
“Book” — 2003/9/23 — 1:00 — page 127 — #153

Chapter 7

End-to-End Best Practices

CHAPTER OVERVIEW

• Limited Device Hardware

• Slow, Unreliable Networks

• Pervasive Devices

• Ubiquitous Integration

• The Impatient User

127

“Book” — 2003/9/23 — 1:00 — page 128 — #154

128 End-to-End Best Practices Chapter 7

J2ME allows desktop or enterprise Java developers to migrate their exist-
ing skills to build smart mobile applications for enterprises and consumers.
Those skills include basic concepts of the Java language, APIs, and common
design patterns. However, blind “skill transfer” from the desktop, server,
or thin client world could do more harm than good. For example, although
most AWT-based J2SE applications run on PersonalJava and J2ME Per-
sonal Profile without modification, porting them directly to mobile devices
often results in unacceptable performance and very poor usability. To build
successful smart mobile applications, developers must understand the special
characteristics of mobile devices and networks.

As Java developers and architects, what should we know about the mobile
development? How do we retrain ourselves for the new tasks? This last
chapter of Part II, “End-to-End Enterprise Applications,” answers those
questions. We analyze challenges in mobile application development and
discuss best practices to overcome them. Many of the solutions and tools we
introduce in this chapter are discussed in further detail later in this book.

7.1 Limited Device Hardware

The most visible difference between the mobile and PC platforms is the
difference in computing hardware. Today’s PCs have much faster CPUs and
far more memory and storage spaces than any mobile computing devices.
Desktop and server developers can afford the luxury to write applications
with bloated features (e.g., Microsoft Office); they also have access to rich
productivity features provided by large, all-in-one frameworks (such as the
J2SE platform itself). However, on mobile devices, it is a completely different
story. With CPUs as slow as 20MHz and RAM as little as 100KB, we must
carefully evaluate the features we need, thoroughly optimize our code, and
live with limited framework support. In this section, we discuss how to cope
with those challenges.

7.1.1 Lightweight Libraries

The most common mistake beginners make is the “golden hammer” anti-
pattern: choosing the wrong technology for the task. In the Java world,
software tools are often available as reusable objects in standard or third-
party libraries. To choose the best libraries that support required application
features at the minimum hardware cost is essential.

J2ME Foundation and Personal Profiles (as well as PersonalJava) are
compatible with J2SE at the bytecode level and inherit a large subset of the
J2SE core API. In theory, we can port J2SE libraries (e.g., XML processing,

“Book” — 2003/9/23 — 1:00 — page 129 — #155

Section 7.1. Limited Device Hardware 129

cryptography, messaging, and UI) directly to mobile devices. However, to
do so would defeat the purpose of J2ME and result in slow and bloated ap-
plications that can be deployed only to the most expensive devices. In most
cases, we should choose from lightweight library alternatives that are specif-
ically designed for the mobile platform. Multiple vendors often compete in
the same market. Each vendor offers a slightly different lightweight product
with an emphasis on different features. Chapters 11 and 19 provide examples
of how to compare and choose the best lightweight embedded database and
cryptography toolkits for your projects.

CLDC and MIDP standard libraries are designed from the ground up as
lightweight components. However, the need to select the right tools also ap-
plies to MIDP projects when it comes to third-party libraries. For a specific
library, vendors often offer a version with J2SE-compatible APIs for larger
MIDP devices (e.g., Symbian OS devices) and another extremely lightweight
version that uses proprietary APIs. The latter often has a smaller memory
footprint and better performance, but requires extra developer training and
results in less portable applications. Examples of MIDP lightweight libraries
include the PointBase MIDP relational database APIs (see Chapter 12, Sec-
tion 12.1) and iBus//Mobile JMS client APIs (see Chapter 10, Section 10.3).

7.1.2 Reduce Application Footprint

Pervasive mobile devices have extremely limited memory and storage spaces,
requiring us to minimize both the storage and runtime footprints of the
application. Specific suggestions are as follows.

• Optimize the packaging process: Even after carefully choosing the best
lightweight library, we may still find that the application utilizes only
part of the library. In the packaging process, we should include only the
classes we actually use. We can do this manually for smaller libraries or
use automatic tools bundled with some J2ME IDEs (such as the IBM
WebSphere Studio Device Developer) for large libraries. If you want
to further reduce the binary application size, you can use a bytecode
obfuscator to replace long variable names and class names with shorter,
cryptic ones.

