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5
Processes and Threads

5.1 Introduction

We now leave the subject of input and output to begin investigating the multitask-
ing features of UNIX. This chapter deals with techniques for invoking programs
and processes, using exec, fork, wait, and related system calls. The next chap-
ter explains simple interprocess communication using pipes. Chapters 7 and 8
continue with more advanced interprocess communication mechanisms.

My presentation is organized with the goal of implementing a fairly complete
command interpreter, or shell. We’ll start with a limited shell that’s barely usable.
Then we’ll keep adding features until we end up, in the next chapter, with a shell
that can handle I/O redirection, pipelines, background processes, quoted argu-
ments, and environment variables.

5.2 Environment

I’ll begin with a discussion of the environment, which most UNIX users are
already familiar with at the shell level. When a UNIX program is executed, it
receives two collections of data from the process that invoked it: the arguments
and the environment. To C programs, both are in the form of an array of character
pointers, all but the last of which point to a NUL-terminated character string. The
last pointer is NULL. A count of the number of arguments is also passed on. Other
languages use a different interface, but we’re concerned here only with C and
C++.

A C or C++ program begins in one of two ways:1

1. Some implementations allow a third array-of-string argument that contains the environment, but this is both nonstandard 
and unnecessary.
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main—C or C++ program entry point

int main(
int argc, /* argument count */
char *argv[] /* array of argument strings */

)

int main(void)

The count argc doesn’t include the NULL pointer that terminates the argv array.
If the program doesn’t take arguments, the count and array can be omitted, as in
the second form. I’ve already shown examples of both forms in this book.

In addition, the global variable environ points to the array of environment
strings, also NULL terminated (there’s no associated count variable):

environ—environment strings

extern char **environ; /* environment array (not in any header) */

Each argument string can be anything at all, as long as it’s NUL-terminated.
Environment strings are more constrained. Each is in the form name=value, with
the NUL byte after the value. Of course, the name can’t contain a = character.

I’ll get to how the environment is passed to main (causing environ to be set) in
Section 5.3; here I just want to talk about retrieving values from and modifying
environ.

One way to get at the environment is just to access environ directly, like this:

extern char **environ;

int main(void)
{
    int i;

    for (i = 0; environ[i] != NULL; i++)
        printf("%s\n", environ[i]);
    exit(EXIT_SUCCESS);
}

On Solaris here are some of the lines that this program printed (the rest were
omitted to save space):

HOME=/home/marc
HZ=100
LC_COLLATE=en_US.ISO8859-1
LC_CTYPE=en_US.ISO8859-1
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LC_MESSAGES=C
LC_MONETARY=en_US.ISO8859-1
LOGNAME=marc
MAIL=/var/mail/marc

Listing the whole environment is an unusual requirement; usually a program
wants the value of a specific variable, and for that there’s the Standard C function
getenv:

getenv—get value of environment variable

#include <stdlib.h>

char *getenv(
const char *var /* variable to find */

);
/* Returns value or NULL if not found (errno not defined) */

getenv returns just the value part, to the right of the = sign, as in this example:

int main(void)
{
    char *s;

    s = getenv("LOGNAME");

    if (s == NULL)
        printf("variable not found\n");
    else
        printf("value is \"%s\"\n", s);
    exit(EXIT_SUCCESS);
}

which printed:

value is "marc"

Updating the environment is not as easy as reading it. Although the internal stor-
age it occupies is the exclusive property of the process, and may be modified
freely, there is no guarantee of extra room for any new variables or for longer val-
ues. So unless the update is trivial, a completely new environment must be
created. If the pointer environ is then made to point to this new environment, it
will be passed on to any programs subsequently invoked (as we shall see in Sec-
tion 5.3), and it will be used by subsequent calls to getenv. Any updates have no
effect on any other processes, including the shell (or whatever) that invoked the
process doing the updating. Thus, if you want to modify the shell’s environment,
you have to do so with commands built into the shell.



 

280

 

Chapter 5: Processes and Threads

                            

AUPCHo5frame  Page 280  Wednesday, March 3, 2004  12:17 PM
Rather than messing with the environment directly, you can use some standard
functions:

putenv—change or add to environment

#include <stdlib.h>

int putenv(
char *string /* string of form name=value */

);
/* Returns 0 on success or non-zero on error (sets errno) */

setenv—change or add to environment

#include <stdlib.h>

int setenv(
const char *var, /* variable to be changed or added */
const char *val, /* value */
int overwrite /* overwrite? */

);
/* Returns 0 on success or -1 on error (sets errno) */

unsetenv—remove environment variable

#include <stdlib.h>

int unsetenv(
const char *var /* variable to be removed */

);
/* Returns 0 on success or -1 on error (sets errno) */

All of the functions modify the storage pointed to by environ, perhaps setting
environ to a new value if the array of pointers isn’t long enough. If you’ve mod-
ified environ yourself or any parts of the environment it points to, the behavior
of these functions is undefined, so decide whether you’re going to do it yourself
or use the functions but don’t mix the two approaches.

putenv takes complete environment strings of the form name=value and makes a
pointer in the environ array point to the storage you pass in, which then
becomes part of the environment, so don’t pass in any automatically allocated
data (local, nonstatic variables), and don’t modify the string after you’ve called
putenv.

setenv is more sophisticated: It copies the variable name and value you pass in
and allocates its own storage for it. If the variable already exists, its value is
changed if the third overwrite argument is nonzero; otherwise, the old value



 

Environment

 

281

                                       

AUPCHo5frame  Page 281  Wednesday, March 3, 2004  12:17 PM
stays. If the variable doesn’t already exist, it’s added to the environment and the
value of overwrite doesn’t matter.

unsetenv comes with setenv, and it removes a variable and value from the
environment. If your system doesn’t have unsetenv, the best you can do to
remove a variable from the environment is to set its value to the empty string,
which may or may not be acceptable, depending on the application. (Some sys-
tems, such as Linux, FreeBSD, and Darwin, define unsetenv as a void
function, so there’s no error return.)

While the interfaces to these functions is standardized, their presence isn’t
required. FreeBSD, Linux, and Solaris all have putenv, and the first two have all
three. SUS3 requires setenv and unsetenv, but as of this writing there aren’t
any SUS3 systems, so there’s no simple, portable way to determine which are
present. setenv and unsetenv are from BSD and should be present in all sys-
tems derived from it, including FreeBSD; putenv is from System V and should
be present in all systems derived from it, including Solaris. Since the SUS recom-
mends setenv and unsetenv, perhaps the best approach is to code with those
functions and just include your own implementations for those systems that don’t
have them already.

It’s easy to implement setenv and unsetenv if you don’t care about memory
leaks. The problem is that they may have to allocate or, in the case of unsetenv,
orphan memory, but they can’t free the memory because they can’t assume any-
thing about how it was allocated in the first place. That defect notwithstanding,
here’s our version of setenv:

int setenv(const char *var, const char *val, int overwrite)
{
    int i;
    size_t varlen;
    char **e;

    if (var == NULL || val == NULL || var[0] == '\0' ||
      strchr(var, '=') != NULL) {
        errno = EINVAL;
        return -1;
    }
    varlen = strlen(var);
    for (i = 0; environ[i] != NULL; i++)
        if (strncmp(environ[i], var, varlen) == 0 &&
          environ[i][varlen] == '=')
            break;
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    if (environ[i] == NULL) {
        if ((e = malloc((i + 2) * sizeof(char *))) == NULL)
            return -1;
        memcpy(e, environ, i * sizeof(char *));
        /* possible memory leaks with old pointer array */
        environ = e;
        environ[i + 1] = NULL;
        return setnew(i, var, val);
    }
    else {
        if (overwrite) {
            if (strlen(&environ[i][varlen + 1]) >= strlen(val)) {
                strcpy(&environ[i][varlen + 1], val);
                return 0;
            }
            return setnew(i, var, val);
        }
        return 0;
    }
}

Comments about this function:

• The first thing we do is check the arguments, which is required by the SUS.
• Next we search the environment to see if the variable is already defined.

Note that we have to look for a string that starts with the name followed by a
= sign.

• If the variable is found, we exit if the overwrite argument is false. Other-
wise, there are two cases: The new value fits, in which case we just copy it in,
or it doesn’t, in which case we call the function setnew (below) to put it in.

• If the variable is not found, we have to grow the array. We can’t use realloc
because we can’t assume how the old memory was allocated, as we said. So
we use malloc and copy the old contents in ourselves. Then we terminate the
new array with a NULL pointer and call setnew to put the new entry in.

Here’s setnew, which allocates space for a name, an = sign, and a value and
stores it in the array:

static int setnew(int i, const char *var, const char *val)
{
    char *s;

    if ((s = malloc(strlen(var) + 1 + strlen(val) + 1)) == NULL)
        return -1;
    strcpy(s, var);
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    strcat(s, "=");
    strcat(s, val);
    /* possible memory leak with old value of environ[i] */
    environ[i] = s;
    return 0;
}

Lastly, we have unsetenv that checks the argument, finds it, and, if it’s there,
slides the rest of the array down to effectively remove it. This also creates a possi-
ble memory leak, as we can’t assume that the memory for the unset variable can
be freed.

int unsetenv(const char *var)
{
    int i, found = -1;
    size_t varlen;

    if (var == NULL || var[0] == '\0' || strchr(var, '=') != NULL) {
        errno = EINVAL;
        return -1;
    }
    varlen = strlen(var);
    for (i = 0; environ[i] != NULL; i++)
        if (strncmp(environ[i], var, varlen) == 0 &&
          environ[i][varlen] == '=')
            found = i;
    if (found != -1)
        /* possible memory leak with old value of environ[found] */
        memmove(&environ[found], &environ[found + 1],
          (i - found) * sizeof(char *));
    return 0;
}

Note that we use memmove rather than memcpy because the former is guaranteed
to work if the source and target memory areas overlap, as they certainly do in this
case.

You may be wondering why we didn’t use our “ec” error-checking macros in
these functions. The reason is that we wanted their behavior to be as close to the
standard functions as possible.

It’s fairly straightforward to correct the memory-leak problems in setenv and
unsetenv; see Exercise 5.1.
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5.3 exec System Calls

It’s impossible to understand the exec or fork system calls without fully under-
standing the distinction between a process and a program. If these terms are new
to you, you may want to go back and review Section 1.1.2. If you’re ready to pro-
ceed now, we’ll summarize the distinction in one sentence: A process is an
execution environment that consists of instruction, user-data, and system-data seg-
ments, as well as lots of other resources acquired at runtime, whereas a program is
a file containing instructions and data that are used to initialize the instruction and
user-data segments of a process.

The exec system calls reinitialize a process from a designated program; the pro-
gram changes while the process remains. On the other hand, the fork system call
(the subject of Section 5.5) creates a new process that is a clone of an existing
one, by just copying over the instruction, user-data and system-data segments; the
new process is not initialized from a program, so old and new processes execute
the same instructions.

Individually, fork and exec are of limited use—mostly, they’re used together.
Keep this in mind as I present them separately, and don’t be alarmed if you think
they’re useless—just try to understand what they do. In Section 5.4, when we use
them together, you’ll see that they are a powerful pair.

Aside from booting the UNIX kernel itself, exec is the only way programs get
executed on UNIX. Not only does the shell use exec to execute our programs,
but the shell and its ancestors were invoked by exec, too. And fork is the only
way new processes get created.

Actually, there is no system call named “exec.” The so-called “exec” system calls
are a set of six, with names of the form execAB, where A is either l or v, depend-
ing on whether the arguments are directly in the call (list) or in an array (vector),
and B is either absent, a p to indicate that the PATH environment variable should
be used to search for the program, or an e to indicate that a particular environ-
ment is to be used. (Oddly, you can’t get both the p and e features in the same
call.) Thus, the six names are execl, execv, execlp, execvp, execle, and
execve.2 We’ll start with execl, and then do the other five.

2. The same features could be easily provided in two system calls instead of six, but it’s a little late to change. See Exercise 
5.6.
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execl—execute file with argument list

#include <unistd.h>

int execl(
const char *path, /* program pathname */
const char *arg0, /* first arg (file name) */
const char *arg1, /* second arg (if needed) */
..., /* remaining args (if needed) */
NULL /* arg list terminator */

);
/* Returns -1 on error (sets errno) */

The argument path must name a program file that is executable by the effective
user-ID (mode 755, say) and has the correct contents for executable programs.
The process’s instruction segment is overwritten by the instructions from the pro-
gram, and the process’s user-data segment is overwritten by the data from the
program, with a re-initialized stack. Then the process executes the new program
from the top (that is, its main function is called).

There can be no return from a successful execl because the return location is
gone. An unsuccessful execl does return, with a value of –1, but there’s no need
to test for that value, for no other value is possible. The most common reasons for
an unsuccessful execl is that the path doesn’t exist or it isn’t executable.

The arguments to execl that follow path are collected into an array of charac-
ter pointers; the last argument, which must be NULL, stops the collection and
terminates the array. The first argument, by convention, is the name of the pro-
gram file (not the entire path). The new program may access these arguments
through the familiar argc and argv arguments of main. The environment
pointed to by environ is passed on, too, and it is accessible through the new
program’s environ pointer or with getenv, as explained in the previous
section.

Since the process continues to live, and since its system-data segment is mostly
undisturbed, almost all of the process’s attributes are unchanged, including its
process-ID, parent-process-ID, process-group-ID, session-ID, controlling termi-
nal, real user-ID and group-ID, current and root directories, priority, accumulated
execution times, and, usually, open file descriptors. It’s simpler to list the princi-
pal attributes that do change, all for good reasons:
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• If the process had arranged to catch any signals, they are reset to the default
action, since the instructions designated to catch them are gone. Ignored or
defaulted signals stay that way. (More about signals in Chapter 9.)

• If the set-user-ID or set-group-ID bit of the new program file is on, the
effective user-ID or group-ID is changed to the owner-ID or group-ID of the
file. There’s no way to get the former effective IDs back, if they were them-
selves different from the real IDs.

• Any functions registered with atexit (Section 1.3.4) are unregistered,
since their code is gone.

• Shared memory segments (Section 7.12) are detached (unmapped), as the
attachment point is no longer valid.

• POSIX named semaphores (Section 7.10) are closed. System V semaphores
(Section 7.9) are undisturbed.

For the complete list, see Appendix A. But you get the idea: If retaining an
attribute or resource isn’t meaningful with an entirely new program running, it’s
reset to its default or closed.

To show how execl is used, here’s a rather contrived example:

void exectest(void)
{
    printf("The quick brown fox jumped over ");
    ec_neg1( execl("/bin/echo", "echo", "the", "lazy", "dogs.", NULL) )
    return;

EC_CLEANUP_BGN
    EC_FLUSH("exectest");
EC_CLEANUP_END
}

Here’s the output we got when we called the function:

the lazy dogs.

What happened to the fox? Well, it turns out it wasn’t quick enough: The stan-
dard I/O Library, of which printf is a part, buffers its output, and any partially
full last buffer is automatically flushed when the process exits. But the process
didn’t exit before execl was called, and the buffer, being in the user-data seg-
ment, got overlaid before it could be flushed.

The problem can be fixed by either forcing unbuffered output, like this:

setbuf(stdout, NULL);
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or by flushing the buffer just before calling execl, like this:

fflush(stdout);

As I’ve mentioned, open file descriptors normally stay open across an execl. If
we don’t want a file descriptor to stay open, we close it first, with close. But
sometimes we can’t. Suppose we are invoking a program that requires all file
descriptors to be closed (an extremely unconventional requirement). We might
therefore try this:

errno = 0;
ec_neg1( open_max = sysconf(_SC_OPEN_MAX) )
for (fd = 0; fd < open_max - 1; fd++)
    (void)close(fd); /* ignore errors */
ec_neg1( execl(path, arg0, arg1, arg2, NULL) )

We call sysconf (Section 1.5.5) to get the maximum number of files that a pro-
cess can have open, and the highest-numbered file descriptor is one less than that.
We want so badly to close all file descriptors here that we don’t even care if
they’re all open—we close them anyhow. It’s one of the rare instances where
ignoring system-call error returns is appropriate.

