
71

C H A P T E R 3

SOAP and WSDL

eb services are software components that expose their functionality to the network. To
exploit that functionality, Web service consumers must be able to bind to a service and

invoke its operations via its interface. To support this, we have two protocols that are the funda-
mental building blocks on which all else in the Web services arena is predicated: SOAP1 and
WSDL2. SOAP is the protocol via which Web services communicate, while WSDL is the tech-
nology that enables services to publish their interfaces to the network. In this chapter we cover
both SOAP and WSDL in some depth and show how they can be used together with rudimentary
tool support to form the basis of Web services-based applications.

The SOAP Model
Web services are an instance of the service-oriented architecture pattern that use SOAP as the
(logical) transport mechanism for moving messages between services described by WSDL inter-
faces. This is a conceptually simple architecture, as shown in Figure 3-1, where SOAP messages
are propagated via some underlying transport protocol between Web services.

1. In this chapter, unless otherwise explicitly stated, all references to SOAP and the SOAP Specification
pertain to the SOAP 1.2 recommendation.

2. In this chapter, unless otherwise explicitly stated, all references to WSDL and the WSDL specification
pertain to WSDL 1.1; see http://www.w3.org/TR/wsdl. The W3C’s WSDL effort is less advanced than
the latest SOAP work, though where possible we highlight new techniques from the WSDL 1.2 work-
ing drafts.

W

Ch03.fm Page 71 Monday, October 20, 2003 1:28 PM

72 Chapter 3 • SOAP and WSDL

A SOAP message is an XML document whose root element is called the envelope. Within
the envelope, there are two child elements called the header and the body. Application payloads
are carried in the body, while the information held in the header blocks usually contains data
from the various Web services protocols that augment the basic SOAP infrastructure (and which
is the primary subject of this book). The structure of a SOAP message is shown in Figure 3-2.

The SOAP message shown in Figure 3-2 provides the conceptual basis on which the whole
SOAP model is based. Application payload travels in the body of the message and additional
protocol messages travel in header blocks (which are optional, and may not be present if only
application data is being transported). This permits a separation of concerns at the SOAP pro-
cessing level between application-level messages and higher-level Web services protocols (e.g.,
transactions, security) whose payload travels in the SOAP header space.

The split between application and protocol data within SOAP messages allows the SOAP
processing model to be a little more sophisticated than was suggested by the simple architecture
shown in Figure 3-1. SOAP’s distributed processing model outlines the fundamentals of the Web
services architecture. It states (abstractly) how SOAP messages—including both the header and
body elements—are processed as they are transmitted between Web services. In SOAP terms,
we see that an application is comprised of nodes that exchange messages. The nodes are free to
communicate in any manner they see fit, including any message-exchange pattern from one-way
transmission through bilateral conversations. Furthermore, it is assumed in SOAP that messages
may pass through any number of intermediate nodes between the sender and final recipient.

More interestingly however, the SOAP specification proposes a number of roles to
describe the behavior of nodes under certain circumstances, which are shown in Figure 3-3. As a
message progresses from node to node through a SOAP-based network, it encounters nodes that
play the correct role for that message. Inside message elements, we may find role declarations
that match these roles (or indeed other roles produced by third parties), and where we find a
node and message part that match, the node executes its logic against the message. For example,

Figure 3-1 The logical Web services network.

Ch03.fm Page 72 Monday, October 20, 2003 1:28 PM

The SOAP Model 73

where a node receives a message that specifies a role of next (and every node except the sender
is always implicitly next), the node must perform the processing expected of that role or fault.
In Figure 3-3, we see that the nodes labeled “intermediate” all play the role next. The Web ser-
vice that finally consumes the message plays the role ultimateReceiver, and so each pro-
cesses only the parts of the SOAP message which are (either implicitly or explicitly) marked as
being for that role.

Figure 3-2 The structure of a SOAP message.

Figure 3-3 SOAP node roles.

Ch03.fm Page 73 Monday, October 20, 2003 1:28 PM

74 Chapter 3 • SOAP and WSDL

The processing model shown in Figure 3-3 is supported in software by SOAP servers. A
SOAP server is a piece of middleware that mediates between SOAP traffic and application com-
ponents, dealing with the message and processing model of the SOAP specification on a Web
service’s behalf. Therefore, to build Web services, it is important to understand how a SOAP
server implements the SOAP model.

While it is impossible to cover every SOAP server platform here, we will examine the
architecture of a generalized SOAP server (whose characteristics are actually derived from pop-
ular implementations such as Apache Axis and Microsoft ASP.Net) so that we have a mental
model onto which we can hang various aspects of SOAP processing. An idealized view of a
SOAP server is presented in Figure 3-4. This shows a generic SOAP server architecture.
Inbound messages arrive via the physical network and are translated from the network protocol
into the textual SOAP message. This SOAP message passes up the SOAP request stack where
information stored in SOAP headers (typically context information for other Web services proto-
cols like security, transactions and so forth) are processed by handlers that have been registered
with the Web service. Such handlers are considered to be intermediate nodes in SOAP terms.

Figure 3-4 The architecture of a generalized SOAP server.

Ch03.fm Page 74 Monday, October 20, 2003 1:28 PM

SOAP 75

At some later point, provided the header processing has not caused the service invocation
to fail, the application payload of the message (carried in the SOAP body) reaches a dispatch
mechanism where it causes some computation to occur within the back-end service implementa-
tion. The application logic then performs some computation before returning data to the dis-
patcher, which then propagates a SOAP message back down the SOAP response stack. Like the
request stack, the response stack may have handlers registered with it which operate on the out-
going message, inserting headers into messages as they flow outward to be consumed by other
Web services. Again, these handlers are considered to be nodes in SOAP terms.

Eventually, the outgoing message reaches the network level where it is marshaled into the
appropriate network protocol and duly passes on to other SOAP nodes on the network, to be
consumed by other SOAP nodes.

SOAP
Having understood the SOAP model and seen how this model is supported by SOAP servers, we
can now begin to discuss the details of SOAP itself. SOAP is the oldest, most mature, and the
single most important protocol in the Web services world. The SOAP specification defines this
protocol as “[an] XML-based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a convention for representing remote
procedure calls and responses.”3

In the following sections, we examine SOAP in some depth—from its basic use pattern
and XML document structure, encoding schemes, RPC convention, binding SOAP messages,
transport protocols, to using it as the basis for Web services communication.

 The handlers that operate on the headers are not generally part
of the SOAP server by default, but are usually third-party compo-
nents registered with the server to augment its capabilities. This
means that SOAP servers are themselves extensible and can be
upgraded to include additional protocol support over their lifetime
as Web services’ needs evolve.

In its earlier incarnations, the acronym SOAP used to stand for
“Simple Object Access Protocol,” though that meaning has ceased
to exist in the SOAP 1.2 specification. This is undoubtedly a good
thing since SOAP isn’t especially simple, it’s not exclusively
designed for object access and it is more a packaging mechanism
than a protocol per se.

3. http://www.w3.org/TR/SOAP/

Ch03.fm Page 75 Monday, October 20, 2003 1:28 PM

76 Chapter 3 • SOAP and WSDL

SOAP Messages
We have already seen the overall structure of a SOAP message, as defined by the SOAP Enve-
lope, in Figure 3-4. All SOAP messages, no matter how lengthy or complex, ultimately con-
form to this structure. The only caveat is there must be at least one body block within the SOAP
body element in a message and there does not necessarily have to be a SOAP header or any
SOAP header blocks. There is no upper limit on the number of header or body blocks, however.
A sample SOAP message is presented here in Figure 3-5:

The structure of all SOAP messages (including that shown in Figure 3-5) maps directly
onto the abstract model shown in Figure 3-2. Figure 3-5 contains a typical SOAP message with a
single header block (which presumably has something to do with managing transactional integ-
rity), and a body containing two elements (which presumably instructs the recipient of the mes-
sage to perform an operation on two bank accounts). Both the Header and Body elements are
contained within the outer Envelope element, which acts solely as a container.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope" >
 <env:Header>
 <tx:transaction-id
 xmlns:tx="http://transaction.example.org"
 env:encodingStyle="http://transaction.example.org/enc"
 env:role=
"http://www.w3.org/2002/06/soap-envelope/role/ultimateReceiver"
 env:mustUnderstand="true">
 decd7461-4ef2138d-7b52e370-fed8a006-ca7ea17
 </tx:transaction-id>
 </env:Header>
 <env:Body xmlns:bank="http://bank.example.org">
 <bank:credit-account env:encodingStyle=
 "http://www.w3.org/2002/06/soap-encoding">
 <bank:account>12345678</bank:account>
 <bank:sort>10-11-12</bank:sort>
 <bank:amount currency="usd">123.45</bank:amount>
 </bank:credit-account>
 <bank:debit-account>
 <bank:account>87654321</bank:account>
 <bank:sort>12-11-10</bank:sort>
 <bank:amount currency="usd">123.45</bank:amount>
 </bank:debit-account>
 </env:Body>
</env:Envelope>

Figure 3-5 A simple SOAP message.

Ch03.fm Page 76 Monday, October 20, 2003 1:28 PM

SOAP Messages 77

SOAP Envelope
The SOAP Envelope is the container structure for the SOAP message and is associated

with the namespace http://www.w3.org/2002/06/soap-envelope. An example is
shown in Figure 3-6 where the namespace is associated with the prefix env:

The Envelope contains up to two child elements, the Header and the Body (where the
Body element is mandatory). Aside from acting as a parent to the Header and the Body ele-
ments, the Envelope may also hold namespace declarations that are used within the message.

SOAP Header
The Header element provides a mechanism for extending the content of a SOAP mes-

sage with out-of-band information designed to assist (in some arbitrary and extensible way) the
passage of the application content in the Body section content through a Web services-based
application.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope" >
 <!-- Optional header blocks -->
 <env:Header>
 ...
 </env:Header>
 <!-- Single mandatory body element -->
 <env:Body xmlns:bank="http://bank.example.org">
 ...
 </env:Body>
</env:Envelope>

Figure 3-6 The SOAP envelope element.

The SOAP header space is where much of the value in Web ser-
vices resides, since it is here that aspects like security, transac-
tions, routing, and so on are expressed. Every Web services
standard has staked its claim on some part of the SOAP header
territory, but in a mutually compatible way. The fact that SOAP
headers are extensible enough to support such diverse stan-
dards is a major win, since it supports flexible protocol composi-
tion tailored to suit specific application domains.

Ch03.fm Page 77 Monday, October 20, 2003 1:28 PM

78 Chapter 3 • SOAP and WSDL

A SOAP header has the local name Header associated with the http://
www.w3.org/2002/06/soap-envelope namespace. It may also contain any number of
namespace qualified attributes and any number of child elements, known as header blocks. In
the absence of any such header blocks, the Header element itself may be omitted from the
Envelope. A sample header block is shown in Figure 3-7.