• Partition the application: Since the MIDP runtime loads classes only as
needed, we can partition the application into separate parts to reduce
the runtime footprint. For MIDP applications, the MIDlet suite can
contain several relatively independent MIDlets.

“Book” — 2003/9/23 — 1:00 — page 130 — #156

130 End-to-End Best Practices Chapter 7

Note

Although the standard MIDP specification does not support shared
libraries, some vendor-specific implementations do. An example is
the BlackBerry Java Development Environment (JDE) for Black-
Berry handheld devices. A shared library further reduces the overall
footprint, since the library no longer needs to be duplicated and
packaged in each application.

7.1.3 Minimize the Garbage Collector

One great advantage of Java is the built-in garbage collector that automat-
ically frees memory space used by stale objects. This allows developers to
focus on the core logic rather than on mundane details of memory manage-
ment. As a result, Java developers are usually unconcerned about object
creation. In fact, many popular Java design patterns promote the idea of
creating more objects in exchange of more maintainable code. For example,
in the Sun Smart Ticket (Chapter 5) sample application, the use of the MVC
and facade patterns results in many objects that simply delegate the action
to the next layer. To get a feel for this problem, just look into the numerous
classes that implement the RemoteModel interface.

But on mobile devices, due to the small amount of available memory,
the garbage collector must run more often. When the garbage collector
runs, its thread takes up precious CPU cycles and slows down all other
application processes. For effective J2ME applications, we need to minimize
object creation and quickly dispose of objects that are no longer in use.
Specific suggestions are as follows:

• Carefully examine design patterns in early stages of the development
cycle. For example, the screen flow-based approach demonstrated in
the iFeedBack sample (Chapter 3) results in many fewer objects than
a traditional MVC implementation.

• Concisely reuse existing objects at the implementation level. For exam-
ple, if a same button (e.g., the DONE button) appears in many screens,
we should create it once and reuse it.

• Use arrays and StringBuffers. Arrays are much faster and more mem-
ory efficient than collection objects. When we modify or concatenate

“Book” — 2003/9/23 — 1:00 — page 131 — #157

Section 7.1. Limited Device Hardware 131

strings, the immutable String objects result in a lot of intermediate
objects. The StringBuffer is much more efficient.

• Close network connections, file handlers, and Record Management Sys-
tem (RMS) record stores quickly after use. We need to look over the
documentation carefully to find out all the close(), destroy(), and dis-
pose() methods and use them judiciously. It is usually considered a
best practice to place those methods in the finally block to make sure
that the resources are released even if runtime exceptions are thrown.

try {

HttpConnection c =

(HttpConnection) Connector.open("http://someurl");

InputStream is = c.openInputStream ();

// do something with the data

} catch (Exception e) {

// handle exceptions

} finally {

try {

if (c != null) c.close();

if (is != null) is.close();

} catch (IOException ioe) { }

}

• Free resources when using native libraries. In smart mobile applica-
tions, we sometimes need to access native libraries for better perfor-
mance, restricted functionalities (e.g., to make a phone call), or simply
native UI look and feel (e.g., the IBM SWT library for PocketPC).
Native resources are not subject to garbage collection. It is important
to follow proper instructions of the native libraries (and their Java
wrapper classes) to free resources after use.

7.1.4 Use Mobile Portals

Smart mobile devices are getting more powerful every day. However, in com-
plex enterprise environments, many tasks are still too resource-intensive for
most mobile devices. In this case, a commonly used approach is to set up por-
tal servers to which the mobile devices can delegate complex tasks. Mobile
middleware portals bridge mobile clients to enterprise backend servers. The
smart portal is much more than a proxy or a surrogate for mobile devices.
The uses of mobile portals include the following.

“Book” — 2003/9/23 — 1:00 — page 132 — #158

132 End-to-End Best Practices Chapter 7

• Allow mobile clients to utilize multiple communication and messaging
protocols. For example, mobile messaging servers described in Chap-
ters 9 (Section 9.4) and 10 enable a wide range of devices over a wide
range of networks to integrate into corporate messaging infrastructures.

• Aggregate backend services and enable bundled services. For exam-
ple, the Oracle9iAS Wireless server provides J2ME SDKs for Ora-
cle’s SQL database, push-based messaging, and location-based services.
The BlackBerry Enterprise Server supports unified access to Microsoft
Exchange-based or IBM Lotus Domino-based corporate information
systems from BlackBerry MIDP devices (see Chapter 8, Section 8.6).