All is fine if the execl succeeds, but if it fails we’ll never see an error message
because file descriptor 2 has been closed! Here’s where the close-on-exec flag that
we encountered in Section 3.8.3 can be used. When set, with fcntl, the file
descriptor is closed upon a successful execl but left alone otherwise. We can
either set this flag for only the important file descriptors or just set it for all of
them, like this:

for (fd = 0; fd < open_max - 1; fd++) {
    ec_neg1( flags = fcntl(fd, F_SETFD) )
    ec_neg1( fcntl(fd, F_SETFD, flags | FD_CLOEXEC) )
}
ec_neg1( execl(path, arg0, arg1, arg2, NULL) )

A problem with closing or setting close-on-exec for all file descriptors is that there
may be a thousand or more of them, and this is a lot of processing, mostly wasted.
At the same time, it’s wrong to leave any but the standard file descriptors open
across an exec, unless the new program is expecting more than the standard three,
which is unusual. So, in most cases, you need to keep track of what file descriptors
your program has opened and close them explicitly before an exec.

Because the standard file descriptors are normally left open, close-on-exec is
rarely used. An example where it is useful would be on a file descriptor open to a
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log file, which you would want to keep open in case the exec fails and you want
to log that fact.

The other five exec system calls provide three features not available with execl:

• Putting the arguments into an array instead of listing them explicitly. This is
necessary when the number of arguments is unknown at compile time, as in
programming a shell, for example.

• Searching for the program file using the value of the PATH environment
variable, as a shell does.

• Manually passing an explicit environment pointer, instead of automatically
using environ. Since a successful exec overwrites the existing environ-
ment anyhow, there’s seldom an advantage to this feature.3

Here are the synopses for the exec variants I haven’t shown yet:

execv—execute file with argument vector

#include <unistd.h>

int execv(
const char *path, /* program pathname */
char *const argv[] /* argument vector */

);
/* Returns -1 on error (sets errno) */

execlp—execute file with argument list and PATH search

#include <unistd.h>

int execlp(
const char *file, /* program file name */
const char *arg0, /* first arg (file name) */
const char *arg1, /* second arg (if needed) */
..., /* remaining args (if needed) */
NULL /* arg list terminator */

);
/* Returns -1 on error (sets errno) */

execvp—execute file with argument vector and PATH search

#include <unistd.h>

int execvp(
const char *file, /* program file name */
char *const argv[] /* argument vector */

);
/* Returns -1 on error (sets errno) */

3. But see Exercise 5.2.
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execle—execute file with argument list and environment

#include <unistd.h>

int execle(
const char *path, /* program pathname */
const char *arg0, /* first arg (file name) */
const char *arg1, /* second arg (if needed) */
..., /* remaining args (if needed) */
NULL, /* arg list terminator */
char *const envv[] /* environment vector */

);
/* Returns -1 on error (sets errno) */

execve—execute file with argument vector and environment

#include <unistd.h>

int execve(
const char *path, /* program pathname */
char *const argv[], /* argument vector */
char *const envv[] /* environment vector */

);
/* Returns -1 on error (sets errno) */

Note that the argv argument as used here is identical in layout to the argv argu-
ment of a main function. Don’t forget that the last pointer has to be NULL.

If a file argument to execlp or execvp has no slashes, the strings listed in the
value of the PATH variable are prepended to it one by one until an ordinary file
with the resulting path name that has execute permission is located. If this file
contains a program (as indicated by a code number in its first word), it is exe-
cuted. If not, it is assumed to be a script file; usually, to run it a shell is executed
with the path as its first argument.

For example, if the file argument is echo, and a search of the PATH strings finds
an executable whose path is /bin/echo, then that file is executed as a program
because it contains binary instructions in the right format. But if the file argu-
ment is, say, myscript, and a search turns up /home/marc/myscript which is not
a binary executable, execlp or execvp instead executes the equivalent of:

sh /home/marc/myscript arg1 arg2 …

It’s up to the implementation as to what shell it uses.

There is one other universally supported, but nonstandard, convention: If the first
line of the script is of the form

#! pathname [arg]
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the interpreter specified by pathname is executed, instead of the shell, with the
pathname of the script file as its first argument. If there’s an optional arg on the
#! line, it becomes the first argument to the program, and the script pathname
becomes the second. The interpreter has to bypass the #! line, which is why most
UNIX scripting languages use # to start a comment.

For example, you can put a script like this in the file mycmd:

#! /usr/bin/python2.2
print "Hello World!"

make it executable, and then execute it like this:

$ mycmd
Hello World!
$

On nearly all systems, the work to deal with the #! line is done by execvp, not
by the shell itself.

If the PATH search turns up nothing executable, the exec fails. If the file argu-
ment has slashes in it, no search is done—the path is assumed to be complete. It
still may be a script, however.

It’s possible to program execvp and execlp as library functions that call on
execv or execl, and we can learn a lot by doing so. I’ll show a version
of execvp that’s close to the standard version, but which uses the “ec” error-
checking macros.

Recall that for each path found by searching PATH, execvp first has to try to exe-
cute it as a binary executable and then again as a shell script. Here’s a function
that does that much (omitting the #! feature):

int exec_path(const char *path, char *const argv[], char *newargv[])
{
    int i;

    execv(path, argv);
    if (errno == ENOEXEC) {
        newargv[0] = argv[0];
        newargv[1] = (char *)path;
        i = 1;
        do {
            newargv[i + 1] = argv[i];
        } while (argv[i++] != NULL);
        return execv("/bin/sh", (char *const *)newargv);
    }
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    return -1;
}

exec_path returns –1 with errno set if it fails to execute the path one way or
another.

Our version of execvp, called execvp2, has to try each of the paths in PATH in
turn, calling exec_path each time, unless the passed-in file contains a slash or
PATH is nonexistent, in which case it just uses it as is:

int execvp2(const char *file, char *const argv[])
{
    char *s, *pathseq = NULL, *path = NULL, **newargv = NULL;
    int argc;

    for (argc = 0; argv[argc] != NULL; argc++)
        ;
    /* If shell script, we'll need room for one additional arg and NULL. */
    ec_null( newargv = malloc((argc + 2) * sizeof(char *)) )
    s = getenv("PATH");
    if (strchr(file, '/') != NULL || s == NULL || s[0] == '\0')
        ec_neg1( exec_path(file, argv, newargv) )
    ec_null( pathseq = strdup(s) )
    /* Following line usually allocates too much */
    ec_null( path = malloc(strlen(file) + strlen(pathseq) + 2) )
    while ((s = strtok(pathseq, ":")) != NULL) {
        pathseq = NULL; /* tell strtok to keep going */
        if (s[0] == '\0')
            s = ".";
        strcpy(path, s);
        strcat(path, "/");
        strcat(path, file);
        exec_path(path, argv, newargv);
    }
    errno = ENOENT;
    EC_FAIL

EC_CLEANUP_BGN
    free(pathseq);
    free(path);
    free(newargv);
    return -1;
EC_CLEANUP_END
}

Some comments about the memory allocations:
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• It’s not necessary or even possible to free up allocated memory if an exec is
successful, as all user data will be overwritten.

• Taking the length of PATH plus the length of the passed-in file name plus
two more bytes for a slash and a NUL is definitely enough for every path
we’ll synthesize.

• If we’re going to try executing a shell script, we need an argument vector
with one more slot than the one passed in, so we count the number of argu-
ments passed in (in the for loop) and then allocate a vector with two more
than that many slots (one for the additional argument—the pathname for the
shell to execute—and one for the NULL pointer at the end).

• We use strdup to allocate a new string to hold the value of PATH because
strtok will write into it. The pointer we got directly from getenv points
into the environment, and we don’t want to modify those strings directly, in
case execvp2 fails. (Setting the first argument of strtok to NULL is some-
thing you have to do when calling that function—that’s how it knows to
continue scanning the original string.)

As we’ve said, normally exec is paired with fork, but occasionally it’s useful by
itself. Sometimes a large program is split into phases, and exec brings in the next
phase. But since all instructions and user-data are overlaid, the phases would have
to be quite independent for this to be workable—data can be passed only through
arguments, the environment, or files. So this application is rare but not unknown.
More commonly, exec is used by itself when we need to do a very small amount
of preliminary work before invoking a command. An example is the nohup com-
mand, which suppresses hangup signals before calling execvp to invoke the
user’s command. Another example is the nice command, which changes a com-
mand’s priority (see Section 5.15 for an example).

5.4 Implementing a Shell (Version 1)

We now know enough system calls to write a shell of our own, although not a
very good one. Its chief deficiency is that it has to commit suicide in order to exe-
cute a command, since there is no return from exec. Perversely, if you type in bad
commands, you can keep running. While we’re at it, we’ll implement two built-in
commands to modify and access the environment: assignment (e.g., BOOK=/usr/
marc/book) and set, which prints the environment.4

4. There’s no export command; the whole environment is passed to executed commands.
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The first task is to break up a command line into arguments. For simplicity, we’ll
do without quoted arguments. Moreover, since this shell can’t handle background
processes, sequential execution, or piping, we don’t have to worry about the spe-
cial characters &, ;, and |. We’ll leave out redirection (>, >>, and <) also.
Therefore, a command line is just a series of words separated by blanks or tabs.
We have to gather them up and put them into an argv array:

#define MAXLINE 200

static bool getargs(int *argcp, char *argv[], int max, bool *eofp)
{
    static char cmd[MAXLINE];
    char *cmdp;
    int i;

    *eofp = false;
    if (fgets(cmd, sizeof(cmd), stdin) == NULL) {
        if (ferror(stdin))
            EC_FAIL
        *eofp = true;
        return false;
    }
    if (strchr(cmd, '\n') == NULL) {
        /* eat up rest of line */
        while (true) {
            switch (getchar()) {
            case '\n':
                break;
            case EOF:
                if (ferror(stdin))
                    EC_FAIL
            default:
                continue;
            }
            break;
        }
        printf("Line too long -- command ignored\n");
        return false;
    }
    cmdp = cmd;
    for (i = 0; i < max; i++) {
        if ((argv[i] = strtok(cmdp, " \t\n")) == NULL)
            break;
        cmdp = NULL; /* tell strtok to keep going */
    }
    if (i >= max) {
        printf("Too many args -- command ignored\n");
        return false;
    }
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    *argcp = i;
    return true;

EC_CLEANUP_BGN
    EC_FLUSH("getargs")
    return false;
EC_CLEANUP_END
}

Comments:

• getargs returns true if it parsed the arguments OK, and otherwise false.
• It uses the standard C function fgets to read a line of input. The function is

safe enough if a long line is typed, since it won’t overrun the buffer we pass
in. But in that case we don’t want to leave the unread characters to be read
later, as they would then be an unintended, and potentially damaging, shell
command in their own right. So in that case (no newline terminator) we read
in and throw away the rest of the line before printing an error message.

• Then we use strtok to break up the line into its arguments. (We also used
strtok in execvp2, in the previous section.)

• getargs displays its own error messages with EC_FLUSH in case of a genu-
ine error from one of the library functions it calls, and otherwise—such as in
the case of a line that’s too long—prints a message for the user.

Next, we need functions to handle the built-in commands, assignment and set.
These are easy, since we can use the environment-manipulation techniques from
Section 5.2:

extern char **environ;

void set(int argc, char *argv[])
{
    int i;

    if (argc != 1)
        printf("Extra args\n");
    else
        for (i = 0; environ[i] != NULL; i++)
            printf("%s\n", environ[i]);
}

void asg(int argc, char *argv[])
{
    char *name, *val;
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    if (argc != 1)
        printf("Extra args\n");
    else {
        name = strtok(argv[0], "=");
        val = strtok(NULL, ""); /* get all that's left */
        if (name == NULL || val == NULL)
            printf("Bad command\n");
        else
            ec_neg1( setenv(name, val, true) )
    }
    return;

EC_CLEANUP_BGN
    EC_FLUSH("asg")
EC_CLEANUP_END
}

Next, we complete the program with a main function that prints the prompt char-
acter (we use @), gets the arguments, checks to see if the command is built in, and
if it’s not, tries to execute it:
#define MAXARG 20

int main(void)
{
    char *argv[MAXARG];
    int argc;
    bool eof;

    while (true) {
        printf("@ ");
        if (getargs(&argc, argv, MAXARG, &eof) && argc > 0) {
            if (strchr(argv[0], '=') != NULL)
                asg(argc, argv);
            else if (strcmp(argv[0], "set") == 0)
                set(argc, argv);
            else
                execute(argc, argv);
        }
        if (eof)
            exit(EXIT_SUCCESS);

    }
}

static void execute(int argc, char *argv[])
{
    execvp(argv[0], argv);
    printf("Can't execute\n");
}
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Note that we loop back to print another prompt only if execvp fails. That’s why
we’re unlikely to find this shell useful. Here’s a sample session anyhow (the list-
ing of the environment has been abbreviated to save space):

$ sh0
@ set
SSH_CLIENT=192.168.0.1 4971 22
USER=marc
MAIL=/var/mail/marc
EDITOR=vi
@ LASTNAME=Rochkind
@ set
SSH_CLIENT=192.168.0.1 4971 22
USER=marc
MAIL=/var/mail/marc
EDITOR=vi
LASTNAME=Rochkind
@ echo Hello World!
Hello World!
$

Note the dollar-sign prompt at the end—after executing echo, our shell has
exited. Actually, it was echo that exited, as it was the program that replaced the
shell. Clearly, it would be better for a shell to execute commands in processes of
their own, and that’s exactly where we’re headed.

5.5 fork System Call

fork is somewhat the opposite of exec: It creates a new process, but it does not
initialize it from a new program. Instead, the new process’s instruction, user-data,
and system-data segments are almost exact copies of the old process’s.

fork—create new process

#include <unistd.h>

pid_t fork(void);

/* Returns child process-ID and 0 on success or -1 on error (sets errno) */

After fork returns, both processes (parent and child) receive the return. The
return value is different, however, which is crucial, because this allows their sub-
sequent actions to differ. Usually, the child does an exec, and the parent either
waits for the child to terminate or goes off to do something else.

The child receives a 0 return value from fork; the parent receives the process-ID
of the child. As usual, a return of –1 indicates an error, but since fork has no
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arguments, the caller could not have done anything wrong. The only cause of an
error is resource exhaustion, such as insufficient swap space or too many pro-
cesses already in execution. Rather than give up, the parent may want to wait a
while (with sleep, say) and try again, although this is not what shells typically
do—they print a message and reprompt.

Recall that a program invoked by an exec system call retains many attributes
because the system-data segment was left mostly alone. Similarly, a child created
by fork inherits most attributes from its parent because its system-data segment
is copied from its parent. It is this inheritance that allows a user to set certain
attributes from the shell, such as current directory, effective user-ID, and priority,
that then apply to each command subsequently invoked. One can imagine these
attributes belonging to the “immediate family,” although that’s not a formally
defined UNIX term.

Only a few attributes are not inherited:

• Obviously, the child’s process-ID and parent-process-ID are different, since
it’s a different process.

• If the parent was running multiple threads (Section 5.17), only the one that
executed the fork exists in the child. All the threads remain intact in the
parent, however.

• The child gets duplicates of the parent’s open file descriptors. Each is
opened to the same file, and the file pointer has the same value. The open
file description (Section 2.2.3) and, hence, the file offset, is shared. If the
child changes it with lseek, then the parent’s next read or write will be
at the new location. The file descriptor itself, however, is distinct: If the
child closes it, the parent’s copy is undisturbed.

• The child’s accumulated execution times are reset to zero because it’s at the
beginning of its life.

(These are the main ones—see Appendix A for the complete list.)

Here’s a simple example to show the effect of a fork:

void forktest(void)
{
    int pid;

    printf("Start of test\n");
    pid = fork();
    printf("Returned %d\n", pid);
}
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The output:

$ forktest
Start of test
Returned 98657
Returned 0
$

In this case the parent executed its printf before the child, but in general you
can’t depend on which comes first because the processes are independently sched-
uled. If it matters, you’ll have to synchronize the two yourself, as explained in
Section 9.2.3. As shown there, you can do it with a pipe or, less easily, with a
signal.

Let’s run forktest again, but this time with the standard output redirected to a
file:

$ forktest >tmp
$ cat tmp
Start of test
Returned 56807
Start of test
Returned 0
$

This time “Start of test” got written twice! Can you figure out why? (Spoiler in
next paragraph.)