If present, each header block must be namespace qualified (according to the rules set out
in the SOAP schema), may specify how it has been encoded (i.e., which schema constrains it)
through the encodingStyle attribute, may specify its consumer through the role attribute,
and may demand that it is understood by SOAP infrastructure that encounters its message
through the mustUnderstand attribute. The SOAP specification stipulates that it is illegal for
the role and mustUnderstand attributes to appear anywhere other than in header block
declarations.

The sender of a SOAP message should not place them anywhere else, and a receiver of
such a malformed message must ignore these attributes if they are out of place. These attributes
are of fundamental importance to SOAP processing (and thus Web services) and warrant further
discussion. The vehicle for this discussion is the example SOAP message shown in Figure 3-5
where we see a header block called transaction-id that provides the necessary out-of-
band information for the application payload to be processed within a transaction (using a hypo-
thetical transaction processing protocol).

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope" >
 <!-- Optional header blocks -->
 <env:Header>
 <tx:transaction-id
 xmlns:tx="http://transaction.example.org"
 env:encodingStyle="http://transaction.example.org/enc"
 env:role=
"http://www.w3.org/2002/06/soap-envelope/role/ultimateReceiver"
 env:mustUnderstand="true">
 decd7461-4ef2138d-7b52e370-fed8a006-ca7ea17
 </tx:transaction-id>
 </env:Header>

 <!-- Single mandatory body element -->
 <env:Body xmlns:bank="http://bank.example.org">
 ...
 </env:Body>
</env:Envelope>

Figure 3-7 A SOAP header element.

Ch03.fm Page 78 Monday, October 20, 2003 1:28 PM

SOAP Messages 79

The role Attribute

The role attribute controls the targeting of header blocks to particular SOAP nodes
(where a SOAP node is an entity that is SOAP-aware). The role attribute contains a URI that
identifies the role being played by the intended recipient of its header block. The SOAP node
receiving the message containing the header block must check through the headers to see if any
of the declared roles are applicable. If there are any matches, the header blocks must be pro-
cessed or appropriate faults generated.

Although any URI is valid as a role for a SOAP node to assume, the SOAP specification
provides three common roles that fit into the canonical SOAP processing model as part of the
standard:

• http://www.w3.org/2002/06/soap-envelope/role/none: No SOAP
processor should attempt to process this header block, although other header blocks may
reference it and its contents, allowing data to be shared between header blocks (and thus
save bandwidth in transmission).

• http://www.w3.org/2002/06/soap-envelope/role/next: Every node
must be willing to assume this role since it dictates that header block content is meant for
the next SOAP node in the message chain. If a node knows in advance that a subsequent
node does not need a header block marked with the “next” role, then it is at liberty to
remove that block from the header.

• http://www.w3.org/2002/06/soap-envelope/role/ultimateReceiver:
The ultimate receiver is the final node in the message chain. Header blocks referencing
this role attribute (or equivalently referencing no role attribute) should be delivered
to this last node. It always implicitly plays the role of “next” given that the last node
always comes after some other node—even in the simplest case where the last node
comes immediately after the initiator.

Figure 3-8 highlights the role attribute from our example SOAP message in Figure 3-5:

<env:Header>
 <tx:transaction-id
 xmlns:tx="http://transaction.example.org"
 env:encodingStyle="http://transaction.example.org/enc"
 env:role=
"http://www.w3.org/2002/06/soap-envelope/role/ultimateReceiver"
 env:mustUnderstand="true">
 decd7461-4ef2138d-7b52e370-fed8a006-ca7ea17
 </tx:transaction-id>
</env:Header>

Figure 3-8 The role attribute.

Ch03.fm Page 79 Monday, October 20, 2003 1:28 PM

80 Chapter 3 • SOAP and WSDL

The role attribute in Figure 3-8 has the value http://www.w3.org/2002/06/
soap-envelope/role/ultimateReceiver, which means the contents of the header
block are intended for the final SOAP processing node in this interaction (i.e., the recipient Web
service). According to the SOAP processing model, this Web service must be capable of pro-
cessing the application payload (in the SOAP body) in accordance with the transaction process-
ing specification in the header block.

The mustUnderstand Attribute

If the mustUnderstand attribute is set to true, it implies that any SOAP infrastructure
that receives the message containing that header block must be able to process it correctly or
issue an appropriate fault message. Those header blocks that contain the mustUnder-
stand="true" attribute are known as mandatory header blocks since they must be processed
by any nodes playing the matching roles. Header blocks missing their mustUnderstand
attribute should still be examined by nodes that play the appropriate role. If a failure to act on a
role occurs, it is not deemed to be critical and further processing may occur since by missing the
mustUnderstand attribute they are not considered mandatory, as shown in Figure 3-9.

In our example shown in Figure 3-9, the mustUnderstand attribute is set to true
because it is imperative that the processing node must perform the account debit-credit within a
transaction. If it cannot support transactional processing, then we would prefer that it leaves the
accounts well alone—particularly if it is our money being transferred.

<env:Header>
 <tx:transaction-id
 xmlns:tx="http://transaction.example.org"
 env:encodingStyle="http://transaction.example.org/enc"
 env:role="http://www.w3.org/2002/06/soap-envelope/role/
ultimateReceiver"
 env:mustUnderstand="true">
 decd7461-4ef2138d-7b52e370-fed8a006-ca7ea17
 </tx:transaction-id>
</env:Header>

Figure 3-9 The mustUnderstand attribute.

The SOAP specification states that SOAP senders should not
generate, but SOAP receivers must accept the SOAP mus-
tUnderstand attribute information item with a value of "false" or
"0". That is, a SOAP message should contain the literal values
“true” and “false” in mustUnderstand attributes, not the charac-
ters “1” and “0”.

Ch03.fm Page 80 Monday, October 20, 2003 1:28 PM

SOAP Messages 81

The encodingStyle Attribute

The encodingStyle attribute is used to declare how the contents of a header block
were created. Knowing this information allows a recipient of the header to decode the informa-
tion it contains. SOAP allows many encoding schemes and provides one of its own as an
optional part of the spec. However, we will not dwell on such matters since this attribute is used
not only in header blocks but in the body as well, and is covered in much more depth later in this
chapter.

SOAP Body
In contrast to the intricacies of the SOAP header space, the body section of a SOAP enve-

lope is straightforward, being simply a container for XML application payload. In fact the SOAP
specification states “[T]his specification mandates no particular structure or interpretation of
these elements, and provides no standard means for specifying the processing to be done.” In our
example in Figure 3-5, the application content housed by the SOAP Body consists of two ele-
ments that are interpreted as commands to debit and credit a bank account, which collectively
amount to a funds transfer. The only constraints the SOAP specification places on the SOAP
body are that it is implicitly targeted at the ultimateRecipient of the application content
and that the ultimate recipient must understand its contents.

SOAP Faults
By contrast to its standard role as the simple carrier of application payload, the SOAP

Body also acts in a far more interesting way as the conduit for propagating exceptions between
the parties in a Web services application. The SOAP Fault is a reserved element predefined by
the SOAP specification whose purpose is to provide an extensible mechanism for transporting
structured and unstructured information about problems that have arisen during the processing
of SOAP messages or subsequent application execution. Since the fault mechanism is predefined
by the SOAP specification, SOAP toolkits are able to use this mechanism as a standard mecha-
nism for distributed exception handling.

The SOAP Fault element belongs to the same namespace as the SOAP Envelope and
contains two mandatory child elements: Code and Reason, and three optional elements:
Node, Role, and Detail. An example of a SOAP Fault is shown in Figure 3-10 below. The
fault is generated in response to the message shown in Figure 3-5 where the message conveyed
information on a bank account cash transfer. To understand precisely what has caused the fault,
we must understand each of the elements of which it is composed.

The first child element of the Fault is the Code element, which contains two subele-
ments: a mandatory element called Value and an optional element called Subcode. The
Value element can contain any of a small number of fault codes as qualified names (some-

Ch03.fm Page 81 Monday, October 20, 2003 1:28 PM

82 Chapter 3 • SOAP and WSDL

times abbreviated to QName) from the http://www.w3.org/2002/06/soap-enve-
lope namespace, as per Figure 3-11, where each QName identifies a reason why the fault was
generated.

In Figure 3-10 the contents of the env:Value element is env:Receiver (shown in
Figure 3-12), which tells us that it was the SOAP node at the end of the message path (the
receiver) that generated the fault and not an intermediate node dealing with the transaction
header block.

As shown in Figure 3-13, the Subcode element contains a Value element that gives
application-specific information on the fault through the qualified name bank:bad-
account. This QName has significance only within the scope of the application that issued it,
and as such the Subcode mechanism provides the means for propagating finely targeted appli-
cation-level exception messages.

<?xml version="1.0" ?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope"
 xmlns:bank="http://bank.example.org">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Receiver</env:Value>
 <env:Subcode>
 <env:Value>bank:bad-account</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason lang="en-UK">
 The specified account does exist at this branch
 </env:Reason>
 <env:Detail>
 <err:myfaultdetails
 xmlns:err= "http://bank.example.org/fault">
 <err:invalid-account-sortcode>
 <bank:sortcode>
 10-11-12
 </bank:sortcode>
 <bank:account>
 12345678
 </bank:account>
 </err:invalid-account-sortcode >
 </err:myfaultdetails>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Figure 3-10 An example SOAP fault.

Ch03.fm Page 82 Monday, October 20, 2003 1:28 PM

SOAP Messages 83

<env:Fault>
 <env:Code>
 <env:Value>env:Receiver</env:Value>

Figure 3-12 Identifying the faulting SOAP node.

<env:Subcode>
 <env:Value>bank:bad-account</env:Value>
</env:Subcode>

Figure 3-13 Application-specific fault information.

Figure 3-11 SOAP fault codes.

Fault Code Description

VersionMismatch Occurs when SOAP infrastructure has detected mutually
incompatible implementations based on different versions
of the SOAP specification.

MustUnderstand Issued in the case where a SOAP node has received a
header block has with its mustUnderstand attribute
set to true, but does not have the capability to correctly
process that header block – that is, it does not understand
the protocol with which that header block is associated.

DataEncodingUnknown Arises when the content of either a header or body block
is encoded according to a schema that the SOAP node
reporting the fault does not understand.

Sender Occurs when the sender propagated a malformed
message, including messages with insufficient data to
enable the recipient to process it. It is an indication that
the message is not to be resent without change.

Receiver Generated when the recipient of the SOAP message could
not process the message content because of some
application failure. Assuming the failure is transient,
resending the message later may successfully invoke
processing.

Ch03.fm Page 83 Monday, October 20, 2003 1:28 PM

84 Chapter 3 • SOAP and WSDL

Though it isn’t used in this fault, the Subcode element also makes the SOAP fault mech-
anism extensible. Like the Code element, the Subcode element also contains a mandatory
Value child element and an optional Subcode element, which may contain further nested
Subcode elements. The Value element of any Subcode contains a qualified name that con-
sists of a prefix and a local name that references a particular QName within the application-level
XML message set.

