
45

3
Getting Started with
JDO
“The expert at anything was once a beginner.”
– Hayes

Using JDO to build an application that creates, reads, updates, and deletes
persistent instances of Java classes is easy and requires only some basic knowl-
edge about how JDO works and how to use it. Armed with this knowledge, you
can develop your first JDO application and persist instances of Java classes trans-
parently in a datastore. This chapter is a guide to getting started with using JDO,
providing an understanding of how JDO works and how to use the basic APIs,
and exploring some of the more advanced concepts related to using JDO.

This chapter covers the following topics:

• How JDO is able to transparently persist instances of Java classes

• The basic JDO interfaces and how they are related

• How to define a Java class that can be used with a JDO implementation

• How to connect to a datastore

ch03.fm Page 45 Tuesday, July 22, 2003 1:07 PM

46 Core Java Data Objects

• How to create, read, update, and delete persistent objects

• The types of fields, system classes, collection classes, and inheritance sup-
ported by JDO

• How to handle exceptions within an application

• The concept of object identity

• The different types of identity that can be used

• How concurrency control is enforced between multiple applications

The examples for this chapter can be downloaded from the Internet at www.core-
jdo.com and are located in the com.corejdo.examples.chapter3 package.
In many cases, the code snippets shown are simplified versions of the actual
classes to allow the examples to focus only on the relevant concepts.

3.1 How Does JDO Work?
The goal of the JDO is to allow a Java application to transparently store instances
of any user-defined Java class in a datastore and retrieve them again, with as few
limitations as possible. This book refers to the instances that JDO stores and
retrieves as persistent objects. From the application perspective, these persistent
objects appear as regular, in-memory Java objects. However, the fields of these
instances are actually stored in some underlying datastore persistently—all with-
out any explicit action on behalf of the application.

JDO has nothing to do with where methods are executed; it does not provide a
means of remote method invocation à la RMI and EJB, nor does it store and exe-
cute methods in some datastore. JDO simply specifies how the fields of a persis-
tent object should be managed in-memory, being transparently stored to and
retrieved from an underlying datastore. With JDO, methods are invoked on a per-
sistent object by an application, as per any regular in-memory Java object.

Figure 3-1 provides a schematic of how JDO works.

The JDO implementation and the application run together in the same JVM. The
application delegates to the JDO implementation to retrieve the fields of persis-
tent objects as needed. The JDO implementation tracks modifications to the fields
and writes these changes back to the datastore at the end of the transaction. The
JDO implementation is responsible for mapping the fields of the persistent objects
to and from memory and the underlying datastore.

JDO achieves transparency of access by defining a contract to which a class must
adhere. Any class that implements this contract can then be used with any JDO
implementation. JDO requires that a JDO implementation ensure that any class

ch03.fm Page 46 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 47

that adheres to the JDO persistence-capable contract can be used with any JDO
implementation, without recompilation.

The ability to run a JDO application with any JDO implementation is akin to
using JDBC, because a JDBC application can be run “as is” using JDBC drivers
from different vendors and even using different relational databases. In fact, it’s
somewhat better than this, because with JDBC an application is still prone to dif-
ferences in SQL support across different databases. With JDO, SQL is not directly
exposed. Although a JDO runtime may itself use JDBC to access a relational data-
base as its datastore, it is the responsibility of the JDO implementation to resolve
the differences in SQL support across databases.

Even better, unlike SQL, a JDO application can work “as is” across different types
of databases, not just relational: object databases, flat-files, and so on. All that is
required is a JDO implementation.

The JDO specification defines the persistence-capable contract as a Java interface,
called PersistenceCapable, and a programming style that the class imple-
mentation must follow. A class that adheres to this contract is referred to as being
“persistence-capable.”

Figure 3–1 JDO runtime environment.

JVM

Datastore

JDO Implementation

Application

Transparently
fetches

objects from
the datastore

into JVM

Transparently
writes changes

back to the
datastore

O/R mapping via JDBC
or direct object persistence

Persistent Objects

Normal Java
Objects

Transparent
navigational access

ch03.fm Page 47 Tuesday, July 22, 2003 1:07 PM

48 Core Java Data Objects

A class is said to be persistence-capable if its instances can be stored in a datastore
by a JDO implementation. However, just because a class is persistence-capable
doesn’t mean that all its instances have to be persistent; it just means the option is
there. Whether a particular instance is persistent depends on the application. It’s
similar to Java serialization: Just because a class implements the Serializable
interface doesn’t mean that all its instances have to be serialized.

However, the intention of JDO is not to expect the developer to have to worry
about making a class persistence-capable; it’s a tedious job better left to tooling.

You can create a persistence-capable class in three main ways:

Source code generation: With this method, the source code for a class
is generated from scratch. This approach works well if the object model
is defined in a modeling tool and is being automatically generated, or
the datastore schema already exists and the object model can be gener-
ated from it. Tools supplied by the JDO implementation would be used
to generate source code adhering to the persistence-capable contract.
The drawback of this approach is that it won’t work for existing classes
and won’t appeal to those who like to write their own code.

Source code preprocessing: With this method, existing source code is
preprocessed and updated. This approach works well if the source
code for a class is available. Tools supplied by the JDO implementation
would be used to read the original source code and update it to adhere
to the persistence-capable contract. The drawback of this approach is
that it won’t work unless the original source code is available, but it
does have the benefit that a developer can write his or her own source
code. Typically, the preprocessing is a precompilation step in the build
process, and the generated code may be kept to aid in debugging.

Byte code enhancement: With this method, the compiled Java byte
code for a class is enhanced directly. This approach works well even if
the source code is not available. Tools supplied by the JDO implemen-
tation would be used to read a class file and insert additional byte code
directly to make the class adhere to the persistence-capable contract.
This approach has the benefit of being completely transparent to the
developer, and the enhancement is simply a post-compilation step in
the build process. Although the JDO specification requires that an
enhanced class still function correctly when debugged against the orig-
inal source code, some developers may be distrustful if they can’t see
the actual code for what has been changed (although they could, of
course, always decompile the enhanced class file afterward).

ch03.fm Page 48 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 49

Byte code enhancement is the approach used by the JDO reference implementa-
tion available from SUN Microsystems, and the enhancement tool is available for
any developer to use. Some JDO implementations may provide their own
enhancement tools also. Figure 3-2 provides a schematic of how the byte code
enhancement process works:

The Java classes are compiled using a Java compiler to generate class files. The
byte code enhancement tool reads the class files along with the JDO metadata for
the classes (this metadata is explained in Section 3.3.1) and either updates the
existing class files or creates new ones. The “enhanced” class files are then loaded
by a JVM along with the JDO implementation and the application. The applica-
tion can then use JDO to store instances of the persistence-capable classes in the
datastore.

MyClass
.java

Java
Compiler

JDO
Enhancer

JVM

MyClass
.class

MyClass
.class

JDO
Metadata

Figure 3–2 The byte code enhancement process.

ch03.fm Page 49 Tuesday, July 22, 2003 1:07 PM

50 Core Java Data Objects

3.2 The JDO Basics
The JDO specification defines 20 or so classes and interfaces in total, but a devel-
oper needs to know only five main classes (which are actually Java interfaces):

• PersistenceManagerFactory

• PersistenceManager

• Extent

• Query

• Transaction

Figure 3-3 provides a simplified class diagram showing how these interfaces are
related:

PersistenceManagerFactory

PersistenceManager

0..*

Transaction

Query

Extent

0..*

0..*

manages

uses

0..1

creates

0..1

Figure 3–3 A simplified JDO class diagram.

ch03.fm Page 50 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 51

A PersistenceManagerFactory is used to get a PersistenceManager instance.
There is a one-to-many relationship between the PersistenceManagerFactory and
the PersistenceManager. A PersistenceManagerFactory can create and manage
many PersistenceManager instances and even implement pooling of Persistence-
Manager instances.