What happened was that printf buffered its output (as explained in Section
2.12) and the child inherited the unflushed buffer, along with everything else.
When the child exited, it flushed the buffer, and so did the parent. Before, when
the output wasn’t redirected, printf didn’t buffer because it knew that the stan-
dard output was a terminal device and that it should behave more interactively. I’ll
discuss how to control the side-effects of exiting in Section 5.7.

fork and exec are a perfect match because the child process created by fork, as
it is a near clone of the parent, isn’t usually useful. It’s ideal, though, for being
overlaid by a new program, which is precisely what exec does. We’ll see that in
the next section, as we improve on our shell.

The cost of a fork is potentially enormous. It goes to all the trouble of cloning
the parent, perhaps copying a large data segment (the instruction segment is usu-
ally read-only and can be shared) only to execute a few hundred instructions
before reinitializing the code and data segments. This seems wasteful and it is. A
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clever solution is used in virtual-memory versions of UNIX, in which copying is
particularly expensive, called copy-on-write. It works this way: On a fork, the
parent and child share the data segment, which consists of a collection of pages.
As long as a page stays unmodified, this shortcut works OK. Then as soon as par-
ent or child attempts to write on a page, just that page is copied to give each its
own version. This is transparent and efficient with the right kind of dynamic-
address-translation hardware, which almost all modern-day computers have. Since
the exec follows very quickly in almost all cases, very few pages will have to be
copied. But even if they all have to be copied, we are no worse off—in fact, we’re
better off, since we were able to start running the child earlier. Remember that a
copy-on-write scheme is internal to the kernel; it does not change the semantics of
fork, and, apart from better performance, users are unaware of it.

Even more efficient than copy-on-write, but not as transparent, is a variation on
fork called vfork:

vfork—create new process; share memory (obsolete)

#include <unistd.h>

pid_t vfork(void);

/* Returns child process-ID and 0 on success or -1 on error (sets errno) */

vfork behaves exactly like fork insofar as creating the child process is con-
cerned, but parent and child share the same data segment. There’s no copy-on-
write—they both read and write the same variables, so havoc ensues unless the
child immediately exits or does an exec, which is what normally happens any-
way (see the example function execute2 in the next section).5 In early versions
of BSD UNIX, vfork was important; however, its performance advantages over
fork are no longer substantial and its use is dangerous, so you should not use it,
which is why it’s marked “obsolete” in the synopsis.

A more recent attempt to improve the efficiency of fork and exec is
posix_spawn, part of a 1999 POSIX update. Because its end result is a child
process running a different program, it avoids the problems of vfork. It doesn’t
offer all the flexibility of a separate fork and exec, but it does handle the most
common cases (e.g., duplicating a file descriptor). The real purpose of

5. Two processes concurrently reading and writing the same variables is similar to threads, with similar potential dangers. 
Section 5.17 has more.
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posix_spawn is to provide an efficient way to invoke a program as a child pro-
cess in a realtime system when swapping would be too slow and the hardware
lacks dynamic address translation. It’s possible to implement posix_spawn as a
library function that uses fork and exec (Exercise 5.8), although in a realtime
system of the sort its designers envisioned posix_spawn would have to be
implemented as a system call.

It’s a good time to mention the Standard C function system:

system—run command

#include <stdlib.h>

int system(
const char *command /* command */

);
/* Returns exit status or -1 on error (sets errno) */

This function does a fork followed by an exec of the shell, passing the com-
mand argument as a shell command line. It’s a handy way to execute a command
line from within a program, but it doesn’t provide the efficiency (the shell is
always invoked) or flexibility of a separate fork followed by an exec, or of
posix_spawn.

5.6 Implementing a Shell (Version 2)

Now let’s put fork and execvp together to make our shell from the previous sec-
tion far more useful—it won’t just exit after running a command but will actually
prompt for another one! We replace the function execute with execute2:

static void execute2(int argc, char *argv[])
{
    pid_t pid;

    switch (pid = fork()) {
    case -1: /* parent (error) */
        EC_FAIL
    case 0: /* child */
        execvp(argv[0], argv);
        EC_FAIL
    default: /* parent */
        ec_neg1( wait(NULL) )
    }
    return;
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EC_CLEANUP_BGN
    EC_FLUSH("execute2")
    if (pid == 0)
        _exit(EXIT_FAILURE);
EC_CLEANUP_END
}

I’ll present the details of wait fully in Section 5.8; for now, you just need to
know that it waits for the child process to terminate before returning.

This function treats an error from fork and wait differently from an error from
execvp. If fork or wait returns –1, we’re in the parent, so we just print the error
information (with EC_FLUSH) and return. The caller (main from the previous sec-
tion) will then prompt the user again, which is what we want—a shell shouldn’t
terminate just because there’s been an error. But if execvp returns, we are in the
child process, not the parent, and we had better exit. Otherwise, the child would
keep running and we would have two shells prompting for commands. If we actu-
ally tried to type a command, the two processes would compete for characters and
each would get some of them, since a single character can only be read once. This
could have serious consequences if, for example, we typed rm t* and one of the
shells read rm * while the other read t.

We called _exit instead of exit for reasons I’m that going to explain next.

5.7 exit System Calls and Process Termination

There are exactly four ways that a process can terminate:

1. Calling exit. Returning a value from main is the same as calling exit with
that value as an argument, and returning without a value is the same as return-
ing 0. 

2. Calling _exit or its equivalent, _Exit, two variants of exit that will be
explained shortly.

3. Receiving a terminating signal.

4. A system crash, caused by anything from a power failure to a bug in the OS.

This section is concerned with the first two, Chapter 9 deals with signals, and
there’s really nothing to say about crashes, upon which processes just stop.6

6. Some computers send a signal to processes when power fails, but that just changes it to the third case.
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The differences between the three variants of exit are:

• _exit and _Exit behave identically in all respects, although technically
_exit is from UNIX and _Exit is from Standard C. From now on, I’ll
refer only to _exit, and you can assume everything I say about it applies to
_Exit as well.

• exit (without the underscore) is also from Standard C. It does everything
that _exit does and also some higher-level cleanup, including at least call-
ing functions registered with atexit (Section 1.3.4) and flushing standard
I/O buffers, as though fflush or fclose were called. (Whether _exit
flushes the buffers is implementation defined, so don’t count on it.)

As exit is a superset of  _exit, everything I say here about the latter applies
also to the former, so I’ll mostly just talk about _exit.

Usually, you call _exit in a child process that hasn’t done an exec, rather than
exit, as I showed in execute2 in the previous section, because whatever
cleanup processing the child inherited usually should be done only once. But this
isn’t always true, so you’ll have to examine each case to decide what’s appropri-
ate. In the most common case, when the child is overwritten by an exec,
a program starts fresh, so whatever cleanup it does when it exits is OK. Any
buffers or atexit functions from the parent are long gone.

If you’re using the “ec” macros for error checking, as I do in this book, remember
that the automatic display of an error message and the function trace-back are
done in a function registered with atexit that won’t be called if you terminate
with _exit (Section 1.4.2). In execute2 in the previous section we took care of
this by using the EC_FLUSH macro in both parent and child, although only the
child calls _exit.

Here are the synopses for the exit functions. Note that there are two different
include files involved:

_exit—terminate process without cleanup

#include <unistd.h>

void _exit(
int status /* exit status */

);
/* Does not return */
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_Exit—terminate process without cleanup

#include <stdlib.h>

void _Exit(
int status /* exit status */

);
/* Does not return */

exit—terminate process with cleanup

#include <stdlib.h>

void exit(
int status /* exit status */

);
/* Does not return */

_exit and the other two variants terminate the process that issued it, with a sta-
tus code equal to the rightmost (least significant) byte of status. There are lots
of additional side-effects; the principal ones are listed here, and you can find the
complete list in [SUS2002]. Actually, these side-effects apply to process termina-
tion in general (except for a crash):

• All open file descriptors are closed.
• As explained in Section 4.3, if the process was the controlling process (the

session leader), the session loses its controlling terminal. Also, every pro-
cess in the session gets a hangup (SIGHUP) signal, which, if not caught or
ignored, causes them to terminate as well.

• The parent process is notified of the exit status in a manner explained in the
next section.

• Child processes aren’t affected in any way directly, except that their new
parent is a special system process, and if they execute the getppid (Sec-
tion 5.13) system call, they’ll get the process-ID of that system process
(usually 1).

The exiting process’s parent receives its status code via one of the wait system
calls, which are in the next section. The status code is a number from 0 through
255. By convention, 0 means successful termination, and nonzero means abnor-
mal termination of some sort, as defined by the program doing the exiting. Two
standard macros are defined, which I’ve already used in many examples in this
book: EXIT_SUCCESS is defined as 0, and EXIT_FAILURE is defined as some
nonzero value, typically 1. Using the macros instead of integers like 0 and 1
makes programs a bit more readable, which is why we do it that way.
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Once a process terminates with an exit variant or via a signal, it stops executing
but doesn’t go away completely until its exit status is reported to its parent, unless
the system has determined (in a manner described in the next section) that its par-
ent isn’t interested in the status. A terminated process that hasn’t yet reported is
called a zombie. 7

5.8 wait, waitpid, and waitid System Calls

wait, waitpid, or waitid waits for a child process to change state (stop, con-
tinue, or terminate) and then retrieves that process’s status. How a process
terminates was explained in the previous section; stopped and continued pro-
cesses were explained in Section 4.3. I’ll start with waitpid and then cover the
other two variants.

Several of the features described in this and the next section are only in X/Open-
conforming systems and, as of this writing, are not yet in FreeBSD or Linux;
they’re marked with the notation “[X/Open].” (X/Open was discussed in Sections
1.2 and 1.5.1; although Linux as of this writing claims to be X/Open when we test
it with feature-test macros, it doesn’t have the X/Open functionality described in
this section.)

waitpid—wait for child process to change state

#include <sys/wait.h>

pid_t waitpid(
pid_t pid, /* process or process-group ID */
int *statusp, /* pointer to status or NULL */
int options /* options (see below) */

);
/* Returns process ID or 0 on success or -1 on error (sets errno) */

The pid argument can be used for one of four things:

>0 wait for the child process with that process ID

–1 wait for any child process

7. A dictionary definition of zombie that fits very well is "a person of the lowest order of intelligence suggestive of the so-
called walking dead." (Webster’s New Collegiate Dictionary. 6th ed. [Springfield, Mass.: G. & C. Merriam Co., 1960].)
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0 wait for any child process in the same process group as the calling process

<–1 wait for any child process in the process group whose process-group ID is
-pid

Process groups were explained in Section 4.3. Typically, a shell that runs each
pipeline in its own process group will set pid to the negative of that process
group’s ID when waiting for the pipeline to complete so that any process in the
pipeline will cause waitpid to return.

When waitpid returns because a child matching the pid argument changed
state, the child’s process ID is returned. Zero is returned in one case that will be
explained below, under the WNOHANG option.

Only direct children—those created with fork—can be waited for. Grandchil-
dren may not be, even if their parent (the direct child) has already terminated. As
explained in the previous section, orphaned processes are inherited by a special
system process, not by the grandparent.

Normally, it’s important for a process to wait for every child it creates—other-
wise terminated children remain in the system as zombies until the parent
terminates, at which point the system process that inherits them will do the wait
and clean them out for good. As some processes don’t terminate for a long time
(months, sometimes), keeping zombies around for that long really clogs up the
system tables. If waiting is too troublesome, a process can use signals to elimi-
nate zombies, as explained in the next section.

A child that changes state, called waitable, can cause at most one return from
waitpid. In other words, a waitable child that’s waited for is no longer waitable.
This means that if one section of the program gets the status and finds out it
wasn’t from the process it was expecting, there’s no way to stuff the result back
into the system so some other waitpid will get the status for that process later.
(The call waitid can do this, though—see below.)

If waitpid is executed and there’s a waitable child that meets the pid specifica-
tion, waitpid returns immediately. If there is such a child but it hasn’t yet
changed state, waitpid blocks until there is a suitable waitable child. If there is
no child matching pid at all, waitpid returns –1 and sets errno to ECHILD.
There might be no child because the pid is simply wrong or because the child has
already been waited for, in which case it’s no longer waitable (but, again, see
waitid).
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If statusp is non-NULL, the integer it points to is set to the status of the child.
This is a combination of the child’s argument to _exit or exit (if that’s how it
terminated) and a code that indicates how it terminated or stopped. Macros are
supplied for interpreting the integer:

WIFEXITED(status) true if the child terminated normally (with _exit
or exit8)

WEXITSTATUS(status) if WIFEXITED, the low-order 8 bits of the argument
to _exit or exit

WIFSIGNALED(status) true if the child terminated abnormally (because of
a signal) 

WTERMSIG(status) if WIFSIGNALED, the number of the signal that
caused termination

WIFSTOPPED(status) true if the child stopped; possible only if the WUN-
TRACED option is set (see below)

WSTOPSIG(status) if WIFSTOPPED, the number of the signal that caused
the child to stop

WIFCONTINUED(status) true if the process was continued; possible only if
the WCONTINUED option is set [X/Open]

WCOREDUMP(status) true if a memory-dump file (called a “core dump” in
UNIX) was produced; useful sometimes for post-
mortem analysis (macro is nonstandard, but com-
monly implemented)

The last argument, options, is one or more of the flags ORed together:

WCONTINUED Report on continued children, in addition to those
that terminated. [X/Open]

WNOHANG Do not wait for a child if status is not immediately
available; return 0 instead of a process ID. 

WUNTRACED Report on stopped children, in addition to those that
terminated.9

8. Remember that _Exit is the same as _exit, and returning from main is the same as calling exit.
9. Should be called WSTOPPED, but called WUNTRACED for historical reasons.
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Here are some example usages of waitpid:

/* Wait for child pid to terminate and get its status. */
ec_neg1( waitpid(pid, &status, 0) )

/* Wait for any child to terminate, without getting its status. */
ec_neg1( pid = waitpid(-1, NULL, 0) )

/* Report on any child in process group pgid to terminate or stop,
   and get its status. Don’t wait if no status is available immediately. */
ec_neg1( pid = waitpid(-pgid, &status, WNOHANG | WUNTRACED) )

Here’s an example program that creates three child processes, each of which ter-
minates differently. For each termination, the status is reported.

int main(void)
{
    pid_t pid;

    /* Case 1: Explicit call to _exit */
    if (fork() == 0) /* child */
        _exit(123);
    /* parent */
    ec_false( wait_and_display() )

    /* Case 2: Termination by kernel */
    if (fork() == 0) { /* child */
        int a, b = 0;

        a = 1 / b;
        _exit(EXIT_SUCCESS);
    }
    /* parent */
    ec_false( wait_and_display() )

    /* Case 3: External signal */
    if ((pid = fork()) == 0) { /* child */
        sleep(100);
        _exit(EXIT_SUCCESS);
    }
    /* parent */
    ec_neg1( kill(pid, SIGHUP) )
    ec_false( wait_and_display() )

    exit(EXIT_SUCCESS);
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EC_CLEANUP_BGN
    exit(EXIT_FAILURE);
EC_CLEANUP_END
}

static bool wait_and_display(void)
{
    pid_t wpid;
    int status;

    ec_neg1( wpid = waitpid(-1, &status, 0) )
    display_status(wpid, status);
    return true;

EC_CLEANUP_BGN
    return false;
EC_CLEANUP_END
}

void display_status(pid_t pid, int status)
{
    if (pid != 0)
        printf("Process %ld: ", (long)pid);
    if (WIFEXITED(status))
        printf("Exit value %d\n", WEXITSTATUS(status));
    else {
        char *desc;
        char *signame = get_macrostr("signal", WTERMSIG(status), &desc);
        if (desc[0] == '?')
            desc = signame;
        if (signame[0] == '?')
            printf("Signal #%d", WTERMSIG(status));
        else
            printf("%s", desc);
        if (WCOREDUMP(status))
            printf(" - core dumped");
        if (WIFSTOPPED(status))
            printf(" (stopped)");
#if defined(_XOPEN_UNIX) && !defined(LINUX)
        else if (WIFCONTINUED(status))
            printf(" (continued)");
#endif
        printf("\n");
    }
}
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As we mentioned, the line

#if defined(_XOPEN_UNIX) && !defined(LINUX)

tests separately for Linux because it claims falsely to be X/Open conforming.