The Reason element associated with a Code is used to provide a human readable expla-
nation of the fault, which in Figure 3-10 tells us that “The specified account does
not exist at this branch”. SOAP toolkits often use the contents of the Reason ele-
ment when throwing exceptions or logging failures to make debugging easier. However, the
Reason element is strictly meant for human consumption and it is considered bad practice to
use its content for further processing.

The optional Node element provides information on which node in the SOAP message’s path
caused the fault. The content of the Node element is simply the URI of the node where the problem
arose. In Figure 3-10 we do not have a Node element because it is the ultimate recipient of the mes-
sage that caused the fault, and clearly the sender of the message already knows the URI of the recip-
ient. However if, for example, an intermediate node dealing with the transactional aspects of the
transfer failed, then we would expect that the Node element would be used to inform us of the inter-
mediary’s failure (and as we shall see, we would not expect a Detail element).

The Node element is complemented by the also optional Role element that provides
information pertaining to what the failing node was doing at the point at which it failed. The
Role element carries a URI that identifies the operation (usually some Web services standard)
and that the party resolving the fault can use to determine what part of the application went
wrong. Thus, the combination of Node and Role provides valuable feedback on exactly what
went wrong and where.

The SOAP Detail element, as recapped in Figure 3-14, provides in-depth feedback on
the fault if that fault was caused as a by-product of processing the SOAP Body.

<env:Detail>
 <err:myfaultdetails
 xmlns:err= "http://bank.example.org/fault">
 <err:invalid-account-sortcode>
 <bank:sortcode>
 10-11-12
 </bank:sortcode>
 <bank:account>
 12345678
 </bank:account>
 </err:invalid-account-sortcode >
 </err:myfaultdetails>
</env:Detail>

Figure 3-14 Fault detail in an application-specific form.

Ch03.fm Page 84 Monday, October 20, 2003 1:28 PM

SOAP Encoding 85

The presence of the Detail element provides information on faults arising from the
application payload (i.e., the Body element had been at least partially processed by the ultimate
recipient), whereas its absence indicates that the fault arose because of out-of-band information
carried in header blocks. Thus we would expect that if a Detail block is present, as it is in Fig-
ure 3-10 and Figure 3-11, the Node and Role elements will be absent and vice versa.

The contents of the Detail element are known as detail entries and are application-spe-
cific and consist of any number of child elements. In Fault detail in an application-specific form.
we see the invalid-account-sortcode element which describes the fault is some appli-
cation specific fashion.

SOAP Encoding
The encodingStyle attribute appears in both header blocks and the body element of a SOAP
message. As its name suggests, the attribute conveys information about how the contents of a
particular element are encoded. At first this might seem a little odd since the SOAP message is
expressed in XML. However, the SOAP specification is distinctly hands-off in specifying how
header and body elements (aside from the SOAP Fault element) are composed, and defines
only the overall structure of the message. Furthermore, XML is expressive and does not con-
strain the form of document a great deal and, therefore, we could imagine a number of different
and mutually uninteroperable ways of encoding the same data, for example:
<account>
 <balance>
 123.45
 </balance>
</account>
and <account balance="123.45"/>
might both be informally interpreted in the same way by a human reader but would not be con-
sidered equivalent by XML processing software. Ironically, this is one of the downfalls of
XML—it is so expressive that, given the chance, we would all express ourselves in completely
different ways. To solve this problem, the encodingStyle attribute allows the form of the
content to be constrained according to some schema shared between the sender and recipient.

One potential drawback is that senders and receivers of messages may not share sche-
mas—indeed the senders and receivers may be applications that do not deal with XML at all—
and thus the best intentions of a SOAP-based architecture may be laid to waste. To avoid such
problems, the SOAP specification has its own schema and rules for converting application-level
data into a form suitable for embedding into SOAP messages. This is known as SOAP Encoding,
and is associated with the namespace env:encodingStyle="http://www.w3.org/
2002/06/soap-encoding".

Ch03.fm Page 85 Monday, October 20, 2003 1:28 PM

86 Chapter 3 • SOAP and WSDL

The rules for encoding application data as SOAP messages are captured in the SOAP spec-
ification as the SOAP Data Model. This is a straightforward and concise part of the specification
that describes how to reduce data structures to a directed, labeled graph. While it is outside of
the scope of this book to detail the SOAP Data Model, the general technique is shown in Figure
3-15. This SOAP encoding example, highlights the fact that there are two aspects to the encod-
ing. The first of these is to transform a data structure from an application into a form suitable for
expressing in XML via the rules specified in the SOAP Data Model. The other aspect is to
ensure that all the data in the subsequent XML document is properly constrained by the SOAP
schema. It is worth noting that SOAP provides low entry point through SOAP encoding since a
SOAP toolkit will support the serialization and deserialization of arbitrary graphs of objects via
this model, with minimal effort required of the developer. In fact, coupled with the fact that
SOAP has a packaging mechanism for managing message content, and a means (though SOAP
encoding) of easily creating message content we are close to having an XML-based Remote Pro-
cedure Call mechanism.

Figure 3-15 SOAP encoding application-level objects.

Ch03.fm Page 86 Monday, October 20, 2003 1:28 PM

SOAP RPC 87

SOAP RPC
As it happens, the SOAP specification is useful straight “out of the box.” The fact that it provides
both a message format and marshalling naturally supports RPC, and indeed millions of develop-
ers worldwide will by now have seen how easy it is to run SOAP RPC-based Web services on a
myriad of platforms. It’s probably not the case that SOAP RPC will be the dominant paradigm
for SOAP in the long term, but it is easy to achieve results with SOAP RPC quickly because all
the major toolkits support it and RPC is a pattern many developers are familiar with.

SOAP RPC provides toolkits with a convention for packaging SOAP-encoded messages
so they can be easily mapped onto procedure calls in programming languages. To illustrate, let’s
return to our banking scenario and see how SOAP RPC might be used to expose account man-
agement facilities to users. Bear in mind throughout this simple example that it is an utterly inse-
cure instance whose purpose is to demonstrate SOAP RPC only.

Figure 3-16 shows a simple interaction between a Web service that offers the facility to
open bank accounts and a client that consumes this functionality on behalf of a user. The Web
service supports an operation called openAccount(…) which it exposes through a SOAP
server and advertises as being accessible via SOAP RPC (SOAP does not itself provide a means
of describing interfaces, but as we shall see later in the chapter, WSDL does). The client inter-

Note that although SOAP RPC has enjoyed some prominence in
older Web services toolkits, there is a majority consensus of
opinion in the Web services community that more coarse-
grained, document-oriented interactions should be the norm
when using SOAP.

Figure 3-16 Interacting with a banking service via SOAP RPC.

Ch03.fm Page 87 Monday, October 20, 2003 1:28 PM

88 Chapter 3 • SOAP and WSDL

acts with this service through a stub or proxy class called Bank which is toolkit-generated
(though masochists are free to generate their own stubs) and deals with the marshalling and un-
marshalling of local variables into SOAP RPC messages.

In this simple use case, the SOAP on the wire between the client and Web service is simi-
larly straightforward. Figure 3-17 shows the SOAP RPC request sent from the client to the Web
service:

There is nothing particularly surprising about the RPC request presented in Figure 3-17.
As per the RPC specification, the content is held entirely within the SOAP body (SOAP RPC
does not preclude the use of header blocks, but they are unnecessary for this example), and the
name of the element (openAccount) matches the name of the method to be called on the Web
service. The contents of the bank:openAccount correspond to the parameters of the open-
Account method shown in Figure 3-16, with the addition of the xsi:type attribute to help
recipients of the message to convert the contents of each parameter element to the correct kind
of variable in specific programming languages. The response to the original request follows a
slightly more intricate set of rules and conventions as shown in Figure 3-18.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope">
 <env:Body>
 <bank:openAccount env:encodingStyle=
 "http://www.w3.org/2002/06/soap-encoding"
 xmlns:bank="http://bank.example.org/account"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <bank:title xsi:type="xs:string">
 Mr
 </bank:title>
 <bank:surname xsi:type="xs:string">
 Bond
 </bank:surname>
 <bank:firstname xsi:type="xs:string">
 James
 </bank:firstname>
 <bank:postcode xsi:type="xs:string">
 S1 3AZ
 </bank:postcode>
 <bank:telephone xsi:type="xs:string">
 09876 123456
 </bank:telephone>
 </bank:openAccount>
 </env:Body>
</env:Envelope>

Figure 3-17 A SOAP RPC request.

Ch03.fm Page 88 Monday, October 20, 2003 1:28 PM

SOAP RPC 89

The SOAP RPC response is slightly more complex and interesting than the request, and
there are two noteworthy aspects of the SOAP RPC response. The first is that by convention the
name of the response element is the same as the request element with Response appended (and
toolkits make use of this convention so it’s practically standard now).

The second interesting aspect is that the response is capable of matching the procedure
call semantics of many languages since it supports in, out, and in/out parameters as well as
return values where an “in” parameter sources a variable to the procedure call; an “out” parame-
ter sources nothing to the procedure but is populated with data at the end of the procedure call.
An “in/out” parameter does both, while a return value is similar to an out parameter with the
exception that its data may be ignored by the caller.

In this example, we have five “in” parameters (title, surname, first name, post code, and
telephone number) which we saw in the SOAP request and expect a single return value (account
number) which we see in the SOAP response. The return value is also interesting because, due to
its importance in most programming languages, it is separated from out and in/out parameters by
the addition of the rpc:result element that contains a QName that references the element
which holds the return value. Other elements which are not referenced are simply treated as out
or in/out parameters. This behavior is different from previous versions of SOAP where the return
value was distinguished by being first among the child elements of the response. This was recti-
fied for SOAP 1.2 because of the inevitable ambiguity that such a contrivance incurs—what hap-
pens when there is no return value?

Of course in a textbook example like this, everything has worked correctly and no prob-
lems were encountered. Indeed, you would be hard pressed to find a reader who would enjoy a
book where the examples were a set of abject failures. However, like paying taxes and dying,
computing systems failures seem inevitable. To cover those cases where things go wrong, SOAP

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope">
 <env:Body>
 <bank:openAccountResponse env:encodingStyle=
 "http://www.w3.org/2002/06/soap-encoding" xmlns:rpc=
 "http://www.w3.org/2002/06/soap-rpc" xmlns:bank=
 "http://bank.example.org/account" xmlns:xs=
 "http://www.w3.org/2001/XMLSchema" xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance">
 <rpc:result>bank:accountNo</rpc:result>
 <bank:accountNo xsi:type="xsd:int">
 10000014
 </bank:accountNo>
 </bank:openAccountResponse>
 </env:Body>
</env:Envelope>

Figure 3-18 A SOAP RPC response.