A PersistenceManager embodies a connection to a datastore and a cache of in-
memory persistent objects. The PersistenceManager interface is the primary
means by which the application interacts with the underlying datastore and in-
memory persistent objects.

From a PersistenceManager, the application can get one or more Query instances.
A Query is how the application can find a persistent object by its field values.

In addition to a Query, the application can get an Extent from a PersistenceMan-
ager. An Extent represents all the instances of a specified class (and optionally
subclasses) stored in the datastore and can be used as input to a Query or iterated
through in its own right.

A Transaction allows the application to control the transaction boundaries in the
underlying datastore. There is a one-to-one correlation between a Transaction and
a PersistenceManager; there can be only one ongoing transaction per Persistence-
Manager instance. Transactions must be explicitly started, and either committed
or aborted.

3.3 Defining a Class
The first step in using JDO is to create a persistence-capable Java class. For the
purposes of the examples in this book, it is assumed that byte code enhancement
is being used, so all that is needed is a Java class. The following code snippet
shows the code for a class called Author, which represents the author of a book:

package com.corejdo.examples.model;

public class Author {

 private String name;

 public Author (String name) {

 this.name = name;
 }

 protected Author () {}

 public String getName () {

ch03.fm Page 51 Tuesday, July 22, 2003 1:07 PM

52 Core Java Data Objects

 return name;
 }

 public void setName (String name) {

 this.name = name;
 }
}

This class is relatively simply with just one string field. JDO can, of course, sup-
port much more than this; see Section 3.9 for more details on what is supported.

Note that the fields of the class are declared as private. Unlike other approaches to
object persistence, JDO does not require fields of classes to be declared public. In
fact, JDO places very few constraints on the definition of the Java classes them-
selves.

There is one requirement, however: JDO requires that a persistence-capable class
have a no-arguments constructor. This constructor does not need to be declared
public; it just needs to be accessible to the class itself and to any potential sub-
classes. If there are no subclasses, it can be declared as private. However, if there
are subclasses, it should be declared as protected or packaged so that it is accessi-
ble from the subclasses.

The no-args constructor is used by the JDO runtime to create empty instances of
the class prior to retrieving its fields from the datastore.

To make the Author class persistence-capable, it must be compiled and passed to
the byte code enhancement tool. Before this can be done, however, an XML file
must be created that contains the JDO metadata for the class.

3.3.1 JDO metadata

For each persistence-capable class, JDO requires additional metadata. This meta-
data is specified in an XML file. The metadata is primarily used when making a
Java class persistence-capable (by byte code, source enhancement, or code genera-
tion). However, it is likely also to be used by a JDO implementation at runtime.

By convention, these files have a .jdo suffix. Each class can have a metadata file,
in which case the file is named after the class itself, or there can be one metadata
file per package, in which case the file is named package.jdo. The metadata
files should be accessible at runtime as resources via the class loader that loaded
the persistence-capable Java class.

For the Author class, a file called Author.jdo would be located in the same
directory as the Author class file. This allows the byte code enhancement process
and JDO implementation to easily locate it:

ch03.fm Page 52 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 53

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM “jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class name="Author"/>
 </package>
</jdo>

Alternately, the metadata for this class could be located in a file called pack-
age.jdo that would be located in the com/corejdo/examples/model direc-
tory. This file could contain metadata on all the classes in the “model” package
(and sub-packages), not just the Author class. Appendix B provides a detailed
overview of the syntax for the JDO metadata. For this class, however, all that is
needed is to specify the package name and class name.

When the Author source and metadata files are ready, they can be passed to the
byte code enhancement tool. This takes care of implementing the persistence-
capable contract. As an example, if using the JDO reference implementation (RI),
the Author class would be compiled as normal using javac and then the RI byte
code enhancement tool would be invoked from the command line as follows:

javac Author.java
java com.sun.jdori.enhancer.Main Author.class Author.jdo

By default, the RI enhancement tool updates the Author byte code in place, and
the original Author.class file is replaced with an enhanced one.

The initial JDO 1.0 specification didn’t actually mandate the location and name of
the XML metadata files. To aid in portability, the 1.0.1 maintenance revision to the
specification changed this to what has just been described.

Prior to this revision, the name of a metadata file that contained multiple classes
was the package name itself with a .jdo suffix, and it was located in the directory
containing the package directory. In the Author example above, it would have
been called model.jdo and would have been located in the com/core-
jdo/examples/ directory. Some JDO implementations may still use this nam-
ing convention.

3.3.2 Mapping a class to the datastore

JDO does not define how to specify how the fields of a class should be mapped to
the underlying datastore—for example, if using a relational database, what tables
and columns should be used—nor does it define how the datastore schema
should be created in the first place.

All this is datastore and JDO-implementation specific. A JDO implementation
provides the necessary tools to allow a developer to define a mapping between

ch03.fm Page 53 Tuesday, July 22, 2003 1:07 PM

54 Core Java Data Objects

the persistence-capable classes and the underlying datastore and to define the
required datastore schema.

As an example, a JDO implementation on top of a relational database might use
the “vendor-extensions” element in the JDO metadata for a class to specify table
and column names or define how field values should be stored. An implementa-
tion using an object database or a flat file might require only the Java classes and
nothing more.

3.4 Connecting to a Datastore
After a persistence-capable class has been defined, the next step is to implement
an application that actually uses it. Any JDO application must get a connection to
the underlying datastore before it can do anything. This is done by configuring an
instance of PersistenceManagerFactory and then using it to get a Persis-
tenceManager.

PersistenceManagerFactory is just a Java interface; JDO does not specify
how an actual PersistenceManagerFactory instance should be created.
However, it does provide a helper class called JDOHelper that, among other
things, provides a common bootstrap mechanism to create a PersistenceManager-
Factory instance based on a specified set of properties:

static public PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props)

The getPersistenceManagerFactory() method takes a set of properties as
input and constructs a concrete instance of a PersistenceManagerFactory.
The one required property is javax.jdo.PersistenceManagerFactory-
Class, which is used to identify the name of an implementation’s Persis-
tenceManagerFactory class. All other properties are simply passed to the
implementation’s class and are implementation specific. These include things like
connection URL, name, and password.

At a minimum, every JDO implementation must support bootstrapping via
JDOHelper. Additionally, an implementation might provide its own Persistence-
ManagerFactory constructors that can be used to directly construct a Persistence-
ManagerFactory instance. It may also provide PersistentManager
constructors to avoid having to go through a PersistenceManagerFactory at
all. From a portability standpoint, these approaches are all JDO implementation
specific.

PersistenceManagerFactory also implements Serializable. This allows
a previously configured PersistenceManagerFactory instance to be located
via JNDI.

ch03.fm Page 54 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 55

After a PersistenceManagerFactory instance has been created, the getPer-
sitenceManager() method can be used to get a PersistenceManager
instance:

public PersistenceManager getPersistenceManager()

When an application is finished with a PersistenceManager instance, it
should close it by calling the close() method:

public void close()

The following code snippet taken from MakeConnectionExample.java shows
how to get a PersistenceManager instance from a PersistenceManager-
Factory and then close it:

import java.util.Properties;
import javax.jdo.*;

public class MakeConnectionExample {

 public static void main(String[] args) {

 Properties properties = new Properties();

 properties.put(
 “javax.jdo.PersistenceManagerFactoryClass”, “XXX”);
 properties.put(
 “javax.jdo.option.ConnectionURL”, “XXX”);
 properties.put(
 “javax.jdo.option.ConnectionUserName”, “XXX”);
 properties.put(
 “javax.jdo.option.ConnectionPassword”, “XXX”);

 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(properties);

 PersistenceManager pm = pmf.getPersistenceManager();

Connection Pooling
JDO leaves it up to the JDO implementation as to whether its
PersistenceManagerFactory implements connection pooling. If
implemented, the close() method on PersistenceManager may not
physically close anything, but may instead return the PersistenceManager
instance to the PersistenceManagerFactory to be reused.

ch03.fm Page 55 Tuesday, July 22, 2003 1:07 PM

56 Core Java Data Objects

 /* Do something interesting */

 pm.close();
 }
}

Of course, before this example can be used, the “XXX” strings would need to be
replaced with values appropriate to the JDO implementation being used.