• Provide simple mobile interfaces for powerful and sophisticated backend
services. There are several notable examples:

– The MapPoint facade described in Chapter 18, Section 18.2.2,
shows how to build an easy-to-access interface for a complex back-
end Web service.

– Database synchronization servers (Chapter 13) synchronize J2ME
mobile databases with backend enterprise data sources using com-
plex conflict resolution logic.

– The Simplicity Enterprise Mobile Server supports simple, visual
ways to build J2ME clients for legacy (mainframe) applications.
(See Chapter 14, Section 14.3).

7.1.5 Use Design Patterns Judiciously

No design pattern is the silver bullet for every situation. For example,
the powerful MVC and Facade patterns demonstrated in the Smart Ticket
blueprint (Chapter 5) require several abstraction layers and are probably too
heavy for simple applications. For simple applications, we can design the en-
tire logic around screens, as we did in the iFeedBack example (Chapter 3).

7.2 Slow, Unreliable Networks

Unlike always-on broadband networks for desktop and server computers,
wireless networks have proven to be very slow, unreliable, and insecure.
Developers from the PC world, especially those who used to develop server-
based with thin client solutions, tend to make excessive use of the network.
In this section, we discuss ways to make the best use of network resources.

“Book” — 2003/9/23 — 1:00 — page 133 — #159

Section 7.2. Slow, Unreliable Networks 133

The Shortest Migration Path from Thin Clients to Smart Clients
In the mircobrowser-based thin client scenario, the client delegates all appli-
cation logic to the portal server. The portal aggregates a variety of content
sources (e.g., database, XML, RSS, SMTP) and automatically generates a view
format that fits the device characteristics. For example, the portal can gener-
ate HTML for a PDA, WML for a cell phone, and even VoiceXML for a voice
caller with the help of voice recognition and synthesis engines.

The shortest migration path from the thin client paradigm to smart client

paradigm is through adding J2ME-specific interfaces to existing thin client

portals. For starters, we can add new view adaptors to the portal. For example,

the portal can generate XUL (XML UI Language) UIs for J2ME devices with

XUL rendering libraries (e.g., Thinlet). This way, we can support new smart

devices through the existing infrastructure while phasing out old thin client

devices. The voice portal server can also be utilized to support multimodal

mobile applications for even richer user experiences.

7.2.1 Support the Offline Mode

As we discussed in Chapter 3, one of the most important advantages of the
smart client paradigm is the ability to support offline operations when the
network connection is temporarily unavailable. The key enabling technology
is on-device persistence storage (cache). Other advantages of the on-device
cache include reduced network round trips and improved performance.

Offline operations require careful design of the data model. On-device
cache can be used explicitly by the application developer or can be built into
the framework and become transparently available to applications. Examples
of both approaches are illustrated in the iFeedBack (Chapter 3) and Smart
Ticket (Chapter 5 sample applications. For simple caches, the application-
managed MIDP RMS stores, plain files, or XML documents are adequate.
For more sophisticated data management solutions, we can use on-device
relational data stores. For backend powered applications, we also need to
keep the cache synchronized with backend data sources. Simple synchroniza-
tion logic can be programmed into the application itself. Commercial mobile
databases often come with advanced synchronization solutions.

For more discussions on the “occasionally connected” architecture and
related tools, please refer to Part IV, “Mobile Databases and Synchronization
Engines,” of this book (Chapters 11, 12 and 13).

‘‘Book’’ --- 2003/9/23 --- 1:00 --- page 134 --- #160

134 End-to-End Best Practices Chapter 7

7.2.2 Use Remote Facades

As described in Chapter 5, Section 5.3.3, remote facade is an effective pat-
tern to have the best of two worlds: fine-grained object model at the server
side and coarse-grained access interface for improved network efficiency. An-
other excellent example of remote facade is the Axis-based MapPoint facade
gateway described in Chapter 18, Section 18.2.3.

7.2.3 Place Portals Locally

Mobile portals are essential components in enterprise mobile architectures.
However, fixed portals residing in remote data centers are often not accessible
from the national mobile networks due to limited coverage and unreliable
connections.