The function get_macrostr provides a printable version of a signal number
(among other things), and it works a lot like errsymbol in Section 1.4.1. The
code is on the Web site [AUP2003] if you’re interested.

This was the output:

Process 9585: Exit value 123
Process 9586: Erroneous arithmetic operation - core dumped
Process 9587: Hangup

As the output shows, in case 1, the child terminated itself with a call to _exit,
passing the exit value 123. In case 2, the child was terminated by a SIGFPE (float-
ing-point error) signal when it tried to divide by zero. In case 3, the sleeping child
was killed by a SIGHUP signal sent from its parent. (The kill system call, which
sends signals, is in Section 9.1.9.)

We’re going to use function display_status in the next version of our shell,
later in this chapter.

A second variant, the wait system call, is shorthand for waitpid with a pid of
–1 and no options:

wait—wait for child process to terminate

#include <sys/wait.h>

pid_t wait(
int *statusp, /* pointer to status or NULL */

);
/* Returns process ID or -1 on error (sets errno) */

Because wait and waitpid with pid set to –1 wait for any child, they’re often
inappropriate when a function that’s part of a larger program creates a child that it
wants to wait for. It might accidentally get a return for some other child entirely,
and as a child can be waited for only once, that would deprive some other part of
the program of the ability to wait for that child, causing potential confusion. It’s
much better to use waitpid to wait for a specific child, or at least a member of a
process group, and for that reason wait is seldom used outside of simple pro-
grams. It should never be used in library functions that create child processes.
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But suppose a process has two children and can’t predict which will terminate
first. If all it cares about is waiting for both of them to terminate, it can simply
wait for either one of them and then, when that call to waitpid returns, wait for
the other. Or, the parent can proceed with its own work and periodically issue a
waitpid call for each process with the WNOHANG option. But, as we said, it
should not issue a blanket waitpid call (pid argument of –1) unless it can guar-
antee that there are no other children. Generally, in big, complicated programs
where parts came from different development groups (e.g., an imaging library, a
database interface), there can be no such guarantee. It would be nice if one could
pass an array of process IDs to some wait variant, but one can’t.

The third variant, waitid, entered UNIX with SUS1, and so as of this writing
isn’t in Linux or FreeBSD.10 It offers one important new feature: You can get the
status of a process while keeping it waitable, so no harm is done if you query the
wrong process. In addition, it supplies more information than waitpid or wait.
Here’s the synopsis:

waitid—wait for child process to change state [X/Open]

#include <sys/wait.h>

int waitid(
idtype_t idtype, /* interpretation of id */
id_t id, /* process or process-group ID */
siginfo_t *infop, /* returned info */
int options /* options */

);
/* Returns 0 on success or -1 on error (sets errno) */

siginfo_t—structure for waitid11

typedef struct { /* only waitid-relevant members shown */
int si_code; /* code (see below) */
pid_t si_pid; /* child process ID */
uid_t si_uid; /* real user ID of child process */
int si_status; /* exit value or signal */

} siginfo_t;

The first argument to waitid, idtype, is one of:

P_PID wait for child with process ID of id (like waitpid with pid > 0)

10. It seems to be only partially implemented on my version of Linux (it seems to work, but only the options for waitpid 
are defined, and there’s no man page). You’ll have to check your own version.
11. This structure has been augmented by the Realtime Signals Extension; see Section 9.5.
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P_PGID wait for any child in process group id (like waitpid with pid <
–1)

P_ALL wait for any child (like waitpid with pid == –1); id is ignored

There’s no direct equivalent to waitpid with pid == 0, but the same thing can
be done with P_PID and id equal to the caller’s process-group ID.

The options argument, as with waitpid,  is one or more flags ORed together:

WEXITED Report on processes that have exited. (Always the case with
waitpid, which has no such flag.)

WSTOPPED Report on stopped children (similar to waitpid with the
WUNTRACED flag). 

WCONTINUED Report on continued children (same flag as for waitpid). 

WNOHANG Do not wait for a child if status is not immediately available;
return 0 (same flag as for waitpid). 

WNOWAIT Leave the reported-on process waitable, so a subsequent
waitid (or other variant) call can be used on it.

Through its infop argument, waitid provides more information than does
waitpid. This argument points to a siginfo_t structure; the members relevant
to its use with waitid are shown in the synopsis. On return, the child’s process
ID is in the si_pid member. You check si_code to see why the child termi-
nated; the most commonly occurring codes are:

CLD_EXITED Exited with _exit or exit

CLD_KILLED Terminated abnormally (via a signal)

CLD_DUMPED Terminated abnormally and created a memory-dump file
(called a “core” file in UNIX)

CLD_STOPPED Stopped

CLD_CONTINUED Continued

If the code is CLD_EXITED, the si_status member holds the number passed to
_exit or exit. Otherwise,  the state change was caused by a signal, and
si_status is the signal number.
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Here are the wait_and_display and display_status functions from the pre-
vious waitpid example rewritten for waitid:

static bool wait_and_display(void)
{
    siginfo_t info;

    ec_neg1( waitid(P_ALL, 0, &info, WEXITED) )
    display_status(&info);
    return true;

EC_CLEANUP_BGN
    return false;
EC_CLEANUP_END
}

void display_status(siginfo_t *infop)
{
    printf("Process %ld terminated:\n", (long)infop->si_pid);
    printf("\tcode =  %s\n",
      get_macrostr("sigchld-code", infop->si_code, NULL));
    if (infop->si_code == CLD_EXITED)
        printf("\texit value =  %d\n", infop->si_status);
    else
        printf("\tsignal = %s\n",
          get_macrostr("signal", infop->si_status, NULL));
}

The output:

Process 9580 terminated:
        code =  CLD_EXITED
        exit value =  123
Process 9581 terminated:
        code =  CLD_DUMPED
        signal = SIGFPE
Process 9582 terminated:
        code =  CLD_KILLED
        signal = SIGHUP

With waitid, the problem of inadvertently getting a report on the wrong child
can be averted with an algorithm like this:

1. Execute waitid with P_ALL and the WNOWAIT option.

2. If the returned process ID isn’t one this part of the program is concerned with,
go back to step 1.
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3. If the process ID is of interest, reissue waitid for that process ID without the
WNOWAIT option (or just use waitpid), to clear it out so it’s no longer
waitable.

4. If there are any other un-waited-for children to be waited for, go back to step 1.

The only problem with waitid is that it’s not available on pre-SUS1 systems,
which as of this writing include Linux, FreeBSD, and Darwin. So, the more awk-
ward approaches described earlier in the waitpid discussion have to be used.

The behavior of wait, waitpid, and waitid is further affected by what the par-
ent has done with the SIGCHLD signal, as explained in the next section.

5.9 Signals, Termination, and Waiting

Most of the details on signals are in Chapter 9, but it makes sense to talk about
SIGCHLD here. The quick introduction to signals in Section 1.1.3 should be
enough to understand this section; if not, skip it until after you’ve read Chapter 9.

As explained in the previous section, a parent can get the status of a child that
changed state (terminated, stopped, or continued) with one of the wait variants.
If a child isn’t waited for at all, it stays waitable (a zombie) until the parent
terminates.

I didn’t mention it earlier, but a child that changes state normally sends a
SIGCHLD signal to its parent. Unless the parent has made other arrangements, the
default action is for the signal to be ignored, which is why it wasn’t important to
deal with it in the earlier examples.

The parent can catch the signal if it wants to be notified about changes in the state
of a child. Unfortunately, the parent isn’t told which child caused the signal.12 If it
uses one of the wait variants to get the process ID, there’s a danger of getting the
status of the wrong process, as explained in the previous section, because some
other process could have changed state between the sending of the signal and the
call to the wait variant. The safe thing to do is to use waitid (as explained in the
previous section) or to use waitpid to check all of the possible children, one by
one.

12. Unless the advanced features of the Realtime Signals Extension are used, but this extension isn’t universally available.
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Instead of waiting at all, a parent can prevent an unwaited-for child from becom-
ing a zombie (becoming waitable) by calling sigaction with a flag of
SA_NOCLDWAIT for the SIGCHLD signal. Then a child’s status is simply tossed out
when it terminates, and the parent therefore can’t get it (and presumably doesn’t
care to). If the parent executes wait or waitpid anyway, regardless of its argu-
ments (even WNOHANG), it blocks until all children terminate and then returns –1
with errno set to ECHILD. The parent can still be notified if it catches the
SIGCHLD signal.

If the parent explicitly sets SIGCHLD signals to be ignored (say, calling sigac-
tion with an action of SIG_IGN), as opposed to accepting the default action, it’s
the same as using the SA_NOCLDWAIT flag [X/Open]. But as not all systems sup-
port this, it’s a good idea to set the SA_NOCLDWAIT flag also, which is more
widely supported.

5.10 Implementing a Shell (Version 3)

With the waitpid version of the display_status function from Section 5.8,
we can improve on execute2 from Section 5.6:

static void execute3(int argc, char *argv[])
{
    pid_t pid;
    int status;

    switch (pid = fork()) {
    case -1: /* parent (error) */
        EC_FAIL
    case 0: /* child */
        execvp(argv[0], argv);
        EC_FAIL
    default: /* parent */
        ec_neg1( waitpid(pid, &status, 0) )
        display_status(pid, status);
    }
    return;

EC_CLEANUP_BGN
    EC_FLUSH("execute3")
    if (pid == 0)
        _exit(EXIT_FAILURE);
EC_CLEANUP_END
}
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Here’s some output; the command fpe, which does nothing more than try to
divide by zero, is one written just for this example:

$ sh3
@ date
Tue Feb 25 12:49:52 MST 2003
Process 9954: Exit value 0
@ echo The shell is getting better!
The shell is getting better!
Process 9955: Exit value 0
@ fpe
Process 9956: Erroneous arithmetic operation - core dumped
@ EOT $

I’ve shown where I typed a Ctrl-d with the letters EOT.

5.11 Getting User and Group IDs

There are a bunch of systems calls to get the real and effective user and group IDs
(concepts explained in Section 1.1.5):

getuid—get real user ID

#include <unistd.h>

uid_t getuid(void);
/* Returns user ID (no error return) */

geteuid—get effective user ID

#include <unistd.h>

uid_t geteuid(void);
/* Returns user ID (no error return) */

getgid—get real group ID

#include <unistd.h>

gid_t getgid(void);
/* Returns group ID (no error return) */

getegid—get effective group ID

#include <unistd.h>

gid_t getegid(void);
/* Returns group ID (no error return) */
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A user or group ID is just some number. If you want a name, you have to call
getpwuid or getgrgid, which were described in Section 3.5.2. Here’s an exam-
ple program that displays the real and effective user and group IDs:

int main(void)
{
    uid_t uid;
    gid_t gid;
    struct passwd *pwd;
    struct group *grp;

    uid = getuid();
    ec_null( pwd = getpwuid(uid) )
    printf("Real user = %ld (%s)\n", (long)uid, pwd->pw_name);

    uid = geteuid();
    ec_null( pwd = getpwuid(uid) )
    printf("Effective user = %ld (%s)\n", (long)uid, pwd->pw_name);

    gid = getgid();
    ec_null( grp = getgrgid(gid) )
    printf("Real group = %ld (%s)\n", (long)gid, grp->gr_name);

    gid = getegid();
    ec_null( grp = getgrgid(gid) )
    printf("Effective group = %ld (%s)\n", (long)gid, grp->gr_name);

    exit(EXIT_SUCCESS);

EC_CLEANUP_BGN
    exit(EXIT_FAILURE);
EC_CLEANUP_END
}

To make the output interesting, I changed the user and group owners of the pro-
gram file (uidgrp) and turned on the set-ID-on-execution bits for the user and
group:

$ su
Password:
# chown adm:sys uidgrp
# chmod +s uidgrp
$ uidgrp
Real user = 100 (marc)
Effective user = 4 (adm)
Real group = 14 (sysadmin)
Effective group = 3 (sys)
$
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5.12 Setting User and Group IDs

The rules for how the real and effective user and group IDs can be changed are
complicated, and different depending on whether the process is running as super-
user. Before explaining the rules, I need to note that in addition to its current real
and effective user and group IDs, the kernel keeps for each process a record of the
original effective user and group IDs that were set by the last exec. These are
called the saved set-user-ID and saved set-group-ID.

Here now are the rules for setting user IDs; group IDs have similar rules:

1. Other than by an exec (which can change the saved ID), an ordinary (nonsu-
peruser) process can never explicitly change the real user ID or saved ID.

2. An ordinary process can change the effective ID to the real or saved ID.

3. A superuser process can change the real and effective user IDs to any user-ID
value.

4. When a superuser process changes the real user ID, the saved ID changes to
that value as well.

The superuser rules aren’t that interesting—anything goes. The two rules for ordi-
nary users essentially mean this: If an exec causes the real and effective user-IDs
(or group IDs) to be different, the process can go back and forth between them.

Here’s one scenario where going back and forth is useful: Imagine a utility
putfile that transfers files between computers on a network. The utility needs
access to a log file that only the administrative user (call it pfadm) can access. The
program file is owned by pfadm, with the set-user-ID bit on. It starts running and
can access the log file, since its effective user ID is pfadm. Then, to write the real
user’s files, it sets the effective user ID to the real user ID so that the real user’s
permissions will control the access. When it’s done, it sets the effective user ID
back to pfadm to access the log file again. (If the original effective user ID
weren’t saved, it wouldn’t be able to go back.) Note that while it sounds like
pfadm is special as far as this utility goes, it is just an ordinary user to the ker-
nel—not a superuser.

Now for the calls themselves. The only useful ones for ordinary-user processes
are these two:



318 Chapter 5: Processes and Threads

AUPCHo5frame  Page 318  Wednesday, March 3, 2004  12:17 PM
seteuid—set effective user ID

#include <unistd.h>

int seteuid(
uid_t uid /* effective user ID */

);
/* Returns 0 on success or -1 on error (sets errno) */

setegid—set effective group ID

#include <unistd.h>

int setegid(
gid_t gid /* effective group ID */

);
/* Returns 0 on success or -1 on error (sets errno) */

According to the rules we laid out, for an ordinary-user process, the argument
must be equal to the real user (or group) ID or to the saved ID. For a superuser,
the arguments can be any user (or group) ID.

Superusers can use two additional calls:

setuid—set real and saved user ID

#include <unistd.h>

int setuid(
uid_t uid /* real and saved user ID */

);
/* Returns 0 on success or -1 on error (sets errno) */

setgid—set real and saved group ID

#include <unistd.h>

int setgid(
gid_t gid /* real and saved group ID */

);
/* Returns 0 on success or -1 on error (sets errno) */

For a superuser, the argument can be any user (or group) ID, and it sets both the
real and saved values. For an ordinary user, these two calls act the same as the “e”
versions I just showed, which is very confusing, so they should be avoided.

Two more calls, setreuid and setregid, overlap the functionality of the four
calls I already presented and add additional confusion, so they should also be
avoided. (They were important in older systems, before seteuid and setegid
were introduced.)
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5.13 Getting Process IDs

A process can get its process ID and its parent’s process ID with these calls:

getpid—get process ID

#include <unistd.h>

pid_t getpid(void);
/* Returns process ID (no error return) */

getppid—get parent process ID

#include <unistd.h>

pid_t getppid(void);
/* Returns parent process ID (no error return) */

I already used getpid in an example back in Section 2.4.3.

5.14 chroot System Call

chroot—change root directory

#include <unistd.h>

int chroot(
const char *path /* path name */

);
/* Returns 0 on success or -1 on error (sets errno) */

This system call, reserved for superuser processes, changes the root directory of
the process, the directory whose path is /. It’s nonstandard but implemented on
essentially all UNIX-like systems (because it’s very old).

There are two uses for chroot that come to mind:

• When a command with built-in path names (such as /etc/passwd) is to be run
on other than the usual files. A new tree can be constructed wherever conve-
nient; the root can be changed, and then the command can be executed. This
is primarily useful in testing new commands before they are installed.

• For added security, such as when a web-server process begins processing an
HTML file. It can set the root to the base path, which guarantees that no
paths to other files can be accessed. Even the path “..” won’t work because
at the root it’s interpreted as a reference right back to the root.
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Once the root is changed, there’s no way to get back with chroot. However,
some systems provide a sister function fchroot that takes a file descriptor.
(Analogous to the relationship between fchdir and chdir, as explained in Sec-
tion 3.6.2.) You can capture a file descriptor open to the current root by opening it
for reading, execute chroot, and then get back with fchroot using the saved
file descriptor as an argument.