As an alternative to hard coding the properties as in the previous example, it is
generally better to specify them as system properties or read them from a file. The
Examples directory on the CD for this chapter contains examples of how these
two alternative approaches would work. See the following directories for more
information:

• MakeConnectionFromSystemPropertiesExample.java

• MakeConnectionFromFileExample.java

For a full list of the standard JDO property names that can be specified, see Chap-
ter 5.

3.5 Creating an Object
After a PersistenceManager has been retrieved, it is possible to actually begin
a transaction and do something interesting with the datastore. To begin a transac-
tion, get the current Transaction instance from the PersistenceManager:

public Transaction currentTransaction()

And call the begin() method on Transaction to start a datastore transaction:

public void begin()

Typically, any interaction with a datastore is done within the context of a transac-
tion. A transaction simply marks the beginning and end of a unit of work,
whereby all changes made either happen or do not happen.

A transaction is also the mechanism that a datastore uses to enforce concurrency
control between multiple applications accessing the datastore at the same time.
Not all datastores support concurrent access, but those that do ensure that each
ongoing transaction is isolated from the others. For more details on concurrency
control and transactions, see Section 3.14.

Instances of persistence-capable classes can now be created and made persistent.
They are constructed in the same manner as normal Java and, once constructed,
need to be passed to the makePersistent() method on PersistenceMan-
ager to notify the JDO implementation that the instances need to be persisted:

ch03.fm Page 56 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 57

public void makePersistent(Object pc)

The instances won’t actually be stored in the datastore until the transaction is
committed, which is done using the commit() method on Transaction:

public void commit()

Alternatively, a transaction can be rolled back—in this case, the instances won’t
become persistent and won’t be stored in the datastore. This can be done using
the rollback() method on Transaction, instead of commit():

public void rollback()

The following code snippet taken from CreateExample.java shows how to
create an instance of the Author class and make it persistent in the datastore:

Transaction tx = pm.currentTransaction();

tx.begin();

Author author = new Author("Keiron McCammon");

pm.makePersistent(author);

tx.commit();

When they are successfully committed, the fields of the new Author instance are
stored in the datastore, and the in-memory instance becomes what is termed “hol-
low.” This means that its fields are cleared so that when the instance is used in the
next transaction, they will be retrieved again from the datastore.

Not every instance that needs to be persistent has to be passed to makePersis-
tent(). JDO defines that any instance of a persistence-capable class that is reach-
able from a persistent object automatically becomes persistent also.

This means that only the root of a graph of objects actually needs to be passed to
makePersistent(); all other objects in the graph implicitly become persistent
also. This makes programming much easier.

Object Lifecycle
JDO defines a number of lifecycle states for persistent objects (“hollow” being
one of them). These states are used by the JDO implementation to manage
the in-memory persistent objects. While it is not necessary to really understand
the JDO object lifecycle (its of primary concern only to the JDO
implementation), an appreciation of what happens under the covers is always
a good idea. See Section 3.13 for more details.

ch03.fm Page 57 Tuesday, July 22, 2003 1:07 PM

58 Core Java Data Objects

3.6 Reading an Object
After an instance has been made persistent and its fields stored in the datastore, it
can be retrieved again, either within the same application or by a different appli-
cation.

There are three primary ways of finding an instance in the datastore with JDO—
by navigation, via an Extent, or by a Query.

3.6.1 Reading by navigation

Retrieving an instance by navigation is simple. Extending the previous example,
this code snippet taken from ReadByNavigationExample.java shows how the
Author instance can be retrieved again in the next transaction simply by using it:

tx.begin();

String name = author.getName();

System.out.println(“Author’s name is ‘” + name + “’.”);

tx.commit();

Underneath the covers, the JDO implementation retrieves the fields for the
Author instance from the datastore. The output would be as follows:

Author’s name is ‘Keiron McCammon’.

Using navigation to retrieve persistent objects from the datastore also applies
when one persistent object is referenced from another. Essentially, anytime a per-
sistent object is referenced, the JDO implementation retrieves the instance’s fields
from the datastore, if it has not already done so within the current transaction.

A common question often arises from the previous example: Why do the fields of
the Author instance have to be retrieved from the datastore again after it was ini-
tially created?

The answer has to do with transactions. After each transaction ends (either by a
commit or rollback), all in-memory persistent objects become hollow. This is
because the representation of a persistent object in the datastore could be updated
by another application after the transaction ends, making any in-memory values
out of sync. For this reason, JDO’s default behavior is to clear the fields of each per-
sistent object and retrieve them again if used within the next transaction, thereby
ensuring that the in-memory instance remains consistent with the datastore.

JDO has some advanced options that change this default behavior and allow
instances to be retained over transaction boundaries or even accessed outside of a
transaction altogether. See Chapter 5 for more details.

ch03.fm Page 58 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 59

3.6.2 Reading using an extent

What happens if another application wants to access the new Author instance?
Obviously, this application won’t have a reference to which it can navigate. In this
case, the application can use an Extent to find all Author instances.

An application can get an Extent using the getExtent() method on Persistence-
Manager:

public Extent getExtent(Class pc, boolean subclasses)

The subclasses flag determines whether the returned Extent represents instances
of the specified class only or includes instances of subclasses as well. If true, then
it includes instances of all subclasses as well.

The iterator() method on Extent can be used to get an Iterator that iterates
through all the instances in the Extent:

public Iterator iterator()

The following code snippet taken from ReadByExtentExample.java shows
how an Extent can be used to iterate through the instances of the Author class:

tx.begin();

Extent extent = pm.getExtent(Author.class, true);

Iterator authors = extent.iterator();

while (authors.hasNext()) {

 Author author = (Author) authors.next();

 String name = author.getName();

Extents
An Extent represents a collection of all instances in the datastore of a particular
persistence-capable class and can consist of just instances of the class or
instances of all subclasses. An application can get an Extent for a class from a
PersistenceManager and then use an Iterator to iterate through all instances,
or it can use the Extent as input to a query.
By default, it is possible to get an Extent for any persistence-capable class. If an
Extent is not required, then as a potential optimization, it is possible to specify
explicitly that an extent is not required in the JDO metadata for the class.
Depending on the underlying datastore, this may or may not make any
difference.

ch03.fm Page 59 Tuesday, July 22, 2003 1:07 PM

60 Core Java Data Objects

 System.out.println("Author's name is '" + name + "'.");
}

extent.close(authors);

tx.commit();

It is a good practice to use the close() or closeAll() method on Extent when
an iterator has been used. The close() method closes an individual iterator,
whereas closeAll() closes all iterators retrieved from the Extent:

public void close(Iterator iterator)
public void closeAll()

Depending on the underlying datastore, this may free resources that were allo-
cated when the Iterator was created (a cursor, for example).

3.6.3 Reading using a query

An Extent is useful if an application wants to retrieve all instances of a class in no
particular order. However, if an application is looking for a particular instance
that has certain field values, an Extent is not very useful. In this case, a query is
needed to find an instance based on the values of its fields.

JDO defines a query language called JDOQL (JDO Query Language). JDOQL is
essentially a simplified version of the Java syntax for an “if” statement. The Per-
sistenceManager is used to create a Query instance, and once created, a Query
can be executed to return a collection of matching persistent objects. There are
approximately nine methods on PersistenceManager to create a Query
instance; the most straightforward requires only a Java class and a filter:

public Query newQuery(Class cln, String filter)

The class specifies the persistence-capable class that the query is for, and the filter,
which is just a string, specifies which instances of the class should be returned.