Compared with wide area networks, local wireless networks often have
better coverage, lower bandwidth cost, higher speed and better security. Mo-
bile portals that reside on the local wireless networks boost the performance
and availability of the client devices. Examples of such mobile portals in-
clude OSGi service gateways (Chapter 4, Section 4.5), and IBM WebSphere
MQe (Chapter 10, Section 10.4). In practice, we can build a mobile applica-
tion architecture that contains a hierarchical structure of hubs and portals.
Each portal handles part of the logic and delegates the rest to the next layer.
That allows us to build an enterprise mobile architecture that continues to
function with limited capabilities in different levels of network failures. Fig-
ure 7.1 illustrates the mobile portal network architecture discussed in this
chapter.

7.2.4 Buffered I/O

Reading network data byte by byte is very slow. We should always read and
write data in chunks. In Personal Profile applications, we can use the JDK’s
standard BufferedReader and BufferedWriter. In MIDP applications, we need
to buffer the I/O ourselves (Listing 7.1).

Listing 7.1. The buffered input in MIDP

HttpConnection conn = (HttpConnection) Connector.open(url);

conn.setRequestMethod(HttpConnection.GET);

DataInputStream din = conn.openDataInputStream();

ByteArrayOutputStream bos = new ByteArrayOutputStream();

byte[] buf = new byte[256];

while (true) {

“Book” — 2003/9/23 — 1:00 — page 135 — #161

Section 7.2. Slow, Unreliable Networks 135

Personal WLAN WAN

Voice recognition

 and synthesis
Voice XML portal

V
oice

Mobile network

In-hand portal In-office portal

Smart client

Backend portal

Figure 7.1. Mobile portal networks for small clients.

int rd = din.read(buf, 0, 256);

if (rd == -1) break;

bos.write(buf, 0, rd);

}

bos.flush();

buf = bos.toByteArray();

// byte array buf now contains the downloaded data

7.2.5 Encrypt Your Data

Wireless networks broadcast data traffic into the air. Anyone can drop in
and intercept the traffic. Built-in security for most wireless networks is not
adequate for enterprise applications. The use of HTTPS (see Chapter 6,
Section 6.6) for confidential communication is strongly recommended. In
Chapters 19 and 20, we discuss how to implement your own security solu-
tions. Having said that, we must also understand that cryptography tasks are
often CPU-intensive. Security comes at the cost of performance. For small
devices, we must carefully evaluate the security requirements and come up
with balanced solutions.

“Book” — 2003/9/23 — 1:00 — page 136 — #162

136 End-to-End Best Practices Chapter 7

7.2.6 Obtain Server Status Efficiently

Many enterprise mobile applications, such as an Instant Messaging client
or a database monitoring client, need to be updated with real-time server
status at all times. Since the HTTP protocol is ubiquitously supported in
all J2ME devices, inexperienced developers sometimes program the device
to initiate periodic HTTP connections to poll the server for its status. The
polling frequency must be much faster than the expected server status-change
frequency to keep the device updated. The constant polling results in a lot
of redundant data. It is a waste of bandwidth, server resources, and time.
There are several ways to deal with this problem:

• Use HTTP conditional GET: The HTTP conditional GET operation
allows the server to return data only when the data source has been up-
dated since the last query. An excellent description of the HTTP con-
ditional GET and its usage can be found in a blog entry from Charles
Miller (see the “Resources” section). This method reduces the amount
of network data but does not reduce the frequency of the polling op-
eration. In a long latency network, it could still be a performance
bottleneck.

• Use PUSH-based protocols: To completely fix the “excessive poll” prob-
lem, let the server notify the client when the server status is updated.
We cannot use the HTTP protocol for this purpose, since HTTP is de-
signed to be a stateless request/response protocol. HTTP connections
cannot be kept alive over an extended period of time. That requires
us to explore other PUSH-based communication protocols on devices.

– SMS messages can be pushed to devices and handled by the J2ME
Wireless Messaging API library (see Chapter 9) or the MIDP v2
PUSH Registry.

– SIP is a protocol specially designed for signaling in a PUSH-based
network. The SIP API for J2ME has already been finalized (see
Chapter 9, Section 9.6).

7.3 Pervasive Devices

Pervasive mobile devices are at the core of the mobile enterprise solution’s
value proposition. However, unlike PCs, which can be centrally adminis-
trated, managing a large number of small devices that people carry around
all the time is an IT nightmare. Many of the device management issues are
both social and technical in nature. In this section, we discuss what the
problems are and the technical tools that can help IT managers and users.