Ch03.fm Page 89 Monday, October 20, 2003 1:28 PM

90 Chapter 3 • SOAP and WSDL

RPC takes advantage of the SOAP fault mechanism with a set of additional fault codes (whose
namespace is http://www.w3.org/2002/06/soap-rpc), which are used in preference
to the standard SOAP fault codes in RPC-based messages shown in Figure 3-19, in decreasing
order of precedence.

Finally, in Figure 3-20 we see a SOAP RPC fault in action where a poorly constructed cli-
ent application has tried to invoke an operation on the bank Web service, but has populated its
request message with nonsense. In this figure, the bank Web service responds with a SOAP RPC
fault that identifies the faulting actor (the sender) as part of the Code element. It also describes
what the faulting actor did wrong (sent bad arguments) by specified the QName rpc:BadAr-
guments as part of the subcode element. It also contains some human-readable information
to aid debugging (missing surname parameter), in the Reason element.

Figure 3-19 SOAP RPC faults.

Fault SOAP Encoding for Fault

Transient fault at receiver (e.g.
out of memory error).

Fault with value of env:Receiver should be
generated.

Receiver does not understand
data encoding (e.g. encoding
mechanism substantially
different at sender and
receiver)

A fault with a Value of
env:DataEncodingUnknown for Code
should be generated.

The service being invoked does
not expose a method matching
the name of the RPC element.

A fault with a Value of env:Sender for
Code and a Value of
rpc:ProcedureNotPresent for Subcode
may be generated.

The receiver cannot parse the
arguments sent. There may be
too many or too few
arguments, or there may be
type mismatches.

A fault with a Value of env:Sender for
Code and a Value of rpc:BadArguments
for Subcode must be generated.

Ch03.fm Page 90 Monday, October 20, 2003 1:28 PM

Using Alternative SOAP Encodings 91

Using Alternative SOAP Encodings
Of course some applications already deal with XML natively, and there are currently XML-
based vocabularies in use today supporting a plethora of B2B applications. SOAP-based mes-
saging can take advantage of the pre-existence of schemas to craft message exchanges that com-
pliment existing systems using so-called document-style SOAP.

The way in which alternative SOAP encodings are handled is straightforward. Instead of
encoding header or body content according to the SOAP Data Model, we simply encode accord-
ing to the rules and constraints of our data model and schema. In essence, we can just slide our
own XML documents into a SOAP message, providing we remember to specify the encod-
ingStyle attribute (and of course ensuring that the intended recipients of the message can
understand it). This style of SOAP encoding is known as literal style and naturally suits the
interchange of business-level documents based on their existing schemas.

This is a definite boon to SOAP use and by our estimation, the future dominant paradigm
for SOAP use. Its plus points include not only the ability to re-use existing schemas, but by dint
of the fact that we are now dealing with message exchanges and not remote procedure calls, we
are encouraged to design Web service interactions with much coarser granularity. In essence, we
are changing from a fine-grained model that RPC encourages (you send a little bit of data, get a
little bit back and make further calls until your business is completed), to a much coarser-grained
model where you send all the data necessary to get some business process done at the recipient
end, and expect that the recipient may take some time before he gets back to you with a com-
plete answer.

<?xml version="1.0"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope"
 xmlns:rpc="http://www.w3.org/2002/06/soap-rpc">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>rpc:BadArguments</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 Missing surname parameter
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>

Figure 3-20 A SOAP RPC fault.

Ch03.fm Page 91 Monday, October 20, 2003 1:28 PM

92 Chapter 3 • SOAP and WSDL

Of course, we don’t necessarily get something for nothing. The price that we must pay as
developers is that we must write the code to deal with the encoding schemes we choose. In the
SOAP RPC domain where the encoding is fixed and the serialization from application-level data
structure to XML is governed by the SOAP Data Model, toolkits could take care of much of this
work. Unfortunately, when we are working with our own schemas, we cannot expect SOAP tool-
kits to be able to second-guess its semantics and, thus, we have to develop our own handler code
to deal with it, as shown in Figure 3-21.

One particularly apt view of the fine- versus coarse-grained view
of Web services interactions is that of a phone call versus a fac-
simile transmission.4 Where we interact with a business over the
phone there is a great deal of back-and-forth between ourselves
and the agent of the business to whom we are talking. We both
have to establish contexts and roles for each other, and then
enter into a socially and linguistically complex conversation to get
business transacted. Small units of data are exchanged like
“color” and “amount” that are meaningless without the context,
and if the call is lost we have to start over. This is fine-grained
interaction.

While we would not seek to undermine the value of good old
human-to-human communication, sometimes we just don’t have
time for this. It’s even worse for our computing systems to have to
communicate this way since they don’t get any of the social plea-
sures of talking to each other. A better solution is often to obtain a
catalog or brochure for the business that we want to trade with.
When we have the catalog, we can spend time pouring over the
contents to see what goods or services we require. Once we are
certain of what we want, we can just fill in and fax the order form
to the company and soon our products arrive via postal mail.

This system is eminently preferable for business processes
based on Web services. For a start, complex and meaningful
data was exchanged that does not rely on context. A catalog and
an order form are descriptive enough to be universally under-
stood and the frequency of data exchange was low, which pre-
sents less opportunity for things to go astray. This system is also
loosely coupled when the systems are not directly communicat-
ing (which only happens twice: once for catalog delivery and
once while the order is being faxed). They are not affected by one
another and do not tie up one another’s resources—quite the
contrary to the telephone-based system.

4 See “The 7 Principles of Web Services Business Process Management” at http://www.iona.com/white-
papers/Principles-of-Web-Services-and-BPM.pdf

Ch03.fm Page 92 Monday, October 20, 2003 1:28 PM

Using Alternative SOAP Encodings 93

The user-defined handler in Figure 3-21 is one of potentially many handlers deployed onto
the SOAP server to provide the functionality to deal with SOAP messages encoded with arbi-
trary schemas. Where the SOAP RPC handler simply dispatches the contents of the SOAP RPC
messages it receives to appropriate method calls, there are no such constraints on a Web service
which uses document-style SOAP. One valid method would be to simply pick out the important
values from the incoming document and use them to call a method, just like the SOAP RPC han-
dler. However, as more enterprises become focused on XML as a standard means for
transporting data within the enterprise boundary, it is more likely that the contents of the SOAP
body will flow directly onto the intranet. Once delivered to the intranet, the messages may be
transformed into proprietary XML formats for inclusion with in-house applications, or may be
used to trigger business processes without the need to perform the kind of marshalling/unmar-
shalling required for SOAP RPC.

Note that irrespective of whether the application payload in
SOAP messages is SOAP-encoded, or encoded according to a
third-party schema, the way that header blocks are used to con-
vey out-of-band information to support advanced Web services
protocols is unaffected. Headers are an orthogonal issue to the
application-level content.

Figure 3-21 Document-oriented SOAP processing.

Ch03.fm Page 93 Monday, October 20, 2003 1:28 PM

94 Chapter 3 • SOAP and WSDL

Document, RPC, Literal, Encoded
Much of the confusion in understanding SOAP comes from the fact that several of the key terms
are overloaded. For example, both SOAP RPC (meaning the convention for performing remote
procedure calls via SOAP) and RPC style are both valid pieces of SOAP terminology. In this
section we clarify the meaning of each of these terms so they do not cause further confusion as
we begin discussing WSDL.

Document
Document-style SOAP refers to the way in which the application payload is hosted within

the SOAP Body element. When we use document style, it means the document is placed
directly as a child of the Body element, as shown on the left in Figure 3-22, where the applica-
tion content is a direct child of the <soap:Body> element.

RPC
RPC-style SOAP wraps the application content inside an element whose name can be used

to indicate the name of a method to dispatch the content to. This is shown on the right-hand side
of Figure 3-22, where we see the application content wrapped <m:purchase> element.

Figure 3-22 Document, RPC, Literal, and Encoded SOAP messages.

Document RPC

L
i
t
e
r
a
l

<soap:Body>
 <inv:invoice ...>
 <inv:orderNo ...
 </inv:invoice>
</soap:Body>

<soap:Body>
 <m:purchase>
 <inv:invoice ...>
 <inv:orderNo ...
 </inv:invoice>
 </m:purchase>
</soap:Body>

E
n
c
o
d
e
d

<soap:Body>
 <ns1:invoice>
 <ns1:orderNo...
 </ns1:invoice>
</soap:Body>

<soap:Body>
 <m:purchase>
 <ns1:invoice>
 <ns1:orderNo...
 </ns1:invoice>
 </m:purchase>
</soap:Body>

Ch03.fm Page 94 Monday, October 20, 2003 1:28 PM

SOAP, Web Services, and the REST Architecture 95

Literal
Literal SOAP messages use arbitrary schemas to provide the meta-level description (and

constraints) of the SOAP payload. Thus when using literal SOAP, we see that it is akin to taking
an instance document of a particular schema and embedding it directly into the SOAP message,
as shown at the top of Figure 3-22.

Encoded
SOAP-encoded messages are created by transforming application-level data structures via

the SOAP Data Model into a XML format that conforms to the SOAP Schema. Thus, encoded
messages tend to look machine-produced and may not generally resemble the same message
expressed as a literal. Encoded messages are shown at the bottom of Figure 3-22.

SOAP RPC and SOAP Document-Literal
The SOAP specification provides four ways in which we could package SOAP messages,

as shown in Figure 3-22. However, in Web services we tend to use only two of them: SOAP
encoded-rpc (when combined with a request-response protocol becomes the SOAP RPC con-
vention) and SOAP document-literal.

Document-literal is the preferred means of exchanging SOAP messages since it just pack-
ages application-level XML documents into the SOAP Body for transport without placing any
semantics on the content.

As we have previously seen, with SOAP RPC the implied semantics are that the first child
of the SOAP Body element names a method to which the content should be dispatched.

The remaining two options, document-encoded and rpc-literal, are seldom used since they
mix styles to no great effect. Encoding documents is pointless if we already have schemas that
describe them. Similarly, wrapping a document within a named element is futile unless we are
going to use that convention as a remote procedure call mechanism. Since we already have
SOAP RPC, this is simply a waste of effort.

SOAP, Web Services, and the REST
Architecture

The World Wide Web (WWW) is unquestionably the largest and, by implication, the most scal-
able distributed system ever built. Though its original goal of simple content delivery was mod-
est, the way that the Web has scaled is nothing short of miraculous.

Given the success of the Web, there is a body of opinion involved in designing the funda-
mental Web services architecture (that includes the SOAP specification) for which the means to

Ch03.fm Page 95 Monday, October 20, 2003 1:28 PM

96 Chapter 3 • SOAP and WSDL

achieving the same level of application scalability through Web services mirrors that of content
scalability in the WWW.