A Query can also be created using an Extent. A query created using a Java class is
equivalent to a Query created using an Extent whose subclasses property is true.
This means that a Query created from a Java class may include instances of the
specified class and subclass (which is generally the desired behavior).

If an application specifically wants to restrict the query to instances of a given
class only, then it can create an Extent whose subclasses property is false and use
the Extent to create the Query. When executed, the Query includes only instances
of the class itself and ignores subclasses.

The basic syntax for a filter is as follows:

ch03.fm Page 60 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 61

<field> <operator> <constant>

where <field> is the name of the field as declared in the Java class, <operator> is
one of the standard Java comparison operators (==, !=, <, >, and so on), and <con-
stant> is the value to be compared against. Much more sophisticated queries than
this can be defined; see Chapter 6 for details.

The following code snippet taken from ReadByQueryExample.java shows
how to use a query to find a previously created Author by name. For simplicity, it
assumes that at least one author with the given name is in the datastore:

tx.begin();

Query query =
 pm.newQuery(Author.class, "name == \"Keiron McCammon\"");

Collection result = (Collection) query.execute();

Author author = (Author) result.iterator().next();

query.close(result);

String name = author.getName();

System.out.println("Author’s name is '" + name + "'.");

tx.commit();

The output would be as follows:

Author’s name is ‘Keiron McCammon’.

The execute() method on Query is used to execute the query and return the
result. A half dozen ways of executing a query exist. The simplest is this:

public Object execute()

The execute() methods all return java.lang.Object, which must be cast to
a java.util.Collection type for JDOQL queries. This collection is the set of instances
that matched the specified filter. It can be iterated through in the normal manner
to retrieve the persistent objects themselves.

The execute() methods on Query return java.lang.Object rather than
java.util.Collection directly to allow for implementation-specific exten-
sions.

JDO requires that JDOQL be supported; however, an implementation can option-
ally support alternative query languages (maybe SQL, OQL, or something propri-
etary). In this case, the result of executing a query may not be a

ch03.fm Page 61 Tuesday, July 22, 2003 1:07 PM

62 Core Java Data Objects

java.util.Collection; instead, it needs to be cast to something specific to
the query language being used.

It is a good practice to use the close() method on Query to release the result
returned from a call to execute():

public Object close(Object result)

Depending on the underlying datastore, this may free resources that were allo-
cated during the execution of the query (a database cursor, for example).

3.7 Updating an Object
It is possible to modify a persistent object in the same manner as normal Java with
no additional coding required. Assuming that the class defines methods that can
be used to set the fields, then the application simply needs to invoke these meth-
ods within a transaction. The JDO implementation automatically detects when a
field of a persistent object has been modified and marks the field as “dirty.” At
commit time, the dirty fields of all the modified persistent objects are written back
to the datastore as part of the transaction.

The following code snippet taken from UpdateExample.java shows how to
find a previously created Author instance and change its name. To validate that the
name has changed in the datastore, it is printed in a new transaction. For simplic-
ity, it assumes that at least one author with the specified name is in the datastore:

tx.begin();

Query query =
 pm.newQuery(Author.class, "name == \"Keiron McCammon\"");

Collection result = (Collection) query.execute();

Author author = (Author) result.iterator().next();

query.close();

author.setName("Sameer Tyagi");

tx.commit();

tx.begin();

String name = author.getName();

System.out.println("Author’s name is '" + name + "'.");

tx.commit();

ch03.fm Page 62 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 63

The output would be as follows:

Author’s name is ‘Sameer Tyagi’.

If it is decided that the changes should not be written to the datastore and should
be discarded instead, then the rollback() method on Transaction can be used.

The following code snippet taken from UpdateExampleWithRollback.java
is the same as the previous one, except that a rollback is used instead of a commit
to undo the name change:

tx.begin();

Query query =
 pm.newQuery(Author.class, "name == \"Keiron McCammon\"");

Collection result = (Collection) query.execute();

Author author = (Author) result.iterator().next();

query.close(result);

author.setName("Sameer Tyagi");

tx.rollback(); // rollback() rather than commit()

tx.begin();

String name = author.getName();

System.out.println("Author’s name is '" + name + "'.");

tx.commit();

The output would be as follows:

Author’s name is ‘Keiron McCammon’.

Although the name of the Author instance is modified, because the transaction is
rolled back, the modification is not persisted in the datastore. Therefore, when the
instance is retrieved in the next transaction, the name is unchanged.

3.8 Deleting an Object
The last basic operation is deletion. Unlike Java, most datastores do not perform
automatic garbage collection. Indeed, the semantics of what constitutes garbage
when instances are made persistent changes. Just because a persistent object is no
longer referenced by any other does not mean that it is garbage. Typically, it can
always be retrieved at any time via Query or Extent.

ch03.fm Page 63 Tuesday, July 22, 2003 1:07 PM

64 Core Java Data Objects

JDO provides a mechanism to explicitly delete persistent objects. The deleteP-
ersistent() method on PersistenceManager can be used to permanently
remove persistent objects from the datastore. That code looks like this:

public void deletePersistent(Object pc)

Of course, the persistent object isn’t actually deleted until the transaction is com-
mitted. Rather, the JDO implementation marks the persistent object as deleted
and, upon commit, requests that the datastore remove all the deleted persistent
objects. The following code snippet taken from DeleteExample.java shows
how to delete an instance of Author. For simplicity, it assumes that at least one
author instance with the specified name is in the datastore:

tx.begin();

Query query =
 pm.newQuery(Author.class, "name == \"Keiron McCammon\"");

Collection result = (Collection) query.execute();

Author author = (Author) result.iterator().next();

query.close(result);

pm.deletePersistent(author);

tx.commit();

Trying to access the fields of a deleted instance within the same transaction results
in JDOUserException being thrown.

After the transaction commits, the in-memory instance reverts to being a normal
transient Java object, with its fields reset to their default values. If a rollback is
called instead, then the deletion is undone and the in-memory instance reverts to
being a “hollow” persistent object again. The following code snippet taken from
DeleteWithRollbackExample.java uses a rollback rather than a commit
and then validates that the persistent object still exists by printing its name:

pm.deletePersistent(author);

tx.rollback(); // rollback() rather than commit()

tx.begin();

String name = author.getName();

System.out.println("Author’s name is '" + name + "'.");

ch03.fm Page 64 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 65

tx.commit();

The output would be as follows:

Author’s name is ‘Keiron McCammon’.

JDO is unlike JVM, where garbage collection automatically determines whether
an instance is still referenced and, if not, releases it. In JDO, however, it is up to the
application to ensure that unwanted persistent objects are deleted from the datas-
tore and that a persistent object being deleted is no longer referenced by another.

Depending on the datastore, it may be possible to define constraints to guard
against deleting instances that are still referenced, but this is implementation spe-
cific. If a persistent object does reference a previously deleted persistent object,
then JDOUserException is thrown if the deleted persistent object is later
accessed (because it no longer will be found in the datastore).

There is no equivalent of “persistence by reachability” when deleting. Deleting a
persistent object deletes only the specified instance; it does not automatically
delete any referenced instances.

It is possible for an application to implement a cascading delete behavior by using
the JDO InstanceCallbacks interface and implementing the jdoPreDe-
lete() method to explicitly delete referenced instances. See Chapter 5 for more
details.

3.9 JDO Object Model
So far, the examples have used a very simple Java class to demonstrate basic con-
cepts. JDO can, of course, be used with much more sophisticated classes than this.
In addition to supporting fields of primitive Java types and system classes like
String, JDO can handle object references, Java collections, and inheritance of both
classes and interfaces.