“Book” — 2003/9/23 — 1:00 — page 137 — #163

Section 7.3. Pervasive Devices 137

Note

The successful use of the technologies described in this section rely
on proper user education and corporate policies.

7.3.1 Protect On-Device Data

Small devices are very easy to lose. Stolen enterprise devices that contain
sensitive business data, user credentials, or even company private keys could
pose a real security risk. The only way to guard against this is to use strong
encryption to protect on-device data. In Chapters 19 and 20, we compare
security toolkits and provide code examples of how to protect your on-device
data.

7.3.2 Synchronize Often

Today’s battery technology lags far behind the device technology. A smart
mobile device with a fast CPU; a large, backlit LCD; and multimedia features
could drain its battery in a matter of hours. Most smart phone or high-end
PDA devices require the user to recharge every day. If the user forgets, she
will probably end up with drained batteries in the middle of the next day.
Drained batteries could result in lost data. One way to cope with this is to
synchronize the device periodically with backend data sources. Chapter 13
discusses the database synchronization options.

7.3.3 Optimize for Many Devices

Because pervasive devices are cheap and easy to carry around, there tends
to be many of them in a company. Each worker could carry multiple inter-
connected devices. Enterprise solutions need to support all devices in use
in the company. J2ME provides a device-independent platform to develop
applications. But applications still need to be optimized for the specific tar-
get UI and other device characteristics. The use of the MVC pattern could
ease the pain of customizing applications: Only the view layer needs to be
modified. For example, when the Sun Smart Ticket blueprint teams decide
to port the application to MIDP v2.0 devices, they need to recode only the
view layer in a matter of days. Another way to implement an MVC solution
is to use the clientside container, as described in Chapter 4, Section 4.4.

“Book” — 2003/9/23 — 1:00 — page 138 — #164

138 End-to-End Best Practices Chapter 7

7.3.4 Centralized Provisioning

Mobile enterprise users need to have the latest patched software and up-to-
date application data. However, it just does not fit the mobile worker’s busy
life and work style to sit down, hook the devices to PCs, and follow detailed
update instructions from the IT department every day. As a result, those
instructions are often ignored. To manage and update software and data on
a large number of mobile devices is a challenging task. The following are
several tools that automate the device management process for both mobile
users and IT administrators.

• J2EE provisioning server: The JSR 124 develops a specification for
J2EE client provisioning servers. The server allows operators to plug
in adapters for any client provision scheme. For example, the MIDP
Over-the-Air (OTA) support is provided by a bundled adaptor in the
reference implementation. When the device requests a client software,
the provisioning server matches the device with clients in the repository
and deploys the client using the appropriate adaptor. The provision-
ing server also provides hooks for backend billing, tracking, and CRM
applications. Figure 7.2 shows the overall design of the J2EE client
provisioning server.

• OGSi bundles: As we discussed in Chapter 4, OSGi bundles are self-
contained mobile applications with managed life cycles. For devices
running OSGi services, OSGi bundles could be the ideal way to deploy
applications and contents.

• Synchronization server: Database synchronization can also be used to
provision and update contents (see Chapter 13).

7.4 Ubiquitous Integration

Enterprise mobile clients need to integrate with many different back end or
middleware systems. In this section, we introduce several common integra-
tion technologies and discuss how to use them judiciously. Table 7.1 is a
brief layout of the pros and cons of each approach. Figure 7.3 illustrates the
characteristics of each integration scheme.

7.4.1 Proprietary Binary Protocols

Since HTTP support is mandatory on all J2ME devices, it is the basis for
most other approaches. HTTP can transport text as well as any arbitrary

“Book” — 2003/9/23 — 1:00 — page 139 — #165

Section 7.4. Ubiquitous Integration 139

MIDP

adaptor

JNLP

adaptor

Other

adaptor

Matcher

Client bundle

repository

J2EE App server

MIDP client 1

MIDP client 2

JNLP client 1
client

client client

client

CRM service modules:

Authorization, billing, notification, update, profile,

location.

Figure 7.2. The J2EE client provisioning server.

Table 7.1. Integration Comparison Chart

Scheme Interoperability Coupling Footprint

Binary over HTTP poor tight light

RPC frameworks OK tight light

Messaging OK loose OK

XML Web Services excellent loose heavy

binary content. Our examples iFeedBack (Chapter 3) and Smart Ticket
(Chapter 5) both demonstrate the use of custom-designed binary protocols
over HTTP. The binary protocols are designed to tailor the application needs
and minimize the number of bytes needed to be sent over the network.