The members of this group are proponents of the REST (REpresentational State Transfer)
architecture, which it is claimed is “Web-Friendly.” The REST architecture sees a distributed
system as a collection of named resources (named with URIs) that support a small set of com-
mon verbs (GET, PUT, POST, DELETE) in common with the WWW.

What this means to the SOAP developer is that certain operations involving the retrieval of
data without changing the state of a Web resource should be performed in a manner that is har-
monious with the Web. For example, imagine that we want to retrieve the balance of our account
from our bank Web service. Ordinarily we might have thought that something like that shown in
Figure 3-23 would be ideal. If this message was sent as part of a HTTP POST, then it would be
delivered to the SOAP server, which would then extract the parameters and deliver the results
via the getBalanceResponse message.

The REST idea of defining global methods is similar to the UNIX
concept of pipelining programs. UNIX programs all have three
simple interfaces defined (STDIN, STDOUT, STDERR) for every
program, which allows any two arbitrary programs to interact.
The simplicity of REST as compared to custom network inter-
faces is analogous to the simplicity of UNIX pipelines vs. writing a
custom application to achieve the same functionality. REST
embraces simplicity and gains scalability as a result. The Web is
a REST system, and the generic interfaces in question are com-
pletely described by the semantics of HTTP.5

<?xml version="1.0" ?>
<env:Envelope
 xmlns:env="http://www.w3.org/2002/06/soap-envelope" >
 <env:Body>
 <bank:getBalance
 env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
 xmlns:bank="http://bank.example.org/">
 <bank:accountNo>
 12345678
 </bank:accountNo>
 </bank:getBalance>
 </env:Body>
</env:Envelope>

Figure 3-23 A "Web-Unfriendly" message.

5. See RESTwiki, http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage

Ch03.fm Page 96 Monday, October 20, 2003 1:28 PM

Looking Back to SOAP 1.1 97

However, this is now discouraged by the SOAP specification and instead we are encour-
aged to use HTTP directly to retrieve the information, rather than “tunneling” SOAP through
HTTP to get the information. A “Web-friendly” equivalent of Figure 3-23 is shown in Figure
3-24 where the HTTP request directly identifies the information to be retrieved and informs
the Web service that it wants the returned information delivered in SOAP format.

Figure 3-24 is certainly Web friendly since it uses the Web’s application protocol (HTTP).
However, there are a number of obstacles that have not yet been overcome at the time of writing
that may prove detrimental to this approach:

1. A service may be exposed over other protocols than HTTP (e.g., SMTP that does not
support the GET verb).

2. This scheme cannot be used if there are intermediate nodes that process SOAP header
blocks.

3. There is no guidance yet provided by the SOAP specification authors on how to turn an
RPC definition into its Web-friendly format.

4. Too much choice for little gain since we have to support the “Web-Unfriendly”
approach anyway for those interactions that require the exchange of structured data.

While these techniques may yet come to fruition, it may be a long time before resolution is
reached. When architecting applications today, the best compromise that we can offer is to be
aware of those situations where you are engaged in pure information retrieval, and ensure that
your architecture is extensible enough to change to a Web-friendly mechanism for those interac-
tions tomorrow. Make sure the code that deals with Web services interactions is modular enough
to be easily replaced by Web-friendly modules when the W3C architectural recommendations
become more specific.

Looking Back to SOAP 1.1
While Web services will migrate toward SOAP 1.2 in the near future, the most prevalent Web
services technology today is the now deprecated SOAP 1.1. Although there isn’t a great deal that
has changed between the two revisions, there are some caveats we must be aware of when deal-
ing with SOAP 1.1-based systems. To ensure that the work we’ve invested in understanding

GET /account?no=12345678 HTTP/1.1
Host: bank.example.org
Accept: application/soap+xml

Figure 3-24 A "Web-Friendly" message.

Ch03.fm Page 97 Monday, October 20, 2003 1:28 PM

98 Chapter 3 • SOAP and WSDL

SOAP 1.2 isn’t lost on SOAP 1.1 systems, we shall finish our coverage of SOAP with a set of
notes that should make our SOAP 1.2 knowledge backwardly compatible with SOAP 1.1.6

Syntactic Differences between SOAP 1.2 and SOAP 1.1

• SOAP 1.2 does not permit any element after the body. The SOAP 1.1 schema definition
allowed for such a possibility, but the textual description is silent about it. However, the
Web Services Interoperability Organization (WS-I) has recently disallowed this
practice in its basic profile and as such we should now consider that no elements are
allowed after the SOAP body, since any other interpretation will hamper
interoperability.

• SOAP 1.2 does not allow the encodingStyle attribute to appear on the SOAP
Envelope, while SOAP 1.1 allows it to appear on any element.

• SOAP 1.2 defines the new Misunderstood header element for conveying
information on a mandatory header block that could not be processed, as indicated by
the presence of a mustUnderstand fault code. SOAP 1.1 provided the fault code,
but no details on its use.

• In the SOAP 1.2 infoset-based description, the mustUnderstand attribute in header
elements takes the (logical) value true or false while in SOAP 1.1 they are the
literal value 1 or 0, respectively.

• SOAP 1.2 provides a new fault code DataEncodingUnknown.
• The various namespaces defined by the two protocols are different.
• SOAP 1.2 replaces the attribute actor with role but with essentially the same

semantics.
• SOAP 1.2 defines two new roles, none and ultimateReceiver, together with a

more detailed processing model on how these behave.
• SOAP 1.2 has removed the dot notation for fault codes, which are now simply of the

form env:name, where env is the SOAP envelope namespace.
• SOAP 1.2 replaces client and server fault codes with Sender and Receiver.
• SOAP 1.2 uses the element names Code and Reason, respectively, for what is called
faultcode and faultstring in SOAP 1.1.

• SOAP 1.2 provides a hierarchical structure for the mandatory SOAP Code element,
and introduces two new optional subelements, Node and Role.

6. These notes are abridged from the SOAP 1.2. Primer document which can be found at: http://
www.w3.org/TR/2002/WD-soap12-part0-20020626/

Ch03.fm Page 98 Monday, October 20, 2003 1:28 PM

Looking Back to SOAP 1.1 99

Changes to SOAP-RPC
Though there was some feeling in the SOAP community that SOAP RPC has had its day

and should be dropped in favor of a purely document-oriented protocol, the widespread accep-
tance of SOAP RPC has meant that it persists in SOAP 1.2, but with a few notable differences:

• SOAP 1.2 provides a rpc:result element accessor for RPCs.
• SOAP 1.2 provides several additional fault codes in the RPC namespace.
• SOAP 1.2 allows RPC requests and responses to be modeled as both structs as well as

arrays. SOAP 1.1 allowed only the former construct.
• SOAP 1.2 offers guidance on a Web-friendly approach to defining RPCs where the

method’s purpose is purely a “safe” informational retrieval.

SOAP Encoding
Given the fact that SOAP RPC is still supported in SOAP 1.2 and that there have been

some changes to the RPC mechanism, some portions of the SOAP encoding part of the specifi-
cation have been updated to either better reflect the changes made to SOAP RPC in SOAP 1.2,
or to provide performance enhancements compared to their SOAP 1.1 equivalents.

• An abstract data model based on a directed edge-labeled graph has been formulated for
SOAP 1.2. The SOAP 1.2 encodings are dependent on this data model. The SOAP RPC
conventions are dependent on this data model, but have no dependencies on the SOAP
encoding. Support of the SOAP 1.2 encodings and SOAP 1.2 RPC conventions are
optional.

• The syntax for the serialization of an array has been changed in SOAP 1.2 from that in
SOAP 1.1.

• The support provided in SOAP 1.1 for partially transmitted and sparse arrays is not
available in SOAP 1.2.

• SOAP 1.2 allows the inline serialization of multi-ref values.
• The href attribute in SOAP 1.1 of type anyURI, is called ref in SOAP 1.2 and is of

type IDREF.
• In SOAP 1.2, omitted accessors of compound types are made equal to NILs.
• SOAP 1.2 provides several fault subcodes for indicating encoding errors.
• Types on nodes are made optional in SOAP 1.2.

While most of these issues are aimed at the developers of SOAP infrastucture, it is often
useful to bear these features in mind for debugging purposes, especially while we are in the
changeover period before SOAP 1.2 becomes the dominant SOAP version.

Ch03.fm Page 99 Monday, October 20, 2003 1:28 PM

100 Chapter 3 • SOAP and WSDL

WSDL
Having a means of transporting data between Web services is only half the story. Without inter-
face descriptions for our Web services, they are about as useful as any other undocumented
API—very little! While in theory we could simply examine the message schemas for a Web ser-
vice and figure out for ourselves how to interoperate with it, this is a difficult and error-prone
process and one which could be safely automated if Web services had recognizable interfaces.
Fortunately, WSDL provides this capability and more for Web services.

The Web Service Description Language or WSDL—pronounced “Whiz Dull”—is the
equivalent of an XML-based IDL from CORBA or COM, and is used to describe a Web ser-
vice’s endpoints to other software agents with which it will interact. WSDL can be used to spec-
ify the interfaces of Web services bound to a number of protocols including HTTP GET and
POST, but we are only interested in WSDL’s SOAP support here, since it is SOAP which we
consider to support the (logical) Web services network. In the remainder of this chapter we
explore WSDL and show how we can build rich interfaces for Web services that enable truly
dynamic discovery and binding, and show how WSDL can be used as the basis of other proto-
cols and extended to other domains outside of interface description.

WSDL Structure
A WSDL interface logically consists of two parts: the abstract parts that describe the operations
the Web service supports and the types of messages that parameterize those operations; and the
concrete parts that describe how those operations are tied to a physical network endpoint and
how messages are mapped onto specific carrier protocols which that network endpoint supports.
The general structure of a WSDL document is shown in Figure 3-25.

The foundation of any WSDL interface is the set of messages that the service behind the
interface expects to send and receive. A message is normally defined using XML Schema
types (though WSDL allows other schema languages to be used) and is partitioned into a num-
ber of logical parts to ease access to its contents.

Messages themselves are grouped into WSDL operation elements that have similar
semantics to function signatures in an imperative programming language. Like a function signa-
ture, an operation has input, output, and fault messages where WSDL supports at most a single
input and output message, but permits the declaration of an arbitrary number of faults.

The portType is where what we think of as a Web service begins to take shape. A
portType is a collection of operations that we consider to be a Web service. However, at this
point the operations are still defined in abstract terms, simply grouping sets of message
exchanges into operations.

The binding section of a WSDL interface describes how to map the abstractly defined
messages and operations onto a physical carrier protocol. Each operation from each port-
Type that is to be bound to a specific protocol (and thus ultimately be made available to the net-

Ch03.fm Page 100 Monday, October 20, 2003 1:28 PM

WSDL 101

work) is augmented with binding information from the binding part of the WSDL
specification—WSDL supports SOAP, HTTP GET and POST, and MIME—to provide a proto-
col-specific version of the original portType declaration.