This section outlines what can and can’t be used when developing a persistence-
capable class, including the following:

• The basic field types that can be used within a persistence-capable class

• Using references to persistence-capable classes, non-persistence-capable
classes, and interfaces

• Using standard Java collections

• Using arrays

• Support for inheritance

ch03.fm Page 65 Tuesday, July 22, 2003 1:07 PM

66 Core Java Data Objects

• The class and field modifiers that can be used

• What JDO doesn’t support

3.9.1 Basic types

A persistence-capable class can have fields whose types can be any primitive Java
type, primitive wrapper type, or other supported system immutable and mutable
classes. Table 3-1 provides a summary of these basic types.

If a persistence-capable class has fields of any of the above types, then by default
these fields are persisted in the datastore (providing they are not declared as tran-
sient). If a field is a reference to a persistence-capable class, then by default these
fields are persisted also. Fields of any other types are not persisted in the datas-
tore by default and need explicit metadata to indicate that they should be per-
sisted. The types of these fields might be a reference to the Java interface, a
java.lang.Object, a non-supported system class/interface, or a non-persis-
tence-capable class.

Table 3–1 Supported Basic Types

Primitive
Types

Wrapper
Classes

Supported System
Interfaces

Supported System
Classes

boolean java.lang.Boolean¥ java.util.Collection§ java.lang.String¥

byte java.lang.Byte¥ java.util.List*§ java.math.BigDecimal¥

char java.lang.Character¥ java.util.Map*§ java.math.BigInteger¥

double java.lang.Double¥ java.util.Set§ java.util.Date

int java.lang.Integer¥ javax.jdo.PersistenceCapable java.util.Locale¥

float java.lang.Float¥ java.util.ArrayList*§

long java.lang.Long¥ java.util.HashMap*§

short java.lang.Short¥ java.util.HashSet§

java.util.Hashtable*§

java.util.LinkedList*§

java.util.TreeMap*§

java.util.TreeSet*§

java.util.Vector*§

*Support is an optional JDO feature.
§See Section 2.9.3 for more details on using collection classes.
¥Immutable class (Its value can’t be changed.)

ch03.fm Page 66 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 67

JDO defines both mandatory and optional features. A JDO implementation is said
to be compliant if it supports all the mandatory features defined by the JDO spec-
ification. An implementation may support one or more optional features, in
which case it must adhere to what is defined for the optional feature by the JDO
specification if it is to be JDO compliant.

From a portability standpoint, an application should not rely on support of an
optional feature. But should a particular feature be required, then at least the
application is still portable across implementations that support the feature or set
of features used.

See Chapter 5 for more details on specific optional features.

3.9.2 References

A persistence-capable class can have fields that reference instances of other persis-
tence-capable classes. The following code snippet shows a Book class that has an
“author” field, which is a reference to an instance of Author:

public class Book {

 private String name;
 private Author author;

 public Book(String name, Author author) {

 this.name = name;
 this.author = author;
 }

 protected Book() {}

 public String getName() {

 return name;
 }

 public void setName(String name) {

 this.name = name;
 }

 public Author getAuthor() {

 return author;
 }

 public void setAuthor(Author author) {

ch03.fm Page 67 Tuesday, July 22, 2003 1:07 PM

68 Core Java Data Objects

 this.author = author;
 }
}

The revised JDO metadata for this class in Book.jdo is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class name="Book"/>
 </package>
</jdo>

The following code snippet taken from CreateWithReachabilityExam-
ple.java shows persistence by reachability at work. Both an Author and a Book
instance are created. The Book instance is added to the Author instance, and the
Author instance is explicitly made persistent, so the Book instance is automati-
cally made persistent because it is reachable from the Author instance:

tx.begin();

Author author = new Author("Keiron McCammon");

Book book =
 new Book("Core Java Data Objects", “0-13-140731-7”);

author.addBook(book);

pm.makePersistent(author);

tx.commit();

As well as supporting references to persistence-capable classes, JDO also supports
references to Java interfaces and even a java.lang.Object. Because fields of
these types are not persistent by default, additional metadata is required to
denote that the field should be persistent. Any referenced instances should still be
instances of a persistence-capable class. (Support for references to non-persis-
tence-capable classes is a JDO optional feature.)

The following code snippet shows a revised Book class that has an “author” field,
which now is of type java.lang.Object instead of Author:

public class Book {

 private String name;

ch03.fm Page 68 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 69

 private Object author; // Uses Object rather than Author

 /* Rest of code not shown */
}

The major difference here compared to the previous example is the metadata in
Book.jdo:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM “jdo.dtd”>
<jdo>
 <package name=”com.corejdo.examples.model”>
 <class name=”Book”>
 <field
 name=”author”
 persistence-modifier=”persistent”/>
 </class>
 </package>
</jdo>

Because the field’s type is java.lang.Object, it is not persistent by default. It
must be explicitly denoted as persistent in the metadata for the class. The same
would be true if it were a reference to an interface.

A JDO implementation may optionally support references to instances that do not
belong to a persistence-capable class. If not supported, a Java class cast exception
would be thrown at the time of assignment. (An application intended to run
against multiple JDO implementations should not rely on support for persisting
non-persistence-capable classes.)

If references to non-persistence-capable classes are supported, then these
instances exist in the datastore only as part of the referencing persistent object. It
is the responsibility of the application to inform the JDO implementation when an
instance of a non-persistence-capable class is modified because the JDO imple-
mentation is unable to automatically detect when the field of a non-persistence-
capable class is changed.

The JDO implementation can’t detect when an instance of a non-persistence-capa-
ble class is modified because the class doesn’t adhere to the persistence-capable
programming style. A persistence-capable class automatically informs the JDO
implementation before a field is changed (this is what the byte code enhancement
process takes care of), but a non-persistence-capable class does not.

If the JDO implementation is not explicitly notified of changes to non-persistence-
capable classes, then the modifications do not get written to the datastore on com-
mit. The easiest way to notify a JDO implementation that a non-persistence-capa-

ch03.fm Page 69 Tuesday, July 22, 2003 1:07 PM

70 Core Java Data Objects

ble instance has been modified is to use the makeDirty() method on
JDOHelper:

static void makeDirty(Object pc, String field)

The first argument is the persistent object that references the non-persistence-
capable instance. The second argument is the field name of the reference.

The following code snippet shows a non-persistence-capable class called Address
that can be used to store the address of an Author:

import java.io.Serializable;

public class Address implements Serializable {

 private String street;
 private String zip;
 private String state;

 public Address(String street, String zip, String state) {

 this.street = street;
 this.zip = zip;
 this.state = state;
 }

 /* Additional getters and setters not shown */

 public void setZip (String zip) {

 this.zip = zip;
 }
}

Exactly how a JDO implementation manages the fields of non-persistence-capable
classes is undefined by JDO. Some implementations may require that a class
implement Serializable or follow the JavaBean pattern, or may require that its
fields be declared public.

JDOHelper
JDOHelper was previously introduced as a way to bootstrap a JDO application
and get an instance of a PersistenceManagerFactory. As well as this,
JDOHelper has a number of additional methods that act as shortcuts to the
various JDO APIs.

ch03.fm Page 70 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 71

The following code snippet shows a revised Author class that contains a reference
to an Address and shows how to set the zip code of the address. The method first
calls makeDirty() to inform the JDO implementation that the address is being
be modified:

import javax.jdo.*;

public class Author {

 private String name;
 private Address address;

 public Author(String name, Address address) {

 this.name = name;
 this.address = address;
 }

 protected Author () {}

 public void setZip(String zip) {

 JDOHelper.makeDirty(this, "address");

 address.setZip(zip);
 }
}

The revised JDO metadata for this class in Author.jdo is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class name="Author">
 <field
 name="address"
 persistence-modifier="persistent"/>
 </class>

JDOHelper.makeDirty()
It is a best practice to call makeDirty() before making any modifications to a
non-persistence-capable instance. Depending on the underlying datastore,
the call to makeDirty() may result in a concurrency conflict indicating that
changes aren’t allowed at that time.

ch03.fm Page 71 Tuesday, July 22, 2003 1:07 PM

72 Core Java Data Objects

 </package>
</jdo>

Because the address field is a reference to a non-persistence-capable class, it is
necessary to specifically specify that the field should be persistent.