5.15 Getting and Setting the Priority

As I mentioned back in Section 1.1.6, each process has a nice value, which is a
way for a process to influence the kernel’s scheduling priority. Higher values
mean that the process wants to be nice—that is, run at a lower priority. Lower val-
ues mean less nice—higher priority. To keep the nice values positive, they are
offset from a number that varies with the system (strangely, it’s referred to as
NZERO in UNIX documentation); a typical value is 20. A process starts out with
20 and can be as nice as 39 or as not-nice as 0.

To be nice or not-nice, a process executes the nice system call:

nice—change nice value

#include <unistd.h>

int nice(
int incr /* increment */

);
/* Returns old nice value - NZERO or -1 on error (sets errno) */

The nice system call adds incr to the nice value. The resulting nice value must
be between 0 and 39, inclusive; if an invalid value results, the nearest valid value
is used. Only the superuser can lower the nice value, getting better-than-average
service.

nice actually returns the new nice value minus 20, so the returned value is in the
range –20 through 19 if NZERO is 20. However, the returned value is rarely of
much use. This is just as well because a new nice value of 19 is indistinguishable
from an error return (19 – 20 = –1). That this bug has remained unfixed, if not
unnoticed, for so many years is indicative of how little most UNIX system pro-
grammers care about error returns from minor system calls like nice.13

13. This sentence is from the 1985 edition, so another 19 years or so has gone by without a fix. Meanwhile, we’ve gotten 
threads, better signals, and at least a thousand other useful features, so it’s a good tradeoff.
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Most UNIX users are familiar with the nice command, which runs a program at a
lower priority (or a higher one if run by a superuser). Here’s our version:

#define USAGE "usage: aupnice [-num] command\n"

int main(int argc, char *argv[])
{
    int incr, cmdarg;
    char *cmdname, *cmdpath;

    if (argc < 2) {
        fprintf(stderr, USAGE);
        exit(EXIT_FAILURE);
    }
    if (argv[1][0] == '-') {
        incr = atoi(&argv[1][1]);
        cmdarg = 2;
    }
    else {
        incr = 10;
        cmdarg = 1;
    }
    if (cmdarg >= argc) {
        fprintf(stderr, USAGE);
        exit(EXIT_FAILURE);
    }
    (void)nice(incr);
    cmdname = strchr(argv[cmdarg], '/');
    if (cmdname == NULL)
        cmdname = argv[cmdarg];
    else
        cmdname++;
    cmdpath = argv[cmdarg];
    argv[cmdarg] = cmdname;
    execvp(cmdpath, &argv[cmdarg]);
    EC_FAIL

EC_CLEANUP_BGN
    exit(EXIT_FAILURE);
EC_CLEANUP_END
}

Note how we reuse the incoming argv in the call to execvp. The variable
cmdarg holds the subscript of the command path (either 1 or 2, depending on
whether an increment was specified). That part of argv starting with cmdarg is
the part to be passed on. You might want to contrast this with the more extensive
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manipulation needed for execvp2 in Section 5.3. There we had to insert an argu-
ment, which required us to recopy the entire array.

The first string in the vector is supposed to be just the command name, not the
whole path, so we had to strip off all but the last component of the path, in case
the command was executed with a pathname containing slashes. The first argu-
ment to execvp, though, has to be whatever was typed on the aupnice
command line.

Note also that we used execvp without a fork. Having changed the priority,
there’s no need to keep a parent alive just to wait around.

Here’s aupnice in action on Solaris. For the example command, it uses ps
reporting on itself. Note that the internal priority (whatever that is) changed from
58 to 28 when the nice value was increased by 10 (aupnice’s default).

$ ps -ac
   PID  CLS PRI TTY      TIME CMD
 10460   TS  58 pts/2    0:00 ps
$ aupnice ps -ac
   PID  CLS PRI TTY      TIME CMD
 10461   TS  28 pts/2    0:00 ps

There are some newer and fancier calls called getpriority and setpriority
that you can use to manipulate the nice value; see [SUS2002] or your system’s
documentation for details.

5.16 Process Limits

The kernel enforces various limits on process resources, such as the maximum file
size and the maximum stack size. Usually, when a limit is reached, whatever func-
tion (e.g., write, malloc) was the cause returns an error, or a signal is
generated, such as SIGSEGV in the case of stack overflow (Chapter 9).14 There
are seven standard resources, listed below, whose limits can be set or gotten, and
implementations may define others.

14. If SIGSEGV is caught, how can the signal handler execute when there’s no stack? You can set up an alternate stack, as 
explained in Section 9.3. If you haven’t done so, the signal is set back to its default behavior, which is to terminate the pro-
cess.
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For each resource, there’s a maximum (or hard) limit, and a current (or soft) limit.
The current limit is what’s effective, and an ordinary process is allowed to set it to
any reasonable number up to the maximum. An ordinary process can also irre-
versibly lower (but not raise) the maximum to whatever the current limit is. A
superuser process can set either limit to whatever the kernel will support.

Here are the system calls to get and set the limits:

getrlimit—get resource limits

#include <sys/resource.h>

int getrlimit(
int resource, /* resource */
struct rlimit *rlp /* returned limits */

);
/* Returns 0 on success or -1 on error (sets errno) */

setrlimit—set resource limits

#include <sys/resource.h>

int setrlimit(
int resource, /* resource */
const struct rlimit *rlp /* limits to set */

);
/* Returns 0 on success or -1 on error (sets errno) */

struct rlimit—structure for getrlimit and setrlimit

struct rlimit {
rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim_max; /* maximum (hard) limit */

};

Each call is for a single resource; you get its limits with getrlimit, and set them,
under the rules given previously, with setrlimit. The standard resources are:

RLIMIT_CORE Maximum size of a core (memory-dump) file in bytes; zero
means no file is written at all. There’s no error reported if it’s
exceeded—writing just stops at that size, probably leaving a use-
less file. 

RLIMIT_CPU Maximum CPU time in seconds. Exceeding it generates a
SIGXCPU, which by default terminates the process. The stan-
dard doesn’t define what happens if you catch, ignore, or block
this signal—the process may be terminated, as there’s no way to
do without accumulating more CPU time.
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RLIMIT_DATA Maximum size of data segment, in bytes. Exceeding it causes
the memory-allocation function (e.g., malloc) to fail.

RLIMIT_FSIZE Maximum file size in bytes. Exceeding it generates a
SIGXFSZ; if that signal is caught, ignored, or blocked, the
offending function fails.

RLIMIT_NOFILE Maximum number of file descriptors that a process may
use.15 Exceeding it causes the offending function to fail.

RLIMIT_STACK Maximum stack size in bytes. Generates a SIGSEGV if it’s
exceeded.

RLIMIT_AS Maximum total memory size, including the data segment, the
stack, and anything mapped in with mmap (Section 7.14).
Exceeding it causes the offending function to fail or, if it’s
the stack, the effect described for RLIMIT_STACK.

Process limits are preserved across an exec and inherited by the child after a
fork, so if they’re set once at login time, they’ll affect all processes descended
from the login shell. But, like cd, the command to set them has to be built into the
shell—executing it in a child of the shell would be ineffective. Most shells have a
ulimit command that sets the file-size limit, and other shells have a more gen-
eral command called perhaps limit, limits, or plimit.16

There are some special macros for the rlim_cur and rlim_max member of
an rlimit structure, in addition to actual numbers: RLIM_SAVED_CUR, RLIM_
SAVED_MAX, and RLIM_INFINITY.

When you call getrlimit, the actual numbers are returned if they fit into an
rlim_t, which is an unsigned type whose width isn’t specified by the standard. If
a number won’t fit, the member is set to RLIM_SAVED_MAX if it’s equal to the
maximum. Otherwise it’s set to RLIM_SAVED_CUR, which means “the limit is set
to what the limit is set to.” If a member is set to RLIM_INFINITY, it means there
is no limit.

15. Technically, it’s one greater than the maximum file-descriptor number. All the potential file descriptors count toward 
the limit even if they’re not opened.
16. Don’t confuse these process limits with user limits, such as user’s disk quota. User limits are queried and set by non-
standard commands such as quota, implemented in terms of a nonstandard system call such as quotactl or ioctl.



Process Limits 325

AUPCHo5frame  Page 325  Wednesday, March 3, 2004  12:17 PM
When you call setrlimit, if a member is RLIM_SAVED_CUR, it’s set to the cur-
rent limit; if it’s RLIM_SAVED_MAX, it’s set to the maximum limit; if it’s
RLIM_INFINITY, no limit will be enforced. Otherwise, the limit is set to what-
ever number you’ve used. However, you can use RLIM_SAVED_CUR or
RLIM_SAVED_MAX only if a call to getrlimit returned those values; otherwise,
you have to use actual numbers. To say it differently: You can use those macros
only when you’re forced to because rlim_t won’t hold the number.

The RLIM_SAVED_CUR and RLIM_SAVED_MAX rigmarole is really just this: You
can manipulate the limits to a degree even if you can’t get at their actual values.

If an implementation will never have a limit that won’t fit in an rlim_t, the
RLIM_SAVED_CUR or RLIM_SAVED_MAX macros will never be used, so they’re
allowed to have the same value as RLIM_INFINITY. We’ll see the impact of this
in the following example, which displays the limits, sets the file limit to a ridicu-
lously low number, and then exceeds it, causing the program to be terminated by a
SIGXFSZ:

int main(void)
{
    struct rlimit r;
    int fd;
    char buf[500] = { 0 };

    if (sizeof(rlim_t) > sizeof(long long))
        printf("Warning: rlim_t > long long; results may be wrong\n");
    ec_false( showlimit(RLIMIT_CORE, "RLIMIT_CORE") )
    ec_false( showlimit(RLIMIT_CPU, "RLIMIT_CPU") )
    ec_false( showlimit(RLIMIT_DATA, "RLIMIT_DATA") )
    ec_false( showlimit(RLIMIT_FSIZE, "RLIMIT_FSIZE") )
    ec_false( showlimit(RLIMIT_NOFILE, "RLIMIT_NOFILE") )
    ec_false( showlimit(RLIMIT_STACK, "RLIMIT_STACK") )
#ifndef FREEBSD
    ec_false( showlimit(RLIMIT_AS, "RLIMIT_AS") )
#endif
    ec_neg1( getrlimit(RLIMIT_FSIZE, &r) )
    r.rlim_cur = 500;
    ec_neg1( setrlimit(RLIMIT_FSIZE, &r) )
    ec_neg1( fd = open("tmp", O_WRONLY | O_CREAT | O_TRUNC, PERM_FILE) )
    ec_neg1( write(fd, buf, sizeof(buf)) )
    ec_neg1( write(fd, buf, sizeof(buf)) )
    printf("Wrote two buffers! (?)\n");
    exit(EXIT_SUCCESS);

EC_CLEANUP_BGN
    exit(EXIT_FAILURE);
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EC_CLEANUP_END
}

static bool showlimit(int resource, const char *name)
{
    struct rlimit r;

    ec_neg1( getrlimit(resource, &r) )
    printf("%s: ", name);
    printf("rlim_cur = ");
    showvalue(r.rlim_cur);
    printf("; rlim_max = ");
    showvalue(r.rlim_max);
    printf("\n");
    return true;

EC_CLEANUP_BGN
    return false;
EC_CLEANUP_END
}

static void showvalue(rlim_t lim)
{
    /*
        All macros may equal RLIM_INFINITY; that test
        must be first; can't use switch statement.
    */
    if (lim == RLIM_INFINITY)
        printf("RLIM_INFINITY");
#ifndef BSD_DERIVED
    else if (lim == RLIM_SAVED_CUR)
        printf("RLIM_SAVED_CUR");
    else if (lim == RLIM_SAVED_MAX)
        printf("RLIM_SAVED_MAX");
#endif
    else
        printf("%llu", (unsigned long long)lim);
}

FreeBSD and Darwin don’t implement the whole thing, as you can see from the
code.17

Here’s what I got on our four test systems, starting with Solaris:

RLIMIT_CORE: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_CPU: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY

17. Actually, these calls originated with 4.2BSD, but the BSD-derived systems haven’t picked up some of the more recent 
POSIX extensions.
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RLIMIT_DATA: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_FSIZE: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_NOFILE: rlim_cur = 256; rlim_max = 1024
RLIMIT_STACK: rlim_cur = 8683520; rlim_max = 133464064
RLIMIT_AS: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
File Size Limit Exceeded - core dumped

Linux:

RLIMIT_CORE: rlim_cur = 0; rlim_max = RLIM_INFINITY
RLIMIT_CPU: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_DATA: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_FSIZE: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_NOFILE: rlim_cur = 1024; rlim_max = 1024
RLIMIT_STACK: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_AS: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
File size limit exceeded

FreeBSD:

RLIMIT_CORE: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_CPU: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_DATA: rlim_cur = 536870912; rlim_max = 536870912
RLIMIT_FSIZE: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_NOFILE: rlim_cur = 957; rlim_max = 957
RLIMIT_STACK: rlim_cur = 67108864; rlim_max = 67108864
Filesize limit exceeded

Darwin:

RLIMIT_CORE: rlim_cur = 0; rlim_max = RLIM_INFINITY
RLIMIT_CPU: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_DATA: rlim_cur = 6291456; rlim_max = RLIM_INFINITY
RLIMIT_FSIZE: rlim_cur = RLIM_INFINITY; rlim_max = RLIM_INFINITY
RLIMIT_NOFILE: rlim_cur = 256; rlim_max = RLIM_INFINITY
RLIMIT_STACK: rlim_cur = 524288; rlim_max = 67108864
Filesize limit exceeded

There’s a much older system call that’s less functional and has problems with its
return value:

ulimit—get and set process limits

#include <ulimit.h>

long ulimit(
int cmd, /* command */
... /* optional argument */

);
/* Returns limit or -1 with errno changed on error (sets errno) */
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The cmd argument is one of:

UL_GETFSIZE Get the current file-size limit; equivalent to getrlimit with
RLIMIT_FSIZE.

UL_SETFSIZE Set the file-size limit to the second long argument; it
may be increased only by a superuser process. Equivalent to
setrlimit with RLIMIT_FSIZE where rlim_max is
adjusted and rlim_cur is adjusted to match.

The sizes set or gotten are in units of 512 bytes. Because the sizes can get big, the
returned value might be negative, and even –1 is possible. So, the way to check
for an error is to set errno to zero before the call. If it returns –1, it’s an error
only if errno changed.

There are some more peculiarities with ulimit, but there’s no point going into them.
It’s basically a mess, and you should use getrlimit and setrlimit instead.

The getrusage system call gets information about resource usage by a process
or by its terminated and waited-for children:

getrusage—get resource usage

#include <sys/resource.h>

int getrusage(
int who, /* RUSAGE_SELF or RUSAGE_CHILDREN */
struct rusage *r_usage /* returned usage information */

);
/* Returns 0 on success or -1 on error (sets errno) */

struct rusage—structure for getrusage

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
/* following members are nonstandard */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};
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[SUS2002] only specifies the first two members. Newer BSD systems, including
FreeBSD, support them all. Solaris 8 (on Intel, anyway) supports only the stan-
dard members; Linux 2.4 supports the standard members plus ru_minflt,
ru_majflt, and ru_nswap. For details about what the members mean, check
your system’s man page for getrusage; for the whole story, run it on a BSD-
based system if you can.

The two times returned are similar to what times returns (Section 1.7.2), but to a
higher resolution, since a timeval (Section 1.7.1) is in microseconds.

5.17 Introduction to Threads

This section gives a very brief introduction to threads, just enough to show some
interesting example programs. My goals are to explain what they are, help you
decide if your application design can benefit from them, and caution you about
the hazards of using them if you’re not careful.

For the whole truth about threads (there are about a hundred system calls to man-
age them), you’ll have to pick up a book on the subject, such as [Nor1997] or
[But1997].

5.17.1 Thread Creation

In our examples up to now, the processes we created (with fork) had only one
flow of control, or thread, in them. Execution proceeded from instruction to
instruction, in a single sequence, and the stack, global data, and system resources
got modified by the various instructions, some of which may have executed sys-
tem calls.