Finally, a port is declared that references a particular binding, and along with address-
ing information is wrapped together into a service element to form the final physical, net-
work addressable Web service.

Figure 3-25 WSDL structure.

Ch03.fm Page 101 Monday, October 20, 2003 1:28 PM

102 Chapter 3 • SOAP and WSDL

As we saw in Figure 3-25, the abstract components of a WSDL description are the
types, message, and portType elements, while the concrete elements are binding and
service.

The split between abstract and concrete is useful, because it allows us to design interfaces
in isolation from eventual deployment environments, using only the abstract definitions in
WSDL. Once we are happy with the abstract aspects of the Web service interface, we can then
write the concrete parts to tie the service down to a specific location, accessible over a specific
protocol.

The Stock Quote WSDL Interface
Having seen WSDL from a theoretical perspective, we can concretize that theory by con-

sidering a specific example. The classic Web services application is the stock ticker example
where a Web service provides stock quotes on request. Throughout the remainder of this discus-
sion, we shall use a simple Web service which supports a single operation that has an equivalent
signature to the following C# code:

double GetStockQuote(string symbol);

We examine WSDL stage by stage and show how we can turn this simple method signa-
ture into a true Web service interface.

Definitions
The opening element of any WSDL document is definitions, which is the parent for

all other elements in the WSDL document. As well as acting as a container, the definitions
element is also the place where global namespace declarations are placed.

A typical WSDL definitions element takes the form shown in Figure 3-26, where the
element declares the target namespace of the document, a corresponding prefix for that
namespace, and a namespace prefix for the WSDL namespace (or alternatively it is also com-
mon to use the WSDL namespace as the default namespace for the whole document). Other

<wsdl:definitions
 targetNamespace="http://stock.example.org/wsdl"
 xmlns:tns="http://stock.example.org/wsdl"
 xmlns:stockQ="http://stock.example.org/schema"
 xmlns:wsdl="http://www.w3.org/2003/02/wsdl">
 <!-- Remainder of WSDL description omitted -->
</wsdl:definitions>

Figure 3-26 The WSDL definitions element.

Ch03.fm Page 102 Monday, October 20, 2003 1:28 PM

WSDL 103

namespaces may also be declared at this scope, or may be declared locally to their use within the
rest of the document. Good practice for declaring namespaces to WSDL documents is to ensure
the namespaces that are required for the abstract parts of the document are declared at this level,
while namespaces required for the concrete parts of a WSDL document (like the bindings sec-
tion) are declared locally to make factoring and management of WSDL documents easier.

The Types Element
The types element is where types used in the interface description are defined, usually in

XML Schema types, since XML Schema is the recommended schema language for WSDL. For
instance in our simple stock quote Web service, we define types that represent traded stocks and
advertise those types as part of its WSDL interface as illustrated in Figure 3-27.

Before writing the types section, we first import some types declared by an external
schema that make the types within that schema available to this WSDL document to build on.
Those schema types (symbol and price) are used to create a new complex type (stock-
price) which the WSDL interface will use to advertise its associated Web service.

The orthodox view is to use XML Schema to provide constraints and type information in
Web services-based applications. However it is not necessarily the case that XML Schema is the
right choice for every application domain, particularly those domains that have already chosen a
different schema language on which to base their interoperability infrastructure. Recognizing
this requirement, WSDL 1.2 supports the notion of other schema languages being used in place
of the recommended XML Schema. Although the WSDL 1.2 specification does not provide as
wide coverage for other schema languages, it does allow for their use within WSDL interfaces.

<wsdl:definitions … >
 <wsdl:import namespace="http://stock.example.org/schema"
 location="http://stock.example.org/schema"/>
 <wsdl:types xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="stock-quote">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="symbol" ref="stockQ:symbol"/>
 <xs:element name="lastPrice" ref="stockQ:price"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- Other schema type definitions -->
 <wsdl:types>
</wsdl:definitions>

Figure 3-27 Defining types in a WSDL interface.

Ch03.fm Page 103 Monday, October 20, 2003 1:28 PM

104 Chapter 3 • SOAP and WSDL

Message Elements
Once we have our types, we can move on to the business of specifying exactly how con-

sumers can interact with the Web service. The message declarations compose the types that we
have defined (and those that we are borrowing from other schemas) into the expected input, out-
put and fault messages that the Web service will consume and produce. If we take our simple
stock ticker Web service as an example, we can imagine a number of messages the Web service
would be expected to exchange as shown in Figure 3-28.

As we see in Figure 3-28, a WSDL message declaration describes the (abstract) form of
a message that a Web service sends or receives. Each message is constructed from a number of
(XML Schema) typed part elements—which can come from the types part of the description
or an external schema that has been imported into the same WSDL document—and each
part is given a name to ease the insertion and extraction of particular information from a mes-
sage. The name given to a part is unconstrained by WSDL but it is good practice to make the
part name descriptive as one would when naming programming language variables.

In this example we have three possible messages: StockPriceRequestMessage,
StockPriceResponseMessage, and StockSymbolNotFoundMessage, each of
which carries some information having to do with stock prices and, because it is good practice to
do so, whose name is indicative of its eventual use in the Web service.

PortType Elements
A portType defines a collection of operations within the WSDL document. Each

operation within a portType combines input, output, and fault messages taken from a
set of messages like those defined in Figure 3-28.

In the example shown in Figure 3-29, the StockBrokerQueryPortType declares an
operation called GetStockPrice which is designed to allow users’ systems to ask for the
price of a particular equity.

The input to this operation is provided by a StockPriceRequestMessage message.
The contents of this message are understood by the implementing Web service, which formu-

<wsdl:message name="StockPriceRequestMessage">
 <wsdl:part name="symbol" element="stockQ:symbol"/>
</wsdl:message>
<wsdl:message name="StockPriceRespnseMessage">
 <wsdl:part name="price" element="stockQ:StockPriceType"/>
</wsdl:message>
<wsdl:message name="StockSymbolNotFoundMessage">
 <wsdl:part name="symbol" element="stockQ:symbol"/>
</wsdl:message>

Figure 3-28 The message elements.

Ch03.fm Page 104 Monday, October 20, 2003 1:28 PM

WSDL 105

lates a response in an output StockPriceRequestMessage message that contains the
details of the stock price for the equity requested.

Any exceptional behavior is returned to the caller through a fault called UnknownSym-
bolFault which is comprised from a StockSymbolNotFoundMessage message. Note
that portType fault declarations have an additional name attribute compared to input and out-
put messages, which is used to distinguish the individual faults from the set of possible faults
that an operation can support.

Of course not all operations are so orthodox with a single input, output, and fault message,
and so we have a variety of possible message exchange patterns described by the operation
declarations within a portType, as follows:

• Input-Output: When the input message is sent to the service, either the output message
is generated or one of the fault messages listed is generated instead.

• Input only: When a message is sent to the service, the service consumes it but does not
produce any output message or fault. As such no output message or fault declarations
are permitted in an operation of this type.

• Output-Input: The service generates the output message and in return the input message
or one of the fault messages must be sent back.

• Output-only: The service will generate an output message, but does not expect anything
in return. Fault messages are not allowed in this case.

Note that WSDL 1.2 changes the syntax of the portType declaration, renaming it
interface. It also supports a useful new feature in the form of the extends attribute, which
allows multiple interface declarations to be aggregated together and further extended to
produce a completely new interface. For example, consider the situation where our simple
stock Web service needs to evolve to support basic trading activities in addition to providing
stock quotes. Using the extends mechanism, a new interface can be created which pos-
sesses all of the operations from each interface that it extends, plus any additional opera-
tions the developer chooses to add to it as exemplified in Figure 3-30.

The only potential pitfall when extending an interface is where names clash. For
instance, an extending interface should take care not to call its operations by the same name

<wsdl:portType name="StockBrokerQueryPortType">
 <wsdl:operation name="GetStockPrice">
 <wsdl:input message="tns:StockPriceRequestMessage"/>
 <wsdl:output message="tns:StockPriceResponseMessage"/>
 <wsdl:fault name="UnknownSymbolFault"
 message="tns:StockSymbolNotFoundMessage"/>
</wsdl:portType>

Figure 3-29 Defining portType elements.

Ch03.fm Page 105 Monday, October 20, 2003 1:28 PM

106 Chapter 3 • SOAP and WSDL

as operations from any interface that it extends unless the operations are equivalent. Fur-
thermore, the designer of a new interface that extends multiple existing interface decla-
rations must take care to see that there are no name clashes between any of the interface
declarations as well as with the newly created interface.

 Bindings
The bindings element draws together the portType and operation elements into

a form suitable for exposing to the network. Bindings contain information that dictates how
the format of the abstract messages is mapped onto the features of a particular network-level
protocol.

While WSDL supports bindings for a number of protocols including HTTP GET and
POST, and MIME, we are primarily interested in the SOAP binding for our simple stock quote
portType from Figure 3-29, which is presented in Figure 3-31.

<wsdl:message name="BuyStockRequestMessage">
 <wsdl:part name="symbol" element="stockQ:symbol"/>
 <wsdl:part name="amount" element="xs:positiveInteger"/>
 <wsdl:part name="bid" element="stockQ:StockPriceType"/>
</wsdl:message>
<wsdl:message name="BuyStockResponseMessage">
 <wsdl:part name="symbol" element="stockQ:symbol"/>
 <wsdl:part name="amount" element="xs:positiveInteger"/>
 <wsdl:part name="price" element="stockQ:StockPriceType"/>
</wsdl:message>
<wsdl:message name="BidRejectedMessage">
 <wsdl:part name="symbol" element="stockQ:symbol"/>
 <wsdl:part name="amount" element="xs:positiveInteger"/>
 <wsdl:part name="bid" element="stockQ:StockPriceType"/>
 <wsdl:part name="asking" element="stockQ:StockPriceType"/>
</wsdl:message>

<wsdl:interface name="StockBrokerQueryPurchaseInterface"
 extends="tns:StockBrokerQueryInterface" >
 <wsdl:operation name="BuyStock">
 <wsdl:input message="tns:BuyStockRequestMessage"/>
 <wsdl:output message="tns:BuyStockRequestMessage"/>
 <wsdl:fault name="UnknownSymbolFault"
 message="tns:StockSymbolNotFoundMessage"/>
 <wsdl:fault name="BidRejectedFault"
 message="tns:BidRejectedMessage"/>
</wsdl:interface>

Figure 3-30 Extending interface definitions.

Ch03.fm Page 106 Monday, October 20, 2003 1:28 PM

WSDL 107

The binding shown in Figure 3-31 binds the abstract portType defined in Figure 3-29 to
the SOAP. It states how each of the message components of the operation defined in the
StockBrokerQueryPortType is mapped onto its SOAP equivalent.

Starting from the top, we see a name for the binding (which is later used to tie a binding to
a physical network endpoint) and the portType for which this binding is specified.