When using non-persistence-capable instances, it is best to modify them only
through methods on the referencing persistent object. This way, the persistent
object can call makeDirty() on itself before making any changes. If a non-persis-
tence-capable object is passed by reference and modified elsewhere, it becomes
hard for the application to ensure that the referencing persistent object is notified
of the changes, in which case any changes are ignored.

3.9.3 Collection classes

A persistence-capable class can have fields that reference the standard Java collec-
tion classes. Instances of these collection classes exist in the datastore only as part
of the referencing persistent object. At a minimum, JDO mandates support for
java.util.HashSet; support for ArrayList, HashMap, Hashtable,
LinkedList, TreeMap, TreeSet, and Vector is optional. However, most JDO
implementations support all these collection classes.

The following code snippet shows a revised Author class that uses a
java.util.HashSet to hold the books that an author has written:

import java.util.*;

public class Author {

 private String name;
 private Set books = new HashSet();

 public Author (String name) {

 this.name = name;
 }

 protected Author () {}

Optional Features
To determine whether an implementation supports the optional collection
classes, use the supportedOptions() method on PersistenceManagerFactory.
See Chapter 5 for more details.

ch03.fm Page 72 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 73

 public String getName() {

 return name;
 }

 public void setName(String name) {

 this.name = name;
 }

 public void addBook(Book book) {

 books.add(book);
 }

 public Iterator getBooks() {

 return books.iterator();
 }
}

The revised JDO metadata for this class in AuthorWithBooks.jdo is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class name="Author">
 <field name="books">
 <collection
 element-type=
 "com.corejdo.examples.model.Book"/>
 </field>
 </class>
 </package>
</jdo>

Because this class uses a Java collection, additional metadata can be used to
declare the class of the instances that is stored in the collection. Because Java col-
lections are un-typed, it is impossible for a JDO implementation to determine this
information from the Java class itself.

ch03.fm Page 73 Tuesday, July 22, 2003 1:07 PM

74 Core Java Data Objects

Unlike user-defined, non-persistence-capable classes, JDO mandates that the sup-
ported collections automatically detect changes and notify the referencing persis-
tent object. A JDO implementation does this by replacing instances of system-
defined collection classes with instances of its own equivalent classes that per-
form this detection. For a new persistent object, this replacement happens during
the call to makePersistent(); for existing persistent objects, this occurs when
they are retrieved from the datastore. All this is completely transparent to the
application. It just means that an application should not reply on a collection
being a particular concrete Java class (java.util.HashMap, for example).

3.9.4 Arrays

Support for a persistence-capable class with fields that use Java arrays is optional
in JDO. If supported, arrays are similar in nature to user-defined, non-persistence-
capable classes except that a JDO runtime may automatically detect changes and
notify the referencing persistent object of the modification. For portability, an
application should assume responsibility for notifying the referencing persistent
object when an array is modified.

With non-persistence-capable classes, it is a best practice to modify arrays only
through methods on the referencing persistent object. This way, the referencing
persistent object can call makeDirty() on itself before making any change. If an
array is passed by reference and modified elsewhere, it becomes hard for the
application to ensure that the owning persistent object is notified of the changes,
in which case any changes are ignored.

The following code snippet shows a revised Author class that uses an array to
store the books that an author has written. As a simplification, the array holds
only a single book; in real life, any sized array could have been used:

import java.util.*;

public class Author {

Additional Metadata
The additional metadata shown for the “books” field is optional; it does not
need to be specified. If not specified, the JDO runtime assumes that the
collection may contain a reference to any persistent object, as does normal
Java.
Even though it is optional, it is best practice to define the element type of a
collection because it potentially allows the JDO runtime to optimize how it
handles the field both in-memory as well as in the datastore.

ch03.fm Page 74 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 75

 private String name;
 private Book books[] = new Book[1];

 public Author(String name) {

 this.name = name;
 }

 protected Author()

 public String getName() {

 return name;
 }

 public void setName(String name) {

 this.name = name;
 }

 public void addBook(Book book, int i) {

 JDOHelper.makeDirty(this, “books”);

 books[i] = book;
 }

 public Book getBook(int i) {

 return books[i];
 }
}

The revised JDO metadata for this class in Author.jdo is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class name="Author"/>
 </package>
</jdo>

Because the field is an array of a persistence-capable class, no additional metadata
is required and the array field is persistent by default.

ch03.fm Page 75 Tuesday, July 22, 2003 1:07 PM

76 Core Java Data Objects

3.9.5 Inheritance

JDO supports inheritance of both interfaces and classes. Because Java interfaces
don’t define any fields, a JDO implementation needs to do nothing, so Java inter-
faces can be used with no real consideration as far as JDO is concerned.

When using class inheritance (abstract or otherwise), JDO needs to be aware of
the implementation hierarchy, because each class can define its own fields. In the
usual case, where all classes in the inheritance hierarchy are themselves persis-
tence-capable, it is straightforward: The only requirement is to denote the persis-
tence-capable superclass of a class in the JDO metadata.

The following code snippet shows a class that extends the Book class:

public class RevisedBook extends Book {

 private Book original;

 public RevisedBook(String name, Book original) {

 super(name);

 this.original = original;
 }

 protected RevisedBook() {}

 public Book getOriginal() {

 return original;
 }

 public void setOriginal(Book original) {

 this.original = original;
 }
}

The JDO metadata for this class in RevisedBook.jdo is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class
 name="RevisedBook"
 persistence-capable-superclass="Book"/>
 </package>
</jdo>

ch03.fm Page 76 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 77

The additional metadata denotes the persistence-capable superclass of the class.
The persistence-capable-superclass name uses the Java naming rules: If no pack-
age is included in the name, the package name is assumed to be the same package
as the persistence-capable class.

It is possible for a persistence-capable class to extend a non-persistence-capable
class. In this case, any fields defined by the non-persistence-capable class are
ignored by JDO and are not persisted in the datastore. It is also possible to have a
persistence-capable class extend a non-persistence-capable class, which itself
extends a persistence-capable class. In all cases, any fields of a non-persistence-
capable class are ignored by JDO; it is the responsibility of the application to man-
age these fields.

It is best to make all classes in an inheritance hierarchy persistence-capable. This
avoids added complications. If this isn’t possible and non-persistence-capable
classes have to be used, then a persistence-capable subclass should implement the
InstanceCallbacks Interface and use the jdoPostLoad(), jdoPre-
Store(), and jdoPreClear() methods to manage the fields of the non-persis-
tence-capable classes explicitly.

3.9.6 Modifiers

JDO supports all Java class and field modifiers—private, public, protected, static,
transient, abstract, final, synchronized, and volatile—with the following caveats:

• A field declared as transient is not persisted it in the datastore by default. This
default behavior can be overridden by explicitly declaring the field as persis-
tent in the class’s metadata.

• A field declared as final cannot be persisted in the datastore; its value can be
set only during construction.

• A field declared as static cannot be persisted in the datastore; it has meaning
only at the class level within the JVM.

Apart from static and transient, use of field modifiers is essentially orthogonal to
the use of JDO.

3.9.7 What isn’t supported

JDO supports most of what can be defined in Java. The major exception is that
JDO can’t make Java system classes persistence-capable; rather, it mandates sup-
port for specific system classes (as already outlined) as fields of a persistence-
capable class. Also, classes that depend on an inaccessible or remote state, such as
those that use JNI or those that extend system-defined classes, cannot be made
persistence-capable and cannot be used as fields of persistence-capable classes.

ch03.fm Page 77 Tuesday, July 22, 2003 1:07 PM

78 Core Java Data Objects

3.10 Exception Handling
All the examples so far have ignored the possibility of exceptions. JDO defines a
set of exceptions that can be thrown by the JDO implementation. All JDO excep-
tions are declared as runtime exceptions because they can be thrown at anytime,
not just when calling JDO methods. As an example, navigating from one instance
to another may result in an exception if there is a problem with accessing the
datastore when retrieving the fields of an instance.