With the POSIX Threads feature of UNIX, a process can have multiple threads,
each of which has its own flow of control (its own instruction counter and CPU
clock) and its own stack. Essentially everything else about the process, including
global data and resources such as open files or the current directory, is shared.18

Here’s what I mean:

18. A thread can also arrange to have some thread-specific data; see [SUS2002] or one of the referenced books for details.
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static long x = 0;

static void *thread_func(void *arg)
{
    while (true) {
        printf("Thread 2 says %ld\n", ++x);
        sleep(1);
    }
}

int main(void)
{
    pthread_t tid;

    ec_rv( pthread_create(&tid, NULL, thread_func, NULL) )
    while (x < 10) {
        printf("Thread 1 says %ld\n", ++x);
        sleep(2);
    }
    return EXIT_SUCCESS;

EC_CLEANUP_BGN
    return EXIT_FAILURE;
EC_CLEANUP_END
}

The sequence in which the threads print is unpredictable; this is the output we
happened to get:

Thread 2 says 1
Thread 1 says 2
Thread 2 says 3
Thread 1 says 4
Thread 2 says 5
Thread 2 says 6
Thread 1 says 7
Thread 2 says 8
Thread 2 says 9
Thread 1 says 10
Thread 2 says 11
Thread 2 says 12

So you can see that both threads—the one in main and the one in
thread_func—accessed the same global variable, x. There are some problems
with this that I’ll address in Section 5.17.3.

The initial thread—the one containing main—kicked off the second thread with
the pthread_create system call:
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pthread_create—create thread

#include <pthread.h>

int pthread_create(
pthread_t *thread_id, /* new thread’s ID */
const pthread_attr_t *attr, /* attributes (or NULL) */
void *(*start_fcn)(void *), /* starting function */
void *arg /* arg to starting function */

);
/* Returns 0 on success, error number on error */

The new thread starts with a call to the start function specified in the
pthread_create call, which must have this prototype:

pthread starting function

void *start_fcn(
void *arg

);
/* Returns exit status */

Whatever you pass as the fourth argument to pthread_create is passed directly
to the starting function. It’s a void pointer for generality, and often it will indeed
be a pointer to some data. Since the threads share the same address space, the
pointer is valid for both threads. If you want, you can also pass in integer data, but
you have to cast it to a void pointer. And, to be safe, you should check (with an
assert, say) that the integer type you’re using fits in a void pointer, with a line
like this that you’ll see in some of the examples that follow:

assert(sizeof(long) <= sizeof(void *));

The attributes that affect the new thread are not just some flags but rather
an object of type pthread_attr_t that you have to set with calls like
pthread_attr_setscope and pthread_attr_setstacksize, which I
won’t go into here. (But perhaps you’re beginning to appreciate why there are a
hundred thread-related calls.) In our examples we’ll use just default attributes, so
our second argument to pthread_create will be NULL.

The “pthread” functions uniformly return 0 on success and an error code on fail-
ure, rather than setting errno. We have a special “ec” macro for this, ec_rv,
which takes the error code, if any, and treats it as if it were an errno value, which
it is.19

19. The various functions in the error-checking package were modified to be thread-safe, but the code for that isn’t shown 
in this book. You’ll see it on the Web site, however.
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5.17.2 Waiting for a Thread to Terminate

A thread can wait for another thread to terminate and get its exit status with
pthread_join (analogous to wait and its variants).

pthread_join—wait for thread to terminate

#include <pthread.h>

int pthread_join(
pthread_t thread_id, /* ID of thread to join */
void **status_ptr /* returned exit status (if not NULL arg) */

);
/* Returns 0 on success, error number on error */

Here’s my little example modified so that Thread 1 passes a limit to Thread 2,
which then reports the value of x back to Thread 1:

static long x = 0;

static void *thread_func(void *arg)
{
    while (x < (long)arg) {
        printf("Thread 2 says %ld\n", ++x);
        sleep(1);
    }
    return (void *)x;
}

int main(void)
{
    pthread_t tid;
    void *status;

    assert(sizeof(long) <= sizeof(void *));
    ec_rv( pthread_create(&tid, NULL, thread_func, (void *)6) )
    while (x < 10) {
        printf("Thread 1 says %ld\n", ++x);
        sleep(2);
    }
    ec_rv( pthread_join(tid, &status) )
    printf("Thread 2's exit status is %ld\n", (long)status);
    return EXIT_SUCCESS;

EC_CLEANUP_BGN
    return EXIT_FAILURE;
EC_CLEANUP_END
}
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The output:

Thread 1 says 1
Thread 2 says 2
Thread 2 says 3
Thread 1 says 4
Thread 2 says 5
Thread 2 says 6
Thread 1 says 7
Thread 1 says 8
Thread 1 says 9
Thread 1 says 10
Thread 2's exit status is 7

5.17.3 Thread Synchronization (Mutexes)

As we’re going to see in the next few chapters, the challenge on UNIX of work-
ing with multiple processes (perhaps across a network) is allowing them to share
data. With threads it’s the complete opposite—the challenge is to keep their natu-
ral sharing of data separated. In fact, the two thread examples I’ve shown are
defective in that both threads might simultaneously access the same data, the vari-
able x. While it might seem that a simple increment operator is an atomic
operation, there’s no guarantee that it is. It’s actually possible for Thread 1 to
update half of a 32-bit x while Thread 2 reads the full 32 bits, getting a mishmash
instead of a valid integer.20 With more complicated shared data structures—a
much more realistic situation—the problem is much worse. We want the access to
shared data to be atomic. Two examples of what this means are:

• If updating a data structure leaves it in a temporarily inconsistent state, no
thread other than the one updating sees it in that state, and

• If a thread has to read data, compute results, and write them back, no other
thread will modify the data until the entire sequence is complete. Otherwise,
the other thread’s modification would be lost.

These requirements are provided for by some simple system calls that imple-
ment mutual-exclusion objects, called mutexes for short. Threads use them
to protect critical sections where another thread may otherwise see inconsis-
tent data or interfere with updating. The principal mutex system calls are
pthread_mutex_lock and pthread_mutex_unlock:

20. And that’s only one thing that can go wrong. Another is that compiler optimization might leave the integer in a register. 
You really can’t ever let threads simultaneously access data without protection.
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pthread_mutex_lock—lock mutex

#include <pthread.h>

int pthread_mutex_lock(
pthread_mutex_t *mutex /* mutex to lock */

);
/* Returns 0 on success, error number on error */

pthread_mutex_unlock—unlock mutex

#include <pthread.h>

int pthread_mutex_unlock(
pthread_mutex_t *mutex /* mutex to unlock */

);
/* Returns 0 on success, error number on error */

Mutual exclusion works like this: If a mutex is already locked,
pthread_mutex_lock blocks until it is unlocked.

The simplest way to get a suitable mutex variable is just to declare it with an ini-
tializer, like this:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

It can be local to the file (static) or shared between files (extern). You can
also have mutexes on the stack (automatic variables) or allocated dynamically, but
then you need to initialize them with a call to pthread_mutex_init, which I
won’t detail here.21

Now we can modify our example to adequately protect the shared data:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static long x = 0;

static void *thread_func(void *arg)
{
    bool done;

    while (true) {
        ec_rv( pthread_mutex_lock(&mtx) )
        done = x >= (long)arg;
        ec_rv( pthread_mutex_unlock(&mtx) )

21. You’re not supposed to initialize an automatic mutex variable with the initializer PTHREAD_MUTEX_INITIALIZER, 
even though the compiler will let you, because on some systems that might invoke a function that’s not thread safe. In C++, 
you can get into similar trouble if you use PTHREAD_MUTEX_INITIALIZER to initialize a static internal mutex, since C++ 
might delay the initialization until the function is called.
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        if (done)
            break;
        ec_rv( pthread_mutex_lock(&mtx) )
        printf("Thread 2 says %ld\n", ++x);
        ec_rv( pthread_mutex_unlock(&mtx) )
        sleep(1);
    }
    return (void *)x;

EC_CLEANUP_BGN
    EC_FLUSH("thread_func")
    return NULL;
EC_CLEANUP_END
}

int main(void)
{
    pthread_t tid;
    void *status;
    bool done;

    assert(sizeof(long) <= sizeof(void *));
    ec_rv( pthread_create(&tid, NULL, thread_func, (void *)6) )
    while (true) {
        ec_rv( pthread_mutex_lock(&mtx) )
        done = x >= 10;
        ec_rv( pthread_mutex_unlock(&mtx) )
        if (done)
            break;
        ec_rv( pthread_mutex_lock(&mtx) )
        printf("Thread 1 says %ld\n", ++x);
        ec_rv( pthread_mutex_unlock(&mtx) )
        sleep(2);
    }
    ec_rv( pthread_join(tid, &status) )
    printf("Thread 2's exit status is %ld\n", (long)status);
    return EXIT_SUCCESS;

EC_CLEANUP_BGN
    return EXIT_FAILURE;
EC_CLEANUP_END
}

Note that we had to pull the conditionals out of the while expressions so that we
could surround them with the locking and unlocking calls. We certainly don’t
want to protect the whole loop, for that would destroy the concurrency. It requires
some care to protect enough to be safe but not so much to hurt performance.
Unfortunately, while you may be able to detect a performance problem with the
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right kind of testing, it’s much harder to test whether you’ve prevented all race
conditions.

We still have a defect: Suppose in pthread_func the call to
pthread_mutex_unlock fails, causing the thread to exit. This might leave the
mutex locked, causing the initial thread to block forever in one of its calls to
pthread_mutex_lock. A potential solution is to make sure the mutex is unlocked in
pthread_func’s cleanup code, with another call to pthread_mutex_unlock, like this:

EC_CLEANUP_BGN
    (void)pthread_mutex_unlock(&mtx);
    EC_FLUSH("thread_func")
    return NULL;
EC_CLEANUP_END

We’re assuming that if the first call to pthread_mutex_unlock failed, the sec-
ond one might succeed, which seems like a stretch. Since there is really no way
either pthread_mutex_lock or pthread_mutex_unlock can fail as long as
the mutex has a valid value, probably the easiest, safest, and clearest way to pro-
ceed is to check the error return from these functions during debugging, but not in
the production program. Or, you might decide that for your application it’s better
to leave the error checks in, as long as you get a report of the error, so you don’t
waste time trying to find out why the application stalled. This is another example
of why threads can be very tricky to use correctly. You may find that you spend
5% of your time implementing the threads and 95% of your time ensuring that
you’ve done it right.

The proper way to proceed is to encapsulate the access to shared data with a col-
lection of functions (or with a class, if you’re using an object-oriented language
like C++) with the mutexes in the access functions. Don’t spread the locking and
unlocking calls willy-nilly throughout your program, as I did.

So I’ll show the example rewritten yet again, this time with all access to x going
through a single function, get_and_incr_x, which does all the locking and
unlocking. Both x and the mutex have been moved inside the function. Notice
how much more readable this version is than the previous one. More readable
almost always implies more reliable!

static long get_and_incr_x(long incr)
{
    static long x = 0;
    static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
    long rtn;
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    ec_rv( pthread_mutex_lock(&mtx) )
    rtn = x += incr;
    ec_rv( pthread_mutex_unlock(&mtx) )
    return rtn;

EC_CLEANUP_BGN
    exit(EXIT_FAILURE);
EC_CLEANUP_END
}

static void *thread_func(void *arg)
{
    while (get_and_incr_x(0) < (long)arg) {
        printf("Thread 2 says %ld\n", get_and_incr_x(1));
        sleep(1);
    }
    return (void *)get_and_incr_x(0);
}

int main(void)
{
    pthread_t tid;
    void *status;

    assert(sizeof(long) <= sizeof(void *));
    ec_rv( pthread_create(&tid, NULL, thread_func, (void *)6) )
    while (get_and_incr_x(0) < 10) {
        printf("Thread 1 says %ld\n", get_and_incr_x(1));
        sleep(2);
    }
    ec_rv( pthread_join(tid, &status) )
    printf("Thread 2's exit status is %ld\n", (long)status);
    return EXIT_SUCCESS;

EC_CLEANUP_BGN
    return EXIT_FAILURE;
EC_CLEANUP_END
}

This time I decided to make locking or unlocking errors fatal, which is another
possible choice. My point certainly isn’t that this is what you should be doing in
all cases. Rather, the point is that there are many ways to handle these kinds of
errors, and what’s best depends on the needs of the specific application.

It’s important to understand why these lines in function get_and_incr_x
work:
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    ec_rv( pthread_mutex_lock(&mtx) )
    rtn = x += incr;
    ec_rv( pthread_mutex_unlock(&mtx) )

It’s the access to x, which, as a global variable, is shared between the threads that
we need to protect. The variables rtn and incr are on a stack unique to each
thread (that is, each thread has its own copies) and need no protection.

I have one more observation about this example which I’ll defer to Exercise 5.11.

There are three other kinds of thread-synchronization objects that you can read
about in [SUS2002] or one of the books referenced at the start of Section 5.17:

• Read-write locks are like mutexes, but they distinguish between locking
against reading the data and locking against writing, to gain additional con-
currency. See Section 7.11.4 for more about read-write locks in general.

• Spin locks are also like mutexes, but they’re faster and intended for short
durations. They’re usually implemented by testing the lock in a CPU loop
instead by blocking the thread.

• Barriers are synchronization points at which one or more threads wait,
ensuring that they have all completed some task before any one is allowed to
continue.

5.17.4 Condition Variables

Suppose Thread A is doing some work (reading data from a network connection,
say) and adding items to a queue, and Thread B is taking items from the queue
and doing some additional work on them (updating a database, say). Using a
mutex M to control access to the queue, you could organize the threads like this:

(The notation [B] means an indeterminate block, and [b] means a short-term
block.)

Thread A

1.  Read data [B]
2.  Lock M [b]
3.  Put item on queue
4.  Unlock M
5.  Goto step 1

Thread B

1.  Lock M [b]
2.  If item on queue, remove it and update database
3.  Unlock M
4.  Goto step 1
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This works OK, but Thread B wastes a lot of CPU time when the queue is empty,
as it keeps checking while it loops and loops. You could slow it down a bit like
this:

But this isn’t much of an improvement: Thread B is now less responsive because
it may be sleeping when there’s work to do, and it still wastes CPU time because
the queue may be empty when it wakes up. What we want to do is have Thread A
signal Thread B when it puts an item on the queue and have Thread B block until
it gets the signal. Let’s try it with another mutex Q to represent the concept
“queue is nonempty”:

Thread B’s attempt to lock Q (step 4) is an indeterminate block because Q
becomes unlocked only when Thread A returns from its read (step 1).

Now the problem is that Thread A may try to unlock Q when Thread B hasn’t got
it locked, which would be a lost signal—the attempt to unlock isn’t somehow
remembered for the next attempt to lock (i.e., mutexes are not counting sema-
phores). So if this happens, Thread B will be held up waiting for the lock on Q,
and the lock won’t be released until the next time data is read, if ever. Mean-
while, the item on the queue goes unprocessed by Thread B.

A more concrete problem with Q is that only the thread that locks a mutex can
unlock it. So, A’s step 5 would result in an error.

Thread A

1.  Read data [B]
2.  Lock M [b]
3.  Put item on queue
4.  Unlock M
5.  Goto step 1

Thread B

1.  Lock M
2.  If item on queue, remove it and update database
3.  Unlock M [b]
4.  Sleep for 1 sec. [b]
5.  Goto step 1

Thread A

1.  Read data [B]
2.  Lock M [b]
3.  Put item on queue
4.  Unlock M
5.  Unlock Q
6.  Goto step 1

Thread B

1.  Lock M [b]
2.  If item on queue, remove it and update database
3.  Unlock M
4.  Lock Q [B]
5.  Goto step 1
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We could try to replace Q with a counting semaphore (Section 7.8), but a better
choice is to use another kind of signaling mechanism that POSIX Threads pro-
vides: condition variables. Here’s how they’re used in this example:

The second mutex, Q, is gone, and now there’s a condition variable, C. In Thread
B, cond_wait waits until condition C is signaled, which it is in Thread A’s step 4.
But cond_wait has a special interaction with mutex M (its second argument): The
mutex must be locked when cond_wait is called. It is unlocked during the wait-
ing, and then relocked automatically when cond_wait returns. That way there’s no
possibility of a missed signal or of deadlock, both of which were defects in our
earlier attempts. And, all the code in Thread B’s steps 2 and 3 is executed with M
locked, as it should be.