We then use elements from the WSDL SOAP binding specification to declare a binding
for SOAP document-style exchanges, which is expressed as the default mode for this binding
through the styleDefault="document" attribute. The encoding of the documents
exchanged is defined by the stock broker schema encodingStyleDefault="http://
stock.example.org/schema". The fact that the service uses document-style SOAP and
has its own schema means that it is a document-literal Web service.

Finall,y we see that the binding is for SOAP over the HTTP protocol as specified by the
transport="http://www.w3.org/2002/12/soap/bindings/HTTP/" attribute.
Each of these options is set as the default for the entire binding though both the style and
encoding can be changed, if necessary, on a per-message basis.

This binding contains a single operation, namely GetStockPrice, which maps each of
the input, output, and fault elements of the GetStockPrice operation from the StockBro-
kerQueryPortType to its SOAP on-the-wire format. The soapAction part of the opera-
tion binding is used to specify the HTTP SOAPAction header, which in turn can be used by
SOAP servers as an indication of the action that should be taken by the receipt of the message at
runtime—which usually captures the name of a method to invoke in a service implementation.

<wsdl:binding name="StockBrokerServiceSOAPBinding"
 type="tns:StockBrokerQueryPortType">
<soap:binding styleDefault="document"
 transport="http://www.w3.org/2002/12/soap/bindings/HTTP/"
 encodingStyleDefault="http://stock.example.org/schema" />
 <wsdl:operation name="GetStockPrice">
 <soap:operation
 soapAction="http://stock.example.org/getStockPrice"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault>
 <soap:fault name="StockSymbolNotFoundMessage"/>
 </wsdl:fault>
 </wsdl:operation>
</wsdl:binding>

Figure 3-31 A SOAP binding.

Ch03.fm Page 107 Monday, October 20, 2003 1:28 PM

108 Chapter 3 • SOAP and WSDL

The soap:body elements for both the wsdl:input and wsdl:output elements
provide information on how to extract or assemble the different messages inside the SOAP body.
Since we have chosen literal encoding and document style for our messages (via the
use="literal" and styleDefault="document" attribute), each part of a corre-
sponding message is simply placed as a child of the soap:body element of the SOAP enve-
lope. Had we been using RPC-style SOAP, then the direct child of the soap:body would be an
element with the same name as the operation, with each message part as a child, as per
SOAP RPC style, as contrasted with document style in Figure 3-32.7

Of course, the value of SOAP is not only that it provides a platform-neutral messaging for-
mat, but the fact that the mechanism is extensible through headers. To be of use in describing
SOAP headers, the WSDL SOAP binding has facilities for describing header content and behav-
ior. For example, imagine that the query operation for which we have already designed a SOAP
binding in Figure 3-31 evolves such that only registered users can access the service and must
authenticate by providing some credentials in a SOAP header block as part of an invocation. The
WSDL interface for the service obviously needs to advertise this fact to users’ applications or no
one will be able to access the service.

<!-- RPC style -->
<soap:body>
 <GetStockPrice xmlns:gsp="http://stock.example.org/wsdl"
 xmlns:stockQ="http://stock.example.org/schema">
 <stockQ:symbol>MSFT</stockQ:symbol>
 </GetStockPrice>
</soap:body>

<!-- Document style -->
<soap:body>
 <stockQ:symbol
 xmlns:stockQ="http://stock.example.org/schema">
 MSFT
 </stockQ:symbol>
</soap:body>

Figure 3-32 Example SOAP RPC-style “Wrapping” element.

Note that the WS-I basic profile has mandated that only mes-
sages defined with element can be used to create document-
oriented Web services, and messages defined with type cannot.

7. Note: this is not SOAP-encoded, just RPC-style (i.e., wrapped in an element that is named indicatively
of the method that the message should be dispatched to).

Ch03.fm Page 108 Monday, October 20, 2003 1:28 PM

WSDL 109

The WSDL fragment shown in Figure 3-33 presents a hypothetical soap:header decla-
ration within the wsdl:input element which mandates that a header matching the same
namespace as the userID message (as declared earlier in the document) is present, and will be
consumed by the ultimate receiver of the incoming SOAP message.

Correspondingly, a soap:headerfault element is present in the wsdl:output ele-
ment to report back on any faults that occurred while processing the incoming header. If a fault
does occur while processing the header, this soap:headerfault element identifies the
user’s signature that caused the problem. This information, which amounts to a “user unknown”
response, can then be used at the client end to perhaps prompt the end user to re-enter a pass
phrase.

Note that an error such as an incorrect signature is propagated back through the header
mechanism and not through the body, since the SOAP specification mandates that errors pertain-
ing to headers must be reported likewise through header blocks.

Services
The services element finally binds the Web service to a specific network-addressable loca-

tion. It takes the bindings declared previously and ties them to a port, which is a physical net-
work endpoint to which clients bind over the specified protocol.

Figure 3-34 shows a service description for our stockbroker example. It declares a service
called StockBrokerService, which it defines in terms of a port called StockBro-
kerServiceSOAPPort. The port is itself defined in terms of the StockBrokerSer-
viceSOAPBinding binding, which we saw in Figure 3-31, and is exposed to the network at
the address http://stock.example.org/ to be made accessible through the endpoint
specified at the soap:address element.

<wsdl:message name="UserID"
 targetNamespace="http://security.example.org/user">
 <wsdl:part name="signature" type="xs:string"/>
 <wsdl:part name="session" type="xs:anyURI"/>
</wsdl:message>

<wsdl:input>
 <soap:body use="literal"/>
 <soap:header use="literal" message="tns:UserIDMessage"/>
</wsdl:input>

<wsdl:output
 xmlns:sec="http://security.example.org/user">
 <soap:body use="literal"/>
 <soap:headerfault message="sec:UserID" part="signature"/>
</wsdl:output>

Figure 3-33 Describing SOAP headers.

Ch03.fm Page 109 Monday, October 20, 2003 1:28 PM

110 Chapter 3 • SOAP and WSDL

Managing WSDL Descriptions
While the service element is the final piece in the puzzle as far as an individual WSDL

document goes, that’s not quite the end of the story. For simple one-off Web services, we may
choose to have a single WSDL document that combines both concrete and abstract parts of the
interface. However, for more complex deployments we may choose to split the abstract parts
into a separate file, and join that with a number of different concrete bindings and services to
better suit the access pattern for those services.

For example, it may be the case that a single abstract definition (message, portType,
and operation declarations) might need to be exposed to the network via a number of proto-
cols, not just SOAP. It might also be the case that a single protocol endpoint might need to be
replicated for quality of service reasons or perhaps even several different organizations each
want to expose the same service as part of their Web service offerings. By using the WSDL
import mechanism, the same abstract definition of the service functionality can be used across
all of these Web services irrespective of the underlying protocol or addressing. This is shown in
Figure 3-35 where MIME, HTTP, and SOAP endpoints all share the same abstract functionality
yet expose that functionality to the network each in their own way. Additionally, the SOAP pro-
tocol binding has been deployed at multiple endpoints which can be within a single administra-
tive domain or spread around the whole Internet and yet each service, by dint of the fact that they
share the same abstract definitions, is equivalent.

If a WSDL description needs to include features from another WSDL description or an
external XML Schema file, then the import mechanism is used. It behaves in a similar fashion
to the XML Schema include feature where it can be used to include components from other
WSDL descriptions. We have already seen how the WSDL import mechanism is used in Figure
3-27 where the XML Schema types from the stockbroker schema were exposed to the stock
broking WSDL description, as follows:

 <wsdl:import namespace="http://stock.example.org/schema"
 location="http://stock.example.org/schema"/>

The import feature of WSDL means that a WSDL description can leverage existing XML
infrastructure—previously defined schemas for in-house documents, database schemas, existing Web
services, and the like—without having to reproduce those definitions as part of its own description.

<wsdl:service name="StockBrokerService">
 <wsdl:port name="StockBrokerServiceSOAPPort"
 binding="tns:StockBrokerServiceSOAPBinding">
 <soap:address
 location="http://stock.example.org/"/>
 </wsdl:port>
</wsdl:service>

Figure 3-34 A service element declaration.

Ch03.fm Page 110 Monday, October 20, 2003 1:28 PM

WSDL 111

Figure 3-35 Including abstract WSDL descriptions for concrete endpoints.

Ch03.fm Page 111 Monday, October 20, 2003 1:28 PM

112 Chapter 3 • SOAP and WSDL

Extending WSDL8

As Web services technology has advanced and matured, WSDL has begun to form the basis of
higher-level protocols that leverage the basic building blocks that it provides, to avoid duplica-
tion of effort. Many of the technologies that we are going to examine throughout this book
extend WSDL via such means to their own purpose. However, where SOAP offers header
blocks as its extensibility mechanism for higher-level protocols to use, WSDL offers extension
elements based on the XML Schema notion of substitution groups (see Chapter 2).
In the WSDL schema, several (abstract) global element declarations serve as the heads of substi-
tution groups. In addition, the WSDL schema defines a base type for use by extensibility ele-
ments as a helper to ensure that the necessary substitution groups are present in any extensions.
While it is outside the scope of this book to present the WSDL schema in full, there exists in the
schema extensibility elements which user-defined elements can use to place themselves at any
point within a WSDL definition. There are extensibility elements that allow extensions to
appear at global scope, within a service declaration, before the port declaration, in a mes-
sage element before any part declarations and any other point in a WSDL description, as
shown in Figure 3-36.

Figure 3-36 WSDL substitution group heads.

8. This section based on a draft version of the WSDL 1.2 specification.

Ch03.fm Page 112 Monday, October 20, 2003 1:28 PM

Using SOAP and WSDL 113

For example, the soap elements that we have seen throughout the bindings section of our
WDSL description are extensibility elements. In the schema for those elements, they have been
declared as being part of the substitution group bindingExt which allows them to legally
appear as part of the WSDL bindings section.

Additionally, third-party WSDL extensions may declare themselves as mandatory with the
inclusion of a wsdl:required attribute in their definitions. Once a required attribute is
set, any and all validation against an extended WSDL document must include the presence of the
corresponding element as a part of the validation.

Using SOAP and WSDL
While many of the more advanced features of the emerging Web services architecture are still
being built into many of the platforms, support for SOAP and WSDL in most vendors’ Web ser-
vices toolkits is widespread and makes binding to and using Web services straightforward. In
this section, we investigate how a typical application server and can be used to deploy our simple
banking example, and how it can be later consumed by a client application. The overall architec-
ture can be seen in Figure 3-37.

The architecture for this sample is typical of Web services applications that routinely com-
bine a variety of platforms. In Figure 3-37, we use Microsoft’s .Net and Internet Information
Server to host the service implementation, but we use the Java platform and the Apache AXIS
Web service toolkit to consume this service and drive the application.