However, this approach results in tight coupling between the servers and
clients. We have to develop both serverside and clientside components to
interface with the custom protocol. If the design changes in the future, we
have to change the application on both sides. If we do not have control
over the server, we cannot take this approach. For applications that require
frequent updates, the custom protocols are also not optimal.

“Book” — 2003/9/23 — 1:00 — page 140 — #166

140 End-to-End Best Practices Chapter 7

Framework

SOAP

stub

Messaging

middleware

Matching

(de)serializer

Matching

(de)serializer

Java API

Peer

Java API

SOAP

stub

Peer

SOAP messages

message message

Proprietary
Binary

RPC

Framework

Web
Services

Messaging

Figure 7.3. J2ME smart client and J2EE backend integration schemes.

7.4.2 Use Mobile RPC Frameworks

A more standardized integration approach is to use commercially avail-
able RPC frameworks. Such examples include the Open Source kCommand
toolkit and the Simplicity transaction engine. The kCommand toolkit defines
a set of open APIs that both the client and server can call to pass generic
RPC parameters. Please refer to the link in the “Resources” section to find
out more about its use. The Simplicity transaction engine is a proprietary so-
lution tightly bundled with the Simplicity IDE. Using Simplicity RAD tools
(Chapter 14), you can drag and drop your remote transaction components
on an application composer and let the IDE generate the code for you. It is
very easy to use for simple applications. However, the auto-generated source
code can be hard to customize.

With the mobile RPC frameworks, we save the time to develop propri-
etary and hard-to-maintain interface components. But the server and client
remain tightly coupled.

“Book” — 2003/9/23 — 1:00 — page 141 — #167

Section 7.5. The Impatient User 141

7.4.3 Messaging Is Our Friend

Messaging solutions, especially asynchronous messaging, decouple the client
and the server through the messaging middleware. Properly designed mes-
saging solutions could greatly improve the reliability and scalability of the
system because resources can be allocated to respond to requests on a pri-
ority basis rather than a first-come-first-served basis. Chapter 10 discusses
enterprise messaging based on mobile messaging-oriented middleware.

7.4.4 XML and Web Services

XML Web Services advocate platform-agnostic open interfaces. It supports
both RPC style and messaging style integration. However, since XML Web
Services pose large bandwidth and CPU overheads, we have to use them
carefully. I suggest the use of XML Web Service only when the mobile
client is interfacing external components or multiple client interoperability
is required. We saw an example of Web Services integration in Chapter 3
and will see many more in Chapters 16 and 17.

7.5 The Impatient User

The “anytime, anywhere” convenience is the biggest strength of mobile ap-
plications. However, it is a major challenge to implement a truly convenient
solution for human users. Users treat mobile devices as personal belongings
and have high expectations for their devices.

In this section, we discuss efficient and responsive UI designs, which are
crucial to the adoption of mobile applications. Another aspect of personal
devices is that users would like to customize them to fit their individual style.
We discuss preference management as well in this section. Most issues we
discuss in this section are covered in the Smart Ticket sample application
(Chapter 5).

7.5.1 Take Advantage of the Rich UI

Rich UI is one of the great appeals of smart clients. We should make judicious
use of advanced UI components, such as direct draw on canvas and animation
sprites. In the Smart Ticket application, the use of raw canvas to draw
seating maps is an excellent example of appropriate UI usage. Advanced UI
widgets are supported in the MIDP v2.0 specification. Device vendors also
often provide their own UI enhancement APIs.

As described in Section 7.3.3, the MVC pattern (see Chapter 5 Sec-
tion 5.3.1) is a powerful tool to support multiple optimized UIs for different
devices while reusing the same business logic components.

“Book” — 2003/9/23 — 1:00 — page 142 — #168

142 End-to-End Best Practices Chapter 7

7.5.2 Use Threads Judiciously

UI lock-up is one of the most annoying problems users can experience. On
PCs, users are used to crashes in a certain popular operating system, and
they can just hit the reboot button. But the user’s tolerance for malfunc-
tioning mobile devices is much lower. We expect our cell phones to work out
of the box like any other electronic household appliance. The best practice
to avoid hang-ups in the main UI thread is to put all lengthy or poten-
tially blocking operations in separate threads. In fact, the MIDP specifi-
cation clearly states that the UI event handler (i.e., the CommandListener.
commandAction() method) must “return immediately,” which implies that
proper UI threading is actually mandated by the specification. Listing 7.2
shows the use of threads.