Why is cond_wait in a loop that tests whether the queue is empty, when condition
C gets signaled (by Thread A) only when the queue is nonempty? It’s because
cond_wait, like any UNIX blocking system call, is subject to being interrupted
(e.g., by the arrival of a traditional UNIX signal, such as SIGINT), in which case
there might be a return with the queue still empty. A loop that tests the predicate
(empty queue, in this case) ensures that we’ll go right back into cond_wait on
such a spurious return. Because spurious returns are infrequent, the wasted CPU
time is inconsequential.

Another reason for checking the queue before calling cond_wait is that
cond_signal might have been called well before Thread B calls cond_wait, and a
con_signal with no thread waiting is discarded (not held pending). So, it’s impor-
tant not to call cond_wait unless waiting is necessary, or the wait may be forever,
even though the queue is nonempty.

Thus, to signal and wait for a condition, you need three things: a condition vari-
able, a mutex, and a predicate. The first two are special data types, but the

Thread A

1.  Read data [B]
2.  Lock M [b]
3.  Put item on queue
4.  cond_signal(C) 
5.  Unlock M
6.  Goto step 1

Thread B

1.  Lock M [b]
2.  while (queue is empty) {
          cond_wait(C, M) [B]
     }
3.  Remove item; update database
4.  Unlock M
5.  Goto step 1
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predicate is just some ordinary code that makes sense for your program—it’s the
concrete details of what the condition variable represents abstractly.

Here are the synopses for the actual pthread_cond_signal and
pthread_cond_wait system calls:

pthread_cond_signal—signal condition

#include <pthread.h>

int pthread_cond_signal(
pthread_cond_t *cond /* condition variable */

);
/* Returns 0 on success, error number on error */

pthread_cond_wait—wait for condition

#include <pthread.h>

int pthread_cond_wait(
pthread_cond_t *cond, /* condition variable */
pthread_mutex_t *mutex /* mutex */

);
/* Returns 0 on success, error number on error */

As with a mutex, you can declare and initialize a condition variable statically, like
this:

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

A condition variable on the stack (automatic) or allocated dynamically needs to be
initialized with a call to pthread_cond_init, which I won’t go into in this
book.

Here’s an example program that has the initial thread putting nodes onto a queue
while another thread takes them off and displays their contents. The initial thread
signals a condition when a node is queued, and the other thread waits on that
condition:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

struct node {
    int n_number;
    struct node *n_next;
} *head = NULL;
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static void *thread_func(void *arg)
{
    struct node *p;

    while (true) {
        ec_rv( pthread_mutex_lock(&mtx) )
        while (head == NULL)
            ec_rv( pthread_cond_wait(&cond, &mtx) )
        p = head;
        head = head->n_next;
        printf("Got %d from front of queue\n", p->n_number);
        free(p);
        ec_rv( pthread_mutex_unlock(&mtx) )
    }
    return (void *)true;

EC_CLEANUP_BGN
    (void)pthread_mutex_unlock(&mtx);
    EC_FLUSH("thread_func")
    return (void *)false;
EC_CLEANUP_END
}

int main(void)
{
    pthread_t tid;
    int i;
    struct node *p;

    ec_rv( pthread_create(&tid, NULL, thread_func, NULL) )
    for (i = 0; i < 10; i++) {
        ec_null( p = malloc(sizeof(struct node)) )
        p->n_number = i;
        ec_rv( pthread_mutex_lock(&mtx) )
        p->n_next = head;
        head = p;
        ec_rv( pthread_cond_signal(&cond) )
        ec_rv( pthread_mutex_unlock(&mtx) )
        sleep(1);
    }
    ec_rv( pthread_join(tid, NULL) )
    printf("All done -- exiting\n");
    return EXIT_SUCCESS;

EC_CLEANUP_BGN
    return EXIT_FAILURE;
EC_CLEANUP_END
}
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The guts of the initial thread that queues a new node follows the pattern shown
earlier—it calls pthread_cond_signal with the mutex locked:22

        ec_rv( pthread_mutex_lock(&mtx) )
        p->n_next = head;
        head = p;
        ec_rv( pthread_cond_signal(&cond) )
        ec_rv( pthread_mutex_unlock(&mtx) )

And the thread that removes a node also follows the pattern, calling
pthread_cond_wait with the mutex locked:

        ec_rv( pthread_mutex_lock(&mtx) )
        while (head == NULL)
            ec_rv( pthread_cond_wait(&cond, &mtx) )
        p = head;
        head = head->n_next;
        printf("Got %d from front of queue\n", p->n_number);
        free(p);
        ec_rv( pthread_mutex_unlock(&mtx) )

These two threads work successfully only because pthread_cond_wait
unlocks the mutex while it’s waiting and then relocks it before returning. So, the
following is guaranteed to be true:

• Both critical sections that deal with the queue are executed under the protec-
tion of the mutex mtx.

• When the statement
p = head;

is executed in the second thread, head is non-NULL.

Here’s the output we got:

Got 0 from front of queue
Got 1 from front of queue
Got 2 from front of queue
Got 3 from front of queue
Got 4 from front of queue
Got 5 from front of queue
Got 6 from front of queue
Got 7 from front of queue
Got 8 from front of queue
Got 9 from front of queue

What happened to the “All done – exiting” message? We never got it. Actually,
the program hung after printing the “Got 9” line, and we typed Ctrl-C to stop it.

22. It’s also OK to call pthread_cond_signal with the mutex unlocked, and in fact that might increase throughput a bit.
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Looking at the program, we can see why: The second thread stays in its loop for-
ever, looking for a node on the queue that will never arrive, and the initial thread
never returns from its call to pthread_join.

An obvious fix is to put some sort of “end-of-file” node on the queue to tell the
second thread to exit. Or, the initial thread can just cancel the second thread when
there’s going to be no more work. We’ll do it that way so we have an excuse to
talk about how to cancel a thread.

5.17.5 Canceling a Thread

One thread can cancel another thread with pthread_cancel:

pthread_cancel—cancel thread

#include <pthread.h>

int pthread_cancel(
pthread_t thread_id /* ID of thread to cancel */

);
/* Returns 0 on success, error number on error */

Normally, the thread to be cancelled doesn’t stop right away, but only at a cancel-
lation point, which is when the thread calls one of the 200 or so system calls or
standard functions that can block, such as read, waitpid, or
pthread_cond_wait.23 If a thread calls a function defined elsewhere in the pro-
gram, or in a library, there’s a pretty good chance of it calling one of those 200+
system calls or functions; therefore, you should consider any function call as a
potential, but not guaranteed, cancellation point unless it is specifically docu-
mented otherwise and you trust the documentation.

The significance of cancellation points is that you can safely execute ordinary
code without worrying about it being cancelled. For example, you can modify a
linked list (possibly protected by a mutex), knowing that the code sequence will
be allowed to complete.

You’ll be relieved to know that none of the “pthread” mutex calls are cancellation
points, nor are free, calloc, malloc, or realloc. If the mutex calls were can-
cellation points, it would be very cumbersome to use mutexes at all, as you would
have to add code to handle cancellation every time you called
pthread_mutex_lock.

23. The SUS specifies 65 or so that are always cancellation points and another 150 or so that may be cancellation points.
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If a thread has no cancellation points at all, or none that you can depend on, yet
stays alive long enough so that allowing cancellation is an issue, you can put in
one or more calls to pthread_testcancel at safe places to explicitly provide
cancellation points. This call doesn’t do anything if there’s no pending
cancellation.

pthread_testcancel—test for cancellation

#include <pthread.h>

void pthread_testcancel(void);

I said that normally a thread is cancelled only at a cancellation point. This is true
when its cancellation type is PTHREAD_CANCEL_DEFERRED, which is the default.
If you set the type to PTHREAD_CANCEL_ASYNCHRONOUS with the
pthread_setcanceltype function (see [SUS2002] for details), it really will be
cancelled immediately, which is a scary thought. Presumably, anyone who would
do that knows what he or she is doing.

Now we can modify the main function from the previous example to cancel the
other thread when no more nodes will be queued:

    for (i = 0; i < 10; i++) {
        ec_null( p = malloc(sizeof(struct node)) )
        p->n_number = i;
        ec_rv( pthread_mutex_lock(&mtx) )
        p->n_next = head;
        head = p;
        ec_rv( pthread_cond_signal(&cond) )
        ec_rv( pthread_mutex_unlock(&mtx) )
        sleep(1);
    }
    ec_rv( pthread_cancel(tid) )
    ec_rv( pthread_join(tid, NULL) )
    printf("All done -- exiting\n");
    return EXIT_SUCCESS;

With this improvement the program terminates cleanly:

Got 0 from front of queue
Got 1 from front of queue
Got 2 from front of queue
Got 3 from front of queue
Got 4 from front of queue
Got 5 from front of queue
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Got 6 from front of queue
Got 7 from front of queue
Got 8 from front of queue
Got 9 from front of queue
All done -- exiting

We’re not quite done, though. We need to look carefully at the code for the thread
that got cancelled to make sure that cancellation won’t leave the queue in an
inconsistent state. Here it is again:

static void *thread_func(void *arg)
{
    struct node *p;

    while (true) {
        ec_rv( pthread_mutex_lock(&mtx) )
        while (head == NULL)
            ec_rv( pthread_cond_wait(&cond, &mtx) )
        p = head;
        head = head->n_next;
        printf("Got %d from front of queue\n", p->n_number);
        free(p);
        ec_rv( pthread_mutex_unlock(&mtx) )
    }
    return (void *)true;

EC_CLEANUP_BGN
    (void)pthread_mutex_unlock(&mtx);
    EC_FLUSH("thread_func")
    return (void *)false;
EC_CLEANUP_END
}

Indeed, there are two problems:

• pthread_cond_wait is a cancellation point. If the thread is cancelled
there, the queue is OK, as nothing yet has been done to it, but the mutex is
relocked, which always is the case when leaving pthread_cond_wait. We
don’t want the thread to terminate with the mutex locked, as it can then
never be unlocked.

• printf may be a cancellation point. If the thread terminates there, the node
just removed won’t be freed, resulting in a memory leak.

True, this program exits after cancelling the thread, but that may not always be the
case so it makes sense to fix the bugs. It’s important to protect against what could
happen, not only against what usually happens.
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A solution for the second problem is to store the number to be printed in a local
variable, free the node, and then call printf.

But the first problem has no obvious solution. We have to install a cancellation
cleanup handler, which is a function that’s called just before cancellation to clean
thing up. We’ll fix the second problem in the cancellation cleanup handler as well.

A cancellation cleanup handler always has this prototype (the name doesn’t
matter):

void cleanup_handler(void *arg);

A thread installs a cleanup handler with pthread_cleanup_push and unin-
stalls it with pthread_cleanup_pop:

pthread_cleanup_push—install cleanup handler

#include <pthread.h>

void pthread_cleanup_push(
void (*handler)(void*), /* pointer to cleanup-handler function */
void *arg /* data to pass to function */

);

pthread_cleanup_pop—uninstall cleanup handler

#include <pthread.h>

void pthread_cleanup_pop(
int execute /* execute handler? */

);

When cancellation occurs, the cleanup handler is called. If there’s more than one,
they’re all called, in the reverse order of how they were pushed. Each function is
popped after it’s called, which is fine, since the thread will be gone.

These functions must be paired, and they must be at the same C or C++ block
level. If you don’t do this, you’ll probably get very strange compile-time errors, as
the functions are usually implemented as macros with embedded braces (like
EC_CLEANUP_BGN and EC_CLEANUP_END; see Section 1.4.2).

Depending on how you’ve done things, it may make sense to call the cleanup han-
dler even when the thread exits normally. To make that convenient, you can make
the execute argument to pthread_cleanup_pop true.

Here’s the improved version of thread_func. Note that I explicitly initialized p
to NULL to make sure its value is always valid for free:
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static void cleanup_handler(void *arg)
{
    free(arg);
    (void)pthread_mutex_unlock(&mtx);
}

static void *thread_func(void *arg)
{
    struct node *p = NULL;

    pthread_cleanup_push(cleanup_handler, p);
    while (true) {
        ec_rv( pthread_mutex_lock(&mtx) )
        while (head == NULL)
            ec_rv( pthread_cond_wait(&cond, &mtx) )
        p = head;
        head = head->n_next;
        printf("Got %d from front of queue\n", p->n_number);
        free(p);
        ec_rv( pthread_mutex_unlock(&mtx) )
    }
    pthread_cleanup_pop(false);
    return (void *)true;

EC_CLEANUP_BGN
    (void)pthread_mutex_unlock(&mtx);
    EC_FLUSH("thread_func")
    return (void *)false;
EC_CLEANUP_END
}

Now we should be OK. Note that the whole complication of dealing with cancella-
tion could have been avoided if I chose some other way to terminate the thread once
the initial thread had stopped putting nodes on the queue. That’s something to con-
sider in your own applications—don’t use cancellation when a less ruthless action
will do the job. On the other hand, if the thread to be terminated is blocked (in
read, say) and you can’t very easily get it unblocked, thread cancellation may be
the best choice. It’s certainly a better choice than a signal, which also can unblock a
system call; as we shall see in Chapter 9, signals have much worse side effects.

5.17.6 Threads vs. Processes

You’re probably wondering when you should use threads vs. processes. Gener-
ally, you use threads when you want concurrent processing on the same complex
data structures. Three common situations are:
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• You want the user interface to be active while other computations are going
on in the background. An example would be background printing or back-
ground page formatting in a word-processing program that allows the
document to be viewed and edited concurrently with those background
operations.

• You want to organize the algorithm to take advantage of a multiprocessing
computer—one with multiple CPUs. On such a system, the UNIX scheduler
can automatically assign different threads to different CPUs.

• You need to deal with several kinds of events that cause systems calls
(e.g., read, waitpid, msgrcv) to block. This is the subject of the next
section.

Processes would be used for less tightly coupled applications, where some data is
passed between the processes, but there’s no need for the same data structure to be
manipulated directly. (With some trouble, it is possible to share a data structure
using shared memory, as we’ll see in Chapter 7.) Separate processes have their
own effective user ID, file descriptors, global variables, etc., whereas separate
threads don’t. Processes can more easily be developed, tested, and debugged sepa-
rately, and there’s much less need for locking, so much less likelihood of
undetected race conditions or deadlock. Another way to draw the comparison is to
say that processes are for the big pieces of the applications, whereas threads pro-
vide more fine-grained concurrency.

Warning: As of this writing, the thread packages commonly shipped with Linux
and FreeBSD don’t adhere to the POSIX standard, chiefly because they imple-
ment a thread either too weakly (doing everything in user space) or too strongly
(using a process for each thread). The main problem with the former is that a
blocking system call, like msgrcv, blocks all threads, not just the one containing
the call. The problem with the latter is that some systems calls like waitpid
don’t work right because they’re in the wrong process (only the parent may wait
for a child process). Another irritant is that you may have to find, compile, and
install the thread package you want yourself if the package that came with the sys-
tem is inadequate.

Look for the newest Linux thread implementation, called Native POSIX Thread
Library for Linux (NPTL), which is now finding its way into Linux systems. It
fixes all of the important POSIX-compliance bugs.
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5.18 The Blocking Problem

We’ve encountered several system calls that can block, like read, write,
pthread_cond_wait, and waitpid, and there are lots more in this book, espe-
cially in Chapters 7 and 8. One of the most difficult problems with UNIX
programming is that your application may have to block in more than one system
call because you don’t know what’s going to happen next. I call this the blocking
problem.

For blocking system calls that take a file descriptor, like read and write, you
can use a single system call, select or poll (Section 4.2), to block until one or
more file descriptors are ready. But that doesn’t help in general because lots of
things you wait for, such as processes, signals, messages, semaphores, and condi-
tion variables, aren’t associated with file descriptors. Yes, you can notify a thread
blocked in select or poll when, say, a message arrives by writing to a pipe set
up just for that purpose (as we’ll see in the next section), but that doesn’t help
with the fact that msgrcv or mq_receive was itself blocked waiting for the mes-
sage in the first place. There’s no way to tie a message-waiting system call
directly to a file descriptor. It’s not a notification problem, it’s a blocking problem.

