcomings resulting from excessive vendor dependency.

BACKGROUND FOR SOLUTION: Ask people, “What is our architecture?” If
the answer is Oracle or Microsoft, you should be concerned. These are honor-
able vendor firms, but in our way of thinking, what vendors do is not applica-
tion architecture. Simple selection of a technology is not sufficient to resolve
architectural forces. At a minimum, your enterprise architecture should de-
scribe the deployment of technologies and customization conventions for how
products are used consistently across systems development. Ideally, your orga-
nization has its own APIs that resolve key interoperability issues, as well as
rigorously maintained profiles for technology utilization.

EXERCISE 3.3 Assess the state of middleware technologies in your organization
(or customer). Identify which technologies are utilized and how effectively
they are exploited.

Exercises 99

BootCH03 11/11/03 4:27 PM Page 99

BACKGROUND FOR SOLUTION: In our experience, there is a very high cor-
relation between the technologies utilized and the architectural practices. If you
are using several middleware infrastructures in a single application, you are
most likely to have ad hoc architectural practices and relatively unmaintainable
systems. In the era of CORBA enlightenment, begin to recognize the folly of
this approach. Many organizations, being conservative, chose DCE as their
corporate middleware solution. However, DCE remains a relatively brittle in-
frastructure (originating from the “C” procedural generation of technologies).
Early adoptions of CORBA frequently resemble DCE-like solutions. As these
organizations mature in their use of distributed computing, there is a corre-
sponding flowering of architectural practices. Eventually, solid architectural
frameworks like RM-ODP become quite attractive to these organizations be-
cause they help architects think much more effectively about managing infra-
structure.

EXERCISE 3.4 Describe a case-study experience for your organization as a use-
ful lesson learned for other developers. Which products, versions, and plat-
forms were utilized? How did you use and customize the applications to meet
the needs of the application?

BACKGROUND FOR SOLUTION: A case study or “experience report” is
quite different than a design pattern although they both share lessons learned.
A case study is a specific instance of a successful solution. As you work
through this exercise, think about answering the questions that would be most
useful to developers encountering a new architectural problem. What elements
of the solution are most reusable, in a way that saves time and eliminates risk
for readers about to define a new system architecture?

EXERCISE 3.5 Describe the infrastructure dependencies of one or more current
applications in your organization. How would you re-architect these systems in
their next generation to accommodate technology change more effectively?

BACKGROUND FOR SOLUTION: The worst case is if you are applying ven-
dor technologies without profiling conventions and user-defined APIs. Unfor-
tunately, the worst case is also typical of most organizations. Suppose a vendor
provides 300 APIs to access its product. Your developers will use alternate sets
of APIs for each project and even within a single system. If you want to mi-
grate to something else, you have a supreme challenge. Consistency in use of
product features can work wonders for enabling interoperability and maintain-
ability. The user-defined APIs, although proprietary, are very much under con-
trol and not likely to be vendor specific (e.g., CORBA IDL interfaces). To
resolve these issues, you need to simplify the choices for how to utilize vendor
products (i.e., using profiles) and clearly identify which aspects will be vendor-

100 Chapter Three Software Architecture: Basic Training

BootCH03 11/11/03 4:27 PM Page 100

independent. Reliance on standards is one step. Definition of profiles shows
that you have sophistication in the use of standards and products.

EXERCISE 3.6 Which standards are being applied in your organization? Do they
supply the desired benefits? Are there any profiles for these standards in your
organization? Why or why not? Develop a plan, listing the recommended pro-
files of standards for your organization. Explain the rationale for why your or-
ganization needs each profile specification.

BACKGROUND FOR SOLUTION: Standards, while being one step away
from vendor dependence, pose many of the same challenges as integrating with
vendor-specific APIs. By definition, standards are very general purpose, apply-
ing to as many types of applications as possible. Therefore, the management of
complexity is not an important goal for the standards writer. In fact, many stan-
dards are overly complicated in order to create barriers for vendor competition.
Sophisticated application architects know this, and they plan to manage this
complexity (e.g., profiles). We apologize for being so singled-minded about
profiles, but this is a key solution concept that most organizations miss—with
resulting negative consequences. In one of our favorite quotes, a senior execu-
tive laments that “We have created a set of fully standards-compliant
stovepipes which can’t interoperate.” It’s dead obvious why that’s happened.
You didn’t read our book—not that we created the concept, which is nearly as
old as IT standards themselves.

EXERCISE 3.7 Describe the quality-of-service requirements for the distributed
infrastructures in your organization (or customer). What qualities of service are
readily supported today? What qualities of service could be usefully added?
What distributed technologies would be applicable to meet these needs?

BACKGROUND FOR SOLUTION: A quality of service (QoS) is an important
category of architectural requirements for distributed infrastructure. Do you
need reliable communications (e.g., funds transfer)? Do you need to support
continuous media (e.g., desktop video teleconferencing)? How reliable? How
continuous? How secure? These are important questions that drive the selec-
tion of infrastructures, the migration plans of enterprises, and the practices of
enterprise architects.

Exercises 101

BootCH03 11/11/03 4:27 PM Page 101

BootCH03 11/11/03 4:27 PM Page 102