Listing 7.2. The use of threads

public class DemoMIDlet extends MIDlet implements CommandListener {

// other methods

public void commandAction(Command command, Displayable screen) {

if (command == exit) {

// handle exit

} else if (command == action) {

WorkerThread t = new WorkerThread ();

t.start();

}

}

class WorkerThread extends Thread {

void run () {

// Do the work

}

}

}

In the Smart Ticket sample application, the use of threads is pushed one
step further: Each worker thread also has a helper thread that displays an
animated gauge to indicate the progress of the worker thread. This is espe-
cially useful to keep the user informed during lengthy network operations.

“Book” — 2003/9/23 — 1:00 — page 143 — #169

Section 7.6. Summary 143

7.5.3 One Screen at a Time

Mobile users have relatively short attention spans. We should break up
lengthy operations into small pieces to show one screen at a time and offer
users options to pause or abort in the middle of the process. Smart clients
are especially well equipped to handle the screen flow process, since on-device
storage could cache information between screens. A good example of screen
flow is the “buy a ticket” action in the Smart Ticket application.

7.5.4 Store User Preferences

Mobile devices become more personal and hence have more value if they
are customized to fit the user’s personal preferences. Advanced mobile ap-
plications should store its owner’s preference data on device. As we see in
the Smart Ticket application, the stored preferences also allow users to have
smoother workflow experiences. For example, the user does not need to stop
and enter her credit card information in the middle of the purchasing flow.

7.5.5 Use Deployment Descriptors

The mobile application can also be customized at the back end before the
user downloads it. For example, when a user signs up on a Web site, the
site automatically customizes the download package with the profile derived
from the submitted forms. We can customize the application without re-
building it through the deployment descriptors. The MIDP specification
defined the format and usage of Java Application Descriptor (JAD) files.
But for other J2ME platforms, we still need to embed property files and/or
other nonstandard configuration files in the custom-generated JAR package.

7.6 Summary

Despite the similarities in APIs and development tools between the J2ME
and J2SE/J2EE platforms, experienced J2SE/J2EE developers do not au-
tomatically become good mobile Java developers. We need to understand
the special characteristics of mobile devices, wireless networks, and mobile
users. Then, we can design and optimize smart mobile clients using the
best-practice guidelines laid out in this chapter. In the rest of this book,
we explore J2ME tools and frameworks that help us to apply those best
practices in mobile enterprise applications.

“Book” — 2003/9/23 — 1:00 — page 144 — #170

144 End-to-End Best Practices Chapter 7

Resources

[1] Patterns of Enterprise Application Architecture. Martin Fowler.
Addison-Wesley, 2003. This is an excellent book on design patterns and
architectural designs.

[2] Applied Java Patterns. Stephen Stelting and Olav Maassen. Sun
Microsystems Press and Prentice Hall, 2002. This book gives design
pattern code examples in Java.

[3] Wireless Java: Developing with J2ME, 2nd ed. Jonathan Knudsen.
Apress, 2003. This is an excellent MIDP v2.0 text for developers at all
levels.

[4] The Sun Wireless Java Blueprint: The Smart Ticket application
demonstrates many of the best practices described in this chapter.
http://java.sun.com/blueprints/wireless/

[5] The Sun J2ME Wireless Toolkit is a comprehensive collection of tools
for MIDP development and performance tuning.
http://java.sun.com/products/j2mewtoolkit/index.html

[6] The J2EE client provisioning specification defines a flexible server
architecture for smart client provisioning and user tracking/billing
services. http://java.sun.com/j2ee/provisioning/

[7] The Thinlet project creates a lightweight XUL toolkit that runs on
both Personal Profile and MIDP devices. http://www.thinlet.com/

[8] The kCommand toolkit is an Open Source RPC framework for J2ME
clients to execute remote commands on J2EE servers.
http://www.developnet.co.uk/kcommand.htm

[9] All other tools featured in this chapter are discussed in detail in other
chapters throughout this book.

[10] Java blogger Charles Miller discusses HTTP conditional GET in his
blog entry. http://fishbowl.pastiche.org/archives/001132.html