5.18.1 Solutions Using Processes and Threads

Historically, the solution to the blocking problem was to create a child process to
block.24 When whatever it’s blocking on unblocks, it then writes to a pipe to indi-
cate to its parent process that an event has occurred. Pipes are a good choice
because they’re easy to set up (as we’ll see in the next chapter) and, as they use
file descriptors, the parent can incorporate them into a select or poll. What
this does, in effect, is to transform the parent from blocking on the non-file-
descriptor event to blocking on a file descriptor. Transform everything, use
select or poll in the parent, and you’re golden.

But processes are very heavyweight objects in UNIX—expensive to create,
expensive to schedule, and in limited supply. Also, it’s cumbersome for two pro-
cesses to share the same data structures. It would be nice if the event could just be
queued up when it occurs and then examined whenever it’s convenient for the

24. This technique was invented by my mother around 1953. At the grocery store, she would have one child wait on the 
deli line and one on the fish line while she shopped for goods that didn’t require a line. Occasionally even she got blocked, 
though, so she produced three more children.
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parent. Setting up an event queue between processes is possible using shared
memory and semaphores, but interprocess semaphores may be too slow, espe-
cially if the events are occurring rapidly.

Another problem with separate processes is that certain objects, like file descrip-
tors, can’t be passed to an existing process (not portably, anyway). They can be
passed only through inheritance; therefore, if process A is in charge of blocking
on I/O and is already running, process B that just opened a network connection
can’t get process A to wait on the newly acquired file descriptor.

A newer solution for the blocking problem is to use POSIX Threads. One simple
approach is to create a new thread for each object on which you want to block
(e.g., message queue, file-descriptor set, semaphore). Each thread simply issues
an appropriate blocking system call (O_NONBLOCK clear). When the system call
returns, the thread adds an event to a shared queue (using a mutex for protection)
and then goes right back into the blocking system call. The main thread then has
only one thing to block on: the presence of an event on the queue. The blocking
threads use a condition variable to signal the main thread when the queue
becomes nonempty, exactly as in the example in Section 5.17.4.

5.18.2 Unified Event Manager Prototype

I’ll show a generalized approach to using threads to solve the blocking problem
that I call a Unified Event Manager. It’s a collection of library functions that any
application can use. An application can register an event, which causes the library
to create a thread to block. The application is organized around waiting on a sin-
gle event queue. When an event shows up, the application takes it off the queue,
processes it, and goes back to waiting.

I won’t show all the code in this book, but it’s on the Web site if you want to see
it. It’s a prototype because it’s not efficient enough for critical applications and
because it uses the same “ec” error-checking approach that all the examples in this
book use, and that is itself a prototype.

We start with an enumeration for almost allevents that can be waited for in UNIX:

enum UEM_TYPE {
    UEM_SVMSG,      /* System V message */
    UEM_PXMSG,      /* POSIX message */
    UEM_SVSEM,      /* System V semaphore */
    UEM_PXSEM,      /* POSIX semaphore */
    UEM_FD_READ,    /* file-descriptor set - read */
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    UEM_FD_WRITE,   /* file-descriptor set - write */
    UEM_FD_ERROR,   /* file-descriptor set - error */
    UEM_SIG,        /* signal */
    UEM_PROCESS,    /* process */
    UEM_HEARTBEAT,  /* heartbeat */
    UEM_NONE        /* none */
};

The last two require some explanation: UEM_HEARTBEAT is a way to just get a
periodic event at certain intervals, and UEM_NONE is there because it’s always a
good idea to have a value that you can use to indicate that something’s empty.

When we register an event, we need a structure to keep track of what we’ll need
for the blocking system call. For example, to issue a select, we’ll need the file-
descriptor set, so this structure holds all of this kind of data for each UEM_TYPE:

struct uem_reg {
    enum UEM_TYPE ur_type;          /* type of registration */
    pthread_t ur_tid;               /* thread ID */
    union {
        int ur_mqid;                /* System V message-queue ID */
        struct {
            int s_semid;            /* System V semaphore-set ID */
            struct sembuf *s_sops;  /* semaphore operations */
        } ur_svsem;
#ifdef POSIX_IPC
        mqd_t ur_mqd;               /* POSIX message-queue descriptor */
        sem_t *ur_sem;              /* POSIX semaphore */
#endif
        int ur_signum;              /* signal number */
        pid_t ur_pid;               /* process ID */
        long ur_usecs;              /* microseconds (for heartbeat) */
        fd_set ur_fdset;            /* file-descriptor set */
    } ur_resource;
    void *ur_data;                  /* data to be queued with event */
    size_t ur_size;                 /* size (used for various purposes) */
};

The macro POSIX_IPC isn’t a standard macro but one that we’ll use in this proto-
type. It’s set from the real feature-test macros in a very complicated way that’s
explained in Section 1.5.4. We need it because Linux and FreeBSD don’t as yet
support POSIX IPC.

When an application wants to register an event type, it calls a function of the form
uem_register_E, where E is an abbreviation for the event type. For example,
here’s the call to register to wait for a process to terminate:

ec_false( uem_register_process(pid, NULL) )
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This is instead of issuing a waitpid directly, which would block. When process
pid terminates, an event containing its exit status will be put on the queue, and
the application that registered the event can then get the status. We’ll see those
details shortly.

Here’s the code for uem_register_process:

bool uem_register_process(pid_t pid, void *data)
{
    struct uem_reg *p;

    ec_null( p = new_reg() )
    p->ur_type = UEM_PROCESS;
    p->ur_resource.ur_pid = pid;
    p->ur_size = 0;
    p->ur_data = data;
    ec_rv( pthread_create(&p->ur_tid, NULL, thread_process, p) )
    return true;

EC_CLEANUP_BGN
    return false;
EC_CLEANUP_END
}

The function new_reg, used by all the uem_register_ E calls, just allocates a
structure. We put it in a separate function in case there’s some common initializa-
tion to do, which there isn’t with the current design.

static struct uem_reg *new_reg(void)
{
    struct uem_reg *p;

    ec_null( p = calloc(1, sizeof(struct uem_reg)) )
    return p;

EC_CLEANUP_BGN
    return NULL;
EC_CLEANUP_END
}

The registration info is just passed onto the thread function, which looks like this:

static void *thread_process(void *arg)
{
    struct uem_event *e = NULL;

    pthread_cleanup_push(cleanup_handler, e);
    ec_null( e = calloc(1, sizeof(struct uem_event)) )
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    e->ue_reg = (struct uem_reg *)arg;
    if (waitpid(e->ue_reg->ur_resource.ur_pid, &e->ue_result, 0) == -1)
        e->ue_errno = errno;
    ec_false( queue_event(e) )
    pthread_cleanup_pop(false);
    return NULL;

EC_CLEANUP_BGN
    uem_free(e);
    EC_FLUSH("thread_process")
    return NULL;
EC_CLEANUP_END
}

This function first pushes a cleanup handler (explained in Section 5.17.5). Then it
allocates an event structure to be queued when the event occurs (waitpid return-
ing, in this case). Here’s the event structure used by all the threads:

struct uem_event {
    struct uem_reg *ue_reg;
    void *ue_buf;
    ssize_t ue_result;
    int ue_errno;
    struct uem_event *ue_next;
};

Note that it points back to the registration, which contains data common to all the
events of this type. The ue_buf member is in case data has to be returned (such
as a message), but there’s none in this case. We do have the status, which we put
in the ue_result member. If an error occurred, errno goes into the ue_errno
member; the application that gets this event needs to check that member against
zero to see if an error was returned by the function that waited. The ue_next
member is so that the uem_event structures can be linked into an event queue.

The cleanup handler is just like the one in Section 5.17.5 except it calls
uem_free (not shown here) to free the event structure if one was allocated:

static void cleanup_handler(void *arg)
{
    (void)uem_free((struct uem_event *)arg);
}

An application that removes an event from the queue is also responsible for call-
ing uem_free.
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The actual work of putting an event on the queue is done by queue_event,
which the thread calls when waitpid returns. Note that the event is queued even if
waitpid reported an error, which is how the application finds out about such errors.

static pthread_mutex_t uem_mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t uem_cond_event = PTHREAD_COND_INITIALIZER;
static struct uem_event *event_head;

static bool queue_event(struct uem_event *e)
{
    struct uem_event *cur;

    ec_rv( pthread_mutex_lock(&uem_mtx) )
    if (event_head == NULL)
        event_head = e;
    else {
        for (cur = event_head; cur->ue_next != NULL; cur = cur->ue_next)
            /* queue same error only once */
            if (e->ue_errno != 0 &&
              cur->ue_reg->ur_type == e->ue_reg->ur_type &&
              cur->ue_errno == e->ue_errno) {
                ec_rv( pthread_mutex_unlock(&uem_mtx) )
                uem_free(e);
                return true;
            }
        cur->ue_next = e;
    }
    ec_rv( pthread_cond_signal(&uem_cond_event) )
    ec_rv( pthread_mutex_unlock(&uem_mtx) )
    return true;

EC_CLEANUP_BGN
    (void)pthread_mutex_unlock(&uem_mtx);
    return false;
EC_CLEANUP_END
}

This function follows the pattern from Section 5.17.4 for using a condition variable
for signaling an event. However, an error event (ue_errno nonzero) could be gen-
erated repeatedly if the thread that calls queue_event keeps getting an error. For
example, if the process ID passed to waitpid is invalid, waitpid will keep return-
ing until the thread is cancelled. It’s bad enough that that wastes CPU time, but we
certainly don’t want to fill the event queue with thousands of events all reporting
the same thing. So, before queuing an error event, we make sure one just like it isn’t
already there. (This isn’t the best approach, but this is a prototype, right?)
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If the event is to be queued, the line

cur->ue_next = e;

queues it and then we signal the condition, unlock the mutex, and return.

That’s basically the whole library except that there are a collection of registration
functions like uem_register_process, which I won’t show here because they
all do pretty much the same thing, varying only in the system call that blocks.
That is, uem_register_svmsg starts a thread that contains a call to msgrcv,
uem_register_pxmsg starts a thread that contains a call to mq_receive, and
so on. They all use queue_event.

The application that uses the library looks something like this:

struct uem_event *e;
...
ec_false( uem_register_process(pid, NULL) )
ec_false( uem_register_pxmsg(mqd, NULL) )
...
while (true) {
    ec_null( e = uem_wait() )
    if (e->ue_errno != 0)
        ... /* display error */
    else
        switch (e->ue_reg->ur_type) {
        case UEM_PXMSG:
            ... /* process received message */
            break;
        case UEM_PROCESS:
            ... /* process status from terminated process */
            break;
        ...
        }
}

The most important thing here is that the application blocks in exactly one place,
the call to uem_wait, no matter how many different kinds of events need to be
handled. Here’s the code for uem_wait; note that, like queue_event, it follows
the conditional-variable pattern in Section 5.17.4:

struct uem_event *uem_wait(void)
{
    struct uem_event *e = NULL;
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    ec_rv( pthread_mutex_lock(&uem_mtx) )
    while (event_head == NULL)
        ec_rv( pthread_cond_wait(&uem_cond_event, &uem_mtx) )
    e = event_head;
    event_head = event_head->ue_next;
    ec_rv( pthread_mutex_unlock(&uem_mtx) )
    return e;

EC_CLEANUP_BGN
    (void)pthread_mutex_unlock(&uem_mtx);
    return NULL;
EC_CLEANUP_END
}

When the predicate is true (event present on queue), it removes the event from the
queue and returns a pointer to it. It’s the responsibility of the caller to free the
memory with a call to uem_free, as I mentioned earlier.

Except for some additional bookkeeping details and the rest of the registration
functions, that’s the whole system. It solves the blocking problem!

Because it’s so reliant on threads, this approach is only as good as the underlying
thread implementation. Threads have to be fast, lightweight, and plentiful, and
they have to follow the POSIX standard rigorously. Otherwise, there will be too
much overhead, valuable system resources will be consumed, and there will be
too many subtle bugs in the application that, because of all the multithreading,
will be very hard to find.

If you’re interested, try to rewrite the uem package using processes instead of
threads. You’ll find it difficult to write and extremely difficult to make efficient.
But the effort should help you appreciate why threads are so important.

Exercises
5.1. Correct the memory-leak problems in setenv and unsetenv as suggested at the 

end of Section 5.2.

5.2. Rewrite the environment-manipulation functions in Section 5.2 to treat exported 

variables as the standard shell does. That is, an updated value for a variable is 

exported only if it’s specifically declared to be exported in a function named, say, 

env_export. Give some thought to whether and when environ will be updated 
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and whether the existing getenv function can be used as is or whether it needs to 

be replaced.

5.3. Write a program that scans its arguments for assignments of the form

variable=value, updates the environment appropriately, and then executes the

program specified by the first nonassignment argument. The other nonassignment 

arguments become arguments to the invoked program. Don’t use fork.

5.4. Write a function execlp2 that’s analogous to execvp2 in Section 5.3. Use the 

Standard C variable-argument facilities (va_arg, etc.).

5.5. Enhance the exec_path function in Section 5.3 to support the #! feature dis-

cussed in that section.

5.6. Design and implement two functions, execvx and execlx, to replace the six 

exec system calls, as suggested by the footnote in Section 5.3. You can use as 

many of the exec system calls as you wish in your implementation.

5.7. Explain in your own words (perhaps with a diagram) how fork and exec are typi-

cally implemented. (You’ll need to do some research; see, for example, [Bac1986], 

[McK1996], [Mau2001], or [Bov2001].) Then show how posix_spawn can be 

implemented more efficiently. Don’t write the code—pseudo code or a clear step-

by-step algorithm will do.

5.8. Research the semantics of posix_spawn (see [SUS2002]) and then implement it 

in terms of fork and exec, as suggested at the end of Section 5.5. To start with, 

skip both attributes and actions. Then do actions, and finally attributes. To do the 

whole job you’ll need to implement the associated system calls (e.g., 

posix_spawn_file_actions_init). This is an extremely useful exercise, 

even if you don’t care about realtime systems.

5.9. Design and run an experiment to measure the CPU time used by fork. (You may 

want to use timestart and timestop from Section 1.7.2.) If you have access to 

them, try different versions of UNIX and different hardware. Compare the time for 

fork with the time for vfork, if your systems support it. Ditto for 

posix_spawn.
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5.10. Investigate the equivalent system calls to exec and fork that are provided in other 

operating systems, such as VMS, OS/390, Windows, and MacOS. Compare their 

features and summarize their advantages and disadvantages.

5.11. In Section 5.17.3, it’s possible for x to be incremented by another thread between 

reading with get_x(0) and incrementing with get_x(1), which might result in 

x being too big. Fix the problem by rewriting the example to use a single function 

call that both tests and increments x.

5.12. Write fileview, an interactive full-screen application (Section 4.8) that divides 

the screen with a horizontal line into two parts. An “s” command prompts for a 

search string, searches the standard include files (at least) for files that contain it on 

one or more lines, and displays the matching pathnames in the upper part. While 

they’re being displayed or afterwards, a “v” command shows the contents of a 

selected file in the lower part with the matched strings highlighted. Choose two keys 

that can be used to scroll the upper part up and down, and two other keys for the 

lower part. To make the “v” command easy to implement, number the pathnames in 

the upper part and arrange for the “v” command to prompt for the file by its num-

ber. Note the word “While” in the phrase “While they’re being displayed”; it implies 

that you’ll have to use multithreading and, as Curses isn’t necessarily thread-safe, 

you’ll have to protect access to it with a mutex. There’s also a “q” command that 

quits the application.

5.13. Explain how you could implement fileview (Exercise 5.12) without multithread-

ing, using processes instead. You may have to explore Chapter 7 first. If you don’t 

think you can do it without multithreading, explain why not. (As you would be try-

ing to prove a negative statement, your explanation will have to be very persuasive.)

5.14. Write a program to display as many as the process attributes listed in Appendix A as 

you can, limiting yourself for now to those discussed in the first five chapters of this 

book. Later, you can extend your program to include them all. If there are any you 

can’t display, explain why not. To make the output interesting, execute some system 

calls at the start to open some files, set some signal actions, and so on.
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