JDO classifies exceptions broadly into fatal or non-fatal exceptions. Non-fatal
exceptions indicate that an operation failed but can be retried, whereas fatal
exceptions indicate that the only recourse is to start again. Beyond this, there are
user exceptions (fatal or non-fatal), which indicate user error; datastore exceptions
(fatal or non-fatal), which indicate a datastore error; an internal exception (fatal),
which indicates a problem with the JDO implementation; and an unsupported
feature exception (non-fatal), which indicates that the JDO implementation
doesn’t support a particular feature.

An application should ensure that it handles all exceptions correctly, not just JDO
exceptions. In particular, if connection pooling is being used, an application
should ensure that a PersistenceManager instance is closed properly even if an
exception is thrown. The following code snippet taken from CreateWithExcep-
tionsExample.java shows how to use a try/final block to catch any exception
and ensure that the PersistenceManager instance is closed:

PersistenceManager pm = null;

try {

 pm = pmf.getPersistenceManager();

 Transaction tx = pm.currentTransaction();

 tx.begin();

 Author author = new Author("Keiron McCammon");

 pm.makePersistent(author);

 tx.commit();

 pm.close();
}

finally {

ch03.fm Page 78 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 79

 if (pm != null && !pm.isClosed()) {

 if (pm.currentTransaction().isActive()) {

 pm.currentTransaction().rollback();
 }

 pm.close();
 }
}

In this simple example, it really doesn’t matter whether the transaction is rolled
back or the PersistenceManager is closed because it exits immediately there-
after anyway.

3.11 Object Identity
One of the key concepts defined in JDO is that of object identity, although in most
cases a developer is not even aware that it exists. Every persistent object has a
JDO object identity. This identity associates the in-memory Java object with its
representation in the underlying datastore. JDO ensures that there is only one in-
memory representation of a given persistent object for a given PersistenceMan-
ager. This is known as “uniquing.” Uniquing ensures that no matter how many
times a persistent object is found, it has only one in-memory representation. All
references to the same persistent object within the scope of the same Persistence-
Manager instance reference the same in-memory object.

The following code snippet taken from UniquingExample.java shows uniqu-
ing at work. It creates a new Author instance, begins a new transaction, and finds
the Author again using a query. The two references are then compared to validate
that they both refer to the same in-memory object:

tx.begin();

Author author1 = new Author("Keiron McCammon");

pm.makePersistent(author1);

tx.commit();

tx.begin();

Query query =
 pm.newQuery(Author.class, "name == \"Keiron McCammon\"");

Collection result = (Collection) query.execute();

ch03.fm Page 79 Tuesday, July 22, 2003 1:07 PM

80 Core Java Data Objects

Author author2 = (Author) result.iterator().next();

tx.commit();

if (author1 == author2)
 System.out.println("There is only one object in memory");

The output would be as follows:

There is only one object in memory

However, because it is possible to create multiple PersistenceManager instances
within a JVM, it is possible that a persistent object may have multiple in-memory
representations at any given time—at most, one per PersistenceManager. Each
would have the same JDO object identity, but would be a different in-memory
Java object. To determine whether two in-memory objects represent the same per-
sistent object, their JDO object identities can be compared. The JDOHelper class
provides a method to get the JDO object identity of an object:

static Object getObjectId(Object pc)

The returned object can be compared with another using the equals() method
to determine whether two in-memory objects represent the same persistent object
in the datastore.

The following code snippet taken from ObjectIdentityExample.java cre-
ates an Author using one PersistenceManager, and then using a different
PersistenceManager, it finds the Author again. The two references are com-
pared to validate that they refer to different in-memory objects. The JDO identities
are then compared to validate that they do, however, represent the same persis-
tent object:

tx1.begin();

Author author1 = new Author("Keiron McCammon");

pm1.makePersistent(author1);

tx1.commit();

PersistenceManager pm2 = pmf.getPersistenceManager();

Transaction tx2 = pm2.currentTransaction();

tx2.begin();

Query query =

ch03.fm Page 80 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 81

 pm2.newQuery(Author.class, "name==\"Keiron McCammon\"");

Collection result = (Collection) query.execute();

Author author2 = (Author) result.iterator().next();

tx2.commit();

if (author1 != author2)
 System.out.println(
 "There are multiple objects in memory");

Object emp1Id = JDOHelper.getObjectId(author1);
Object emp2Id = JDOHelper.getObjectId(author2);

if (emp1Id.equals(emp2Id))
 System.out.println("But they represent the same Author");

The output would be as follows:

There are multiple objects in memory
But they represent the same Author

JDO actually defines three types of object identity for persistent objects: datastore
identity, application identity, and non-durable identity.

3.12 Types of Object Identity
The JDO specification requires that either datastore or application identity be sup-
ported (support for both is optional) and support for non-durable identity is
optional. Most JDO implementations support datastore identity as their default,
and some also support application identity (notably, those that are designed to
run on top of a relational database).

3.12.1 Datastore identity

Datastore identity is the simplest form of identity. The JDO object identity of a
persistent object is assigned and managed by the JDO implementation, typically
in conjunction with the underlying datastore. The identity is orthogonal to the
values of any of the fields of a persistent object.

There is nothing an application itself needs to do or provide when using datastore
identity other than the Java classes themselves.

Unless there is a specific need otherwise, datastore identity should always be
used. It’s the simplest and most portable form of JDO object identity, and it is
widely supported by most JDO implementations.

ch03.fm Page 81 Tuesday, July 22, 2003 1:07 PM

82 Core Java Data Objects

3.12.2 Application identity

Application identity is more akin to the concept of a relational primary key. The
JDO object identity of a persistent object is determined by the values of certain of
its fields.

If using application identity, the application needs to specify which fields are part
of the primary key in the JDO metadata for the class and provide a class that can
be used by a JDO implementation to represent the persistence-capable class’s
object identity.

Application identity is particularly useful if using JDO on top of a predefined
datastore schema where primary keys have already been defined.

The following code snippet shows how the Author class does not need to change
from the original Author class. Regardless of the type of identity being used, the
persistence-capable class remains the same:

public class Author {

 private String name;

 public Author (String name) {

 this.name = name;
 }

 protected Author () {}

 public String getName () {

 return name;
 }

 public void setName (String name) {

 this.name = name;
 }
}

However, the JDO metadata for the class does change. The identity-type
attribute needs to be set to “application” and the objectid-class attribute
should denote the class that the JDO implementation can use to represent the
object identity of a persistent object. Also, the primary-key attribute should be
set to “true” for each field of the persistence-capable class that is part of the pri-
mary key.

The revised JDO metadata for the Author class in Author.jdo is as follows:

ch03.fm Page 82 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 83

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.corejdo.examples.model">
 <class name="Author"
 identity-type="application"
 objectid-class="AuthorUsingApplicationIdentityKey">
 <field
 name="name"
 primary-key="true"/>
 </class>
 </package>
</jdo>

If the package of the object identity class is not specified, it is assumed to be the
same as the persistence-capable class itself.

The final requirement when using application identity is to provide the imple-
mentation of the object identity class. JDO mandates that this class adhere to the
following rules:

• The class must be public.

• The class must implement Serializable.

• The class must have a public no-arg constructor.

• There must be a public field of the same name and type as each field that is
part of the primary key for the persistence-capable class.

• The equals() and hashCode() methods must use the values of all the pri-
mary key fields.

• The toString() method must return a string representation of the object
identity instance.

• The class must have a constructor that takes a string returned from the
toString() method of an object identity instance and constructs an equiva-
lent object identity instance.