Extensibility elements are commonly used to specify some tech-
nology-specific binding. They allow innovation in the area of net-
work and message protocols without having to revise the base
WSDL specification. WSDL recommends that specifications
defining such protocols also define any necessary WSDL exten-
sions used to describe those protocols or formats.9

Figure 3-37 Cross-platform banking Web service example.

9. From WSDL 1.2 specification, http://www.w3.org/TR/wsdl12/.

Ch03.fm Page 113 Monday, October 20, 2003 1:28 PM

114 Chapter 3 • SOAP and WSDL

Service Implementation and Deployment
The implementation of our banking service is a straightforward C# class, and is shown in

Figure 3-38.

Most of the work for this service is done by some back-end banking system, to which our
service delegates the workload. Our service implementation just acts as a kind of gateway
between the Web service network to which it exposes our back-end business logic, and the back-
end systems themselves to which it delegates work it receives from Web services clients. This
pattern is commonplace when exposing existing systems via Web services, and makes good
architectural sense since the existing system does not have to be altered just to add in Web ser-
vice support.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Web;
using System.Web.Services;

[WebService(Namespace="http://bank.example.org")]
public class BankService : System.Web.Services.WebService
{
 [WebMethod]
 public string openAccount(string title,
 string surname,
 string firstname,
 string postcode,
 string telephone)
 {
 BankEndSystem bes = new BackEndSystem();
 string accountNumber = bes.processApplication(title,
 surname,
 firstname,
 postcode,
 telephone);
 return accountNumber;
 }
}

Figure 3-38 A simple bank Web service implementation.

Ch03.fm Page 114 Monday, October 20, 2003 1:28 PM

Using SOAP and WSDL 115

When deployed into our Web services platform (in this example, Microsoft’s IIS with
ASP.Net), the associated WSDL description of the service is generated by inspection of the
implementation’s interface and made available to the Web. The resultant WSDL10 is shown in
Figure 3-39.

It is important to bear in mind, that although the WSDL shown in Figure 3-39 is intricate
and lengthy for a simple service, the effort required to build it is practically zero because of tool
support. The only issue that this should raise in the developer’s mind is that their chosen plat-
form and tools should handle this kind of work on their behalf. WSDL should only be hand-
crafted where there a specific need to do something intricate and unusual that tool support would
not facilitate.

Binding to and Invoking Web Services
Once the service has been deployed and its endpoint known by consumers, clients can

bind to it by using their client-side Web services toolkits to create proxies. A proxy is a piece of
code that sits between the client application and the network and deals with all of the business of
serializing and deserializing variables from the client’s program into a form suitable for network
transmission and back again. The client application, therefore, never has to be aware of any net-
work activity and is simpler to build.

The key to building a successful Web service, even one as sim-
ple as our bank account example, is to ensure that the orthogo-
nal issues of service functionality and deployment are kept
separate. That is, do not allow the implementation of your system
to change purely because you intend to expose its functionality
as a Web service.

It is a useful paradigm to treat your Web services as “user
interfaces” through which users (in most cases other computer
systems) will interact with your business systems. In the same
way that you would not dream of putting business rules or data
into human user interfaces, then you should not place business
rules or data into your Web service implementations. Similarly,
you would not expect that a back-end business system would be
updated simply to accommodate a user interface, and you should
assume that such mission-critical systems should not be altered
to accommodate a Web service deployment.

10. The WDSL description generated by ASP.Net is richer than that shown here since it also includes
HTTP GET and HTTP POST bindings. However, we are predominantly interested in SOAP as the
Web services transport, and so the HTTP bindings have been removed.

Ch03.fm Page 115 Monday, October 20, 2003 1:28 PM

116 Chapter 3 • SOAP and WSDL

<?xml version="1.0" encoding="utf-8"?>
<definitions
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:bank="http://bank.example.org"
 targetNamespace="http://bank.example.org"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema elementFormDefault="qualified"
 targetNamespace="http://bank.example.org">
 <xs:element name="openAccount">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1"
 name="title" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1"
 name="surname" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1"
 name="firstname" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1"
 name="postcode" type="xs:string"/>
 <xs:element minOccurs="0" maxOccurs="1"
 name="telephone" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="openAccountResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1"
 name="openAccountResult" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="string" nillable="true"
 type="xs:string"/>
 </xs:schema>
 </types>
 <message name="openAccountSoapIn">
 <part name="parameters" element="bank:openAccount"/>
 </message>
 <message name="openAccountSoapOut">
 <part name="parameters"
 element="bank:openAccountResponse"/>
 </message>
 <portType name="BankServiceSoap">

Figure 3-39 Bank service auto-generated WSDL description.

Ch03.fm Page 116 Monday, October 20, 2003 1:28 PM

Using SOAP and WSDL 117

In our example, the serialization and deserialization is to SOAP from Java and back again,
and is handled by a proxy generated by the Apache AXIS WSDL2Java tool. This tool parses
WSDL at a given location and generates a proxy class which allows client code to communicate
with that service. For example, the proxy code generated by this tool when it consumed our bank
example service is shown in Figure 3-40.

 <operation name="openAccount">
 <input message="bank:openAccountSoapIn"/>
 <output message="bank:openAccountSoapOut"/>
 </operation>
 </portType>
 <binding name="BankServiceSoap"
 type="bank:BankServiceSoap">
 <soap:binding
 transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="openAccount">
 <soap:operation
 soapAction="http://bank.example.org/openAccount"
 style="document"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="BankService">
 <port name="BankServiceSoap"
 binding="bank:BankServiceSoap">
 <soap:address
 location="http://localhost/dnws/BankService.asmx"/>
 </port>
 </service>
</definitions>

Figure 3-39 Bank service auto-generated WSDL description (continued).

Ch03.fm Page 117 Monday, October 20, 2003 1:28 PM

118 Chapter 3 • SOAP and WSDL

The proxy class shown in Figure 3-40 allows the client of the Web service to call its functional-
ity with a call as simple as the likes of:

 bankAccountService.openAccount("Mr", "Aneurin", "Bevan",
 "ABC 123", "0207 123 4567")

without having to worry about the fact that on the wire, the proxy has sent a SOAP message that
looks like that shown in Figure 3-41 below:

/**
 * This file was auto-generated from WSDL
 * by the Apache Axis WSDL2Java emitter.
 */

package org.example.bank;
import java.lang.String;

public class BankServiceSoapStub
 extends org.apache.axis.client.Stub
 implements org.example.bank.BankServiceSoap {

 // Data members removed for brevity

 public BankServiceSoapStub()
 throws org.apache.axis.AxisFault {
 this(null);
 }

 // Other constructors removed for brevity

 private org.apache.axis.client.Call createCall()
 throws java.rmi.RemoteException {
 // Implementation removed for brevity
 return _call;
 }
 catch (java.lang.Throwable t) {
 throw new org.apache.axis.AxisFault("Failure trying" +
 " to get the Call object", t);
 }
 }

 public String openAccount(String title, String surname,
 String firstname,
 String postcode,
 String telephone)
 throws java.rmi.RemoteException {
 // Implementation removed for brevity
 }
}

Figure 3-40 Apache AXIS auto-generated proxy for the bank Web service.

Ch03.fm Page 118 Monday, October 20, 2003 1:28 PM

Using SOAP and WSDL 119

At the receiving end, the bank service’s SOAP server will retrieve this SOAP from the net-
work and turn it into something meaningful (in our case C# objects) before passing it to the ser-
vice implementation. The service implementation grinds away at its task, producing some result
in its own proprietary format before passing it back to the underlying Web services platform to
serialize its results into the appropriate network format (i.e., a SOAP message) and return it to
the caller. At this point the service invocation has finished and the resources used during the exe-
cution of that service can be freed.

Where’s the Hard Work?
For simple interactions, there isn’t any hard work for the developer to do because SOAP

toolkits are sufficiently advanced enough to automate this. For example, we didn’t have to worry
about the style of SOAP encoding or how the marshalling occurred in any of our bank account
examples, even though we crossed networks, servers, and even languages and platforms.

Though it may seem from these examples that Web services is an automation utopia, it is
not. While it is true that for the majority of cases, simple interactions can be automated (though
auto-generation of WSDL from service implementation code and auto-generation of proxies
from WSDL descriptions), this is about as far as toolkits have advanced.

Given that this book extends beyond this third chapter, it is safe to assume that we’re going
to have to roll up our shirt sleeves at some point and patch the gaps that the current set of Web
services toolkits inevitably leaves. It is in these subsequent chapters where we will find the hard
work!

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <openAccount xmlns="http://bank.example.org">
 <title>Mr</title>
 <surname>Bevan</surname>
 <firstname>Aneurin</firstname>
 <postcode>ABC 123</postcode>
 <telephone>0207 123 4567</telephone>
 </openAccount>
 </soap:Body>
</soap:Envelope>

Figure 3-41 Proxy generated SOAP message.

Ch03.fm Page 119 Monday, October 20, 2003 1:28 PM

120 Chapter 3 • SOAP and WSDL

Summary
SOAP is the protocol that Web services use to communicate. It is an XML-based protocol that
specifies a container called an Envelope, which stores application payload in a second container,
called the Body, and additional (usually contextual) information inside a third container called
the Header. The SOAP specification describes a processing model where application messages
(and their associated headers) can pass through intermediary processing nodes between the
sender and receiver, where the information stored in the SOAP header blocks can be used by
those intermediaries to provide various quality of service characteristics. For example, the head-
ers may contain routing information, transaction context, security credentials, or any other pro-
tocol information.

WSDL is an interface description language for Web services and like SOAP, WSDL is
currently popularized by its 1.1 version, which is due to be superseded by WSDL 1.2. A WSDL
interface is composed from a number of elements, each building on the previous, from simple
type and message declarations, culminating in a network addressable entity which uses the
defined types and messages to expose operations onto the Web.

Though SOAP and WSDL are undoubtedly important protocols in their own right, when
drawn together through tool support, their potential is significantly enhanced. Web services tool-
kits can consume the WSDL offered by a service and automatically generate the code to deal
with messages in the format that the service expects, while providing a straightforward API to
the developer.

Architect’s Note
• SOAP 1.1 is the most widely adopted version of the SOAP specification. However,

SOAP 1.2 has now reached W3C recommendation status and thus SOAP 1.1 is now
considered deprecated.

• SOAP RPC is quick and easy, but may lead to applications with too tight a level of
coupling. Exchanging larger documents is preferable, even if it means writing handler
code to deal with them.

• XML-Native applications should not use SOAP-RPC; they should use the XML
vocabularies that they have already developed, and use those vocabularies as the basis
of their communication via document-oriented SOAP.

• Be prepared for a shift in the Web services architecture, and ensure your services can
support “Web-friendly” access where appropriate.

• Do not deploy a Web service without its WSDL description—a service is naked
without it.

• Use tool support—it is wasted effort to do for yourself what a tool can do more easily,
more quickly, and more accurately.

Ch03.fm Page 120 Monday, October 20, 2003 1:28 PM