The following code snippet taken from AuthorKey.java shows the implemen-
tation of the object identity class for the Author persistence-capable class:

import java.io.Serializable;

public class AuthorKey implements Serializable {

 /*
 * JDO requires that an identity class have a
 * public field of the same name and type for each of

ch03.fm Page 83 Tuesday, July 22, 2003 1:07 PM

84 Core Java Data Objects

 * the primary key fields of the persistence-capable
 * class.
 */
 public String name;

 /*
 * JDO requires a public no-arg constructor
 */
 public AuthorKey () {}

 /*
 * JDO requires a public constructor that takes a string.
 */
 public AuthorKey (String oid) {

 name = oid;
 }

 /*
 * JDO requires that the toString() method return
 * a string representation of the primary key fields that
 * can later be used to recreate an identity instance
 * using the string constructor.
 */
 public String toString() {

 return name;
 }

 /*
 * JDO requires the equals() method to compare based on
 * all the primary key fields.
 */
 public boolean equals(Object obj) {

 return name.equals(
 ((AuthorUsingApplicationIdentityKey) obj).name);
 }

 /*
 * JDO requires the hashCode() method to return a
 * hashcode based on all the primary key fields.
 */
 public int hashCode() {

 return name.hashCode();
 }
}

ch03.fm Page 84 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 85

When using application identity, only fields declared in abstract superclasses and
the least least-derived concrete class in the inheritance hierarchy can be part of the
primary key. For example, if a class inherited from the Author class, then it could
not provide its own object identity class or set the “primary-key” attribute to
“true” for any of its locally declared fields. Instead, it would use the same applica-
tion identity as defined for the Author class.

If using application identity, a JDO implementation may optionally allow an
application to change a persistent object’s identity by modifying the values of the
primary key fields. If not supported, a JDOUnsupportedOptionException is
thrown.

3.12.3 Non-durable identity

Non-durable identity is essentially no identity. The JDO object identity of a persis-
tent object is valid only within the context of a given transaction. If the same per-
sistent object is accessed in a different transaction, it may have a different object
identity.

Non-durable identity should be used only when object identity has no relevance,
i.e., when there is no need to maintain references between objects. Essentially, it
only makes sense to query for objects with non-durable identity.

There are few, if any, JDO implementations that actually support non-durable
identity. Its use is limited to a small number of use cases, and as such, most devel-
opers can safely ignore non-durable identity.

3.13 Object Lifecycles
JDO defines a number of different states in which an in-memory persistent object
can be. Principally, these states are used by the JDO implementation to determine
whether the fields of an instance need to be retrieved from the datastore and, if
modified, whether they need to be written back. Together, these states represent
an in-memory persistent object’s lifecycle with respect to JDO.

Chapter 4 describes the object lifecycle states in greater detail; however, in gen-
eral, only the following basic states need to be understood:

Primary Key Fields
A persistence-capable class can have multiple primary-key fields. The
equals() and hashCode() methods on the object identity class must take into
account each of the primary-key fields. Also, the toString() method should
concatenate all the primary-key fields into a single string, which the string
constructor can later tokenize to recreate the identity instance again.

ch03.fm Page 85 Tuesday, July 22, 2003 1:07 PM

86 Core Java Data Objects

• Transient

• Persistent

• Hollow

Figure 3-4 shows a simplified state diagram for these basic lifecycle states:

Transient denotes a normal, non-persistent Java object. When an instance of a per-
sistence-capable class is created, it starts life as being transient. By default, JDO
does not do anything to manage transient instances.

When made persistent, either explicitly via makePersistent() or because an
instance is reachable from another persistent object, an instance transitions to
being persistent (it actually transitions to a “persistent-new” state). Five different
states are used to represent persistence. These allow the JDO implementation to
differentiate between whether an instance is new (“persistent-new”), has been
modified (“persistent-dirty”) or deleted (“persistent-deleted”), and so on. All that
really matters is that the instance is persistent, it has a JDO object identity, and its
fields have been retrieved from the datastore within the context of the current
transaction.

Figure 3–4 The simplified lifecycle state diagram.

HollowPersistent

Transient

makePersistent()

commit()
rollback()

ch03.fm Page 86 Tuesday, July 22, 2003 1:07 PM

3 • Getting Started with JDO 87

A hollow instance is also a persistent object (it has a JDO object identity); how-
ever, its fields have not yet been retrieved from the datastore, hence the term “hol-
low.” The first time that a hollow instance is accessed, its fields are retrieved from
the datastore within the context of the current transaction and the instance transi-
tions to being persistent. (It actually transitions to “persistent-clean” to indicate
the instance hasn’t yet been modified.) Likewise, by default, after a transaction
ends, all instances that are persistent transition to being hollow.

There are several optional features that provide support for transient instances
being managed as transactional objects (changes to their fields being undone on
rollback) and persistent objects being accessed outside of transactions. See Chap-
ter 5 for more details.

3.14 Concurrency Control
All the examples so far have been single-user applications (only one transaction
was accessing the datastore at a time). It is, of course, possible for multiple appli-
cations to be running concurrently. The JDO specification does not make any spe-
cific statements about concurrency control, because it is a feature of the
underlying datastore rather than of JDO itself.

JDO does define the concept of a datastore transaction and says that access to the
datastore should be done within the context of a transaction and that these trans-
actions should exhibit ACID properties. This allows the JDO implementation to
use the underlying datastore’s own concurrency control mechanisms, which may
be based on a pessimistic or optimistic locking scheme or some other approach.
Because of this, JDO does not expose APIs to explicitly lock persistent objects. If
locks are required by the underlying datastore to enforce concurrency control,
then it is the responsibility of the JDO implementation to manage them implicitly.

3.14.1 ACID transactions

ACID stands for Atomic, Consistent, Isolated, and Durable, and it defines stan-
dard properties for a transaction:

Atomic: Upon commit, either all changes are in the datastore or none
of them are in the datastore. This means that, should something fail,
arbitrary changes aren’t left behind in the datastore.

Consistent: Prior to and after commit, all data is consistent as far as the
datastore is concerned. This means that all data accessed during a
transaction is initially consistent and that, after commit, all changes
leave the data consistent. Consistent means that the data does not vio-
late any datastore constraints or invariants.

ch03.fm Page 87 Tuesday, July 22, 2003 1:07 PM

88 Core Java Data Objects

Isolated: Prior to commit, any changes made are not visible to other
transactions and vice versa. This means that one transaction is not able
to see changes made by another transaction; it can see only committed
changes. Many datastores support varying levels of isolation that trade
off strict transaction isolation against improved concurrency.

Durable: After commit, any changes are guaranteed to persist even in
the event of failure. This means that when a transaction ends, any
changes are in the datastore.

Different transactional datastores use different mechanisms to enforce ACID
transactions. Therefore, when using JDO, when and how concurrency conflicts
are detected and resolved is dependent upon which underlying datastore is being
used. All that can be guaranteed is that a transaction is ACID in nature.

3.14.2 Optimistic transactions

JDO provides optional support for optimistic transactions. Optimistic transactions
are useful for applications that have long running transactions where it is undesir-
able to hold datastore resources (such as locks) for an extended period of time.

With optimistic transactions, all concurrency control is deferred until the end of
the transaction. See Chapter 5 for more details on optimistic transactions.

3.15 Summary
After reading this chapter, you should understand what transparent persistence is
all about and what it means when a Java class is persistence-capable. You have
seen how to create, read, update, and delete persistent objects, and you have
explored how JDO supports the full Java object model: basic types, references, col-
lection classes, and inheritance. You should also understand some of the more
advanced JDO concepts like handling exceptions, object identity, object lifecycles,
and concurrency control.

In the next chapter, you learn more about the different states in the JDO object life-
cycle and how the JDO implementation manages persistent object in-memory.

ch03.fm Page 88 Tuesday, July 22, 2003 1:07 PM

